
Application Report
SLAA077 - October 1999

Lijoy Philipose

Interfacing with the TLV1571/78 Analog-to-Digital
Converter to the TMS320C542 DSP

ABSTRACT

This application report presents a hardware solution for interfacing the TLV1571/ TLV1578
10-bit, 1.25 MSPS low-power analog-to-digital converter (ADC) to the 16-bit fixed-point TMS
320C542 digital signal processor (DSP). The report describes the interface hardware and
C-callable software routines, which support communication between ADC and DSP.
Project collateral discussed in this application report can be downloaded from the following URL:
http://www.ti.com/lit/zip/SLAA077.

1 Introduction

Contents
. 2

2 The Board .. 2
2.1 TMS320C54x DSKplus Starter Kit
2.2 ADC TLV1571/TLV1578 Overview

. 2

. 3
2.3 System Development Features.. 3

2.3.1 C54x to TLV1571/TLV1578 Interface .. 4
2.4 Onboard Components .. 4

2.4.1 TLV5619 DAC ... 5
2.4.2 Operational Amplifier .. 5

3 Operational Overview ... 5
3.1 Reference Voltage Inputs ... 5
3.2 Input Data Bits ... 5
3.3 Connections Between the DSP and the EVM .. 5
3.4 DSP Memory Map .. 6

4 Communicating Between the TLV1571/TLV1578 and the DSP ... 7
4.1 Writing to ADC ... 7
4.2 Reading From ADC .. 7
4.3 Initializing DSP ... 8
4.4 Data Page Pointer .. 8
4.5 Generating the Chip Select Signal and the CSTART Signal .. 8

5 Software Overview .. 9
5.1 Configuration Cycle .. 10
5.2 Assemble Code Instruction Set ... 11

5.2.1 Macros ... 11
5.3 Loopback ... 12
5.4 Store Data .. 12
5.5 Optimization for a Specific Application... 12
5.6 Flow Charts and Comments for All Software Modes ... 13
5.7 DSP INTIALIZATION ... 13

5.7.1 Single and Sweep Channel Modes With Software Start of Conversion (RD)
5.7.2 Single and Sweep Channel With Hardware Start of Conversion (CSTART)

. 15
. 16

1

http://www.ti.com/lit/zip/SLAA077

SLAA077

2 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

6 C-Callable ... 17

7 Assembly Source Code .. 19

8 References ... 32

1 ADC-DSP Interface

List of Figures
. 4

2 Data Bus Mapping for DSP-ADC-DAC .. 4
3 Memory Map Used in This Application Report ... 6
4 Software Start Configuration Cycle With EOC ... 10
5 Software Start Configuration Cycle With INT ... 11
6 Sample Storage Format with At_Memory=1200h and NumSamples=200h .. 12
7 Tracking ADC Activity Using EOC Pulse ... 13
8 Software Flow Chart ... 14
9 Software Start of Conversion With EOC Signal ... 15
10 Hardware Start of Conversion Using EOC Pulse ... 16

List of Tables
1 Signal Connections .. 6
2 Local and Global Variables and Corresponding Programs .. 9

1 Introduction
The TLV1571/ TLV1578 is a 10-bit data acquisition system that combines a 1/8-channel
multiplexed input, a 10-bit ADC, and a parallel interface. Its maximum throughput of 1.25 MSPS
at 5 V, 625KSPS at 3 V, can be achieved when clocked at 20 MHz and 10 MHz respectively.

Using the TLV1571/ TLV1578 with the TMS320C542 40 MHz DSP demonstrates the power and
simplicity of this ADC-DSP interface. This DSP provides the high-frequency clock rates needed
to run the TLV1571/ TLV1578 at its limits.

This application note begins by highlighting the various devices on the EVM, as well as the
development tools used. The software interface sections begins with section 5. By the end of
this report, the user will understand the software portion of the interface well enough to test all of
features of the TLV1571/TLV1578 ADC.

2 The Board

2.1 TMS320C54x DSKplus Starter Kit
TMS320C54x DSKplus software development tool is used extensively in both hardware and
software testing. The ’C54x DSKplus, PC-linkable board, is the most powerful DSK development
tool on the market. It is a low-cost development tool that enables designers to quickly start
learning to use ’C54x DSPs. This Windows-based debugger makes the TMS320C54x DSKplus
easy to use. It provides a visual environment that enables easier code development and reduces
time-to-market.

SLAA077

Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP 3

INT
REF.

H7 MUX MUX

D0 – D7
TLV1578 Only 10–BIT

SAR ADC
THREE
STATE
LATCH

D8/A0
D9/A1

INT.
CLK

LK
MUX

CS
RD

R
RT

INPUT REGISTER
AND CONTROL LOGIC INT/EOC

2.2 ADC TLV1571/TLV1578 Overview
The TLV1571/TLV1578 is a 10-bit data acquisition system that combines 1/8-channel input
multiplexer (MUX), a high-speed 10-bit ADC, and a parallel interface. The device contains two
on-chip control registers allowing control of channel selection, software/hardware conversion
start, and power down via the bi-directional parallel port. The MUX is independently accessible.
This allows the user to insert a signal conditioning circuit such as an anti-aliasing filter or an
amplifier, if required, between the MUX and the ADC. Therefore, one signal conditioning circuit
can be used for all eight channels. The TLV1571 is a single channel analog input device with all
the same functions as the TLV1578.

MO AIN

REFP

REFM

AVDD

DVDD

CH0 – C

C

 W
CSTA

AGND DGND

The TLV1571/ TLV1578 operates from a single 2.7 V to 5.5 V power supply. It accepts an analog
input range from 0 V to AVDD and digitizes the input at a maximum 1.25 MSPS throughput rate
at 5 V. The power dissipations are only 12 mW with a 3 V supply or 35 mW with a 5 V supply.
The device features an auto-power down mode that automatically powers down to 1 mA 50 ns
after conversion is performed. In software power-down mode, the ADC is further powered down
to only 10 µA.

For more information see the TLV1571/ TLV1578 datasheet at the following URL:
http://www–s.ti.com/sc/psheets/slas170/slas170.pdf

2.3 System Development Features

This ADC has features that aid debugging of hardware and software problems during system
development. Three self-test modes can be used to check whether the ADC is working properly;
this can be done without having to supply an external signal. Register Readback modes can be
used to determine whether the controls registers were initialized properly. The End-of-
Conversion (EOC) signal can be used to determine whether the data is valid.

http://www/

SLAA077

4 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

Decoder
Address EN

I/O STROBE
R/W

XF

D[6,15]

INT0

A[0,15]

D[0,9]

INT/EOC

CS

CSTART

WR

RD

2.3.1 C54x to TLV1571/78 Interface

TLV1571/78 TMS320C542

Figure 1. ADC-DSP Interface

DSP ADC DAC

DATA BUS

Figure 2. Data Bus Mapping for DSP-ADC-DAC

Figure 1 shows the simple interface with TLV1571/ TLV1578 and TMS320C542 DSP. The
TMS320C542 DSP is a 16-bit device. The Data lines are mapped MSB-MSB on both ADC and
DAC devices, See Figure 2. This becomes important when users write to these devices. when
writing to ADC, DSP data bits 15 through 6 must contain the data to be sent. Likewise, data bits
15 through 4 must contain the data to be sent to DAC.

2.4 Onboard Components

The TLV1571/TLV1578 EVM contains three major devices. They are the TLV1571/TLV1578
ADC, TLV5619 DAC, and the TLV2771 op amp. The following sections are only a brief
introduction to these devices. For a more detailed explanation on these devices refer to the
TLV1571/TLV1578 User’s Guide. The user’s guide is located at: http://www–
s.ti.com/sc/psheets/slau025/slau025.pdf

D0
D1
D2
D3

D0 D4
D1 D5
D2 D0 D6
D3 D1 D7
D4 D2 D8
D5 D3 D9
D6 D4 D10
D7 D5 D11
D8 D6 D12
D9 D7 D13

D10 D8 D14
D11 D9 D15

http://www/
http://www/

SLAA077

Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP 5

2.4.1 TLV5619 DAC
The TLV5619 is a 12-bit voltage output DAC with a TMS320 compatible parallel interface. The
12 data bits are double buffered so that the output can be updated asynchronously using the
LDAC pin. During normal operation, the device dissipates 8 mW at a 5 V supply and 4.3 mW at
a 3 V supply. The power consumption can be lowered to 50 nW by setting the DAC to power
down mode. For more information on TLV5619 DAC access the following URL: http://www–
s.ti.com/sc/psheets/slas172b/slas172b.pdf.

2.4.2 Operational Amplifier
One signal conditioning circuit can be used for all eight channels of the TLV1578. The
TLV1571/TLV1578 EVM uses the TLV2771 operational amplifier to perform this task. The
TLV2771 CMOS operational amplifier with its rail-to-rail output swing, high input impedance,
excellent dc precision, and high output drive makes this device a good choice for driving the
analog input of the ADC. The device provides 10.5 V/µs of slew rate and 5.1 MHz of bandwidth,
while only consuming 1 mA of supply current. For more information on the TLV2771 Op Amp,
access the following URL: http://www–s.ti.com/sc/psheets/slos209c/slos209c.pdf.

3 Operational Overview

The hardware interface must be understood before writing the software interface. The following
chapter describes the connection between the DSP and the EVM.

3.1 Reference Voltage Inputs

The voltage difference between the VREFP and VREFM terminals determines the analog input
range. For example with VREFM = 0 V, VREFP = 5 V, a dc input of 5 V would produce a full
scale value (3FFh). Likewise a dc = 2.5 V will produce half-full scale output (1FFh). For external
reference specifications refer to the TLV1571/TLV1578 datasheet at: http://www–
s.ti.com/sc/psheets/slas170/slas170.pdf

3.2 Input Data Bits

The ADC contains two user-accessible registers, control register zero (CR0) and control register
one (CR1). All user-defined features are programmed using CR0 and CR1. The data acquisition
process must be started by first writing to these two registers. After which, the converter
processes data in the same configuration until the registers’ contents are changed.

3.3 Connections Between the DSP and the EVM

Table 1 provides interface connections between the C54x DSKplus board and
TLV1571/ TLV1578 EVM.

http://www/
http://www/
http://www/
http://www/
http://www/

SLAA077

6 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

3.4 DSP Memory Map
The C542 DSKplus board has additional reserved memory segments other than those described
in the C54x reference set volume 1. The C54x has 10K of DRAM, the DSK reserves 1000h–
100Ah for housekeeping functions. There is one block of physical memory on the board. Figure
3 shows the DSKplus memory mapping used in this application report.

Refer to the TMS320C54x DSKplus DSP Starter Kit User’s Guide for a complete memory
description.

0000h

0080h

0100h

0180h

0800h

1000h

100Ah

1800h

27FFh

9.8 KB
Avialable of
10 k On-Chip
DARAM For
Program and
Data Storage

Reserved

Figure 3. Memory Map Used in This Application Report

Table 1. Signal Connections

Reserved
(OVLY=1)

Interrupts

Communications
Kernel

Program RAM

Kernel Buffer
(10 words)

Data Storage

DSP SIGNAL

CONNECTOR/PIN ON
THE DSKPLUS

CIRCUIT BOARD

CONNECTOR/PIN ON THE TLV1571/78 EVM

ADC SIGNAL

General

GND

Connector JP4: Pin 1,
10, 11, 12, 14, 15, 19,
20, 21, 27, 34, 35

Connector J6: Pin 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 22, 24, 26

GND

Connector JP5: Pin 6,
10, 11, 12

Connector J7: Pin 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 22, 24, 26 GND

Connector J10: Pin 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 22, 24, 26, 28, 30, 32, 34 GND

Vcc JP1/32 N/A Vcc

SLAA077

Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP 7

Table 1. Signal Connections (Continued)

DSP SIGNAL

CONNECTOR/PIN ON
THE DSKPLUS

CIRCUIT BOARD

CONNECTOR/PIN ON THE TLV1571/78 EVM

ADC SIGNAL

Parallel Interface
CLKOUT JP3/2 J10/33 CLKOUT

INTO JP5/1 J7/17

INT
XF JP4/8 J7/23

RD
R/W JP4/30 J7/21

Decoded to the WR line

IO STRB JP4/36 J7/19

Decoded to the WR line
A0 JP5/34 J7/15

Address decoder to CS and CSTART
A1 JP5/35 J1/13

Address decoder to CS and CSTART

D6 JP3/17 J10/19 D0
D7 JP3/18 J10/17 D1
D8 JP3/20 J10/15 D2
D9 JP3/21 J10/13 D3
D10 JP3/23 J10/11 D4
D11 JP3/24 J10/9 D5
D12 JP3/26 J10/7 D6
D13 JP3/27 J10/5 D7

D14 JP3/29 J10/3 D8
D15 JP3/30 J10/1 D9

NOTE: DSP D[15,6] is tied to ADC D[9,0]

4 Communicating Between the TLV1571/TLV1578 and the DSP
The next few sections explain the interface with the DSP and TLV1571/ TLV1578.

4.1 Writing to ADC
PORT(PA) = Smen
Writing to the I/O bus uses the port instruction. PA sets the ADDRESS bus permanently to that
value. Smem is a value from memory being transferred to the data bus.

@CR0_Send = #040h ;set the content of memory address CR0_Send to #040h
port(#2) = @CR0_Send ;set address bus to #2 and write #040h onto the Data bus.

The DSP automatically generates the WR pulse via the R/W pin.

4.2 Reading From ADC
Smen = PORT(PA)
Reading from the I/O bus. PA sets the ADDRESS bus. Smen is a memory cell. PA is the
address on the bus. The above command can be used to clear CS/CSTART. The user must
generate a RD pulse using the XF pin. There are two different ways to read data out.
This following method mirrors the datasheet, however, it takes needless DSP cycles:

1. PORT(#1)=Smen. Set DSP address bus to 1h. THis selects ADC CS on address decoder.
It does not matter what the user chooses to write to the data bus.

2. Clear XF(=0), This causes read pulse to go clear.

SLAA077

8 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

3. Smen = PORT(PA). Read data out of ADC and store in variable Smen.

4. Set XF(=1), Read Pulse goes high. Data latched out of ADC.

5. Set DSP address bus to 0h. This causes the address decoder to select Zero, which sets
ADC CS high.

The following method used in the attached source:

1. Clear XF(=0), Read pulse goes low.

2. Issue read command. Smen = PORT(PA). Selects ADC CS on address bus.

3. Set XF (=0) . Read pulse goes high.

This method takes advantage of the delay in the C542 DSK board. The board produces enough
delay so that XF comes after ADC chip select is cleared. The attached code includes a NOP
after a XF command is issued to account of this delay. The NOP resynchronize the RD and chip
selects lines.

4.3 Initializing DSP

Before running your application, you must initialize the appropriate C542 DSP registers. The
following registers are initialized to allow interrupts and proper hardware interface. The interrupt
flag register (IFR) is a memory-mapped CPU register that identifies interrupts. This application
uses INT0. When INT0 occurs, IFR is set. The interrupt mask register (IMR) individually masks
off specific interrupts at the required times. INT0 is enabled when the respective bit in the IMR
register is set. INTM is a bit in status register (ST1) that globally masks or enables all interrupts.
This bit must be set, if interrupts are used at all. The software wait-state register (SWWSR)
extends external bus cycles up to seven machine cycles. This is intended for use when
interfacing with slower off-chip I/O devices, i.e., TLV1571/TLV1578. The attached source code
assumes a wait-state of one.

For more information on wait-states refer to the following URL:
http://www–s.ti.com/sc/psheets/spru131f/spru131f.pdf

4.4 Data Page Pointer
DP = #0 ;Load DP with 0

DP = #variable ;Point with DP to the page, where variable is stored

DP = #register ;Error, this will not work. The DP is loaded with register content.

DP must point to the Data Page where variables are stored.

4.5 Generating the Chip Select Signal and the CSTART Signal

port(ADC) = @CR0_SEND ;Clear CS (set Chip Select Low). Writing to port.

@temp = port(DEACTIVE) ;Set CS and CSTART High. Reading from port.

@temp = port(ADC) ;Set ADC CS low.

@temp = port(CSTART) ;Set CSTART low.

The CS and CSTART signals are accessed using the address bus. The address decoder
attached to DSP address bus sets the respectively signals high or low.

http://www/

SLAA077

Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP 9

5 Software Overview
This application note consists of a C-callable assembler routine (c1571evm.asm) and its C
program (c1571c.c). The assembler code is kept divided so the user can identify what source
does which function. The assembly source code is divided into four segments.

1. Single channel mode with hardware start of conversion

2. Sweep channels mode with hardware start of conversion

3. Single channel mode with software start of conversion

4. Sweep channels mode with software start of conversion
The C program enables the user to specify register configurations. Users need only to set
register variables to zero or one, similar to the control register map found in TLV1571/TLV1578
datasheet. In addition, the user can specify where to start storing samples, total number of
samples to collect, and whether or not to send data to onboard DAC. The C program then calls
the assembler function. The assembler program executes in the following steps:

1. Enable and reset interrupts

2. Format register variables to configure ADC

3. Sample and collect conversion data

4. Store collected data into DSP data memory

5. Collecting total numbers of data specified

6. Disable the ADC and return to C function

Table 2. Local and Global Variables and Corresponding Programs

PROGRAM TYPE VARIABLE DESCRIPTION
C FILE Global _STARTSEL Hardware or software start of conversion

Global _PROGEOC Interrupt or end of conversion signal
Global _CLKSEL Internal or external clock
Global _SWPDWN Normal or power-down mode
Global _MODESEL Single channel or sweep mode
Global _CHANNEL Single or sweep mode
Global _OSCSPD Internal OSC slow(10 MHz) or fast(20 MHz)
Global _OUTCODE Binary or 2s complement code output
Global _OUTPUT Normal conversion or self test[1,2,3] or CR[1,2] output
Global _NumSamples Collect this many samples per assembly call.
Global _AtMemory Store samples starting at this memory address
Global _SendDAC Send sample to DAC or not

Assembly Local AD_DP Label used to set data page
ADSAMPLE Store current sample read in from ADC
CR0_SEND Control word 1 written to CR0
CR1_SEND Control word 2 written to CR1
NEXT_CH Used to keep track of next data table to store sample.
TABLE_7 Used to address next location in data table 7.
TEMP Used during dummy reads. i.e. toggle address decoder signals.

SLAA077

10 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

CS

RD

WR

OC

5.1 Configuration Cycle
TLV1571/ TLV1578 requires initialization of CR0 and CR1. The user must write to both control
registers before accepting valid data.
@CR0_Send = #040h

port(#2) = @CR0_Send ;Set address bus to 2h (ADC_Chip Select) and write #040h
;onto the Data bus.

@CR1_Send = #140h

port(#2) = @CR1_Send ;Set address bus to 2h (ADC_Chip Select) and write #140h
;onto the Data bus.

Figure 4 is an example of using software start of conversion mode. It is important to note the
second write pulse begins conversion process. It is recommended that the user issue a read
pulse only after conversion is completed.

The user may start the conversion process anytime after the configuration cycle. Figure 5 is an
example of using hardware start of conversion mode. In this case the conversion cycle process
begins right after the configuration cycle.

Figure 4. Software Start Configuration Cycle With EOC

E

SLAA077

Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP 11

Figure 5. Software Start Configuration Cycle With INT

5.2 Assemble Code Instruction Set
Assembly code in Chapter 7 an uses Algebraic Instruction set. The following link describes the
Algebraic Instruction set for c54x DSP.

See http://www–s.ti.com/sc/psheets/spru179b/spru179b.pdf

5.2.1 Macros
Macros are text substitutions made at assembly time. The macrocode is literally dumped into the
program with the parameter names substituted. Macros are useful when source code becomes
tedious and repetitive, or when a branch routine would add too many clock cycles. Macros are
used in the attached source code to help simplify program read.

For more information on writing and using macros, refer to
http://www–s.ti.com/sc/psheets/spru102c/spru102c.pdf

CS

RD

WR

INT

http://www/
http://www/

SLAA077

12 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

5.3 Loopback
Using the onboard DAC, the user can observe the data converted by the ADC. During
development, it is useful to be able to compare the analog input signal and DAC output. The
example code shows how this is done in software.
DAC .set #3
Port(DAC)= @ADSAMPLE ;write 3h on address bus and write ADSAMPLE on data bus.

In source code, the conversion data is fed straight out to DAC in an attempt to emulate real-time
processing.
To enable loopback mode, tie pin 1 and pin 2 together on W4.

5.4 Store Data
Sweep mode allows the user to collect data from various ADC channels and store them into
DSP memory. The user has to specify the location to store the first sample and how many
samples to collect. Using variables At_Memory and NumSamples the assembly program
decides where to store the first sample and how many samples to collect.

DSP Data Memory
1200h

1400h

1600h

1800h

27FFh

Figure 6. Sample Storage Format with At_Memory=1200h and NumSamples=200h

The ADC is programmed for four-channel sweep mode, data storage beginning at 1200h and
200h samples per channel would format memory like in Figure 7. In Figure 7, all samples
collected from channel 0 are stored in at 1200h through 13FFh. The data tables are allocated in
sequential memory addresses, therefore care must be taken to insure that sample tables fit in
the available storage range (1200h–27FFh).

5.5 Optimization for a Specific Application
Allowing the user to input variables as one or zero adds extra cycles to the assembly program.
This delays teh program from collecting and storing samples. The DSP spends several cycles to
understand the control register variables, and then decide which program to call. The program
flow chart is described in section 6. Users can decrease the function run time by bypassing the
variable reformatting segments of the code. Also, by compiling only the program segments used
in the application, program memory space can be decreased.
The attached source code is written so that programmers can easily extract pieces of code and
modify it to their specific application.
The End-of-Conversion (EOC) mode gives the user valuable information; EOC pulse width gives
the user conversion times and ADC activity. With this information, the user can tailor software
and hardware to take advantage of that specific ADC’s conversion characteristic.

Channel 0 (Table 1)

Channel 1 (Table 2)

Channel 2 (Table 3)

Channel 3 (Table 4)

SLAA077

Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP 13

CS

RD

CSTART

EOC

Sampling Conversion

Time

Conversion Complete

Figure 7. Tracking ADC Activity Using EOC Pulse

5.6 Flow Charts and Comments for All Software Modes
The source code included in this application note reads the data soon after each conversion is
complete.

5.7 DSP INITIALIZATION
Before proceeding to program the ADC, the DSP must be set up. One of the things to be done is
to define the DSP interrupt vector table. When interrupts occur, the DSP will refer to this table to
determine the next course of action. This action often is branching to an interrupt service routine
(ISR). In this application note, the ISR simply resets the interrupt.

For more information on interrupts see TMS320C54x CPU and Peripherals Reference Set
Volume 1 at http://www–s.ti.com/sc/psheets/spru131f/spru131f.pdf

1. Using a DSP this fast with a slower external device requires using wait-states. A wait-state
of ONE is used during write cycles.

2. External interrupt zero (INT0) is tied to the ADC interrupt pin. Reset any old interrupts on
this pin.

3. Program the IMR register to allow INT0.

4. The debugger needs to do background interrupts, so maskable interrupts are enabled.

There are four different subroutines attached with this note. The programs fall into two
categories, hardware start of conversion and software start of conversion. The following sections
will explain the different start of conversions. Please refer to either the attached source
(Chapter 7) or flow diagram (Figure 8). Every subroutine starts by configuring the ADC. The
change comes with starting the conversion cycles.

NOTE: When using sweep mode, it is recommended that the op amp be bypassed.

http://www/

SLAA077

14 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

NO Send Data To
DAC?

NO Send Data To
DAC?

YES YES

NO

NO
Max. Samples

Reached?

Max. Samples
Reached? NO

NO

YES
Max. Samples

Reached?
Max. Samples

Reached?

YES YES
YES

Store Sample is
Respectively DSP

Memory Table

Read Data Out

Wait Until First
Conversion Completed

Write to ADC

Initialize Appropriate DSP

Memory With 01234h

Define Table Limits
Map ARx Registers
With Channel Tables

Store Sample is
Respectively DSP

Memory Table

Read Data Out

Begin Sampling
Begin Conversion

Write to ADC

Map Register
With Data Tables.

Define Data Table Limit.

Read Data Out

Wait Until First
Conversion Completed

Write to ADC

Map Register
With Channel Table

Define Data Table Limits

port(DAC)=@ADSAMPE

Read Data Out

Write to ADC

Map Register
With Channel Table

Define Data Table Limits

port(DAC)=@ADSAMPE

Single Channel Mode

Hardware Start

NO

Sweep Mode ?

YES

NO ADC Software
Start Mode?

YES

Single Channel Mode

Software Start

NO
Sweep Mode?

YES

Figure 8. Software Flow Chart

Fill Appropriate DSP
Memory With 01234h

Fill Appropriate DSP
Memory With 01234h

Start

Initialize DSP, IRQ Table
Set Wait States, Reset Pending Interrupts

Initialize Control Register Variables
Initialize Local Variables

Return to C

Fill Appropriate DSP
Memory With 01234h

Fill Appropriate DSP
Memory With 01234h

SLAA077

Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP 15

CS

RD

RT

OC

5.7.1 Single and Sweep Channel Modes With Software Start of Conversion (RD)

Figure 9. Software Start of Conversion With EOC Signal

Software start of conversion refers to using the RD pulse to begin sampling. In both sweep and
single channel modes, sampling begins with low/high transition of RD. In Sweep mode, the
rising edge of the RD pulse begins sampling the next channel in the selected sweep sequence.
During the configuration cycle, sampling begins with the rising edge of the second WR pulse. As
a result, the first RD pulse must not come before the conversion cycle is completed. Thereafter
the rising edge of RD begins sampling. Figure 9 is an example of what the user will see when
running in the TLV1571/TLV1578 in software start mode.

CSTA

E

SLAA077

16 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

5.7.2 Single and Sweep Channel With Hardware Start of Conversion (CSTART)

Figure 10. Hardware Start of Conversion Using EOC Pulse

Hardware start of conversion refers to using the CSTART pin to begin sampling and conversion.
The user may begin a conversion cycle immediately following the configuration cycle. The falling
edge of CSTART begins the sampling process, while the rising edge is used to begin the
conversion process. This mode allows the user complete control over when sampling begins
and how long it is sustained. It is important to remember, in sweep mode, CSTART begins the
conversion cycle on the next channel in the sequence. If the RD pulse is not provided after
conversion, but CSTART begins the next conversion cycle, the previous data will be lost.
Figure 10 is an example of what the user will see when running in the TLV1571/TLV1578 in
hardware start mode.

CS

RD

CSTART

EOC

SLAA077

Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP 17

6 C-Callable
/***/

/* Title: TLV1571 ADC C program main routine */

/* File: C1571C.C */

/* Description: In this c–program file the user select the */

/* Input channel(s), the Conversion Modes, the Memory */

/* start address, and the number of Samples. This code is */

/* used with the ADC clocked at 20 MHz. */

/*–––*/

/* TLV1571/78 Command Set(CMR): */

/* */

/* Value: */

/* STARTSEL { = 0x0001 Software Start */

/* = 0x0000 Hardware Start } */

/* PROGEOC { = 0x0000 Interrupt */

/* = 0x0001 End Of Conversion} */

/* CLKSEL { = 0x0000 Internal Clock */

/* = 0x0001 External Clock } */

/* SWPDWN { = 0x0000 Normal Powerdown */

/* = 0x0001 Powerdown } */

/* MODESEL { = 0x0000 Single Channel Mode */

/* = 0x0001 Sweep Mode } */

/* CHANNEL { = 0x0000 Channel 0 or Sweep: CH[O,1] */

/* = 0x0001 Channel 1 or Sweep: CH[0,1,2,3] */

/* = 0x0002 Channel 2 or Sweep: CH[0,1,2,3,4,5] */

/* = 0x0003 Channel 3 or Sweep: CH[0,1,2,3,4,5,6,7] */

/* = 0x0004 Channel 4 */

/* = 0x0005 Channel 5 */

/* = 0x0006 Channel 6 */

/* = 0x0007 Channel 7 } */

/* OSCSPD { = 0x0000 Internal OSC Slow */

/* = 0x0001 Internal OSC Fast } */

/* OUTCODE { = 0x0000 Binary Output */

/* = 0x0001 2’s Complement Output } */

/* OUTPUT { = 0x0000 Normal Conversion */

/* = 0x0001 Self Test 1 */

/* = 0x0002 Self Test 2 */

/* = 0x0003 Self Test 3 */

/* = 0x0004 Readback Control Register 1 */

/* = 0x0005 Readback Control Register 2 } */

SLAA077

18 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

/* */

/* NumSamples = 0x0100 */

/* AtMemory = 0x1200 Range: 1200h to 27FFh */

/* SendDAC { = 0x0000 Do not Send Output to DAC */

/* = 0x0001 Send Output to DAC } */

/*––*/

/*Note: In Sweep Mode each Table will be NumSamples Long. */

/* Memory Tables will be placed in increments of NumSamples. */

/* */

extern STARTSEL,PROGEOC, CLKSEL, SWPDWN, MODESEL, CHANNEL, OSCSPD;

extern OUTCODE, OUTPUT, NumSamples, SendDAC, AtMemory;

extern void c1571EVM();

main(void)

{

STARTSEL = 0x0001 ;

PROGEOC = 0x0000 ;

CLKSEL = 0x0000 ;

SWPDWN = 0x0000 ;

MODESEL = 0x0000 ;

CHANNEL = 0x0000 ;

OSCSPD = 0x0001 ;

OUTCODE = 0x0000 ;

OUTPUT = 0x0000 ;

NumSamples = 0x0100 ;

AtMemory = 0x1200 ;/*RANGE 1200h to 27FFh*/

SendDAC

c1571EVM();

= 0x0001 ;

}

SLAA077

Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP 19

7 Assembly Source Code
**

* TITLE : TLV1571/78 Interface routine *

* FILE : c1571evm.ASM *

* FUNCTION : MAIN *

* PROTOTYPE : void MAIN () *

* CALLS : N/A *

* PRECONDITION : N/A *

* POSTCONDITION: N/A *

* DESCRIPTION : This program configures the ADC in specified modes, *

* Collects and stores the data at the required memory *

* location. This code is used when the ADC is clocked *

* at 20 MHz *

* AUTHOR : AAP Application Group, L. Philipose, Dallas *

* CREATED 1999(C) BY TEXAS INSTRUMENTS INCORPORATED *

* REFERENCE : TMS320C54x User’s Guide, TI 1997 *

* : Data Aquisation Circuits, TI 1999 *

**

.title ”TLV1571/78 C Callable”

; .mmregs

.width 80

.length 55

.version 542

; .setsect ”.vectors”,0x00200,0 ; sections of code

; .setsect ”.text”, 0x00300,0 ; these assembler directives specify

; .setsect ”.data”, 0x01100h,1 ; the absolute addresses of different

; .setsect ”.variabl”,0x01100h,1 ; sections of code

.sect ”.vectors”

.copy ”vectors.asm”

*global Variables

.global _c1571EVM

.global _STARTSEL ;Hardware or Software Start of Conversion

.global _PROGEOC ;Interrupt or End of Conversion

.global _CLKSEL ;Internal or External Clock

.global _SWPDWN ;Normal or Powerdown

.global _MODESEL ;Single Channel or Sweep Mode

.global _CHANNEL ;Select Channel(s) for single or sweep

.global _OSCSPD ;Internal OSC Slow(10MHz) or Fast(20MHz)

.global _OUTCODE ;Binary or 2’s Complement Code Output

SLAA077

20 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

.global _OUTPUT ;Normal Coversion or Self Test[1,2,3] or CR[1,2] output

.global _NumSamples ;Collect this many samples

.global _AtMemory ;store at them memory address

.global _SendDAC ;Collect this many samples

*Local Variables

AD_DP .usect ”.variabl”,0 ;label

CR0_SEND .usect ”.variabl”,1 ;the last value, sent to register CR0

CR1_SEND .usect ”.variabl”,1 ;the last value, sent to register CR1

TEMP .usect ”.variabl”,1 ;temporary variable

ADSAMPLE .usect ”.variabl”,1 ;last readed sample of channel 2

NEXT_CH .usect ”.variabl”,1 ; last readed sample of channel 1

TABLE_7 .usect ”.variabl”,1 ; last readed sample of channel 1

_STARTSEL .usect ”.variabl”,1 ; Hardware or Software Start of Conversion

_PROGEOC .usect ”.variabl”,1 ; Interrupt or End of Conversion

_CLKSEL .usect ”.variabl”,1 ; Internal or External Clock

_SWPDWN .usect ”.variabl”,1 ; Normal or Powerdown

_MODESEL .usect ”.variabl”,1 ; Single Channel or Sweep Mode

_CHANNEL .usect ”.variabl”,1 ; Select Channel(s) for single or sweep

_OSCSPD .usect ”.variabl”,1 ; Internal OSC Slow(10MHz) or Fast(20MHz)

_OUTCODE .usect ”.variabl”,1 ; Binary or 2’s Complement Code Output

_OUTPUT .usect ”.variabl”,1 ; Normal Coversion or Self Test[1,2,3] or
CR[1,2] output

_NumSamples .usect ”.variabl”,1 ; Collect this many samples

_AtMemory .usect ”.variabl”,1 ; store at them memory address

_SendDAC .usect ”.variabl”,1 ; Collect this many samples

* Address Decoder constants:

ADC .set 00002h ; activate A0 when TLV1571 is choosen

CSTART .set 00001h ; activate A1 when CSTART is choosen

DAC .set 00003h ; activate A2 when DAC1 is choosen

DEACTIVE .set 00000h ; deactivate the address lines A0, A1 and A2

.sect ”.text”

_c1571EVM:

_MAIN:

START:

.copy ”macros.asm”

*Save all Registers

push(AR0)

push(AR1)

SLAA077

Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP 21

push(AR2)

push(AR3)

push(AR4)

push(AR5)

push(AR6)

push(AR7)

SXM = 0 ; no sign extension mode

* copy interrupt vector table to DSP IRQ Vector table:

DP = #1;

AR7 = #00200h;

repeat(#3h)

data(0084h) = *AR7+ ; copy the NMI vector

AR7 = #00240h

repeat(#35)

data(00C0h) = *AR7+ ; copy INT0, INT1,...

* initialize waitstates:
DP = #00000h ; point to page zero

@SWWSR = #01000h ; one I/O wait states

* reset pending IRQs
IFR = #1 ; reset any old interrupt on pin INT0

* enable Interrupt INT0
@IMR |= #01 ; allow INT0

* enable global interrupt (this is even required, if no IRQ routine is used
* by this program because the debugger needs to do its backgroud interrupts)

INTM = 0 ; enable global IRQ

DP = #AD_DP

*Intialize local variables

A = @_AtMemory ; point to first date location of the storage
table for channel A

AR7 = A ; AR7 points to the first storage table

@NEXT_CH=#0

A = @_NumSamples

B = @_AtMemory ; AR0 points to the end of Storage Table for
; channel A.

A = A+B

AR0 =A

B=#0

A=#0

*Format register variables to be sent to CR0 and CR1

SLAA077

22 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

on the EVM.

MSB–MSB.

@CR1_SEND=A

**

*This block of code determines whether the user wants a Hardware Start or a
Software Start, then decides whether the user wants the Single channel Mode or the
Sweep Mode.

**

push(AR0)

AR0=data(@_STARTSEL)

AR6=#1h

TC=(AR0==AR6)

AR0=pop()

if (TC) goto Software

*Hardware Sweep Mode

Hardware:

push(AR0)

AR0=data(@_MODESEL)

AR6 =#1h

TC=(AR0==AR6)

AR0=pop()

if (TC) goto HardSweep

goto Single_Hard

Software:

Register_Bit @_STARTSEL, #7 ; macro

Register_Bit @_PROGEOC, #6

Register_Bit @_CLKSEL, #5

Register_Bit @_SWPDWN, #4

Register_Bit @_MODESEL, #3

Register_Bit @_CHANNEL, #0

@CR0_SEND=B ; Control Word for CR0 per data sheet.

A=@CR0_SEND

A=A<<<6 ;left shift

@CR0_SEND=A ;
;

Control Word for CR0 mapped MSB–MSB

B=#100h

Register_Bit @_OSCSPD, #6

Register_Bit @_OUTCODE, #3

Register_Bit @_OUTPUT, #0

@CR1_SEND=B ; Control Word for CR1.

A=@CR1_SEND

A=A<<<6 ;left shift ;
;
Left shifted before EVM is mapped

SLAA077

Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP 23

push(AR0)

AR0=data(@_MODESEL)

AR6=#1h

TC=(AR0==AR6)

AR0=pop()

If (TC) goto SoftSweep

goto Single_Soft

**

*Hardware Start Sweep Mode

**

HardSweep:

.copy ”SweepH.asm”

goto Return_to_C

**

*Software Start Sweep Mode

**

SoftSweep:

.copy ”SweepS.asm”

goto Return_to_C

**

*Single Channel Hardware Start Mode

**

Single_Hard:

.copy ”SingleH.asm”

goto Return_to_C

**

*Single Channel Software Start Mode

**

Single_Soft:

.copy ”SingleS.asm”

goto Return_to_C

**

*Restore all Registers

**

Return_to_C:

AR7=pop()

AR6=pop()

AR5=pop()

AR4=pop()

SLAA077

24 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

AR3=pop()

AR2=pop()

AR1=pop()

AR0=pop()

return

ERROR_Go_Back: ;if User inputs wrong configuration.

A=#1

return

**

* IRQ_INT0:
* Interrupt routine of the external interrupt input pin INT0

**

IRQ_INT0:

return_fast ; return fast from IRQ (wake up from the IDLE mode)

.end
**
* TITLE : TLV1571/78 Interface routine *
* FILE : SingleH.ASM *
* FUNCTION : N/A *
* PROTOTYPE : N/A *
* CALLS : N/A *
* PRECONDITION : N/A *
* POSTCONDITION : N/A *
* DESCRIPTION : This assembly program is written for C54x. It is included *
* in c1571EVM.asm Program configures and runs ADC in Hardware Start Single *
* Channel Mode. *
* AUTHOR : AAP Application Group, L. Philipose, Dallas *
* CREATED 1999(C) BY TEXAS INSTRUMENTS INCORPORATED. *
* REFERENCE : TMS320C54x User’s Guide, TI 1997 *
* : Data Acquisition Circuits, TI 1999 *
**

* Initialize ADC control Registers *
* set ADC registers: CR0,CR1 *

shADC_INI:
shSTEP1:
* write CR0:

port(ADC) = @CR0_SEND ;Address decoder sets CS low,
;WR– low and send CR1 value to the ADC

NOP ;
NOP ;wait for tW(CSH)=50ns

* write CR1
port(ADC) = @CR1_SEND ;send CR0 value to the ADC
NOP ;
NOP ;wait for tW(CSH)=50ns

*First conversion cycle
@TEMP= port(CSTART) ;clear CSTART– (CSTARTlow)

;begin sampling
*Begin Conversion

@TEMP= port(DEACTIVE) ;set CSTART– (CSTARThigh)
repeat(#16)
NOP

SLAA077

Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP 25

* ADC_CStart Single Channel:
* Read Sample
* Send Sample to DAC
* Store Sample into memory

STEP3:

XF = 0 ;clear RD
* read sample
STEP4: DP = #ADSAMPLE ;point to ADSAMPLE

@ADSAMPLE = port(ADC) ;read the new sample into the DSP
XF = 1 ;set RD
nop ;C542 DSK board introduces a delay of the RD

;signal (~30 ns). If a chip select is issued
;immediately after RD, then chip select goes
;low before read (RD) because of this delay. To
;remedy this problem a NOP is required.

*Begin Sample
STEP5: @TEMP = port(CSTART) ;clear CSTART– (CSTARTlow)

*Begin Conversion
STEP6: @TEMP = port(DEACTIVE) ;set CSTART– (CSTARThigh)

TC =(@_SendDAC == #1h)
if (NTC) goto NO_DAC

*Send out to DAC
port(DAC1) = @ADSAMPLE ;Address Decoder selects DAC: CSz low, WRZ–low

NO_DAC:

*Store In Table

goto Return_to_C

CONTINUE:
goto STEP3 ;go back to receive next sample

**
* TITLE : TLV1571/78 Interface routine *
* FILE : SingleS.ASM *
* FUNCTION : N/A *
* PROTOTYPE : N/A *
* CALLS : N/A *
* PRECONDITION : N/A *
* POSTCONDITION: N/A *
* DESCRIPTION : This assembly program is written for C54x. It is included *
* in c1571EVM.asm Program configures and runs ADC in Software Start Single *
* Channel Mode: This source code is written for the ADC clocked at 20 MHz. *
* AUTHOR : AAP Application Group, L. Philipose, Dallas *
* CREATED 1999(C) BY TEXAS INSTRUMENTS INCORPORATED. *
* REFERENCE : TMS320C54x User’s Guide, TI 1997 *
* : Data Acquisition Circuits, TI 1999 *
**
*Configure ADC
* write CR0:

port(ADC) = @CR0_SEND ;Address decoder sets CS low,
;WR low and send CR1 value to the ADC

NOP ;

STEP7: *AR7+ = data(@ADSAMPLE) ;write last sample of channel into memory table

 TC
if (TC)

= (AR0 == AR7) ;is AR7 = AR0? (table end reached?)

SLAA077

26 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

NOP ;wait for tW(CSH)=50ns

* write CR1
port(ADC) = @CR1_SEND ;send CR0 value to the ADC
@TEMP = port(DEACTIVE) ;send CR0 value to the ADC
repeat(#22) ;TEST 800ns
NOP ;wait for t(SAMPLE1)=100ns

**
* ADC_Software Single Channel: *
* read samples and store them into memory *
**
ADC_Soft:
* read sample
SwSTEP4: XF = 0 ;clear RD
SwSTEP6: DP = #ADSAMPLE ;point to ADSAMPLE

@ADSAMPLE = port(ADC) ;read the new sample into the DSP
XF = 1 ;set RD
nop ;C542 DSK board introduces a delay of the RD

;signal (~30 ns). If a chip select is issued
;immediately after RD, then chip select goes
;low before read (RD) because of this delay. To
;remedy this problem a NOP is required.

SwSTEP7: @TEMP = port(DEACTIVE)
repeat(#3) ;wait for t(CONV1)
NOP
TC =(@_SendDAC==#1h)
if (NTC) goto SwNO_DAC

*Send out to DAC
SwSTEP8: port(DAC1) = @ADSAMPLE ;Address Decoder selects DAC: CSz low, WR low

SwNO_DAC:

*Store In Table
SwSTEP9: *AR7+ = data(@ADSAMPLE) ;write last sample of channel into memory table

TC = (AR0 == AR7) ;is AR7 = AR0? (table end reached?)
if (TC) goto Return_to_C
goto SwSTEP4 ;go back to receive next sample

* TITLE : TLV1571/78 Interface routine *
* FILE : SweepS.ASM *
* FUNCTION : N/A *
* PROTOTYPE : N/A *
* CALLS : N/A *
* PRECONDITION : N/A *
* POSTCONDITION: N/A *
* DESCRIPTION : This assembly program is written for C54x. It is included *
* in c1571EVM.asm. Program configures and runs ADC in Software Start Sweep *
* Channels Mode. Note the source code is meant for the ADC clocked at 20 MHz *
* AUTHOR : AAP Application Group, L. Philipose, Dallas *
* CREATED 1999(C) BY TEXAS INSTRUMENTS INCORPORATED. *
* REFERENCE
*

: TMS320C54x User’s Guide, TI 1997
: Data Acquisition Circuits, TI 1999

*
*

* fill all locations between 1200h and 27FFh with 1234h:

DP = #AD_DP ;
@TEMP = #01234h ;

A = @_AtMemory
INIT_TABLE AR7 ;initialize CH0 Table

SLAA077

Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP 27

A = A + @_NumSamples ;Start of Next Table
INIT_TABLE AR6 ;initialize CH1 Table

TC=(@_CHANNEL==#0h) ;Sweep Sequence 0?
if (TC) goto SwS_CONT

A = A + @_NumSamples ;Start of Next Table
INIT_TABLE AR5 ;initialize CH2 Table

A = A + @_NumSamples ;Start of Next Table
INIT_TABLE AR4 ;initialize CH3 Table

TC=(@_CHANNEL== #1h) ;Sweep Sequence 1?
if (TC) goto SwS_CONT

A = A + @_NumSamples ;Start of Next Table
INIT_TABLE AR3 ;initialize CH4 Table

A = A + @_NumSamples ;Start of Next Table
INIT_TABLE AR2 ;initialize CH5 Table

TC=(@_CHANNEL==#2h) ;Sweep Sequence 2?
if (TC) goto SwS_CONT

A = A + @_NumSamples ;Start of Next Table
INIT_TABLE AR1 ;initialize CH6 Table

push(AR0)
A = A + @_NumSamples ;Start of Next Table
INIT_TABLE AR0 ;initialize CH7 Table
AR0=pop()
@TABLE_7 = A

SwS_CONT:

* Initialize ADC control Registers
* set ADC registers: CR0,CR1

SwS_ADC_INI:
* write CR0:

port(ADC) = @CR0_SEND ;Address decoder sets CS low,
;WR low and send CR1 value to the ADC

NOP ;wait for tW(CSH)=50 ns
NOP

* write CR1
port(ADC) = @CR1_SEND ;send CR0 value to the ADC

SwS_STEP1:
@TEMP=port(DEACTIVE) ;deselect ADC (CShigh)

SwS_STEP2:
repeat(#24) ;TEST 800ns
NOP ;wait for t(SAMPLE1)=100ns

* ADC Software Start Sweep Channels
* read samples and store them into memory

ADC_SSweep:
SwS_STEP4:

XF = 0 ;clear RD

* read sample

SLAA077

28 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

SwS_STEP6:
DP = #ADSAMPLE ;point to ADSAMPLE
@ADSAMPLE= port(ADC) ;read the new sample into the DSP
nop ;C542 DSK board introduces a delay of the RD

;signal (~30 ns). If a chip select is issued
;immediately after RD, then chip select goes
;low before read (RD) because of this delay. To
;remedy this problem a NOP is required.

XF = 1 ;set RD
@TEMP = port(DEACTIVE)

* STORE:
* saving the samples into memory

INIT_STORE AR0 ;PASS AR0

* test for table end, set pointer back if true
TC = (AR0 == AR7) ;is AR7 = AR0? (table end reached?)
if (TC) goto Return_to_C ;
goto SwS_STEP4 ;go back to receive next sample

* TITLE : TLV1571/78 Interface routine *
* FILE : SweepH.ASM *
* FUNCTION : N/A *
* PROTOTYPE : N/A *
* CALLS : N/A *
* PRECONDITION : N/A *
* POSTCONDITION: N/A *
* DESCRIPTION : This assembly program is written for C54x. It is included *
* in c1571EVM.asm Program configures and runs ADC in Hardware Start Sweep *
* Channels Mode. The following source code written for ADC clocked at *
* 20 MHz *
* AUTHOR : AAP Application Group, L. Philipose, Dallas *
* CREATED 1999(C) BY TEXAS INSTRUMENTS INCORPORATED. *
* REFERENCE : TMS320C54x User’s Guide, TI 1997 *
* : Data Acquisition Circuits, TI 1999 *
**
* fill all table locations between FFFFh:

DP = #AD_DP ;
@TEMP = #0FFFFh ;

* initialize storage table for the ADC samples

A = @_AtMemory

INIT_TABLE AR7 ;initialize CH0 Table

A = A + @_NumSamples ;Start of Next Table
INIT_TABLE AR6 ;initialize CH1 Table

TC=(@_CHANNEL==#0h) ;Sweep Sequence 0?
if (TC) goto SwH_CONT

A = A + @_NumSamples ;Start of Next Table
INIT_TABLE AR5 ;initialize CH2 Table

A = A + @_NumSamples ;Start of Next Table
INIT_TABLE AR4 ;initialize CH3 Table

SLAA077

Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP 29

TC=(@_CHANNEL== #1h) ;Sweep Sequence 1?
if (TC) goto SwH_CONT

A = A + @_NumSamples ;Start of Next Table
INIT_TABLE AR3 ;initialize CH4 Table

A = A + @_NumSamples ;Start of Next Table
INIT_TABLE AR2 ;initialize CH5 Table

TC=(@_CHANNEL==#2h) ;Sweep Sequence 2?
if (TC) goto SwH_CONT

A = A + @_NumSamples ;Start of Next Table
INIT_TABLE AR1 ;initialize CH6 Table

push(AR0)
A = A + @_NumSamples ;Start of Next Table
INIT_TABLE AR0 ;initialize CH7 Table

AR0=pop()
@TABLE_7 = A

SwH_CONT:

* Initialize ADC control Registers
* set ADC registers: CR0,CR1

SwH_ADC_INI:
SwH_STEP1:
* write CR0:

port(ADC) = @CR0_SEND ;Address decoder sets CS low,
;WR low and send CR1 value to the ADC

NOP ;
NOP ;wait for tW(CSH)=50ns

* write CR1
port(ADC) = @CR1_SEND ;send CR0 value to the ADC

SwH_STEP1_5:
@TEMP= port(CSTART) ;clear CSTART (CSTARTlow)

*Begin Conversion
SwH_STEP2:

@TEMP = port(DEACTIVE) ;set CSTART (CSTARThigh)

repeat(#24) ;
NOP ;wait for t(CONV1)

* ADC_CStart Single Channel:
* Read Sample
* Send Sample to DAC
* Store Sample into memory

* read sample

SwH_STEP3:
XF = 0 ;clear RD

SwH_STEP4:
DP= #ADSAMPLE ;point to ADSAMPLE
@ADSAMPLE= port(ADC) ;read the new sample into the DSP
XF=1 ;set RD

SLAA077

30 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

nop ;C542 DSK board introduces a delay of the RD
;signal (~30 ns). If a chip select is issued
;immediately after RD, then chip select goes
;low before read (RD) because of this delay. To
;remedy this problem a NOP is required.

*Begin Sample
SwH_STEP5:

@TEMP = port(CSTART) ;clear CSTART (CSTARTlow)

*Begin Conversion
SwH_STEP6:

@TEMP= port(DEACTIVE) ;set CSTART (CSTARThigh)

* STORE:
* saving the samples into memory

SwH_STORE:

INIT_STORE AR0 ;pass AR0

* test for table end, set pointer back if true
TC = (AR0 == AR7) ;is AR7 = AR0? (table end reached?)
if (TC) goto Return_to_C
goto SwH_STEP3 ;go back to receive next channel data

FILE: macros.asm *

*DESCRIPTION: Macro Routines *

*Format register bits for ADC configuration
Register_Bit .macro Var, NUM

A=Var
A=A<<<NUM
B=A|B

.endm
*Initialize Memory Table
INIT_TABLE .macro ARx

ARx= A ;
B=@_NumSamples

B=B–#1
BRC=B
NOP
blockrepeat(End_Block?–1)
*ARx+ = data(@TEMP) ;fill table with FFFFh

End_Block?:
ARx = A
.endm

* Initialize data storage
INIT_STORE .macro ARx ;pass AR0

* store new sample
TC=(@NEXT_CH==#0) ;NEXT_CH=0 channel 1, NEXT_CH=1 channel 1
if (TC) goto CHANNEL_0?
TC=(@NEXT_CH==#1) ;NEXT_CH=2 channel 2, NEXT_CH=3 channel 3
if (TC) goto CHANNEL_1?
TC=(@NEXT_CH==#2)
if (TC) goto CHANNEL_2?
TC=(@NEXT_CH==#3)
if (TC) goto CHANNEL_3?
TC=(@NEXT_CH==#4)
if (TC) goto CHANNEL_4?

SLAA077

Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP 31

TC=(@NEXT_CH==#5)
if (TC) goto CHANNEL_5?
TC=(@NEXT_CH==#6)
if (TC) goto CHANNEL_6?
TC=(@NEXT_CH==#7)
if (TC) goto CHANNEL_7?

CHANNEL_0?:
*AR7+ = data(@ADSAMPLE) ;write last sample of channel 1 into memory

;table
@NEXT_CH = #1
goto CONTINUE?

CHANNEL_1?:
*AR6+ = data(@ADSAMPLE) ;write last sample of channel 2 into memory ;

;table
@NEXT_CH = #2
TC=(@_CHANNEL==#0h) ;Sweep only CH0, CH1?
if (TC) goto Reset_Sweep1?
goto CONTINUE?

Reset_Sweep1?:

@NEXT_CH = #0
goto CONTINUE?

CHANNEL_2?:
*AR5+ = data(@ADSAMPLE) ;write last sample of channel 3 into memory

;table
@NEXT_CH=#3
goto CONTINUE?

CHANNEL_3?:
*AR4+ = data(@ADSAMPLE) ;write last sample of channel 2 into memory

;table
@NEXT_CH=#4
TC=(@_CHANNEL==#1h) ;weep only CH0, CH1,ch2,ch3?
if (TC) goto Reset_Sweep2?
goto CONTINUE?

Reset_Sweep2?:
@NEXT_CH = #0
goto CONTINUE?

CHANNEL_4?:
*AR3+ = data(@ADSAMPLE) ;write last sample of channel 2 into memory

;table
@NEXT_CH=#5
goto CONTINUE?

CHANNEL_5?:
*AR2+ = data(@ADSAMPLE) ;write last sample of channel into memory table
@NEXT_CH=#6
TC=(@_CHANNEL==#2h) ;weep only CH0, CH1,ch2,ch3,ch4,ch5?
if (TC) goto Reset_Sweep3?
goto CONTINUE?

Reset_Sweep3?:
@NEXT_CH = #0
goto CONTINUE?

CHANNEL_6?:
*AR1+ = data(@ADSAMPLE) ;write last sample of channel into memory table
@NEXT_CH=#7
goto CONTINUE?

SLAA077

32 Interfacing with the TLV1571/ 78 Analog-to-Digital Converter to the TMS320C542 DSP

CHANNEL_7?:

push(ARx)
B=@TABLE_7
NOP ;NEED BECAUSE OF PIPELINE DELAY
AR0=B
NOP ;NEED BECAUSE OF PIPELINE DELAY
NOP ;NEED BECAUSE OF PIPELINE DELAY
*ARx+ = data(@ADSAMPLE) ;write last sample of channel into memory

;table
@NEXT_CH=#0
ARx=pop()

CONTINUE?:
DP= #AD_DP ;TEST
.endm

8 References
1. TMS320C54X DSP CPU and Peripherals Reference Set Volume I, Literature Number

SPRU131F
2. TMS320C54X DSP CPU and Peripherals Reference Set Volume 3: Algebraic Instruction,

Literature Number SPRU179B
3. TMS320C54X Assembly Language Tools User’s Guide, Literature Number SPRU102C
4. TMS320C54X DSKPLUS DSP Starter Kit User’s Guide, Literature Number SPRU191
5. TLV1571/TLV1578 10-BIT 1.25 MSPS Parallel Analog-to-Digital Converter, Literaure Number

SLAS170
6. Characteristics, Operation, and Use of the TLV157x EVM, Literature Number SLAU025

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2.3 System Development Features
	Figure 2. Data Bus Mapping for DSP-ADC-DAC

	2.4 Onboard Components
	2.4.1 TLV5619 DAC
	2.4.2 Operational Amplifier

	3 Operational Overview
	3.1 Reference Voltage Inputs
	3.2 Input Data Bits
	3.3 Connections Between the DSP and the EVM
	3.4 DSP Memory Map
	Figure 3. Memory Map Used in This Application Report Table 1. Signal Connections

	4 Communicating Between the TLV1571/TLV1578 and the DSP
	4.1 Writing to ADC
	4.2 Reading From ADC
	4.3 Initializing DSP
	4.4 Data Page Pointer
	4.5 Generating the Chip Select Signal and the CSTART Signal
	5 Software Overview
	5.1 Configuration Cycle
	5.2 Assemble Code Instruction Set
	5.2.1 Macros

	5.3 Loopback
	5.4 Store Data
	5.5 Optimization for a Specific Application
	Figure 7. Tracking ADC Activity Using EOC Pulse

	5.6 Flow Charts and Comments for All Software Modes
	Figure 8. Software Flow Chart

	7 Assembly Source Code
	8 References

