{" TEXAS
INSTRUMENTS

MSP430

IrDA SIR Encoder/Decoder

Application

Report

March 1999 Mixed Signal Products
SLAA044

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER'’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI's publication of information regarding any third
party’s products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright 0 1999, Texas Instruments Incorporated

Contents

1 INtrOdUCHION .o e 1
2 The IrDA Serial Infrared Physical Layer Specification i,
3 The MSP430x112 — Low-End Ultra-Low Power Microcontroller 4.
4 MSP430x112 IrDA SIR ENCOder/DECOUBI . ..ttt e e e e 5
4.1 MoAUIE OVEIVIEW . . ittt e e e e e e 5
4.2 MSPA30X112 SOftWAIE .. .ottt e et e e e e e 5
421 GENEIAl . ..o 5
4.2.2 IrDA-SIR ENCOOEr (TX) ottt e e e e e e e e e e e e 6
4.2.3 IrDA-SIR DeCoder (RX) ...ttt e e e e e 7
4.3 INStAllationot 9
4.3.1 Data Rate SeleCtioN 9
4.3.2 User INterface 9
D SCNEMALIC ..ot 11
B CONCIUSION .t e 12
T REIEIENCES . .. 13
AppendiXx A A Software LiSting ...t A-1
MSP430 IrDA SIR Encoder/Decoder iii

Figures

List of Figures

1 IrDA ANd UART Frames . .. oottt et et e e e e e e e e e e e e e e e e e 2
2 Block Diagram of the I'DA MOAUIE o e e e 5
3 Timer_A Usage During RS232/IFDA CONVEISION oottt ettt e e e e e e e e e 6
4 Timer_A Usage During IrDA/RS232 CONVEISION . . . oottt ittt et e et e e e et e et 8
5 IrDA INitialization MESSA0Eottt ettt e e e e 10
6 IrDA Initialization Acknowledge — RECEIVETt e et et e e 10
7 Schematic I'DA MOUIEo e e 11
List of Tables
1 IrDA Signaling Rate and Pulse Duration Specification 2
2 Data Rate SetliNgS . .ottt et 9

iv SLAA044

MSP430 IrDA SIR Encoder/Decoder

Juergen Mayer

ABSTRACT
This report gives a short overview on the use of the MSP430x112 as an IrDA SIR
encoder/decoder. The hardware is discussed, including a block diagram and an IrDA
module schematic diagram. The next sections deal with programming and user interface
issues. Appendix A presents applicable IrDA software.

1 Introduction

Infrared data transmission’s recent popularity has been fueled by the need to
exchange data between portable and fixed equipment. Furthermore, the arrival
of the Infrared Data Association (IrDA) working standard offers a practical and
cost-efficient protocol for data communications.

The MSP430 is a powerful microcontroller capable of handling both the target
application and the IrDA serial infrared protocol. Its affordability, its 16-bit
architecture, and its low-power consumption, makes this technology possible in
medium and high-speed data transmission applications where cost issues are
important or battery-powered equipment is required. This document describes
the use of the MSP430x112 as an IrDA-encoder/decoder based on the IrDA
demo board.

The IrDA transceiver module can be used for serial data communication between
two PC’s viathe RS232. Each PC requires only a standard RS232 port and some
conventional terminal software such as the Hyperterminal, which is provided by
Windows 3.11, Windows95, or WindowsNT.

The same basic code can be used on other applications of the MSP430 family,
including liquid-crystal display drivers, analog-to-digital converters, and
hardware multipliers.

The IrDA Serial Infrared Physical Layer Specification

2 The IrDA Serial Infrared Physical Layer Specification

The IrDA physical layer specification is intended to define a half-duplex infrared
communication link for exchanging data over a distance of up to 1 m. The full
standard includes data rates up to 4 Mbit/s. However, in this note we cover only
data rates between 2.4 kbit/s and 115.2 kbit/s.

An IrDA serial infrared interface must operate at a minimum of 9.6 kbit/s, with
higher data rates optional. The signaling rate and pulse duration specifications
are listed in Table 1.

Table 1. IrDA Signaling Rate and Pulse Duration Specification

DATA RATE BIT TIME IrDA PULSE IrDA PULSE IrDA PULSE
DURATION MINIMUM | DURATION NOMINAL | DURATION MAXIMUM
2.4 kbit/s 416 ps 1.41 ps 78.13 ps 88.55 us
9.6 kbit/s 104 ps 1.41 ps 19.53 s 22.13 ps
19.2 kbit/s 52.0 us 1.41 ps 9.77 pus 11.07 ps
38.4 kbit/s 26.0 ps 1.41 ps 4.88 us 5.96 ps
57.6 kbit/s 17.3 us 1.41 us 3.26 s 4.34 us
115.2 kbit/s 8.68 s 1.41 ps 1.63 us 2.23 us

The minimum pulse duration is the same for data rates up to 115.2 kbit/s. The
reason is that the IrDA physical layer specification allows two kinds of pulse
modulations: 3/16 of a bit duration pulse, or a minimum pulse duration of 1.63 us
minus a 0.22 s tolerance.

With the transmission speed limited to 115.2kbit/s, there is no need to transmit
a serial infrared interaction pulse (SIP) which would guarantee nondisruptive
compatibility with slower infrared (IR) systems. This leads to a very simple
structure of the IrDA frame for data rates up to 115.2 kbit/s.

For data rates up to 115.2 kbit/s, the electrical signal to the encoder/decoder unit
is a serial bit stream. A logical 0 in the bit stream is represented by an IR pulse
with the duration shown in Table 1, and a logical 1 is a bit period with no IR pulse.

The bit stream is organized into frames with a start bit, 8 data bits, and a stop bit,
as shown in Figure 1.

¢ UART Frame ' 4l

< gl
‘ Start Stop ‘
RS232 Bit UART Data Bits 4m8'—tﬂ
\
‘ \
DA IrDA Frame

T

}—H {¢&—— IrDA Pulse Duration

| v

n L1

—
| —» [U2t

Figure 1. IrDA and UART Frames

SLAA044

The IrDA Serial Infrared Physical Layer Specification

The IrDA standard defines the IR pulse beginning at the center of the bit period
with a length of 3/16 of a bit duration, or with a fixed pulse duration equivalent to
a rate of 3/16 of 115.2 kbit/s.

Using the fixed pulse duration is recommended to reduce the power consumption
in battery-powered applications.

MSP430 IrDA SIR Encoder/Decoder 3

The MSP430x112 — Low-End Ultra-Low Power Microcontroller

3 The MSP430x112 — Low-End Ultra-Low Power Microcontroller

The MSP430x112 is the smallest member of the MSP430 family, a 16-bit ultra-low
power microcontroller designed for battery powered applications. Each member
of the family features a different set of peripheral modules. In contrast with most
of the other derivatives of the MSP430 family. The x112 has no LCD driver and
no AD converter.

The MSP430x112 consists of a powerful 16-bit timer with 3 capture/compare
registers, fourteen 1/O lines, and a new oscillator module.

The oscillator is designed to operate with no external components, with a low
frequency crystal (32 kHz), or a high frequency crystal (up to 6 MHz), or can be
driven by an external clock source up to 6 MHz.

4 SLAA044

MSP430x112 IrDA SIR Encoder/Decoder

4 MSP430x112 IrDA SIR Encoder/Decoder

4.1 Module Overview

Figure 2 shows the block diagram of the IrDA transceiver module. The heart of
the module is a MSP430x112 which handles the encoding and decoding tasks
as well as the communication to the RS232 interface. The TSLM1100 provides
the required logical interface between the MSP430 and the IR signals. The IR
transceiver is able to handle an IrDA Rev. 1.1 physical-layer compliant,
bidirectional, half-duplex link. To reduce the power consumption, a fixed
pulse-duration modulation of 1.63 pus nominal is implemented.

MSP430x112
TSLM1100

IR Transmit *
Encoder
v
<R5232 RS232 IR . }‘/
Interface Transceiver

IR Receive
Decoder

Figure 2. Block Diagram of the IrDA Module

The module can be directly connected to a conventional RS232 (DB9S
connector) port. Due to the fact that the IrDA Physical Layer Specification defines
a half-duplex link, the module must be initialized after reset to act as an IrDA
receiver or transmitter—see section 4.3.2 User Interface.

4.2 MSP430x112 Software

The following section contains some general programming issues and a detailed
discussion on the usage of TIMER_A to encode and decode the serial data
stream.

A complete listing of the MSP430x112 software is shown in Appendix A.

4.2.1 General

The MSP430 must be initialized after system reset. The DCO modulation is
disabled and the high frequency oscillator is enabled during initialization. This
allows the application of a high frequency crystal pulse of up to 6 MHz to the Xin
and Xout pins. This crystal generates the reference clock frequency used during
serial data transmission. Alternatively, a 32 kHz crystal, in combination with a
software FLL, can be used to lower system cost. This software FLL controls the
DCO modulation register and adjusts the frequency based on the 32 kHz
reference.

Next, the 1/O ports are initialized and the jumper settings are checked. The
corresponding counter value is stored in the variable BAUDRATE and used to
determine the serial communication timing in both directions.

The initialization string is sent to the RS232. Since the status of the CTS (Clear
To Send) line of the RS232 is not checked, we have to add a delay between each
sent character. This prevents overflow of the RS232 input buffer at high data rates
in some computers.

MSP430 IrDA SIR Encoder/Decoder 5

MSP430x112 IrDA SIR Encoder/Decoder

At this time, only the I/O Port P1.0 interrupt is enabled and ready to receive the
initialization strings ~r or *t. Depending on the user response, the MSP430
initializes all ports and interrupts to behave as a pure IrDA receiver or IrDA
transmitter. Furthermore, it sends an acknowledgement via P1.1. This
acknowledgement is displayed on the terminal window.

4.2.2 IrDA-SIR Encoder (TX)

If the user enters a *t, the MSP430 acts as an encoder between the RS232 input
port and the IR output port. The Timer_A and the ports are initialized as follows
(see also schematic in chapter 5):

RS232 in (TXD) O Port P2.5
IrDA out (TSLM1100) O Port P2.4 (CCR2)

The half-period of bit duration is loaded into the period register CCRO, and
Timer_Ais setinthe Up/Down mode. The capture/compare unit 2 is routed to port
P2.4, and the corresponding capture compare register CCR2 is loaded with the
value CCRO minus the equivalent of the IR pulse duration of 1.63 ps.

During transmit, the capture/compare control register 2 (CCTL2) is setin the reset
set mode. This means that every time the Timer_A register (TAR) reaches the
value of CCR2, port P2.4 is set to low; if the TAR reaches the value CCRO, the
port is set to high.

RS232
P2.5

|

[&— BIT-RS232 — W

v

Timer_ A A \ Up/Down Mode.

CCRO)Ic———Ft——— oo~ — — — — — — — — — — — — — —,
CCR2 ——j —————————————— 7Z§

IrDA

P2.4/CCR2 H I_

| |
—» 4— tirpA Pulse ‘

v

v

Figure 3. Timer_A Usage During RS232/IrDA Conversion

When Timer_A starts, it counts up to CCRO and down to zero, and starts again
counting up to CCRO. As long as Timer_A is running, it generates a 1.63 ps long
pulse every bit period without CPU intervention.

The RS232 line driver (HIN232) produces an inverted serial bit stream at pin P2.5.
A high level at P2.5 represents a logical 0, and vice versa. According to the IrDA
Specification, a logical 0 on the RS232 line is represented by an IR pulse. This
means that a rising edge at pin P2.5 must start Timer_A, and a falling edge must
stop it. This sets the interrupt enable bit for port P2.5.

Each level shift on the RS232 line causes an interrupt, and the MSP430 starts to
process the following interrupt service routine (ISR):

6 SLAA044

MSP430x112 IrDA SIR Encoder/Decoder

*% * *kkkkkkkkkkkkk *% *% * F*kkdkkkkkkkkkk *% *%

; Interrupt routine TRANSMITTER
: RS232 (P2.5) —> IrDA (P2.4)

TX_01 BIS #04h,&TACTL 5 cycles

XORR14, &TACTL ;Sstart/stop Timer_A (up/down Mode) 4 cycles

XOR.B R13,&P2IES ;toggle IR edge select 2.5 4 cycles

BIC.B #O0FFH,&P2IFG ;clear interrupt flags 5 cycles

RETI ; 5 cycles

Six cycles after this interrupt event (the time is needed to save the processor
status), the MSP430 enters the ISR. The timer must be stopped to change the
contents of the Timer_A control register (TACTL).

Next, we start or stop the timer by toggling the mode bit in the TACTL register.
Then the interrupt edge in the P2IES register is changed to produce an interrupt
on the other edge.

The total ISR needs 23 + 6 cycles to enter the routine. Therefore, with a clock
frequency of 3.6864 MHz (271.2 ns period) the ISR takes 29 x 271.2 ns, or 7.865
ps. During a 115.2 kbit/s serial communication, the minimum time between
interrupts is 8.68 us. The above interrupt service routine can fulfill this timing
requirement.

4.2.3 IrDA-SIR Decoder (RX)

If the user enters an *r, the MSP430 acts as a decoder between the IR input port
and the RS232 output port. The Timer_A is halted and the ports are initialized as
follows (see also schematic in chapter 5):

IrDA in (TSLM1100) O Port P1.2
RS232 out (RXD) O Port P1.1 (CCRO)
The period of the bit duration is loaded into the period register CCRO, and

Timer_Ais set (initialized) to count up to the value in CCRO, and restart the count
to CCRO again. The capture/compare unit O is routed to port P1.1.

During receive, the capture/compare control register (CCTLO) is in the set mode.
This means that every time the Timer_A Register (TAR) reaches the value of
CCRO, port P1.1 is set to high.

MSP430 IrDA SIR Encoder/Decoder 7

MSP430x112 IrDA SIR Encoder/Decoder

IrDA
A[4¢— BIT-IIDA — ¥
P1.2/CCR1 ! ‘

v

|

\

| \
_ \
Timer_A ‘
CCRO

v

RS232 4
P1.1/CCRO

Ll

\

\

\ Set Mode, Reset by ISR. ‘
| ‘

v

l¢— tBIT-RS232 —

Figure 4. Timer_A Usage During IrDA/RS232 Conversion

If we start Timer_A, it counts up to CCRO, sets port P1.1to high, and restarts from
zero and counts up to CCRO again. As long Timer_A is running, it generates a
constantly high bit at port P1.1.

The IR transceiver generates the inverted IR signal at port P1.2. This means that
a falling edge has to set port P1.1 to low and reset the timer. After that, Timer_A
is synchronized with the IR signal. When the timer reaches the value CCRO
(RS232 bit duration) it automatically sets P1.1 to high and transmits a constant
high level every time a new falling edge occurs.

; Interrupt routine RECEIVER
; IrDA (P1.2) —> RS232 (P1.1)

RX 01 CLR &CCTLO ;CCO output mode / P1.1 low 5 cycles

BIS #04h,&TACTL ;reset Timer_A 5 cycles
MOV #20h,&CCTLO ;CCTLO set P1.1 low and in "mode—>P1.1 high” 5 cycles

BIC #01h,&CCTL1 ;resetinterrupt flag CCTL1! 5 cycles

RETI ; 5 cycles

Each falling edge on port P1.2 causes an interrupt and the MSP430 starts to
process the above interrupt service routine.

Six cycles after the interrupt event (falling edge on P1.2), the MSP430 enters the
ISR. First, the P1.1 line is set to low and the CCRO unit is set into output-only
mode. Then, timer_A is reset by setting the CLR bit in the TACTL register, and
the CCR1 interrupt flags must be reset.

The total ISR needs 25 + 6 cycles to enter the routine. Therefore, with a clock
frequency of 3.6864 MHz (271.2 ns period), it needs 31 x 271.2 ns, or 8.407 ys.
During a 115.2 kbit/s serial communication, the minimum time between interrupts
is 8.68 ps. The above receiver interrupt service routine can fulfill this timing
requirement.

8 SLAA044

MSP430x112 IrDA SIR Encoder/Decoder

Since every falling edge at P1.2 generates an interrupt and hence an RS232 low
signal at P1.1, interference from a fluorescent lamp, or similar device, could
generate bit errors. The time between the rising and falling edge can be
measured by Capture/Compare Unit 2 and compared to the IrDA pulse duration
to detect and eliminate such errors. To accomplish this, the CCR2 unit can be set
to capture on the rising edge. As the CCR1 still captures on the falling edge and
causes an interrupt, both captured counter values can be compared in the ISR.
If the equivalent time is lower than 1.6 pus — 0.22 us, the pulse is caused by
interference and can be ignored. This requires a clock frequency higher than
3.68 MHz, or a limitation to lower data rates.

4.3 Installation

4.3.1 Data Rate Selection

The IrDA module can operate on six different data rates, ranging from 2.4 kbit/s
to 115.2 kbit/s. A data rate must be selected before starting a communication
session.

Table 2. Data Rate Settings

DATA RATE JUMPER
J3 J2 Jl
2.4 kbit/s L L L
9.6 kbit/s L L H
19.2 kbit/s L H L
38.4 kbit/s L H H
57.6 kbit/s H L L
115.2 kbit/s H L H

The data rate is set by the three jumpers J1, J2, and J3—see Table 3. A system
reset will be performed if the jumper settings are changed during normal
operation. The module can now be connected to the RS232 port on the PC and
power can be applied. Make sure to use the same data rate setting on both PC
terminals.

4.3.2 User Interface

A conventional terminal program such as Hyperterminal, which is provided by
Windows 3.11, Windows95 or WindowsNT, can be used to communicate with the
IrDA module.
The COM ports settings must be as follows:

Bits per second: see Jumper J1 to J3 on IrDA module

Data bits: 7
Parity: Even
Stop bits: 1
Flow control: None

Make sure to use the same COM port settings on both PC terminals.

Pressing the RESET button on the IrDA module will display the following
initialization string on the terminal window.

MSP430 IrDA SIR Encoder/Decoder 9

MSP430x112 IrDA SIR Encoder/Decoder

O, - peai Tsomdnial

Fie EiM e LA Liwmiled Hep

=

Taxan Inatoassnts 1030

HAFII0x11lx Tk~ CERC
P RECE I VER,
ESTRAHNAHITTER

Comrmcmd 00 3 | AR | W52 L1 ¥ | L= B |Cwies [Feir |

Figure 5. IrDA Initialization Message

Now it must be determined whether to set the module as a receiver or as a
transmitter device.

When “r is entered, the unit behaves as a receiver and displays an
acknowledgement as shown in Figure 6.

DA - Mgt Tnaminal

I Ecd Swe Ll fremis fjep

D) i) i))

Tawas Tnatrusante 193908

HARICx1lx Tolh-DEMD
S =RECEIVER

SRR TPAHEHLTTEN
ORECEIVER

RET

Corwaciend LI | TS FEE H ! |HLM [i Al

Figure 6. IrDA Initialization Acknowledgement — Receiver

To transmit data from one PC to an other, set up one IrDA module as a transmitter
and the other as a receiver.

To reverse the direction of communication, just press the RESET button and
restart the installation.

10 SLAA044

Schematic

5 Schematic

Figure 7 shows the schematic of the IrDA module.

When a high frequency oscillator is used with a clock frequency above 3 MHz,
the MSP430x112 requires a 5-V supply voltage. Due to the high power
consumption of the RS232 line driver (HIN232), and to the fact that PC’s can not
usually deliver sufficient supply current via the RS232, an external power supply
or a battery may be required. Select the lowest practical crystal frequency to limit
power consumption.

Ve &

R5

4.7kQ

TSLM1100

PIN
BIAS

10kQ IC3

Cl+
Cl-

V+

C2+
Cc2-

p2.2 p2.3
MSP430x11x

T1IN T1OUT
T2IN T20UT
R1OUT RIIN

R20UT R2IN
HIN232

IN4148

PS7250QD

IN4148
D1

Erase OUT
PG

Reset

s1 ouT

GND
IDI

Figure 7. Schematic IrDA Module

The power supply for the TSLM1100 must be filtered to minimize noise from
external sources. Capacitors C6 and C7 must be placed as close as possible to
the TSLM1100 to achieve optimum noise immunity. For detailed application
information, see the TSLM1100 data sheet.

Since the TSLM1100 is encapsulated in a light permeable plastic package, it is
recommended to shield the device from sources of optical interference,
especially fluorescent lamps and IR remote controls.

MSP430 IrDA SIR Encoder/Decoder

CON1

11

Conclusion

6 Conclusion

12

The IrDA specification is becoming increasingly popular as more and more
applications require wireless data readout. This application note proves that
low-power and wireless high-speed data communication can run hand-in-hand.

Using the MSP430C112 it is possible to build battery-powered applications
including a wireless link communication up to 115.2 kbit/s.

The IrDA software presented in Appendix A can easily be adapted to any
particular needs and implemented in the target application.

SLAA044

References

7 References

1.

Texas Instruments, Data Transmission Seminar 1998, SLLDEO1C Texas
Instruments 1998.

Infrared Data Association, Physical Layer Link Specification, Version 1.1,
17.10.1995.

Texas Instruments, Datasheet MSP430x110, Texas Instruments 1998.

Texas Instruments, MSP430 Family Architecture Guide and module Library,
Texas Instruments 1996.

Texas Instruments, MSP430 Family Software User’s Guide, Texas
Instruments 1994.

Texas Instruments, Datasheet TSLM1100, Texas Instruments 1997.

MSP430 IrDA SIR Encoder/Decoder 13

14

SLAA044

A Software Listing

Appendix A A Software Listing

* * Fkk * Fkkkkkkk *
1

; IrDA — Program MSP430x112 (C) TEXAS INSTRUMENTS 1998
; File Name: IrDA11X.asm

; Project: MSP430x112 IrDA Demo

; Originator: Jirgen Mayer (Texas Instruments Germany)

; Description: IrDA physical layer Rev. 1.1 — Encoder/Decoder

; RX = RS232 —> IrDA

; TX = IrDA —> RS232

; RX/TX controlled via "T(= RS232 —> IrDA)

; and "R(= IrDA —> RS232)

; Terminal settings: 1Start / 7Data—Bit / 1 Stop / even Parity
; Last Update: Rev. 2.1/ 28.05.98

; Rev. 2.2/23.07.98

k% * *kkdkkkkkkkkkk * * * *kkdkkkkhkkkkk * * *

SP_orig .set 0300h ; stackpointer
WDTCTL .equ 0120h

WDTHold .equ 080h

WDT_wrkey .equ 05A00h

IE1 .set 000h
IFG1 .set 002h
P1IN .set 020h
P1OUT .set 021h
P1DIR .set 022h
P1IFG .set 023h
P1IES .set 024h
PlIE .set 025h
P1SEL .set 026h
P2IN .set 028h
P20UT .set 029h
P2DIR .set 02Ah
P2IFG .set 02Bh
P2IES .set 02Ch
P2IE .set 02Dh
P2SEL .set 02Eh
TACTL .set 160h ; Timer A
CCTLO .set 162h
CCTL1 .set 164h
CCTL2 .set 166h

MSP430 IrDA SIR Encoder/Decoder A-1

A Software Listing

TAR .set 170h
CCRO .set 172h
CCR1 .set 174h
CCR2 .set 176h
DCOCTL .set 056h ; DCO clock frequency control
BCSCTL1 .set 057h ; oscillator / clock control 1
BCSCTL2 .set 058h ; oscillator / clock control 2
TRANSMIT .set 028h ; TX char "~T”
RECEIVE .set 048h ; RX char "R”
: Main

.sect "ROM”, OFO00h
RESET MOV #SP_orig,SP ;initialize stack pointer

MOV #(WDTHold+WDT_wrkey),&WDTCTL ; Stop Watchdog Timer
main_1 call #init_sys

CLR.B STATUS_1

CLR.B STATUS_2

CLR.W BAUDRATE

call #init_Px

call #init. BAUDRATE

MOV BAUDRATE,R5 ;store Baudrate in R5

RRA R5 ;divide by 2

SUB #02h,R5 ;adjust to timing

MOV R5,R8 ;copy to R8

MOV #0,R9 ;TEXT start...

MOV #28,R10 ;TEXT stop...

call #TEXT_OUT ;write to PC...

call #init. RXTX

MOV.B STATUS_1,STATUS_2

EINT ; Global interrupt enable
main_2

MOV.B &P2IN,R5 ;scan JUMPER —> R5

BIC #0FFF8H,R5

MOV.B R5,STATUS_1 ;store Baudrate

CMP.B STATUS 1,STATUS 2 ;any changes

JEQ main_2 :No

DINT

JMP main_1 restart
main_3 JMP main_3

A-2 SLAA044

—reverse, LSB first !
—reverse, LSB first !

A Software Listing

k% *% *kkkkkkkhkkhhkkkkkk *% *% *hkkkkkkhkkkhkkkhkk *%
1

; Reset : Initialize processor

* Fkkkkkkk * Fkkkkkkk *

1

init_sys
MOV.B #00h,DCOCTL ;disable DCO modulation
BIS.B #040h,BCSCTL1 ;1st: HF—osc. on => external crystal !!
MOV.B #0C8h,BCSCTL2 ;2nd: LFXT1 => MCLK / SMCLK
CLR.B IE1
CLR.B IFG1
CLR R5
CLRR6
CLR R7
CLR R8
CLR R9
CLR R10
CLR R11
CLR R12
CLR R13
CLR R14
CLR R15
RET

; Initial BAUDRATE
; —scan jumper
; —set BAUDRATE

* Fkkdkk * K*kkkkk *

init_ BAUDRATE

PUSH R5
CLR R5
MOV.B &P2IN,R5 ;scan JUMPER —> R5
BIC #0FFF8H,R5
MOV.B R5,STATUS 1 ;store Baudrate
RLA R5
ADD #BAUD2400,R5
MOV @R5,BAUDRATE ;load cycles in BAUDRATE
POP R5
RET
Initial — Px

; SW — BAUDRATE — P2.0/1/2 input

; RXITX = P1.0 = input —> IR edge select P1.0 H\LO
; RX = P2.5 general input RS232

; P2.4 module output IrDA

; TX — P1.2 general I/O <=> module input IrDA

; P1.1 general I/O <=> module output RS232

1

MSP430 IrDA SIR Encoder/Decoder A-3

A Software Listing

init_Px
BIC.B #0DH,&P1DIR
BIS.B #02H,&P1DIR
BIC.B #07H,&P1SEL

BIS.B #02H,&P10UT
BIC.B #0FFH,&P1IFG
BIS.B #001H,&P1IES
BIS.B #001H,&P1IE
BIC.B #10H,&P20UT
BIC.B #027H,&P2DIR
BIS.B #010H,&P2DIR
BIC.B #27H,&P2SEL
BIC.B #0OFFH,&P2IFG
RET

;P1.0/2/3 input
:P1.1 output
;P1.0 general I/O ports
;P1.1/2 module ports during TX
;set P1.1 — high
;clear interrupt flags
;IR edge select P1.0 H\LO
;Interrupt enable P1.0
;set P2.4 — low
;P2.0/1/2/5 input
;P2.4 output
;P2.0/1/2/5 general 1/O Ports
;clear interrupt flags

; Initial ISR — RX/TX
; — P1.0 general input Pin RS232

: — Bit count in R6

. * * * * * *
)

init RXTX
MOV BAUDRATE,R5
RRA R5

SUB #02h,R5
MOV R5,R8
MOV #08h,R6

;store Baudrate in R5
;divide by 2
;adjust to timing
;copy to R8
;load Bit counter in R6 (n)

; —> see RX/TX Interrupt routine

MOV #25,R9 ;TEXT start...
MOV #79,R10 ;TEXT stop...
call #TEXT_OUT ;write to PC...
RET
; RXITX Interrupt routine
; —input Pin P1.0
; — Baudrate R5/R8
; — Bit counter R6
:—DATA inR7
RXTX_01 MOV R8,R8 ;NOP
MOV R8,R8 ;NOP
RXTX_02 MOV R8,R5 ;load Baudrate in R5
RXTX_03 MOV R8,R8 ;NOP

DEC R5

A-4 SLAA044

A Software Listing

INZ RXTX 03 ;sample line ?
RRC &P1IN ;P1.0in Carry — LSB first !
RLC R7 ;carry to DATA_in
DEC R6 ;decrement Bit counter
JNZ RXTX_02 ;last Bit ?
CMP.B #RECEIVE,R7 ; —> Receive ?
JEQ init_RX
CMP.B #TRANSMIT,R7 ; —> Transmit ?
JEQ init_TX
BIC.B #O0FFH,&P1IFG ;Clear interrupt flag
CLR R7 ;clr old DATA _in
call #init_ RXTX
RETI
init TX ~ CALL #init_TATX ;start RS232 —> IrDA transmission

MOV #66,R9 ;TEXT start...
MOV #79,R10 ;TEXT stop...
call #TEXT_OUT ;write to PC...
BIC.B #O0FFH,&P1IFG ;Clear interrupt flag

BIC.B #001H,&P1IE ;Interrupt disable P1.0

RETI
int RX MOV #53,R9 ;TEXT start...

MOV #63,R10 ;TEXT stop...
call #TEXT_OUT :write to PC...
BIC.B #OFFH,&P1IFG ;clear interrupt flag

BIC.B #001H,&P1IE ;Interrupt disable P1.0
call #init_TARX :start IrDA —> RS232 transmission
RETI

* * * * * *
1

; Initial Timer_A — TRANSMITTER

;— TX mode (RS232—>IrDA)

; —P2.5 general input Pin RS232

; —P2.4 CCR2 output Pin IrDA (TSLM1100)

* * * * * *

init. TATX
MOV #0200h,&TACTL ;Prepare Timer_A (MCLK,Timer halted...)
CLR CCTL1 ;disable CCTL1 interrupt
MOV #0080h,&CCTLO ;Capture/Compare Control 0
MOV BAUDRATE,&CCRO ;Capture/Compare RegisterO —> Period
MOV #00EOh,&CCTL2 ;Capture/Compare Control 2 —> operation mode
MOV BAUDRATE,R15
SUB #006h,R15 ;Subtract: impulse cycle > for up/down —Toggle !!
MOV R15,&CCR2 ;Capture/Compare Register2 —>Impulsduration 6h
MOV #030H,R14 ;start/stop Timer_A (up/down Mode)

MSP430 IrDA SIR Encoder/Decoder A-5

A Software Listing

BIC.B #OFFH,&P2IFG
BIS.B #020H,&P2IES
BIS.B #020H,&P2IE
MOV #020H,R13
BIS.B #010H,&P2SEL
RET

;clear interrupt flags port 2.x
;IR edge select P2.5 HI/LO
;Interrupt enable P2.5
;toggle IR edge select 2.5 HI/LO <—> LO/HI
;P2.4 module port

* * * * *
)

; Initial Timer_A — RECEIVER

; —RX mode (IrDA —>RS232)

;—P1.2 CCRL1 input IrDA (TSLM1100!)
; —P1.1 CCRO output Pin RS232

* * * * *
)

;Prepare Timer_A (MCLK,Timer halted...)

;CCTLO in output mode to set P1.1 high
;P1.1 high
;CCTLO in set mode —> P1.1 high

;load CCRO with BAUDRATE
;BAUDRATE * 2

;P1.1/2 module port —> CC1'!

;—> cap. falling edge IrDA pulse + interrupt
; start Timer_A

; 000h = halted

; 010h = up to CCRO restart 0

; 030h = up/down Mode

init_ TARX
MOV #0200h, TACTL
MOV #0000h,&CCTLO
BIS #00004h,&CCTLO
BIS #0020h,&CCTLO
MOV BAUDRATE,&CCRO
RLA CCRO
BIS.B #06H,&P1SEL
MOV #8110h,CCTL1
BIS.B #010H,TACTL
; 020h = up to 65536
RET

; Interrupt routine TRANSMITTER
: RS232 (P2.5) —> IrDA (P2.4)

TX_01 BIS #04h,&TACTL
XOR R14,&TACTL
XOR.B R13,&P2IES
BIC.B #0OFFH,&P2IFG
RETI

;start/stop Timer_A (up/down Mode)
;toggle IR edge select 2.5 HI/LO <—> LO/HI
;clear interrupt flags

; Interrupt routine RECEIVER
; I'DA (P1.2) —> RS232 (P1.1)

Fkkkkk *% *% *kkkkkkkhkkhhkkkhkk *% *%
’

RX_01 CLR &CCTLO
BIS #004h,&TACTL
MOV #0020h,&CCTLO

A-6 SLAA044

*kkk

;CCO output mode / P1.1 low
;reset Timer_A

;CCTLO set P1.1 low and in "mode—>P1.1 high”

A Software Listing

BIC
RETI

#01h,&CCTL1

;reset interrupt flag CCTL1 !

vkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkkkkhkkkkkkkhkkkkkkkkhkkkkhkkkhkkkkkkkkkk

;Subroutine: write a string at TEXT(R9) to Terminal

; — output Pin P3.3 —> see init.

; — string start pos. R9 / stop pos. R10

* * * * * * *
1

TEXT OUTPUSH R8
PUSH R7
PUSH R6
PUSH R5

MOV

RRA R5

SUB #03h,R5

BIC.B #02H,&P10UT

MOV.B TEXT(R9),R7

MOV.B #08H,R6

MOV.B #08H,R6

JMP TEXT 03

MOV R8R5

MOV R8RS

DEC R5

JNZ TEXT 04

RLAB R7

Jc TEXT_H

BIC.B #02H,&P10UT

DEC R6

TEXT_03
TEXT 05
BIS.B #02H,&P10UT

TEXT_02

TEXT_03
TEXT_04

INZ
IMP
TEXT_H
DEC R6
INZ
TEXT_05

TEXT_03
BIS.B #02H,&P10UT
MOV #0F000h,R5
DEC RS5
JNZ TEXT 06
INC R9
CMP R10,R9
JNZ TEXT 02
POP R5
POP R6

POP RY
POP RS
RET

TEXT_06

BAUDRATE,R5

* * * *

:store Baudrate in R5
;divide by 2
;adjust to timing

:write start bit —> LOW
;load Data_byte

:Bit count

;justfor....

;....delay

;copy to R8

:NOP

;write next bit ?
;rotate in Carry

:write LOW bit
;next Byte ?
:write HIGH bit
;next Byte ?
:write STOP bit —> HIGH

;Delay between each character
;...10ms

;x digits ?
;next Byte

MSP430 IrDA SIR Encoder/Decoder

A Software Listing

Fkkkkk *% *% *
’

; Program Variables
; — STATUS

F*kkkkkkkkkkkkkkk *% *% *kkk

; — BAUDRATE .WORD #0200h

* *
)

.sect "RAM”, 02
STATUS_1 .BYTE
STATUS_2 .BYTE

Fkkkkkkkkkk

00h
#00H
#00H

BAUDRATE .WORD #00H
;MCLK = 3.6864MHz / t=271.2ns

; .sect "ROM”
;BAUD2400 .WORD
;BAUD9600 .WORD
;BAUD1920 .WORD
;BAUD3840 .WORD
;BAUD5760 .WORD
:BAUD1152 .WORD
. .sect "ROM”
;BAUD2400 .WORD
;BAUD9600 .WORD
;BAUD1920 .WORD
;BAUD3840 .WORD
;BAUD5760 .WORD
;BAUD1152 .WORD
: sect "ROM”
:BAUD2400 .WORD
;BAUD9600 .WORD
;BAUD1920 .WORD
;BAUD3840 .WORD
;BAUD5760 .WORD
;BAUD1152 .WORD
.sect "ROM”
BAUD2400 .WORD
BAUD9600 .WORD
BAUD1920 .WORD
BAUD3840 .WORD
BAUD5760 .WORD
BAUD1152 .WORD
; .sect "ROM”
;BAUD2400 .WORD
;BAUD9600 .WORD
;BAUD1920 .WORD
;BAUD3840 .WORD
;BAUD5760 .WORD
;BAUD1152 .WORD

#0300h
#00COh
#0060h
#0030h
#0020h
#0010h

1

1

1536/2 cycles
; 384/2 cycles
192/2 cycles
96/2 cycles
64/2 cycles
32/2 cycles

;MCLK = 4.194MHz / t=238.4ns

#036Bh
#00DAhO
#006Dh
#0037h
#0024h
#0012h

; 1750/2 cycles

; 436/2 cycles

; 218/2 cycles
110/2 cycles
72/2 cycles
36/2 cycles

;MCLK = 5.0000MHz / t=200ns

#0412h
#0104h
#0082h
#0041h
#002Bh
#0016h

’

2083/2 cycles
520/2 cycles
260/2 cycles
130/2 cycles

; 86/2 cycles

’

43/2 cycles

;MCLK = 6.144MHz / t=162.8ns

#0500h
#0140h
#00AOh
#0050h
#0035h
#001Ah

; 25660/2 cycles
; 640/2 cycles
; 320/2 cycles
; 160/2 cycles
; 107/2 cycles
; 53/2 cycles

;MCLK = 7.3728MHz / t=135.6ns

#0600h
#0180h
#00COh
#0060h
#0040h
#0020h

A-8 SLAA044

1

3072/2 cycles
768/2 cycles

; 384/2 cycles
192/2 cycles
128/2 cycles
64/2 cycles

A Software Listing

TEXT .BYTE 005h 7

.BYTE O0Blh ;"CR1”
.BYTE 050h ;"CR2”
.BYTE 02Bh T
.BYTE O0A6h e’
.BYTE O01Eh e
.BYTE 087h yar
.BYTE OCFh ;s”
.BYTE 005h o
.BYTE 093h 717
.BYTE 077h ;'n”
.BYTE OCFh ;s”
.BYTE 02Eh ot
.BYTE O04Eh 7
.BYTE OAFh yu”
.BYTE O0B7h ;’m”
.BYTE O0AG6h ;e”
.BYTE 077h ;’n”
.BYTE O02Eh ot
.BYTE OCFh ;s”
.BYTE 005h o
.BYTE 08Dh 1
.BYTE 09Ch ;9"
.BYTE 09Ch ;9"
.BYTE 01Dh ;8"
.BYTE 005h o
.BYTE O0Blh ;"CR1”
.BYTE 050h ;"CR2"
TXT_28 .BYTE 0B2h ;"M
.BYTE OCAh ;'S”
.BYTE 00Ah P
.BYTE 02Dh ;4"
.BYTE O0CCh ;3"
.BYTE 00Ch ;0"
.BYTE O01Eh e
.BYTE 08Dh 71T
.BYTE 08Dh ;L
.BYTE O01Eh e
.BYTE 005h o
.BYTE 093h 717
.BYTE O04Eh 7
.BYTE 022h ;'D”
.BYTE 082h JA”

MSP430 IrDA SIR Encoder/Decoder A-9

A Software Listing

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

TXT_50 .BYTE

.BYTE
.BYTE

TXT_53 .BYTE

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

TXT_62 .BYTE

.BYTE
.BYTE
.BYTE

TXT_66 .BYTE

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

TXT_78 .BYTE

EEE I S T A
)

; Interrupt vectors

0B4h
022h
0A3h
0B2h
OF3h
0B1lh
050h
07Bh
04Eh
0BDh
04Bh
0A3h
0C3h
0A3h
093h
06Ah
0A3h
04Bh
0B1h
050h
07Bh
02Eh
0BDh
02Bh
04Bh
082h
072h
0CAh
0B2h
093h
02Bh
02Bh
0A3h
04Bh
0B1lh
050h

o
VE"
™
el
;"CR1”
;'CR2”

AN
)

T

R
VE”
e
VE"
o
2%
VE"
R
;’CR1”
;"CR2"

AN
’

g

T
R
VA
N
S’
™
o
T
T
VE”
R
;"CR1”
;"CR2”

EEE I S I I B A
1

A-10

.sect

SLAA044

"Int_Vect”, OFFEOh
.word RESET
.word RESET
.word RXTX_01

; P0.2t0 PO.7
: Basic Timer
:1/10 Port P1

A Software Listing

word TX 01 ; 110 Port P2

.word RESET ; Timer/Port

.word RESET ; N0 source

.word RESET ; o source

.word RESET ; o source

.word RX 01 ; Timer_A/Timer Int.
.word RESET ; Timer_A/CAP/CMP Int.
.word RESET ; Watchdog

.word RESET ; ho source

.word RESET ; PO.1

.word RESET : P0.0

.word RESET ; NMI, Osc. fault

.word RESET ; POR, ext. Reset, Watchdog

MSP430 IrDA SIR Encoder/Decoder A-11

A-12 SLAA044

