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Data Acquisition Systems 
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You will learn in this module   

 Signals & Sampling  

• ADC, DAC 

• Range, resolution, precision 

• Successive approximation 

 

 MSP432 

• Software driver 

• Spectrum Analyzer 

• Central Limit Theorem 

IR Sensor 



Texas Instruments Robotics System Learning Kit: The Maze Edition 

SEKP135 
|  Data Acquisition Systems - Theory 

Data Acquisition Systems 
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A Control System includes a Data Acquisition System 
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Sampling: conversion from analog to digital 
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Amplitude 

 Range 

 Resolution 

 Precision 

 

Time domain 

 Sampling rate, fs 

• 0 to ½ fs 

 Number of samples 

• Buffer size N 

 Frequency resolution  

• fs/N 
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DAC versus ADC 
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DAC 

 Digital to Analog  

 uC output 

 Signal generation 

 

ADC 

 Analog to Digital   

 uC input 

 Measurements 
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MSP432 ADC14 
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• 14 bits 

• 24 channels 

• 1 Msps 



Texas Instruments Robotics System Learning Kit: The Maze Edition 

SEKP135 
|  Data Acquisition Systems - Theory 

Successive Approximation 
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8-bit Successive Approximation Game 

• I pick a number from 0 to 255 

• You can guess 

• I will respond high or low (same) 

• How many guesses will it take you? 

What is your first guess? 
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Successive Approximation – How it works  
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8-bit Successive Approximation Game 

• You asked, “what is bit 7?” 

• You asked, “what is bit 6?” 

… 

• You asked, “what is bit 0?” 

 

• Uses a DAC 

• Uses a comparator 

• 1 bit/clock 
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ADC14 Software Initialization 
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ADC14->CTL0 

 Clock (speed/power) 

 Sample and hold (noise) 

 Sequence or single channel 

 Reference (range) 

 Enable 

 Start sample 

31-30 29-27 26 25 24-22 21-19 18-17 16 

PDIV SHSx SHP ISSH DIVx SSELx CONSx BUSY 

15-12 11-8 7 6-5 4 3-2 1 0 

SHT1x SHT0x MSC  ON  ENC SC 
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ADC14->IFGR0 

ADC14 Software Initialization 
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ADC14->CTL1 

 Address 

 Resolution 

 Format 

 Power 

 Conversion complete 

31-28 27 – 24 22 21 20-16 

 CH3MAP – CH0MAP BATmap  CStartAdr 

15-6 5 – 4 3 2 1-0 

 RES DF REFBURST PWRMD 

 

31  5 4 3 2 1 0 

IFG31 … IFG5 IFG4 IFG3 IFG2 IFG1 IFG0 
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ADC14 Software Initialization 
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ADC->MCTL[n] 

 Comparator 

 Differential/single 

 Reference 

 Channel 

31-16 15 14 13 12 11-8 

 WINCTH WINC DIF  VRSEL 

7 6 5 4 – 0  

EOS   ADC14INCHx 
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ADC14 Software Conversion 
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1. Wait for BUSY to be zero 

2. Start conversion 

3. Wait for completion 

4. Read result 

uint32_t ADC_In6(void){ 

  while(ADC14->CTL0&0x00010000){};    

  ADC14->CTL0 |= 0x00000001;   

  while((ADC14->IFGR0&0x01) == 0){};   

  return ADC14->MEM[0];      

} 
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Periodic Interrupt and Mailbox 
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1. Sample ADC 

2. Run digital filter 

3. Save in global 

4. Set semaphore  

void SysTick_Handler(void){ 

  uint32_t RawADC; 

  P1OUT ^= 0x01;            

  P1OUT ^= 0x01;          

  RawADC = ADC_In6(); 

  ADCvalue = LPF_Calc(RawADC); 

  ADCflag = 1;   // semaphore 

  P1OUT ^= 0x01;        

} 

9us 
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Summary 
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Analog to Digital Converter 

 Successive Approximation 

 Range 

 Resolution 

 Precision 

 

Software 

 Initialization 

 Mailbox 

 

 




n

i t

miti

x

xx

n 0 max

100



Texas Instruments Robotics System Learning Kit: The Maze Edition 

SEKP135 
|  Data Acquisition Systems – Performance  Measurements 

Module 15 
Lecture: Data Acquisition Systems – Performance Measurements 
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Data Acquisition Systems 

18 

You will learn in this module   

 Analog to Digital Converter 

• Sampling, Nyquist Theorem 

• Digital filtering 

 

 Noise and statistics 

• Probability Mass Function 

• Spectrum Analyzer 

• Central Limit Theorem 

 

 Data Acquisition Systems 

• Range, resolution, precision 

• Calibration 

• Accuracy 

IR Sensor 
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Nyquist Theorem 
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The Nyquist Theorem states that if the signal is sampled with a frequency of fs, 

then the digital samples only contain frequency components from 0 to ½ fs.  
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Statistics 
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 Probability Mass Function (PMF) 

 Average (µ = mean) 

 Standard deviation (σ = sigma) 

 Range (max-min) 

 Coefficient of variation, CV =  σ/μ 

 Precision log2(μ/σ) 

 Resolution, Δ 
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Transducer 
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• Hyperbolic 
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GP2Y0A21YK0F IR distance sensors are noisy 
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dBFS = 20 log10(V/3.3) 

90 mV • Generation/recombination 

• Periodic 

• White 

• Flicker, 1/f 

• EM field pickup 

3.3V/90mV = 37 

50 Hz analog LPF 

16 Hz digital LPF 



Texas Instruments Robotics System Learning Kit: The Maze Edition 

SEKP135 
|  Data Acquisition Systems – Performance  Measurements 

Probability Mass Function (PMF) 
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• Constant input 

• Average of last N samples 

• fs = 1000 Hz 

CLT states that as independent random variables are added, 

their sum tends toward a Normal distribution. 
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Analog Low Pass Filter to remove Aliasing 
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Two-pole 

Butterworth 

LPF 

V in 
V 

C 1 R R 

C 2 

10 k 

141.4 uF 

70.7 uF 
out 

10 k 

 4/1

1

cffinV

outV




1) Select the cutoff frequency, fc   (50 Hz) 

2) Divide the two capacitors by 2πfc (let C1A, C2A be the new values) 

 C1A = 141.4µF/2πfc    (0.45µF) 

 C2A = 70.7µF/2πfc  (0.225µF) 

3) Locate two standard value capacitors (with the 2/1 ratio)  

 C1B = C1A/x  (0.44µF, two 0.22 µF in parallel) 

 C2B = C2A/x  (0.22µF) 

4) Adjust the resistors to maintain the cutoff frequency 

 R = 10kΩ•x (10k, fc = 51 Hz) 

See https://www.ti.com/design-tools/signal-chain-design/webench-filters.html 
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Digital Filtering 
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x[3] = x[2]; 

x[2] = x[1]; 

x[1] = x[0]; 

x[0] = ADC_In6(); 

y = (x[0]+x[1]+x[2]+x[3])/4; 

 

 

y(n) = (x(n)+x(n-1)+x(n-2)+x(n-3)/4 
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Averaging Low Pass Filters 
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y(n) = (x(n) + x(n-1) +...+ x(n-N-1))/N 
 
N=64 
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 Low pass 
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Averaging Low Pass Filters 
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0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.000 0.020 0.040 0.060 0.080 0.100

O
u

tp
u

t 
R

e
s
p

o
n

s
e

 

Time (sec) 

Step response 
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y(n) = (x(n) + x(n-1) +...+ x(n-N-1))/N 
 
N=64 
 
fs = 2000 Hz 
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Distance to wall 

28 

Wall 

X(mm) 

Dc 

Dr Dl 

C(mm) 

Dr = Ar/(nr + Br) + Cr 

Dc = Ac/(nc + Bc) + Cc 

Dl = Al/(nl + Bl) + Cl 
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Calibration 

29 

 Distance, X, from the sensor to wall, 80 to 400mm 

 ADC value, n 

 Linear fit 1/X versus n 

 Solve for X = A/(n+B) 

 Add distance to central point, D = A/(n+B)+C 

1/X = 8.6067E-07*n- 7.5230E-04 
R² 0.998 

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0 2000 4000 6000 8000 10000 12000 14000 16000

1
/X

 (
1
/m

m
) 

ADC Sample, n 
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Summary 
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Analog to Digital Converter 

 Noise 

 

Sampling 

 Nyquist Theorem, Aliasing 

 Central Limit Theorem 

 

Filters 

 Analog LPF 

 Digital LPF 

 

Data Acquisition Systems 

 Calibration 

 Accuracy 




n
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n 0 max

100
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Module 15 
Lecture: Data Acquisition Systems – Sound generation 
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Data Acquisition Systems 

32 

You will learn in this module   

 Signals & Sampling  

• PWM, DAC 

• Range, resolution, precision 

 

 Sound 

• Transducer 

• Analog Circuit 

• Sampling 

• Filtering 

Speaker 

Vout
PWM

Vout

Vout
PWM

Vout
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Speaker generates sound 
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Compression wave in both time and space 

Speaker  

voltages 

Diaphragm  Ear  

T  Pitch = 1/T  

Electromagnet 

Permanent 

magnet 
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Sampling: PWM DAC 
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Pulse width modulation 

 20 kHz fixed-period digital output 

 Variable duty cycle 

 Analog low pass filter removes 20 kHz 

 Change duty cycle every 50 µs 

 Shape of sound encoded as sequence of duty cycles Digital output 

High HighLow Low

Period Period

Analog wave 
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Interface between microcontroller and speaker 
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LPF to reject PWM frequency 

HPF to reject DC from PWM DAC 

Provide power to speaker 

TPA731 adds DC offset of 2.5V 

Gain of 4 

LPF cutoff = 1/(2πC4R7) =723Hz 

HPF cutoff = 1/(2πC5R8)=159Hz 

C6 creates DC offset of 2.5V 

Gain=2*R9/R8 = 4 
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Software to generate PWM outputs 
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fPWM = 48 MHz/2424 = 19.8 kHz 

fsound = 48 MHz/(2424*45) = 440 Hz 

 
Dutycycle =

High

High+Low
=

High

Period

#define Period 2424 

const uint16_t wave440[45] = { 

  1212,1339,1463,1583,1695,1798,1890,1968,2032,2079,2110, 

  2123,2119,2097,2058,2002,1931,1846,1748,1640,1524,1402, 

  1276,1148,1022,900,784,676,578,493,422,366, 

  327,305,301,314,345,392,456,534,626,729, 

  841,961,1085}; 

0
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Index I 
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Software to generate PWM outputs 
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uint32_t startTime; 

void SysTick_Wait2(uint32_t delay){ 

  volatile uint32_t elapsedTime; 

  do{ 

    elapsedTime = (startTime-SysTick->VAL)&0x00FFFFFF; 

  } 

  while(elapsedTime <= delay); 

  startTime = SysTick->VAL; 

} 

while(1){ 

  High = wave440[i]; 

  Low = Period-High; 

  SysTick_Wait2(Low); 

  P3->OUT |= 0x40;   // P3.6 high 

  SysTick_Wait2(High); 

  P4->OUT &= ~0x40;  // P3.6 low 

  i = (i+1)%45; 

} 

Dutycycle =
High

High+Low
=

High

Period
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Summary 
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DAC Precision 

 Number of different duty cycles 

 48MHz/20kHz = 2400 alternative ≈ 11 bits 

DAC Range 

 0 to 3.3V 

DAC Resolution 

 3.3V/2400 

 Limited by noise and LPF cutoff 

 Use spectrum analyzer to measure SNR 

DAC Speed 

 Set by PWM period 

 New duty cycle every 50 µs 

Sound 

 Loudness set by power to speaker 

 Pitch set by size of duty cycle array 

 Voice set by shape duty cycles in array 

 Duration 

 Envelope (time varying amplitude) 

 

 

fPWM = 48 MHz/2424 = 19.8 kHz 

fsound = 48 MHz/(2424*45) = 440 Hz 
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Data Acquisition Systems 
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You will learn in this module   

 Signals & Sampling  

• ADC, DAC 

• Range, resolution, precision 

• Successive approximation 

 

 Sound 

• Transducer 

• Analog Circuit 

• Sampling 

• Filtering 

• Pitch Recognition 

Microphone 
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Transducer 
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Primary sensing element 

Secondary conversion element 
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Interface between microphone and microcontroller 
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• Provide power to microphone 

• HPF to reject DC 

• Add DC offset of 1.65V 

• Gain of 100 

• LPF to prevent aliasing 

Gain=1+R6/R5 = 201 

HPF cutoff = 1/(2πC1(R2||R3)=14Hz 

LPF cutoff = 1/(2πC3R6) =3600Hz 
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Sampling: adaptive noise rejection 

43 

Noise 

 Comes from microphone 

 Very large 

 Random 

 Not correlated to itself 

 

Signal 

 Comes from sound pressure 

 Highly correlated to itself 

 

-512

-384

-256

-128

0

128

256

384

512

0 1000 2000 3000 4000 5000 6000 7000

A
D

C
 I

n
p
u
t 

Time 

No sound, just noise 

http://www.ti.com/lit/an/spra657/spra657.pdf 
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Cross correlation to see if signals are the same shape 
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𝑅𝑥𝑦(𝑚) =  lim𝑁→∞

1

𝑁
 𝑥 𝑛 ∗ 𝑦(𝑛 − 𝑚)

𝑁−1

𝑛=0

 

Assumptions 
  Sampled at fs 

  Data has zero average (just shape) 
Measured data 
  x(n) is current sample 

  x(n-1) is sample Δt ago 

  x(n-2) is sample 2Δt ago 

Prerecorded data template 
  y(n) is current sample 

  y(n-1) is sample Δt ago 

  y(n-2) is sample 2Δt ago 

Use cross correlation to see if same shape 

  Rxy = +large means same shape 

  Rxy = 0 means not same shape 

  Rxy = -large means same, but inverted shape 

 

fs = 1/Δt 
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Autocorrelation 
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𝑅𝑥𝑥(𝑚) =  lim𝑁→∞

1

𝑁
 𝑥 𝑛 ∗ 𝑥(𝑛 − 𝑚)

𝑁−1

𝑛=0

 

𝑅𝑥𝑥2 ≈
127

128
𝑅𝑥𝑥2 +

1

128
𝑥 𝑛 ∗ 𝑥(𝑛 − 2) 

x(n) is current sample 

x(n-1) is sample Δt ago 

x(n-2) is sample 2Δt ago 

x(n-m) is sample mΔt ago 

 

 

fs = 1/Δt 
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Noise reject filter 
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Autocorrelation 

 Rxx2 = M-1 if signal correlated to itself 

 Rxx2 = 0 if signal uncorrelated to itself 

int32_t t0,t1,t2; // last 3 inputs/32 

int32_t Rxx2;     // autocorrelation factor  

#define K 128     // how fast it responds 

#define M 128 

int32_t NoiseReject(int32_t x){  

  t2 = t1;  

  t1 = t0;  

  t0 = x/32;  

  Rxx2 = ((K-1)*Rxx2 + t0*t2)/K; 

  if(Rxx2 < -M) Rxx2 = -M;  

  if(Rxx2 >  M) Rxx2 =  M; 

  return (Rxx2*x)/M;  

} 
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Results of noise suppression  
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Data acquisition with digital filtering 

48 

 

volatile int32_t Raw,Sound; 

#define DC 8192 

void Program15_2_ISR(void){  // runs at fs=10kHz 

  Raw = ADC_In23()-DC;       // sample P8.2 

  Sound = NoiseReject(Raw);  // improves SNR 

  ADCflag = 1;               // semaphore 

} 



Texas Instruments Robotics System Learning Kit: The Maze Edition 

SEKP135 
|  Data Acquisition Systems – Sound recording 

Use sound as command input to robot 

49 

Initial training 

 A small number of sine-wave sounds 

 Train by recording example of each 

 Examples are the templates y(n) 

• Fixed sampling rate 

• Variable size to capture complete waves 

 

Use cross correlation to distinguish  

 Calculate Rxy for each template 

• Use finite size buffers 

• Calculate max Rxy for various m 

 Pitch recognition 

• Best match is largest Rxy 

• Above a threshold 

 

 

Frequency Key Shifting (FSK) 
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Summary 
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Sound recording 

 Transducer 

 Gain 

 Analog filter 

 

Digital processing 

 Noise rejection using autocorrelation 

• Noise does not correlate with itself 

• Signal does correlate with itself 

 Pitch recognition (FSK) 

• Training session 

• Cross correlation to find best match 
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