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What is the Library?  
• Register read/write functions (MSP430 to CC1100/CC2500)

Read register
Write register
Read burst
Write burst
Status read
Command strobe write
CC1100/2500 reset

• CC1100/CC2500 are targeted at general-purpose ISM-band 
apps at 315/433/868/915 MHz and 2.4 GHz respectively

• Library based on CC1100/CC2500 Examples and Libraries
from Chipcon

• SPI functions only; no protocol functions
• Demo application project included
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What is the Library?
• Works with any SPI-capable MSP430 interface

USART0
USART1
USCI_A0
USCI_A1
USCI_B0
USCI_B1
USI
Bit-bang I/Os

• Hardware abstraction assists porting between MSP430 
devices

• Not tested for other Chipcon devices
• Tested with MCLK between 1-8MHz and SMCLK dividers 

of /1 and /8
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Target Hardware
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MSP430 SPI Interfaces
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Demo Application Stack
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File Organization

Definitions specific to the board 
(connections between MSP430 and 
CCxxxx)

TI_CC_hardware_board.h

Functions for accessing 
CC1100/CC2500 registers via SPI 
from MSP430

TI_CC_spi.c

Function declarations for hal_spi.cTI_CC_spi.h

Definitions specific to the MSP430 
deviceTI_CC_MSP430.h

Definitions specific to the 
CC1100/2500 devicesTI_CC_CC1100-CC2500.h
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Demo Code Flowchart:  main()



© 2006 Texas Instruments Inc, Slide 12

Demo Code Flowchart:  Port_1 ISR
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CC1100 Register Settings

• Chipcon’s SmartRF Studio software can assist in 
generating register contents
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Lab Activities and Resources  
• What you’re going to do

Phase 1:  Configure library for ATC board
Phase 2:  Write function to receive packet from administrator
Phase 3:  Write function to send packet to front screen

• Resources
Exercise code (on your CD)
Solution code (on your CD)
MSP430FG4619 datasheet extract (at your table)
CC1100 datasheet extract (at your table)
ATC board schematic (at your table)
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Phase 1:  Configuration of Library  
• The library hardware definition files are currently 

configured for different hardware.  Required changes:

Definitions specific to the board 
(connections between MSP430 and CCxxxx)TI_CC_hardware_board.h

Functions for accessing CC1100/CC2500 
registers via SPI from MSP430TI_CC_spi.c

Function declarations for hal_spi.cTI_CC_spi.h

Definitions specific to the MSP430 deviceTI_CC_MSP430.h

Definitions specific to the CC1100/2500 devices TI_CC_CC1100-CC2500.h

Files in blue need to be modified

1. Reference the appropriate device *.h file (msp430xG46x.h)

2. Configure appropriate pins for SPI interface

3. Configure non-SPI connections
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• Configure which 
interface used for 
SPI

• Defined options are 
listed at bottom of 
TI_CC_msp430.h

Configuration of Library: Select Intf
#define TI_CC_GDO0_PxOUT        P2OUT
#define TI_CC_GDO0_PxIN         P2IN
#define TI_CC_GDO0_PxDIR        P2DIR
#define TI_CC_GDO0_PxIE         P2IE
#define TI_CC_GDO0_PxIES        P2IES
#define TI_CC_GDO0_PxIFG        P2IFG
#define TI_CC_GDO0_PIN          0x10
.
.
.
//---------------------------------------
// SPI port selections.  Select which 
// port will be used for interface to 
// CCxxxx
//---------------------------------------
#define TI_CC_RF_SER_INTF  TI_CC_SER_INTF_USART1

#define TI_CC_GDO0_PxOUT        P2OUT
#define TI_CC_GDO0_PxIN         P2IN
#define TI_CC_GDO0_PxDIR        P2DIR
#define TI_CC_GDO0_PxIE         P2IE
#define TI_CC_GDO0_PxIES        P2IES
#define TI_CC_GDO0_PxIFG        P2IFG
#define TI_CC_GDO0_PIN          0x10
.
.
.
//---------------------------------------
// SPI port selections.  Select which 
// port will be used for interface to 
// CCxxxx
//---------------------------------------
#define TI_CC_RF_SER_INTF  TI_CC_SER_INTF_USART1

TI_CC_hardware_board.h
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• Define connections 
from ATC board:

Switch
GDO0
/CS

Configuration of Library: Define Board

#define TI_CC_SW_PxIN P1IN
#define TI_CC_SW_PxIE P1IE
#define TI_CC_SW_PxIES P1IES
#define TI_CC_SW_PxIFG P1IFG
#define TI_CC_SW1               0x01
.
.
#define TI_CC_GDO0_PxOUT        P1OUT
#define TI_CC_GDO0_PxIN         P1IN
#define TI_CC_GDO0_PxDIR        P1DIR
#define TI_CC_GDO0_PxIE         P1IE
#define TI_CC_GDO0_PxIES        P1IES
#define TI_CC_GDO0_PxIFG        P1IFG
#define TI_CC_GDO0_PIN          0x04
.
.
#define TI_CC_CSn_PxOUT P4OUT
#define TI_CC_CSn_PxDIR P4DIR
#define TI_CC_CSn_PIN 0x04

#define TI_CC_SW_PxIN P1IN
#define TI_CC_SW_PxIE P1IE
#define TI_CC_SW_PxIES P1IES
#define TI_CC_SW_PxIFG P1IFG
#define TI_CC_SW1               0x01
.
.
#define TI_CC_GDO0_PxOUT        P1OUT
#define TI_CC_GDO0_PxIN         P1IN
#define TI_CC_GDO0_PxDIR        P1DIR
#define TI_CC_GDO0_PxIE         P1IE
#define TI_CC_GDO0_PxIES        P1IES
#define TI_CC_GDO0_PxIFG        P1IFG
#define TI_CC_GDO0_PIN          0x04
.
.
#define TI_CC_CSn_PxOUT P4OUT
#define TI_CC_CSn_PxDIR P4DIR
#define TI_CC_CSn_PIN 0x04

TI_CC_hardware_board.h
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Configuration of Library: Select MSP430

• Assign device-specific standard definition file
• Check the \430\inc directory within IAR’s \Program Files 

listing

TI_CC_msp430.h

#include "msp430xG46x.h"              // Adjust according to the
// MSP430 device being used.

// SPI port definitions               // Adjust for chosen intf,
#define TI_CC_SPI_USART0_PxSEL  P3SEL // according to the pin
#define TI_CC_SPI_USART0_PxDIR  P3DIR // assignments in the
#define TI_CC_SPI_USART0_PxIN   P3IN  // chosen MSP430 datasheet.
#define TI_CC_SPI_USART0_SIMO   0x02
#define TI_CC_SPI_USART0_SOMI   0x04
#define TI_CC_SPI_USART0_UCLK   0x08

#define TI_CC_SPI_USCIA0_PxSEL  P3SEL
#define TI_CC_SPI_USCIA0_PxDIR  P3DIR
#define TI_CC_SPI_USCIA0_PxIN   P3IN
.
.

#include "msp430xG46x.h"              // Adjust according to the
// MSP430 device being used.

// SPI port definitions               // Adjust for chosen intf,
#define TI_CC_SPI_USART0_PxSEL  P3SEL // according to the pin
#define TI_CC_SPI_USART0_PxDIR  P3DIR // assignments in the
#define TI_CC_SPI_USART0_PxIN   P3IN  // chosen MSP430 datasheet.
#define TI_CC_SPI_USART0_SIMO   0x02
#define TI_CC_SPI_USART0_SOMI   0x04
#define TI_CC_SPI_USART0_UCLK   0x08

#define TI_CC_SPI_USCIA0_PxSEL  P3SEL
#define TI_CC_SPI_USCIA0_PxDIR  P3DIR
#define TI_CC_SPI_USCIA0_PxIN   P3IN
.
.
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Configuration of Library: Define MSP430

• Define which MSP430 pins used for SPI functions for 
interface being used, referencing the MSP430 datasheet

#include "msp430xG46x.h"              // Adjust according to the
// MSP430 device being used.

// SPI port definitions               // Adjust for chosen intf,
#define TI_CC_SPI_USART1_PxSEL  P4SEL // according to the pin
#define TI_CC_SPI_USART1_PxDIR  P4DIR // assignments in the
#define TI_CC_SPI_USART1_PxIN   P4IN  // chosen MSP430 datasheet.
#define TI_CC_SPI_USART1_SIMO   0x08
#define TI_CC_SPI_USART1_SOMI   0x10
#define TI_CC_SPI_USART1_UCLK   0x20

#define TI_CC_SPI_USCIA0_PxSEL  P3SEL
#define TI_CC_SPI_USCIA0_PxDIR  P3DIR
#define TI_CC_SPI_USCIA0_PxIN   P3IN
#define TI_CC_SPI_USCIA0_SIMO   0x10
.
.

#include "msp430xG46x.h"              // Adjust according to the
// MSP430 device being used.

// SPI port definitions               // Adjust for chosen intf,
#define TI_CC_SPI_USART1_PxSEL  P4SEL // according to the pin
#define TI_CC_SPI_USART1_PxDIR  P4DIR // assignments in the
#define TI_CC_SPI_USART1_PxIN   P4IN  // chosen MSP430 datasheet.
#define TI_CC_SPI_USART1_SIMO   0x08
#define TI_CC_SPI_USART1_SOMI   0x10
#define TI_CC_SPI_USART1_UCLK   0x20

#define TI_CC_SPI_USCIA0_PxSEL  P3SEL
#define TI_CC_SPI_USCIA0_PxDIR  P3DIR
#define TI_CC_SPI_USCIA0_PxIN   P3IN
#define TI_CC_SPI_USCIA0_SIMO   0x10
.
.

TI_CC_msp430.h
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Phase 1:  Did you Pass?    

// *** PHASE 1 TEST CODE ***
// To test the SPI connection, set a breakpoint to observe
// testBuffer after the burst read is executed.  The register
// settings should match the ones programmed in writeRFSettings()

char testBuffer[0x3A];
TI_CC_SPIReadBurstReg(TI_CCxxx0_IOCFG2, testBuffer, 0x3A);
_NOP();

// *** PHASE 1 TEST CODE ***
// To test the SPI connection, set a breakpoint to observe
// testBuffer after the burst read is executed.  The register
// settings should match the ones programmed in writeRFSettings()

char testBuffer[0x3A];
TI_CC_SPIReadBurstReg(TI_CCxxx0_IOCFG2, testBuffer, 0x3A);
_NOP();

• This code reads back the data written in function 
writeRFSettings()

• Set breakpoint at TI_CC_SPIReadBurstReg() and step through 
code

• Set a watch on testBuffer[] and expand it in the “watch view”
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Phase 1:  Did you Pass?    
• Compare values to the ones programmed in 

writeRFSettings() in cc1100-cc2500.c
• Note that writeRFSettings skips some addresses
void writeRFSettings(void)
{

TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG2,   0x0B); 
TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG0,   0x06); 
TI_CC_SPIWriteReg(TI_CCxxx0_PKTLEN,   0xFF); 
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL1, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL0, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_ADDR,     0x02);
TI_CC_SPIWriteReg(TI_CCxxx0_CHANNR,   0x00);
TI_CC_SPIWriteReg(TI_CCxxx0_FSCTRL1,  0x0B);
TI_CC_SPIWriteReg(TI_CCxxx0_FSCTRL0,  0x00);
.
.

void writeRFSettings(void)
{

TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG2,   0x0B); 
TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG0,   0x06); 
TI_CC_SPIWriteReg(TI_CCxxx0_PKTLEN,   0xFF); 
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL1, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL0, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_ADDR,     0x02);
TI_CC_SPIWriteReg(TI_CCxxx0_CHANNR,   0x00);
TI_CC_SPIWriteReg(TI_CCxxx0_FSCTRL1,  0x0B);
TI_CC_SPIWriteReg(TI_CCxxx0_FSCTRL0,  0x00);
.
.
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Phase 2:  Receiving a Packet    
• CC1100 packets have an address field.  The receiving 

CC1100 can filter according to address.    
• There is a transmitter in this room, sending a set of packets 

every two seconds, each addressed to a table in the room. 
(See your table number.)

• Example: if there are 20 tables, the address set for each two-
second sweep is {0x01, 0x02, 0x03,… 0x14}.

• Your job is to modify the code such that your CC1100 filters 
out all but your target address.   

• Received packets are displayed via Hyperterminal.  
• Tasks:

Locate function writeRFSettings() and modify the address for your 
device (TI_CCxxx0_ADDR), such that it allows your packets to pass
Write function RFReceivePacket() that, when alerted by the CC1100 
of a valid packet, reads the packet into the MSP430
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Phase 2:  Modify Address   

void writeRFSettings(void)
{

TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG2,   0x0B); 
TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG0,   0x06); 
TI_CC_SPIWriteReg(TI_CCxxx0_PKTLEN,   0xFF); 
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL1, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL0, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_ADDR,     0x0B);
TI_CC_SPIWriteReg(TI_CCxxx0_CHANNR,   0x00);
.
.

void writeRFSettings(void)
{

TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG2,   0x0B); 
TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG0,   0x06); 
TI_CC_SPIWriteReg(TI_CCxxx0_PKTLEN,   0xFF); 
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL1, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL0, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_ADDR,     0x0B);
TI_CC_SPIWriteReg(TI_CCxxx0_CHANNR,   0x00);
.
.

• Locate writeRFSettings (top of cc1100-cc2500.c)
• Convert your table # to hex and modify this function for your 

address
• Example:  If you are table #11, set field to 0x0B
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Phase 2:  Write RFReceivePacket()   
• Locate function RFReceivePacket (bottom of cc1100-

cc2500.c)
• For context, locate and study PORT1_VECTOR in 

main(), from where it is called 
• Fill in the blanks to finish RFReceivePacket
• Each blank is a SPI access, a call to the library
• Refer to file TI_CC_SPI.h for headers of the library 

functions
• Within RFReceivePacket(), there are directions and 

hints on how to solve
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char RFReceivePacket(char *rxBuffer, char *length)
{
char status[2];
char pktLen;

if ((TI_CC_SPIReadStatus(TI_CCxxx0_RXBYTES) & TI_CCxxx0_NUM_RXBYTES))
{

// read the first byte in the RX FIFO
pktLen = TI_CC_SPI___________(TI_CCxxx0_RXFIFO);

// read the rest of the packet into rxBuffer
TI_CC_SPI____________(TI_CCxxx0_RXFIFO, rxBuffer, pktLen); 
*length = pktLen;                                       

// Read the two status bytes
TI_CC_SPIReadBurstReg(TI_CCxxx0________, status, 2);

return (char)(status[TI_CCxxx0_LQI_RX]&TI_CCxxx0_CRC_OK);
}
else return 0;

}

char RFReceivePacket(char *rxBuffer, char *length)
{
char status[2];
char pktLen;

if ((TI_CC_SPIReadStatus(TI_CCxxx0_RXBYTES) & TI_CCxxx0_NUM_RXBYTES))
{

// read the first byte in the RX FIFO
pktLen = TI_CC_SPI___________(TI_CCxxx0_RXFIFO);

// read the rest of the packet into rxBuffer
TI_CC_SPI____________(TI_CCxxx0_RXFIFO, rxBuffer, pktLen); 
*length = pktLen;                                       

// Read the two status bytes
TI_CC_SPIReadBurstReg(TI_CCxxx0________, status, 2);

return (char)(status[TI_CCxxx0_LQI_RX]&TI_CCxxx0_CRC_OK);
}
else return 0;

}

Phase 2:  Write RFReceivePacket()   
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Phase 2: Did you Pass?   
• If you run your code and a 

packet displays on 
HyperTerminal, indicating 
YOUR table (not someone 
else’s), you passed!

• If you display more than 
one table number, you are 
using address 0x00 or 
0xFF, which are broadcast 
addresses



© 2006 Texas Instruments Inc, Slide 28

char RFReceivePacket(char *rxBuffer, char *length)
{
char status[2];
char pktLen;

if ((TI_CC_SPIReadStatus(TI_CCxxx0_RXBYTES) & TI_CCxxx0_NUM_RXBYTES))
{
// read the first byte in the RX FIFO
pktLen = TI_CC_SPIReadReg(TI_CCxxx0_RXFIFO);

// read the rest of the packet into rxBuffer
TI_CC_SPIReadBurstReg(TI_CCxxx0_RXFIFO, rxBuffer, pktLen); 
*length = pktLen;                                       

// Read the two status bytes
TI_CC_SPIReadBurstReg(TI_CCxxx0_RXFIFO, status, 2);

return (char)(status[TI_CCxxx0_LQI_RX]&TI_CCxxx0_CRC_OK);
}
else return 0;

}

char RFReceivePacket(char *rxBuffer, char *length)
{
char status[2];
char pktLen;

if ((TI_CC_SPIReadStatus(TI_CCxxx0_RXBYTES) & TI_CCxxx0_NUM_RXBYTES))
{
// read the first byte in the RX FIFO
pktLen = TI_CC_SPIReadReg(TI_CCxxx0_RXFIFO);

// read the rest of the packet into rxBuffer
TI_CC_SPIReadBurstReg(TI_CCxxx0_RXFIFO, rxBuffer, pktLen); 
*length = pktLen;                                       

// Read the two status bytes
TI_CC_SPIReadBurstReg(TI_CCxxx0_RXFIFO, status, 2);

return (char)(status[TI_CCxxx0_LQI_RX]&TI_CCxxx0_CRC_OK);
}
else return 0;

}

Phase 2:  Write RFReceivePacket()   
• Answers
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Phase 3:  Transmitting a Packet    
• There is a receiver node in the front of room, with 

Hyperterminal output directed to the screen
• Starter code contains a function that transmits a 

packet when the button is pressed. Your job is to 
write code that builds the packet in the appropriate 
format

• When the packet is received, it will be displayed on 
the screen

• The receiver node is operating at 868MHz instead of 
915MHz, and it responds to address 0x43

• Tasks:
Go to cc1100-cc2550.c and modify the carrier freq setting to 868MHz
Go to the Port1 ISR (called when switch is pressed); write code to build 
the packet, with a data field “We are table xx!”
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Phase 3:  Change the Carrier Freq    
• Modify the carrier frequency from 915MHz to 868MHz

#include "include.h"
#include "TI_CC_CC1100-CC2500.h"

#define TI_CC_RF_FREQ  868  // 315, 433, 868, 915, 2400

#include "include.h"
#include "TI_CC_CC1100-CC2500.h"

#define TI_CC_RF_FREQ  868  // 315, 433, 868, 915, 2400
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Phase 3:  Build the Packet   
• Fill in the blanks with the correct values to build the 

packet
__interrupt void port1_ISR (void)
{
unsigned int i;
const char kTableStr[] = "We are table #";

if(P1IFG&TI_CC_SW1)              // If interrupt comes from switch
{

txBuffer[0] = __;              // Pkt length (not inc. len byte)
txBuffer[1] = __;              // Pkt address
for(i=0;i<15;i++)              // Copy the string

txBuffer[2+i] = kTableStr[i];
txBuffer[16] = ___;            // Table #, first digit
txBuffer[17] = ___;            // Table #, second digit

RFSendPacket(txBuffer, __);    // Send
}

__interrupt void port1_ISR (void)
{

unsigned int i;
const char kTableStr[] = "We are table #";

if(P1IFG&TI_CC_SW1)              // If interrupt comes from switch
{

txBuffer[0] = __;              // Pkt length (not inc. len byte)
txBuffer[1] = __;              // Pkt address
for(i=0;i<15;i++)              // Copy the string
txBuffer[2+i] = kTableStr[i];

txBuffer[16] = ___;            // Table #, first digit
txBuffer[17] = ___;            // Table #, second digit

RFSendPacket(txBuffer, __);    // Send
}



© 2006 Texas Instruments Inc, Slide 32

Phase 3: Did you Pass?   
• Your packet should 

display on the screen at 
the front of the room

• If packet formed 
incorrectly, it may be 
displayed in corrupted 
fashion or not displayed at 
all
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Phase 3:  Build the Packet   
• Answers

__interrupt void port1_ISR (void)
{
unsigned int i;
const char kTableStr[] = "We are table #";

if(P1IFG&TI_CC_SW1)              // If interrupt comes from switch
{

txBuffer[0] = 0x17;            // Pkt length (not inc. len byte)
txBuffer[1] = 0x43;            // Pkt address
for(i=0;i<15;i++)              // Copy the string

txBuffer[2+i] = kTableStr[i];
txBuffer[16] = ‘1;             // Table #12
txBuffer[17] = ‘2’;            //

RFSendPacket(txBuffer, 18);    // Send
}

__interrupt void port1_ISR (void)
{

unsigned int i;
const char kTableStr[] = "We are table #";

if(P1IFG&TI_CC_SW1)              // If interrupt comes from switch
{

txBuffer[0] = 0x17;            // Pkt length (not inc. len byte)
txBuffer[1] = 0x43;            // Pkt address
for(i=0;i<15;i++)              // Copy the string
txBuffer[2+i] = kTableStr[i];

txBuffer[16] = ‘1;             // Table #12
txBuffer[17] = ‘2’;            //

RFSendPacket(txBuffer, 18);    // Send
}
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Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless
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