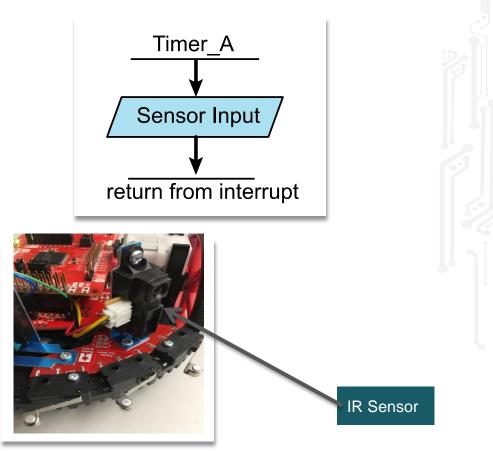
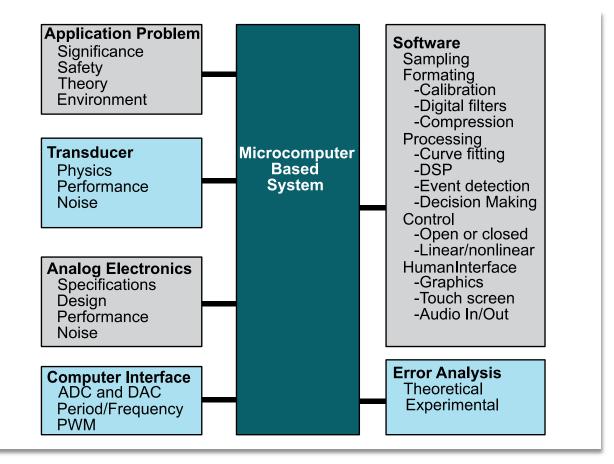
TI-RSLKMAX

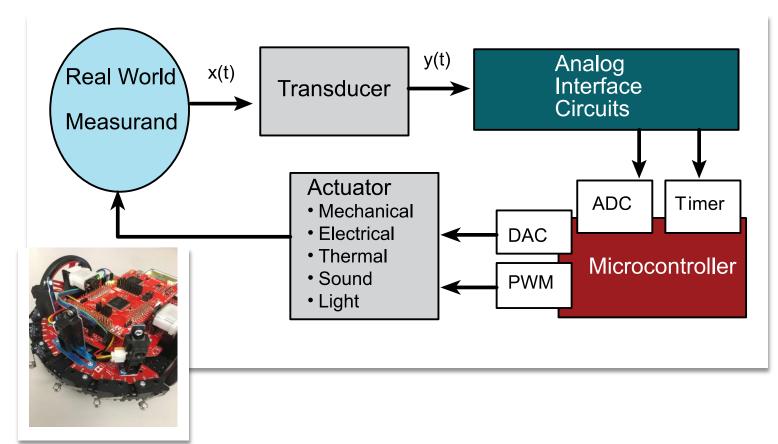
Texas Instruments Robotics System Learning Kit


Module 15

Lecture: Data Acquisition Systems - Theory


Data Acquisition Systems

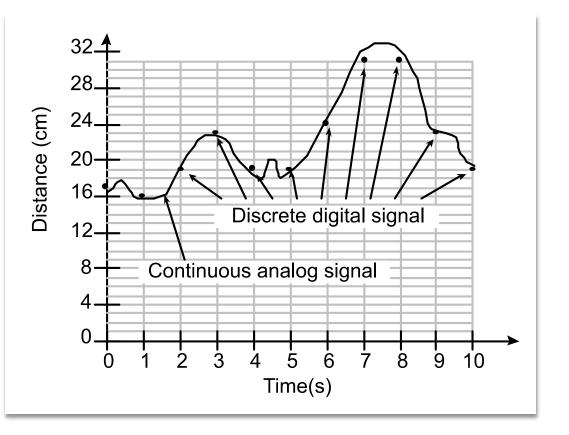
You will learn in this module


- Signals & Sampling
 - ADC, DAC
 - Range, resolution, precision
 - Successive approximation
- MSP432
 - Software driver
 - Spectrum Analyzer
 - Central Limit Theorem

Data Acquisition Systems

A Control System includes a Data Acquisition System

Sampling: conversion from analog to digital

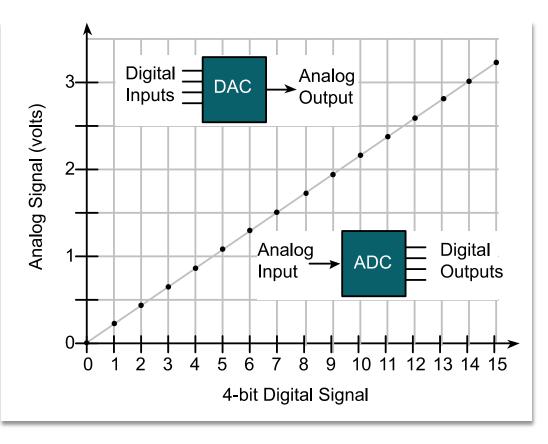

Amplitude

- Range
- Resolution
- Precision

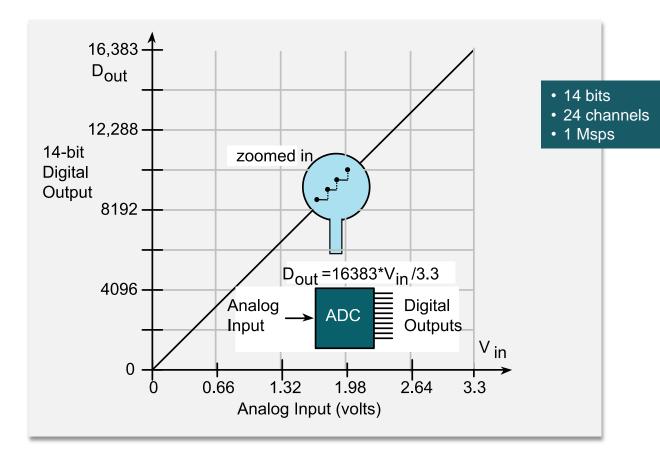
Time domain

- Sampling rate, f_s
 - 0 to $\frac{1}{2} f_{s}$
- Number of samples
 - Buffer size N
- Frequency resolution

• f_s/N

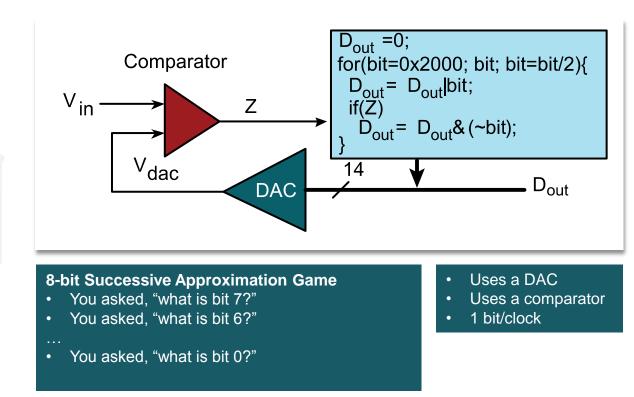

DAC versus ADC

DAC


- Digital to Analog
- uC output
- Signal generation

ADC

- Analog to Digital
- uC input
- Measurements

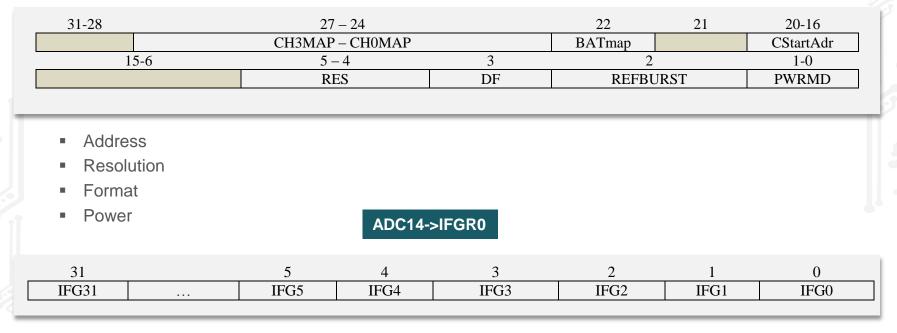

Successive Approximation

8-bit Successive Approximation Game

- I pick a number from 0 to 255
- You can guess
- I will respond high or low (same)
- How many guesses will it take you?

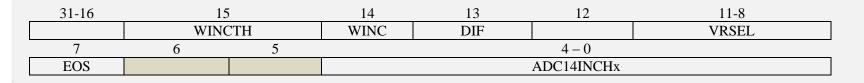
What is your first guess?

Successive Approximation – How it works


Good information https://e2e.ti.com/blogs/b/msp430blog/archive/2016/05/10/how-to-leverage-the-flexibility-of-an-integrated-adc-in-an-mcu-for-your-design-to-outshine-your-competitor-part-1

ADC14->CTL0

31-30	29-27	26	25	24-22	21-19	18-17	16
PDIV	SHSx	SHP	ISSH	DIVx	SSELx	CONSx	BUSY
15-12	11-8	7	6-5	4	3-2	1	0
SHT1x	SHT0x	MSC		ON		ENC	SC


- Clock (speed/power)
- Sample and hold (noise)
- Sequence or single channel
- Reference (range)
- Enable
- Start sample

ADC14->CTL1

Conversion complete

ADC->MCTL[n]

- Comparator
- Differential/single
- Reference
- Channel

ADC14 Software Conversion

- 1. Wait for BUSY to be zero
- 2. Start conversion
- 3. Wait for completion
- 4. Read result

```
uint32_t ADC_In6(void) {
  while(ADC14->CTL0&0x00010000){};
  ADC14->CTL0 |= 0x00000001;
  while((ADC14->IFGR0&0x01) == 0){};
  return ADC14->MEM[0];
```

Periodic Interrupt and Mailbox

- 1. Sample ADC
- 2. Run digital filter
- 3. Save in global
- 4. Set semaphore

```
void SysTick_Handler(void) {
    uint32_t RawADC;
    P1OUT ^= 0x01;
    P1OUT ^= 0x01;
    RawADC = ADC_In6();
    ADCvalue = LPF_Calc(RawADC);
    ADCflag = 1; // semaphore
    P1OUT ^= 0x01;
}
```

9us

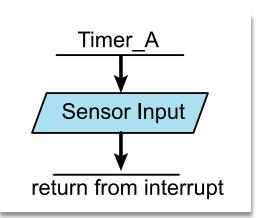

Analog to Digital Converter

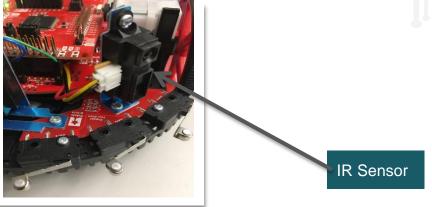
- Successive Approximation
- Range
- Resolution
- Precision

Software

- Initialization
- Mailbox

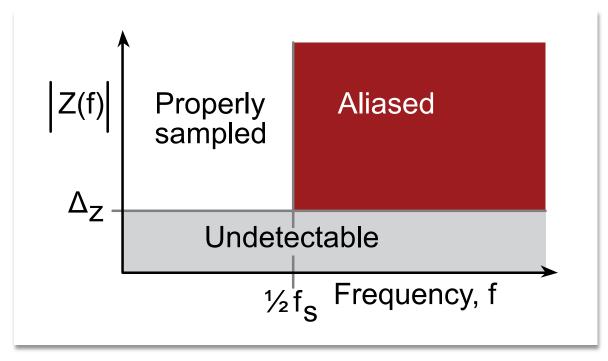
 $100 \sum_{n=1}^{n} |x_{ti} - x_{mi}|$ **X**_{tmax} n *i*=0


Module 15

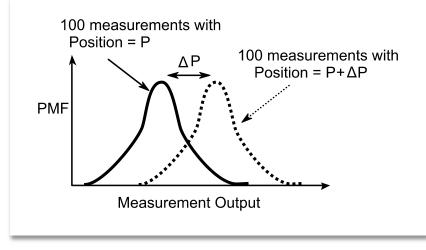

Lecture: Data Acquisition Systems – Performance Measurements

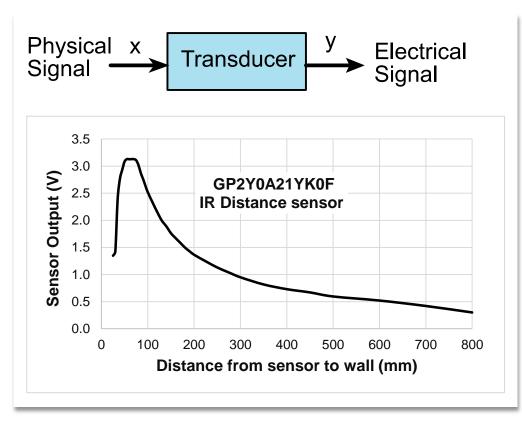
Data Acquisition Systems

You will learn in this module

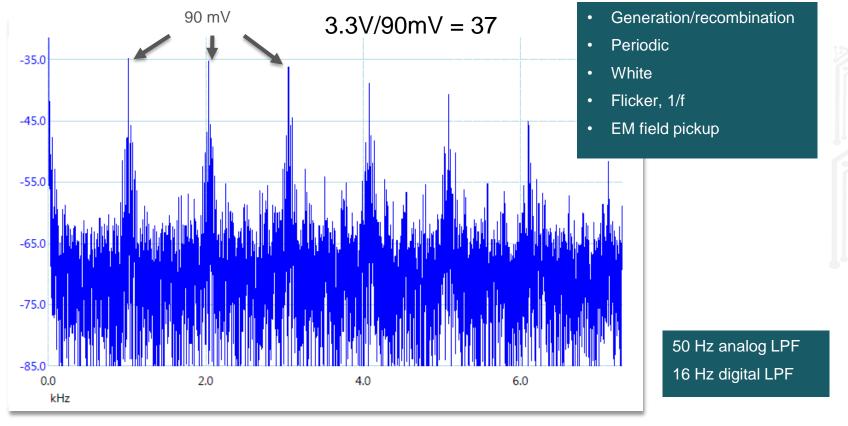

- Analog to Digital Converter
 - Sampling, Nyquist Theorem
 - **Digital filtering** .
- Noise and statistics
 - **Probability Mass Function** •
 - Spectrum Analyzer •
 - **Central Limit Theorem**
- Data Acquisition Systems
 - Range, resolution, precision
 - Calibration
 - Accuracy

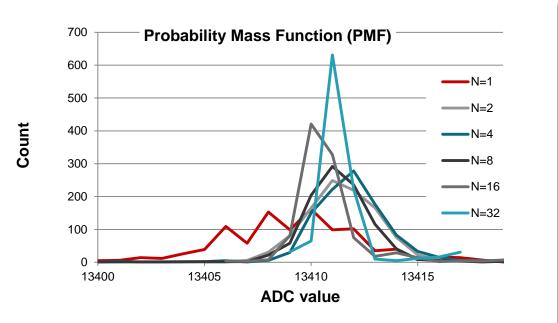
18




The **Nyquist Theorem** states that if the signal is sampled with a frequency of f_s , then the digital samples only contain frequency components from 0 to $\frac{1}{2} f_s$.

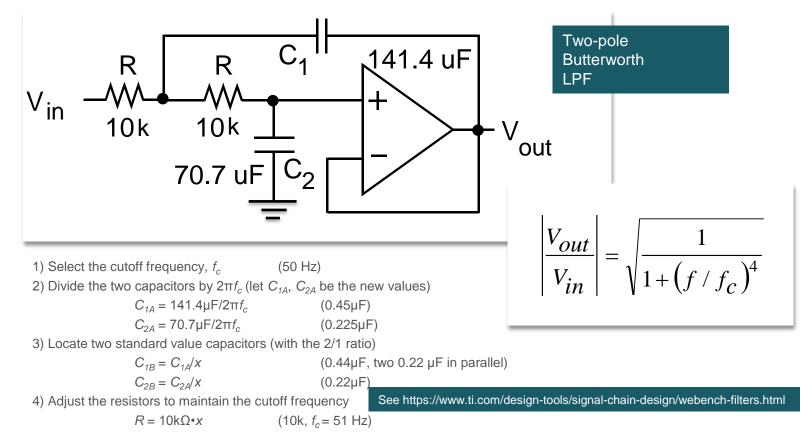
- Probability Mass Function (PMF)
- Average (µ = mean)
- Standard deviation (σ = sigma)
- Range (max-min)
- Coefficient of variation, $CV = \sigma/\mu$
- Precision log₂(μ/σ)
- Resolution, Δ

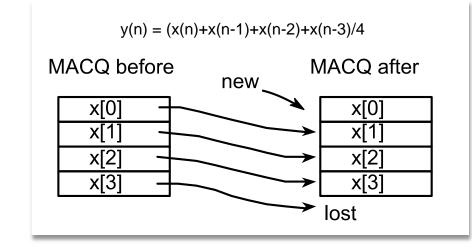



- Nonmontonic
- Hyperbolic
- Noisy

GP2Y0A21YK0F IR distance sensors are noisy

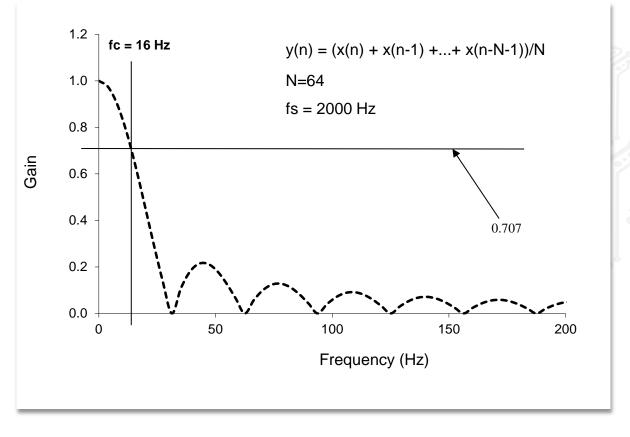
 $dB_{FS} = 20 \log_{10}(V/3.3)$

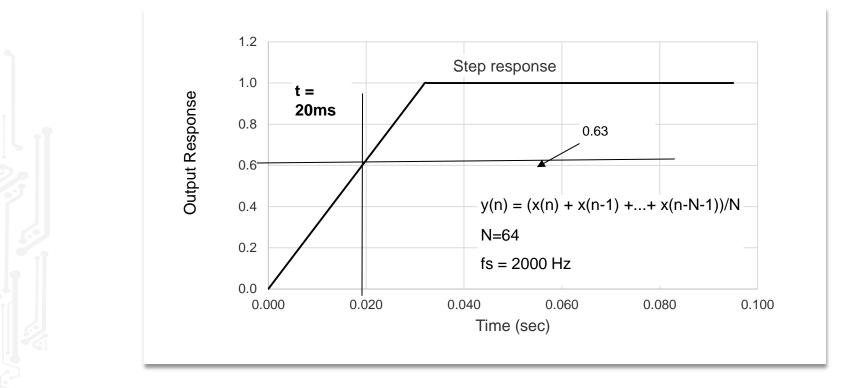

Probability Mass Function (PMF)


CLT states that as independent random variables are added, their sum tends toward a Normal distribution.

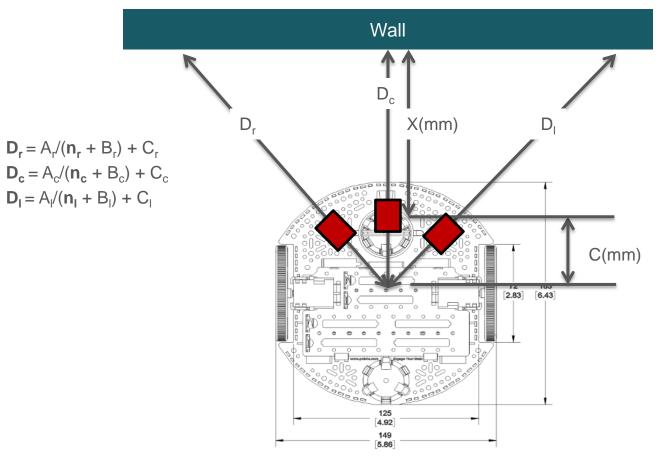
- Constant input
- Average of last N samples
- $f_s = 1000 \text{ Hz}$

Analog Low Pass Filter to remove Aliasing

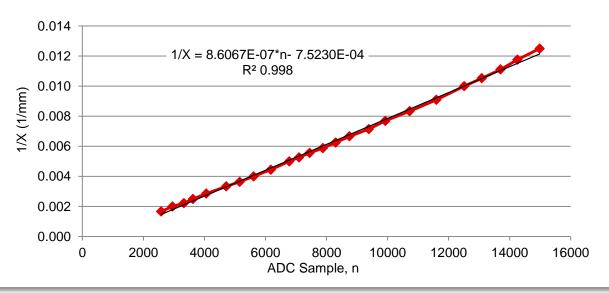

Digital Filtering


25 | Data Acquisition Systems – Performance Measurements

Averaging Low Pass Filters


- Linear Filter
- Finite Impulse Response
- Low pass

Averaging Low Pass Filters


Distance to wall

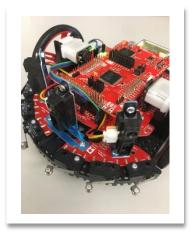
- Distance, X, from the sensor to wall, 80 to 400mm
- ADC value, n
- Linear fit 1/X versus n
- Solve for X = A/(n+B)
- Add distance to central point, D = A/(n+B)+C

Analog to Digital Converter

Noise

Sampling

- Nyquist Theorem, Aliasing
- Central Limit Theorem

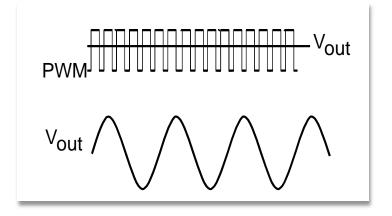

Filters

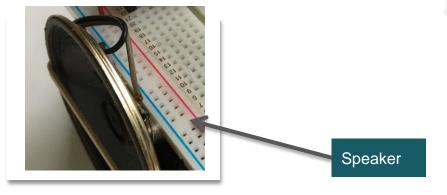
- Analog LPF
- Digital LPF

Data Acquisition Systems

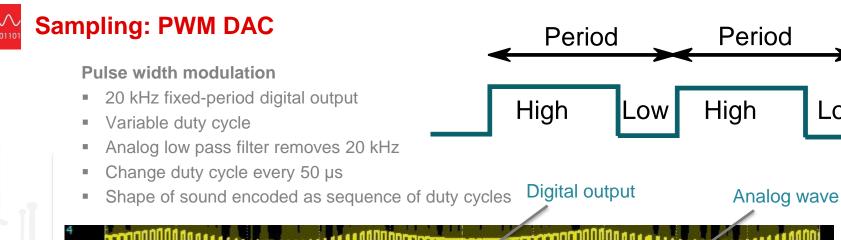
- Calibration
- Accuracy

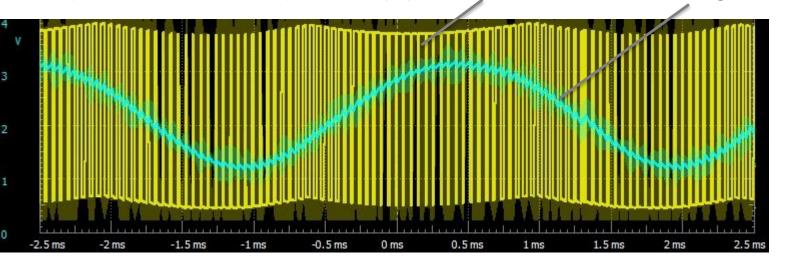
$$\frac{100}{n} \sum_{i=0}^{n} \frac{\left| x_{ti} - x_{mi} \right|}{x_{tmax}}$$


Module 15


Lecture: Data Acquisition Systems – Sound generation

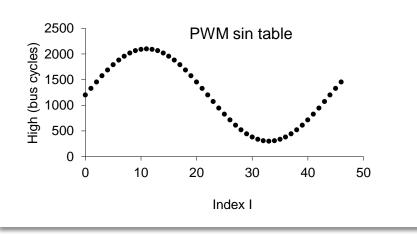
Data Acquisition Systems


You will learn in this module


- Signals & Sampling
 - PWM, DAC
 - Range, resolution, precision
- Sound
 - Transducer
 - Analog Circuit
 - Sampling
 - Filtering

\sim Speaker generates sound Compression wave in both time and space Electromagnet Permanent 2 magnet Diaphragm Ear Speaker voltages Pitch = 1/T

Low


Interface between microcontroller and speaker

LPF to reject PWM frequency HPF to reject DC from PWM DAC Provide power to speaker TPA731 adds DC offset of 2.5V Gain of 4

LPF cutoff = $1/(2\pi C4R7) = 723Hz$ HPF cutoff = $1/(2\pi C5R8) = 159Hz$ C6 creates DC offset of 2.5V Gain=2*R9/R8 = 4

Software to generate PWM outputs

$$f_{PWM} = 48 \text{ MHz}/2424 = 19.8 \text{ kHz}$$

 $f_{sound} = 48 \text{ MHz}/(2424*45) = 440 \text{ Hz}$

Dutycycle =	High	High	
Dutycycle –	High + Low	Period	

```
#define Period 2424
const uint16_t wave440[45] = {
    1212,1339,1463,1583,1695,1798,1890,1968,2032,2079,2110,
    2123,2119,2097,2058,2002,1931,1846,1748,1640,1524,1402,
    1276,1148,1022,900,784,676,578,493,422,366,
    327,305,301,314,345,392,456,534,626,729,
    841,961,1085};
```

Software to generate PWM outputs

```
uint32_t startTime;
void SysTick_Wait2(uint32_t delay){
  volatile uint32_t elapsedTime;
  do{
    elapsedTime = (startTime-SysTick->VAL)&0x00FFFFFF;
  }
  while(elapsedTime <= delay);
  startTime = SysTick->VAL;
}
```

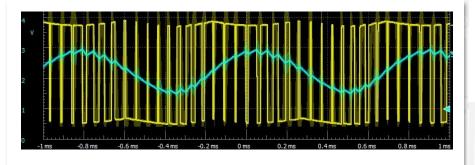
```
while(1) {
    High = wave440[i];
    Low = Period-High;
    SysTick_Wait2(Low);
    P3->OUT |= 0x40; // P3.6 high
    SysTick_Wait2(High);
    P4->OUT &= ~0x40; // P3.6 low
    i = (i+1)%45;
}
```

Dutycycle =	High	High
	High + Low	Period

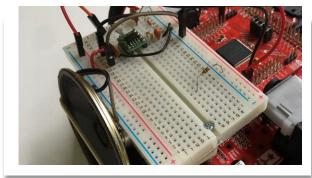
DAC Precision

- Number of different duty cycles
- 48MHz/20kHz = 2400 alternative ≈ 11 bits
 DAC Range
- 0 to 3.3V

DAC Resolution


- 3.3V/2400
- Limited by noise and LPF cutoff
- Use spectrum analyzer to measure SNR

DAC Speed


- Set by PWM period
- New duty cycle every 50 µs

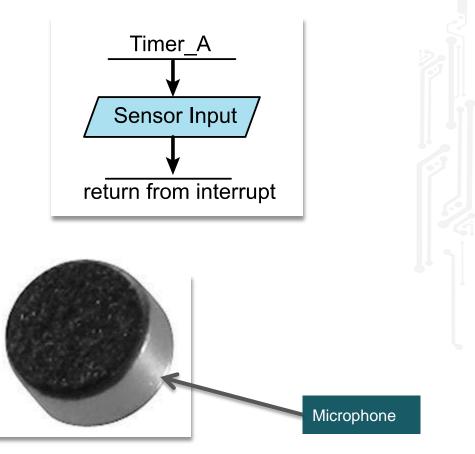
Sound

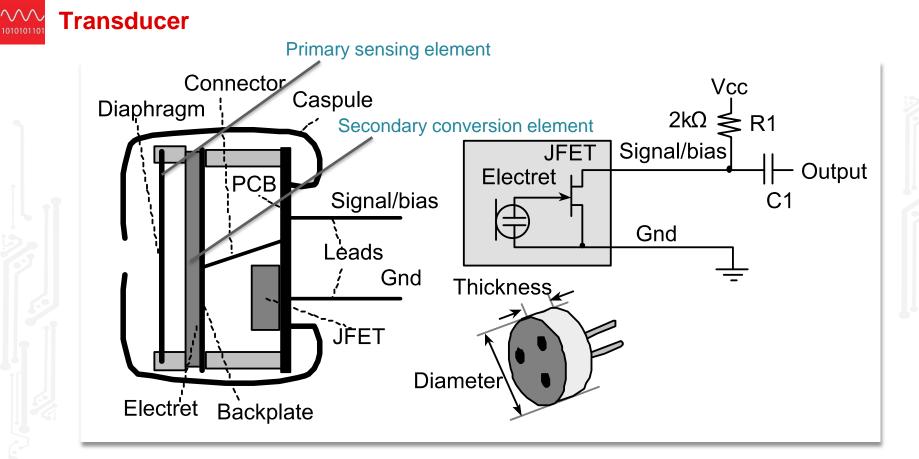
- Loudness set by power to speaker
- Pitch set by size of duty cycle array
- Voice set by shape duty cycles in array
- Duration
- Envelope (time varying amplitude)

$f_{PWM} = 48 \text{ MHz}/2424 = 19.8 \text{ kHz}$ $f_{sound} = 48 \text{ MHz}/(2424^*45) = 440 \text{ Hz}$

Module 15

Lecture: Data Acquisition Systems - Sound recording

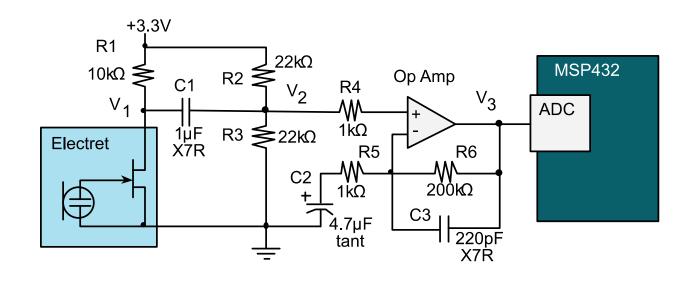

Data Acquisition Systems


You will learn in this module

- Signals & Sampling
 - ADC, DAC
 - Range, resolution, precision
 - Successive approximation
- Sound

 $\Lambda \Lambda \Lambda$

- Transducer
- Analog Circuit
- Sampling
- Filtering
- Pitch Recognition



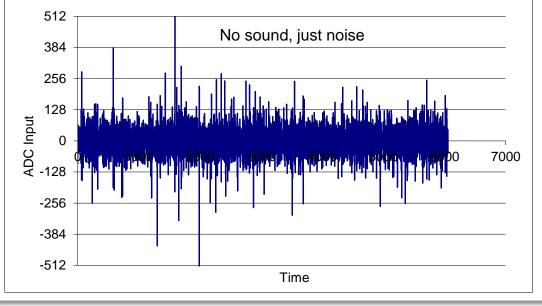
Interface between microphone and microcontroller

- Provide power to microphone
- HPF to reject DC
- Add DC offset of 1.65V
- Gain of 100
- LPF to prevent aliasing

Gain=1+R6/R5 = 201 HPF cutoff = $1/(2\pi C1(R2||R3)=14Hz$ LPF cutoff = $1/(2\pi C3R6)=3600Hz$

\sim

Sampling: adaptive noise rejection


Noise

- Comes from microphone
- Very large
- Random
- Not correlated to itself

Signal

- Comes from sound pressure
- Highly correlated to itself

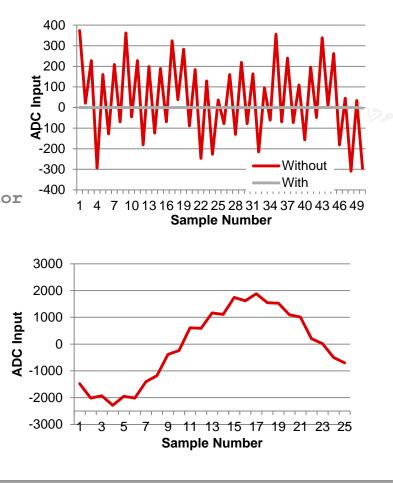
http://www.ti.com/lit/an/spra657/spra657.pdf

Cross correlation to see if signals are the same shape

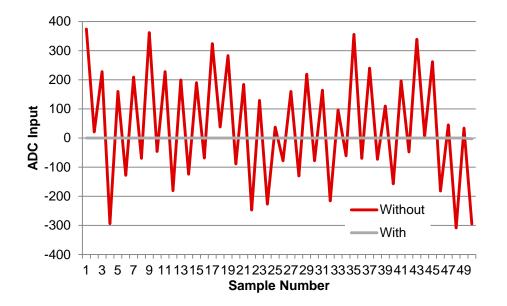
Assumptions Sampled at f_{c} Data has zero average (just shape) Measured data x(n) is current sample x(n-1) is sample Δt ago x(n-2) is sample $2\Delta t$ ago Prerecorded data template y(n) is current sample y(n-1) is sample Δt ago y(n-2) is sample $2\Delta t$ ago Use cross correlation to see if same shape R_{XV} = +large means same shape $R_{xv} = 0$ means not same shape R_{xy} = -large means same, but inverted shape

$$f_s = 1/\Delta t$$
$$R_{xy}(m) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} x(n) * y(n-m)$$

Autocorrelation

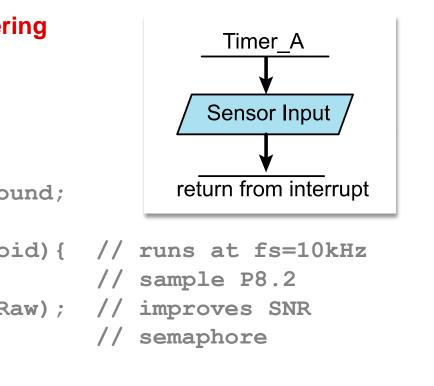

400 $f_s = 1/\Delta t$ 200 x(n) is current sample Input x(n-1) is sample Δt ago -200 x(n-2) is sample $2\Delta t$ ago ADC -400 -600 x(n-m) is sample $m \Delta t$ ago -800 -1000 $R_{xx}(m) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{\infty} x(n) * x(n-m)$ $\begin{array}{c}
 123 \\
 236 \\
 56 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236 \\
 236$ 765543327 188 199 210 221 223 232 232 243 Sample Number Signal n = 0x(n) $Rxx2 \approx \frac{127}{128}Rxx2 + \frac{1}{128}x(n) * x(n-2)$ shifted by m x(n-m)

```
Noise reject filter
```


Autocorrelation

- Rxx2 = M-1 if signal correlated to itself
- Rxx2 = 0 if signal uncorrelated to itself

```
int32 t t0,t1,t2; // last 3 inputs/32
int32 t Rxx2; // autocorrelation factor
#define K 128 // how fast it responds
#define M 128
int32 t NoiseReject(int32 t x) {
 t2 = t1;
 t1 = t0;
 t0 = x/32;
 Rxx2 = ((K-1)*Rxx2 + t0*t2)/K;
 if (Rxx2 < -M) Rxx2 = -M;
 if(Rxx2 > M) Rxx2 = M;
 return (Rxx2*x)/M;
```

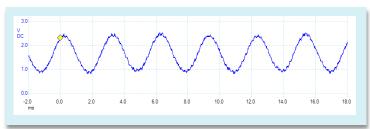


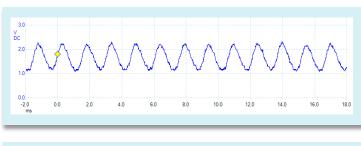
Results of noise suppression

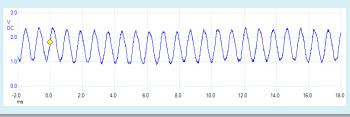
$\wedge \wedge \wedge$ Data acquisition with digital filtering

```
volatile int32 t Raw,Sound;
#define DC 8192
void Program15 2 ISR(void) { // runs at fs=10kHz
 Raw = ADC In23()-DC; // sample P8.2
  Sound = NoiseReject(Raw); // improves SNR
  ADCflag = 1;
```


Use sound as command input to robot


Initial training


- A small number of sine-wave sounds
- Train by recording example of each
- Examples are the templates y(n)
 - Fixed sampling rate
 - Variable size to capture complete waves


Use cross correlation to distinguish

- Calculate R_{XV} for each template
 - Use finite size buffers
 - Calculate max R_{xv} for various m
- Pitch recognition
 - Best match is largest R_{xy}
 - Above a threshold

Frequency Key Shifting (FSK)

Sound recording

- Transducer
- Gain
- Analog filter

Digital processing

- Noise rejection using autocorrelation
 - Noise does not correlate with itself
 - Signal does correlate with itself
- Pitch recognition (FSK)
 - Training session
 - Cross correlation to find best match

ti.com/rslk

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated