
© 2006 Texas Instruments Inc, Slide 1

Hands-On: Implementing an RF link
with MSP430 and CC1100

Keith Quiring
MSP430 Applications Engineer

Texas Instruments

© 2006 Texas Instruments Inc, Slide 2

• Introduction
• Target Hardware
• Library File Organization
• Lab Activities

Overview

© 2006 Texas Instruments Inc, Slide 3

What is the Library?
• Register read/write functions (MSP430 to CC1100/CC2500)

Read register
Write register
Read burst
Write burst
Status read
Command strobe write
CC1100/2500 reset

• CC1100/CC2500 are targeted at general-purpose ISM-band
apps at 315/433/868/915 MHz and 2.4 GHz respectively

• Library based on CC1100/CC2500 Examples and Libraries
from Chipcon

• SPI functions only; no protocol functions
• Demo application project included

© 2006 Texas Instruments Inc, Slide 4

What is the Library?
• Works with any SPI-capable MSP430 interface

USART0
USART1
USCI_A0
USCI_A1
USCI_B0
USCI_B1
USI
Bit-bang I/Os

• Hardware abstraction assists porting between MSP430
devices

• Not tested for other Chipcon devices
• Tested with MCLK between 1-8MHz and SMCLK dividers

of /1 and /8

© 2006 Texas Instruments Inc, Slide 5

• Introduction
• Target Hardware
• Library File Organization
• Lab Activities

Overview

© 2006 Texas Instruments Inc, Slide 6

Target Hardware

© 2006 Texas Instruments Inc, Slide 7

MSP430 SPI Interfaces

© 2006 Texas Instruments Inc, Slide 8

• Introduction
• Target Hardware
• Library File Organization
• Lab Activities

Overview

© 2006 Texas Instruments Inc, Slide 9

Demo Application Stack

© 2006 Texas Instruments Inc, Slide 10

File Organization

Definitions specific to the board
(connections between MSP430 and
CCxxxx)

TI_CC_hardware_board.h

Functions for accessing
CC1100/CC2500 registers via SPI
from MSP430

TI_CC_spi.c

Function declarations for hal_spi.cTI_CC_spi.h

Definitions specific to the MSP430
deviceTI_CC_MSP430.h

Definitions specific to the
CC1100/2500 devicesTI_CC_CC1100-CC2500.h

© 2006 Texas Instruments Inc, Slide 11

Demo Code Flowchart: main()

© 2006 Texas Instruments Inc, Slide 12

Demo Code Flowchart: Port_1 ISR

© 2006 Texas Instruments Inc, Slide 13

CC1100 Register Settings

• Chipcon’s SmartRF Studio software can assist in
generating register contents

© 2006 Texas Instruments Inc, Slide 14

• Introduction
• Target Hardware
• Library File Organization
• Lab Activities

Overview

© 2006 Texas Instruments Inc, Slide 15

Lab Activities and Resources
• What you’re going to do

Phase 1: Configure library for ATC board
Phase 2: Write function to receive packet from administrator
Phase 3: Write function to send packet to front screen

• Resources
Exercise code (on your CD)
Solution code (on your CD)
MSP430FG4619 datasheet extract (at your table)
CC1100 datasheet extract (at your table)
ATC board schematic (at your table)

© 2006 Texas Instruments Inc, Slide 16

Phase 1: Configuration of Library
• The library hardware definition files are currently

configured for different hardware. Required changes:

Definitions specific to the board
(connections between MSP430 and CCxxxx)TI_CC_hardware_board.h

Functions for accessing CC1100/CC2500
registers via SPI from MSP430TI_CC_spi.c

Function declarations for hal_spi.cTI_CC_spi.h

Definitions specific to the MSP430 deviceTI_CC_MSP430.h

Definitions specific to the CC1100/2500 devices TI_CC_CC1100-CC2500.h

Files in blue need to be modified

1. Reference the appropriate device *.h file (msp430xG46x.h)

2. Configure appropriate pins for SPI interface

3. Configure non-SPI connections

© 2006 Texas Instruments Inc, Slide 17

• Configure which
interface used for
SPI

• Defined options are
listed at bottom of
TI_CC_msp430.h

Configuration of Library: Select Intf
#define TI_CC_GDO0_PxOUT P2OUT
#define TI_CC_GDO0_PxIN P2IN
#define TI_CC_GDO0_PxDIR P2DIR
#define TI_CC_GDO0_PxIE P2IE
#define TI_CC_GDO0_PxIES P2IES
#define TI_CC_GDO0_PxIFG P2IFG
#define TI_CC_GDO0_PIN 0x10
.
.
.
//---------------------------------------
// SPI port selections. Select which
// port will be used for interface to
// CCxxxx
//---------------------------------------
#define TI_CC_RF_SER_INTF TI_CC_SER_INTF_USART1

#define TI_CC_GDO0_PxOUT P2OUT
#define TI_CC_GDO0_PxIN P2IN
#define TI_CC_GDO0_PxDIR P2DIR
#define TI_CC_GDO0_PxIE P2IE
#define TI_CC_GDO0_PxIES P2IES
#define TI_CC_GDO0_PxIFG P2IFG
#define TI_CC_GDO0_PIN 0x10
.
.
.
//---------------------------------------
// SPI port selections. Select which
// port will be used for interface to
// CCxxxx
//---------------------------------------
#define TI_CC_RF_SER_INTF TI_CC_SER_INTF_USART1

TI_CC_hardware_board.h

© 2006 Texas Instruments Inc, Slide 18

• Define connections
from ATC board:

Switch
GDO0
/CS

Configuration of Library: Define Board

#define TI_CC_SW_PxIN P1IN
#define TI_CC_SW_PxIE P1IE
#define TI_CC_SW_PxIES P1IES
#define TI_CC_SW_PxIFG P1IFG
#define TI_CC_SW1 0x01
.
.
#define TI_CC_GDO0_PxOUT P1OUT
#define TI_CC_GDO0_PxIN P1IN
#define TI_CC_GDO0_PxDIR P1DIR
#define TI_CC_GDO0_PxIE P1IE
#define TI_CC_GDO0_PxIES P1IES
#define TI_CC_GDO0_PxIFG P1IFG
#define TI_CC_GDO0_PIN 0x04
.
.
#define TI_CC_CSn_PxOUT P4OUT
#define TI_CC_CSn_PxDIR P4DIR
#define TI_CC_CSn_PIN 0x04

#define TI_CC_SW_PxIN P1IN
#define TI_CC_SW_PxIE P1IE
#define TI_CC_SW_PxIES P1IES
#define TI_CC_SW_PxIFG P1IFG
#define TI_CC_SW1 0x01
.
.
#define TI_CC_GDO0_PxOUT P1OUT
#define TI_CC_GDO0_PxIN P1IN
#define TI_CC_GDO0_PxDIR P1DIR
#define TI_CC_GDO0_PxIE P1IE
#define TI_CC_GDO0_PxIES P1IES
#define TI_CC_GDO0_PxIFG P1IFG
#define TI_CC_GDO0_PIN 0x04
.
.
#define TI_CC_CSn_PxOUT P4OUT
#define TI_CC_CSn_PxDIR P4DIR
#define TI_CC_CSn_PIN 0x04

TI_CC_hardware_board.h

© 2006 Texas Instruments Inc, Slide 19

Configuration of Library: Select MSP430

• Assign device-specific standard definition file
• Check the \430\inc directory within IAR’s \Program Files

listing

TI_CC_msp430.h

#include "msp430xG46x.h" // Adjust according to the
// MSP430 device being used.

// SPI port definitions // Adjust for chosen intf,
#define TI_CC_SPI_USART0_PxSEL P3SEL // according to the pin
#define TI_CC_SPI_USART0_PxDIR P3DIR // assignments in the
#define TI_CC_SPI_USART0_PxIN P3IN // chosen MSP430 datasheet.
#define TI_CC_SPI_USART0_SIMO 0x02
#define TI_CC_SPI_USART0_SOMI 0x04
#define TI_CC_SPI_USART0_UCLK 0x08

#define TI_CC_SPI_USCIA0_PxSEL P3SEL
#define TI_CC_SPI_USCIA0_PxDIR P3DIR
#define TI_CC_SPI_USCIA0_PxIN P3IN
.
.

#include "msp430xG46x.h" // Adjust according to the
// MSP430 device being used.

// SPI port definitions // Adjust for chosen intf,
#define TI_CC_SPI_USART0_PxSEL P3SEL // according to the pin
#define TI_CC_SPI_USART0_PxDIR P3DIR // assignments in the
#define TI_CC_SPI_USART0_PxIN P3IN // chosen MSP430 datasheet.
#define TI_CC_SPI_USART0_SIMO 0x02
#define TI_CC_SPI_USART0_SOMI 0x04
#define TI_CC_SPI_USART0_UCLK 0x08

#define TI_CC_SPI_USCIA0_PxSEL P3SEL
#define TI_CC_SPI_USCIA0_PxDIR P3DIR
#define TI_CC_SPI_USCIA0_PxIN P3IN
.
.

© 2006 Texas Instruments Inc, Slide 20

Configuration of Library: Define MSP430

• Define which MSP430 pins used for SPI functions for
interface being used, referencing the MSP430 datasheet

#include "msp430xG46x.h" // Adjust according to the
// MSP430 device being used.

// SPI port definitions // Adjust for chosen intf,
#define TI_CC_SPI_USART1_PxSEL P4SEL // according to the pin
#define TI_CC_SPI_USART1_PxDIR P4DIR // assignments in the
#define TI_CC_SPI_USART1_PxIN P4IN // chosen MSP430 datasheet.
#define TI_CC_SPI_USART1_SIMO 0x08
#define TI_CC_SPI_USART1_SOMI 0x10
#define TI_CC_SPI_USART1_UCLK 0x20

#define TI_CC_SPI_USCIA0_PxSEL P3SEL
#define TI_CC_SPI_USCIA0_PxDIR P3DIR
#define TI_CC_SPI_USCIA0_PxIN P3IN
#define TI_CC_SPI_USCIA0_SIMO 0x10
.
.

#include "msp430xG46x.h" // Adjust according to the
// MSP430 device being used.

// SPI port definitions // Adjust for chosen intf,
#define TI_CC_SPI_USART1_PxSEL P4SEL // according to the pin
#define TI_CC_SPI_USART1_PxDIR P4DIR // assignments in the
#define TI_CC_SPI_USART1_PxIN P4IN // chosen MSP430 datasheet.
#define TI_CC_SPI_USART1_SIMO 0x08
#define TI_CC_SPI_USART1_SOMI 0x10
#define TI_CC_SPI_USART1_UCLK 0x20

#define TI_CC_SPI_USCIA0_PxSEL P3SEL
#define TI_CC_SPI_USCIA0_PxDIR P3DIR
#define TI_CC_SPI_USCIA0_PxIN P3IN
#define TI_CC_SPI_USCIA0_SIMO 0x10
.
.

TI_CC_msp430.h

© 2006 Texas Instruments Inc, Slide 21

Phase 1: Did you Pass?

// *** PHASE 1 TEST CODE ***
// To test the SPI connection, set a breakpoint to observe
// testBuffer after the burst read is executed. The register
// settings should match the ones programmed in writeRFSettings()

char testBuffer[0x3A];
TI_CC_SPIReadBurstReg(TI_CCxxx0_IOCFG2, testBuffer, 0x3A);
_NOP();

// *** PHASE 1 TEST CODE ***
// To test the SPI connection, set a breakpoint to observe
// testBuffer after the burst read is executed. The register
// settings should match the ones programmed in writeRFSettings()

char testBuffer[0x3A];
TI_CC_SPIReadBurstReg(TI_CCxxx0_IOCFG2, testBuffer, 0x3A);
_NOP();

• This code reads back the data written in function
writeRFSettings()

• Set breakpoint at TI_CC_SPIReadBurstReg() and step through
code

• Set a watch on testBuffer[] and expand it in the “watch view”

© 2006 Texas Instruments Inc, Slide 22

Phase 1: Did you Pass?
• Compare values to the ones programmed in

writeRFSettings() in cc1100-cc2500.c
• Note that writeRFSettings skips some addresses
void writeRFSettings(void)
{

TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG2, 0x0B);
TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG0, 0x06);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTLEN, 0xFF);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL1, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL0, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_ADDR, 0x02);
TI_CC_SPIWriteReg(TI_CCxxx0_CHANNR, 0x00);
TI_CC_SPIWriteReg(TI_CCxxx0_FSCTRL1, 0x0B);
TI_CC_SPIWriteReg(TI_CCxxx0_FSCTRL0, 0x00);
.
.

void writeRFSettings(void)
{

TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG2, 0x0B);
TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG0, 0x06);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTLEN, 0xFF);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL1, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL0, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_ADDR, 0x02);
TI_CC_SPIWriteReg(TI_CCxxx0_CHANNR, 0x00);
TI_CC_SPIWriteReg(TI_CCxxx0_FSCTRL1, 0x0B);
TI_CC_SPIWriteReg(TI_CCxxx0_FSCTRL0, 0x00);
.
.

© 2006 Texas Instruments Inc, Slide 23

Phase 2: Receiving a Packet
• CC1100 packets have an address field. The receiving

CC1100 can filter according to address.
• There is a transmitter in this room, sending a set of packets

every two seconds, each addressed to a table in the room.
(See your table number.)

• Example: if there are 20 tables, the address set for each two-
second sweep is {0x01, 0x02, 0x03,… 0x14}.

• Your job is to modify the code such that your CC1100 filters
out all but your target address.

• Received packets are displayed via Hyperterminal.
• Tasks:

Locate function writeRFSettings() and modify the address for your
device (TI_CCxxx0_ADDR), such that it allows your packets to pass
Write function RFReceivePacket() that, when alerted by the CC1100
of a valid packet, reads the packet into the MSP430

© 2006 Texas Instruments Inc, Slide 24

Phase 2: Modify Address

void writeRFSettings(void)
{

TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG2, 0x0B);
TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG0, 0x06);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTLEN, 0xFF);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL1, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL0, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_ADDR, 0x0B);
TI_CC_SPIWriteReg(TI_CCxxx0_CHANNR, 0x00);
.
.

void writeRFSettings(void)
{

TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG2, 0x0B);
TI_CC_SPIWriteReg(TI_CCxxx0_IOCFG0, 0x06);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTLEN, 0xFF);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL1, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_PKTCTRL0, 0x05);
TI_CC_SPIWriteReg(TI_CCxxx0_ADDR, 0x0B);
TI_CC_SPIWriteReg(TI_CCxxx0_CHANNR, 0x00);
.
.

• Locate writeRFSettings (top of cc1100-cc2500.c)
• Convert your table # to hex and modify this function for your

address
• Example: If you are table #11, set field to 0x0B

© 2006 Texas Instruments Inc, Slide 25

Phase 2: Write RFReceivePacket()
• Locate function RFReceivePacket (bottom of cc1100-

cc2500.c)
• For context, locate and study PORT1_VECTOR in

main(), from where it is called
• Fill in the blanks to finish RFReceivePacket
• Each blank is a SPI access, a call to the library
• Refer to file TI_CC_SPI.h for headers of the library

functions
• Within RFReceivePacket(), there are directions and

hints on how to solve

© 2006 Texas Instruments Inc, Slide 26

char RFReceivePacket(char *rxBuffer, char *length)
{
char status[2];
char pktLen;

if ((TI_CC_SPIReadStatus(TI_CCxxx0_RXBYTES) & TI_CCxxx0_NUM_RXBYTES))
{

// read the first byte in the RX FIFO
pktLen = TI_CC_SPI___________(TI_CCxxx0_RXFIFO);

// read the rest of the packet into rxBuffer
TI_CC_SPI____________(TI_CCxxx0_RXFIFO, rxBuffer, pktLen);
*length = pktLen;

// Read the two status bytes
TI_CC_SPIReadBurstReg(TI_CCxxx0________, status, 2);

return (char)(status[TI_CCxxx0_LQI_RX]&TI_CCxxx0_CRC_OK);
}
else return 0;

}

char RFReceivePacket(char *rxBuffer, char *length)
{
char status[2];
char pktLen;

if ((TI_CC_SPIReadStatus(TI_CCxxx0_RXBYTES) & TI_CCxxx0_NUM_RXBYTES))
{

// read the first byte in the RX FIFO
pktLen = TI_CC_SPI___________(TI_CCxxx0_RXFIFO);

// read the rest of the packet into rxBuffer
TI_CC_SPI____________(TI_CCxxx0_RXFIFO, rxBuffer, pktLen);
*length = pktLen;

// Read the two status bytes
TI_CC_SPIReadBurstReg(TI_CCxxx0________, status, 2);

return (char)(status[TI_CCxxx0_LQI_RX]&TI_CCxxx0_CRC_OK);
}
else return 0;

}

Phase 2: Write RFReceivePacket()

© 2006 Texas Instruments Inc, Slide 27

Phase 2: Did you Pass?
• If you run your code and a

packet displays on
HyperTerminal, indicating
YOUR table (not someone
else’s), you passed!

• If you display more than
one table number, you are
using address 0x00 or
0xFF, which are broadcast
addresses

© 2006 Texas Instruments Inc, Slide 28

char RFReceivePacket(char *rxBuffer, char *length)
{
char status[2];
char pktLen;

if ((TI_CC_SPIReadStatus(TI_CCxxx0_RXBYTES) & TI_CCxxx0_NUM_RXBYTES))
{
// read the first byte in the RX FIFO
pktLen = TI_CC_SPIReadReg(TI_CCxxx0_RXFIFO);

// read the rest of the packet into rxBuffer
TI_CC_SPIReadBurstReg(TI_CCxxx0_RXFIFO, rxBuffer, pktLen);
*length = pktLen;

// Read the two status bytes
TI_CC_SPIReadBurstReg(TI_CCxxx0_RXFIFO, status, 2);

return (char)(status[TI_CCxxx0_LQI_RX]&TI_CCxxx0_CRC_OK);
}
else return 0;

}

char RFReceivePacket(char *rxBuffer, char *length)
{
char status[2];
char pktLen;

if ((TI_CC_SPIReadStatus(TI_CCxxx0_RXBYTES) & TI_CCxxx0_NUM_RXBYTES))
{
// read the first byte in the RX FIFO
pktLen = TI_CC_SPIReadReg(TI_CCxxx0_RXFIFO);

// read the rest of the packet into rxBuffer
TI_CC_SPIReadBurstReg(TI_CCxxx0_RXFIFO, rxBuffer, pktLen);
*length = pktLen;

// Read the two status bytes
TI_CC_SPIReadBurstReg(TI_CCxxx0_RXFIFO, status, 2);

return (char)(status[TI_CCxxx0_LQI_RX]&TI_CCxxx0_CRC_OK);
}
else return 0;

}

Phase 2: Write RFReceivePacket()
• Answers

© 2006 Texas Instruments Inc, Slide 29

Phase 3: Transmitting a Packet
• There is a receiver node in the front of room, with

Hyperterminal output directed to the screen
• Starter code contains a function that transmits a

packet when the button is pressed. Your job is to
write code that builds the packet in the appropriate
format

• When the packet is received, it will be displayed on
the screen

• The receiver node is operating at 868MHz instead of
915MHz, and it responds to address 0x43

• Tasks:
Go to cc1100-cc2550.c and modify the carrier freq setting to 868MHz
Go to the Port1 ISR (called when switch is pressed); write code to build
the packet, with a data field “We are table xx!”

© 2006 Texas Instruments Inc, Slide 30

Phase 3: Change the Carrier Freq
• Modify the carrier frequency from 915MHz to 868MHz

#include "include.h"
#include "TI_CC_CC1100-CC2500.h"

#define TI_CC_RF_FREQ 868 // 315, 433, 868, 915, 2400

#include "include.h"
#include "TI_CC_CC1100-CC2500.h"

#define TI_CC_RF_FREQ 868 // 315, 433, 868, 915, 2400

© 2006 Texas Instruments Inc, Slide 31

Phase 3: Build the Packet
• Fill in the blanks with the correct values to build the

packet
__interrupt void port1_ISR (void)
{
unsigned int i;
const char kTableStr[] = "We are table #";

if(P1IFG&TI_CC_SW1) // If interrupt comes from switch
{

txBuffer[0] = __; // Pkt length (not inc. len byte)
txBuffer[1] = __; // Pkt address
for(i=0;i<15;i++) // Copy the string

txBuffer[2+i] = kTableStr[i];
txBuffer[16] = ___; // Table #, first digit
txBuffer[17] = ___; // Table #, second digit

RFSendPacket(txBuffer, __); // Send
}

__interrupt void port1_ISR (void)
{

unsigned int i;
const char kTableStr[] = "We are table #";

if(P1IFG&TI_CC_SW1) // If interrupt comes from switch
{

txBuffer[0] = __; // Pkt length (not inc. len byte)
txBuffer[1] = __; // Pkt address
for(i=0;i<15;i++) // Copy the string
txBuffer[2+i] = kTableStr[i];

txBuffer[16] = ___; // Table #, first digit
txBuffer[17] = ___; // Table #, second digit

RFSendPacket(txBuffer, __); // Send
}

© 2006 Texas Instruments Inc, Slide 32

Phase 3: Did you Pass?
• Your packet should

display on the screen at
the front of the room

• If packet formed
incorrectly, it may be
displayed in corrupted
fashion or not displayed at
all

© 2006 Texas Instruments Inc, Slide 33

Phase 3: Build the Packet
• Answers

__interrupt void port1_ISR (void)
{
unsigned int i;
const char kTableStr[] = "We are table #";

if(P1IFG&TI_CC_SW1) // If interrupt comes from switch
{

txBuffer[0] = 0x17; // Pkt length (not inc. len byte)
txBuffer[1] = 0x43; // Pkt address
for(i=0;i<15;i++) // Copy the string

txBuffer[2+i] = kTableStr[i];
txBuffer[16] = ‘1; // Table #12
txBuffer[17] = ‘2’; //

RFSendPacket(txBuffer, 18); // Send
}

__interrupt void port1_ISR (void)
{

unsigned int i;
const char kTableStr[] = "We are table #";

if(P1IFG&TI_CC_SW1) // If interrupt comes from switch
{

txBuffer[0] = 0x17; // Pkt length (not inc. len byte)
txBuffer[1] = 0x43; // Pkt address
for(i=0;i<15;i++) // Copy the string
txBuffer[2+i] = kTableStr[i];

txBuffer[16] = ‘1; // Table #12
txBuffer[17] = ‘2’; //

RFSendPacket(txBuffer, 18); // Send
}

x00geoff
Text Box
SLAP130

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

