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Using CAN Arbitration for Electrical Layer Testing 
 
 

Sam Broyles and Steve Corrigan, Texas Instruments, Inc. 
 
The Controller Area Network (CAN) protocol incorporates a powerful means of seamlessly 
preventing data corruption during message collision.  This arbitration process and its 
relationship to the electrical layer variables are explained.  Techniques to force message 
collision and test arbitration are demonstrated with strategies to leverage arbitration as a 
quantitative benchmark in safety-critical systems.  The benchmark is then applied to 
several example systems and results provided for comparison. 
 
 
Introduction 
 
The ability of a Controller Area Network to manage message collision provides a unique proving 
ground for protocol compliance in any application.  A means of determining a benchmark for a 
system’s performance by measuring a network’s ability to execute proper arbitration is developed 
in this example.  It is demonstrated that while a CAN bus appears to be functioning normally,  
many arbitration errors may be unnoticed by system operators.  
 
Arbitration Basics 
 
Since any CAN node may begin to transmit when the bus is free, two or more nodes may begin to 
transmit simultaneously.  Arbitration is the process by which these nodes battle for control of the 
bus.  Proper arbitration is critical to CAN performance because this is the mechanism that 
guarantees that message collisions do not reduce bandwidth or cause messages to be lost.  
 
Each data or remote frame begins with an identifier, which assigns the priority and content of the 
message.  As the identifier is broadcast, each transmitting node compares the value received on 
the bus to the value being broadcast.  The higher priority message during a collision has a 
dominant bit earlier in the identifier.  Therefore, if a transmitting node senses a dominant bit on 
the bus in place of the recessive bit it transmitted, it interprets this as another message with 
higher priority transmitting simultaneously.  This node suspends transmission before the next bit 
and automatically retransmits when the bus is idle. 
 
The result of proper arbitration is that a high-priority message transmitted without interruption is 
followed immediately by a low-priority message, unless of course, another high-priority message 
attempts to broadcast immediately following the same message.  Since no messages are lost or 
corrupted in the collision, data and bandwidth are not compromised. 
 
Electrical-Layer Variables (bit timing requirements) 
 
Each CAN bit is divided into four segments (see Figure 1).  The first segment, the synchronization 
segment (SYNC_SEG), is the time that a recessive-to-dominant or dominant-to-recessive 
transition is expected to occur.  The second segment, the propagation time segment 
(PROP_SEG), is designed to compensate for the physical delay times of the network as shown in 
Figure 2, and should be twice the sum of the propagation delay of the bus, the input comparator 
delay, and the output driver delay.  The third and fourth segments, both phase buffer segments 
(PHASE_SEG1 & PHASE_SEG2), are used for resynchronization.  The bit value is sampled 
immediately following PHASE_SEG1.   
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Figure 1.  Partitioning of the Bit Timing Segments 
 
The bit rate may be changed by either changing the oscillator frequency, which is usually 
restricted by the processor requirements, or by specifying the length of the bit segments in “time 
quantum” and the prescaler value.  The prescaler value is multiplied by the minimum time 
quantum, which is the reciprocal of the system clock frequency, 1/fsys, to determine the length of a 
working time quantum.  Bit time may then be calculated as the sum of each bit segment, and the 
bit rate may be calculated as the reciprocal of this sum. 
 
Each node must perform a hard synchronization upon every recessive-to-dominant edge after a  
bus idle or received start of frame.  Hard synchronization is a restarting of the internal bit timing to 
force the edge into the SYNC_SEG, where edges are expected to occur.  Resynchronization is 
performed on all other recessive-to-dominant edges of other received bits by lengthening or 
shortening the PHASE_SEG1 or PHASE_SEG2 by one to four time quanta as specified by the 
resynchronization jump width.  If the difference between the edge causing resynchronization and 
the SYNC_SEG exceeds the resynchronization jump width, the effective result is the same as a 
hard synchronization.  
 
CAN Network Errors 
 
CAN protocol specifies five different types of network errors.  A transmitting node detects a bit 
error when it monitors a bit value different than it is transmitting; the reaction to this condition 
varies with the nature of the error.  A stuff error occurs when the bit-stuffing rule is violated – a bit 
of opposite value must be inserted immediately following any series of five consecutive bits of the 
same value in a message.  A cyclic redundancy check (CRC) error occurs when a receiving node 
receives a different CRC sequence than anticipated.  (Note that all nodes independently calculate 
the CRC sequence from the data field).  A form error occurs when a field contains an illegal bit 
value. Finally, an acknowledgement (ACK) error occurs when the transmitter does not monitor a 
dominant bit in the ACK slot to signify that the message had been received properly by another 
node as shown in Figure 2. 
 
When a node detects a bus error, it transmits an error frame consisting of six dominant bits 
followed by eight recessive bits.  Multiple nodes transmitting an error frame will not cause a 
problem because the first recessive bits will be overwritten.  The result will remain six dominant 
bits followed by eight recessive bits, and cause the bus to be safely reset before normal 
communications recommence.  
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Figure 2.  Round trip propagation delay of network measured as the delta of the ACK bit 
response time between two nodes on opposite ends of the network. 

 
 
The CAN protocol provides a means of fault confinement by requiring each node to maintain 
separate receive and transmit error counters.  Either counter will be incremented by 1 or 8, 
depending on the type of error and conditions surrounding the error.  The receive error counter is 
incremented for errors during message reception, and the transmit error counter is incremented 
for errors during message transmission (for further details, see reference 1).  When either of 
these counters exceed 127, the node is declared “error-passive,” which limits the node from 
sending any further dominant error frames.  When the transmitted error count exceeds 255, the 
node is declared “bus-off,” which restricts the node from sending any further transmissions.  The 
receive and transmit error counters are also decremented by 1 each time a message is received 
or transmitted without error, respectively.  This allows a node to return from error-passive mode to 
error-active mode (normal transmission mode) when both counters are less than 128.  The node 
may also return to error-active mode from bus-off mode after having received 128 occurrences of 
11 consecutive recessive bits. Overall, a network maintains constant transmit and receive error 
counters if it averages eight properly transmitted or received messages for each error that occurs 
during transmission or reception, respectively. 
 
Analysis of Network Errors 
 
As shown in Figure 2, the oscilloscope is an invaluable tool for observing bus status.  For these 
experiments, a Tektronix 784D oscilloscope with Tektronix P6243 1 GHz single-ended probes are 
used.  With careful choice of message identifiers and data fields, messages can be visually 
associated with the transmitting node.  This guarantees observation of the participation of each 
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node during an experiment.  Additionally, the transmission lines from the controllers to the 
transceivers are useful for monitoring the participation of each node during arbitration and ACK. 
 
A more detailed record of bus activity may be found in the status and control registers of the 
processors that are reviewed after each experiment.  Though the error counters are incremented 
and decremented through a complex series of rules, it is sufficient to note error status and types 
of errors that occur to assess bus performance under a set of experimental conditions.  
 
To ensure that every message collision results in proper arbitration, it is required that the 
processor be programmed to identify the order in which each message is received.  This is 
accomplished by checking for a receive message pending flag.  For the purpose of these 
experiments, the processor of node A in Figure 3 is programmed to stop program execution upon 
the first event of improper arbitration. 
 
Forcing Message Collision 
 
While operating with a two-node bus, if one node enters the bus-off state, either the bus becomes 
silent or the other node continues to retransmit until the reception of a proper ACK bit is received.  
With three or more nodes, a proper ACK bit would be inserted by one of the remaining nodes and 
the bus simply becomes silent.  Either case represents an experimental condition that would not 
be recommended for use in a final application. 
 
With the three-node bus in Figure 3, message collision is forced by programming two nodes to 
respond immediately to a message from the third node.  In these experiments, node A is 
programmed to send a data frame and wait for nodes B and C to respond.  If nodes B and C 
respond in the wrong order, arbitration is not properly negotiated and node A does not retransmit.  
If nodes B and C do respond in the proper order, arbitration is properly negotiated and node A 
retransmits its message. 
 

Figure 3.  The Experimental 3-Node Bus 
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Figure 4 displays a signal capture of this system during arbitration.  Channel 1 is the bus signal 
while channel 2 displays the output signal of the node with the highest priority, node A.  Channel 
3 is the output signal of node B, which is the lowest priority message on the bus.  Channel 4 is 
the output signal of node C, which is the medium priority message.  Notice that both nodes B and 
C participate in the ACK bit of node A and begin transmitting together.  However, after just a few 
bits node B stops transmission until node C, the higher priority node, is finished. 
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Figure 4.  Arbitration Display 
 
Experimental Network Systems 
 
Three bus systems were tested to study arbitration and system performance.  In each system, 
three nodes actively participate on the network.  Node A sends the first data frame.  Nodes B and 
C attempted to respond simultaneously and negotiated bus control.  All messages have 29-bit 
identifiers and 8-byte data fields.  Node A retransmits it’s data frame and begins the process 
again if the dominant message from node C is received before the recessive message from node 
B.  This continues for one million cycles unless node A receives the messages in the wrong order 
or until any of the nodes enters a bus-off state.  The bus-off state is caused by exceeding the 
allowable transmit or receive error counts.  Each network is constructed with very inexpensive 
120-ohm impedance twisted-pair AWG 24 cable with grounded shielding and 120 ohm 
terminating resistors on either end. 
 
The first network consists of the three active nodes with nodes A and B separated by 13-cm 
cables and nodes C and B separated by 10 m of cable, as shown in Figure 3.  The second 
example in Figure 5 is a network with 27 dummy load-nodes added between node C and the 
termination.  The cable is increased between nodes B and C to 40 meters.  The dummy nodes 
are powered transceivers without CAN controllers or processors and serve only to load the bus 
as if other nodes are present.  All dummy load-nodes are mounted on a bank of test boards for 
ease of wiring. 
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Figure 5.  The 30-Node CAN Bus 
 
The third network consists of 60 nodes, as shown in Figure 6.  One bank of 30 Texas Instruments 
SN65HVD230 CAN transceivers and one bank of 30 Philips PCA82C250 transceivers are 
separated by a 200-m cable.  Each bank has transceivers mounted on test boards separated by 
13 cm of cable.  Nodes A and B are nearest the 200-m cable on the ‘230 bank, while node C is 
nearest the 200-m cable on the ‘250 bank.  
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Figure 6.  60-Node CAN Bus 
 
RESULTS 
 
Analysis of Experimental Network Systems 
 
The first example network (3 nodes) is tested at 500 kbps, 625 kbps, 800 kbps, 1 Mbps, 1.25 
Mbps, and 2 Mbps.  It performs flawlessly at 500 kbps and 625 kbps, but continually fails 
arbitration at signaling rates of 800 kbps, 1 Mbps, and 1.250 Mbps, and is inoperable at 2 Mbps 
due to a form error.   The test is performed again by checking that each message is received 
without checking the receive order.  Now the network functions without error at signaling rates of 
800 kbps, 1 Mbps, and 1.250 Mbps.   Messages from nodes B and C are being received, but in 
the wrong order – an arbitration compliance failure. 
 
The 30-node network is tested with signaling rates of 250 kbps, 500 kbps, 625 kbps, 800 kbps, 
and 1 Mbps.  It performs flawlessly at 250, 500, and 625 kbps, but fails arbitration at 800 kbps.  At 
1 Mbps, the network fails arbitration after encountering bit errors, stuff-bit errors, and cyclic- 
redundancy- check (CRC) errors.  The network is re-tested by checking only that each message 
is being received without checking the receive order.  This results in successful operation at 800 
kbps, but messages from nodes B and C are being received in the wrong order.  The network 
remained inoperative at 1Mbps after encountering form errors. 
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The 60-node network is tested with signaling rates of 31.25 kbps, 62.5 kbps, 125 kbps, and 250 
kbps.  It performs flawlessly at 31.25 kbps and 62.5 kbps, but fails arbitration at 125 kbps having 
encountered form errors.  It is inoperable at 250 kbps, encountering stuff bit errors.  Again, the 
network is re-tested by checking only that each message was being received without checking 
the receive order, and the network remained inoperable at signaling rates of 125 kbps and above 
due to stuff bit errors. 
 
Figure 7 displays the experiment without checking for receive order to better understand the 
failure mechanism of arbitration.  This shows node B transmitting (CH3) its lower priority message 
before node C (CH4) transmits its higher priority message without node C ever having competed 
for bus dominance. For proper arbitration, it was required that both node B and C would attempt 
to transmit following the message from node A (CH2).  
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Figure 7.  CAN bus signal at 1 Mbps with 11-bit identifiers and 2-byte data fields. 
 
Note that node C is transmitting a valid ACK bit synchronously with node B in response to node 
A’s message, but is unable to participate in bus arbitration properly.  In each of these 
experiments, programs for nodes B and C are identical except for the message identifiers and 
data fields.  If a dominant bit is received on the last bit of the intermission field in the interframe 
space between messages, it should be interpreted as the start of frame bit.  Any other node also 
intending to transmit a start of frame bit immediately following intermission should begin 
transmitting the first bit of its identifier during the next bit so proper arbitration may commence.  In 
other words, if one node jumps the gun on the last bit of the interframe space, all other nodes 
should accept this as a valid start of frame, synchronize, and transmit or receive as normal.  Also, 
any high-priority message is delayed until the end of a lower priority message if the lower priority 
message began transmitting first.  Therefore, node C must have attempted to transmit more than 
a full bit length after the dominant start of frame bit from node B, even if node B began to transmit 
a bit too early. 
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Node C’s inability to negotiate arbitration properly and consistently, whether from bit error during 
message identifier or delayed message transmission, represents an experimental condition that 
exceeds the network’s ability to be completely CAN protocol compliant.  This condition can be 
remedied by slowing the signaling rate, since the network is exceeding its maximum rate. 
 
Summary of Experimental Systems Performance 
 
The final assessment of each experimental network reflects the highest bit rate at which the 
network maintains full CAN compliance with proper arbitration.  The first network of 3 nodes and 
10-m bus is fully compliant at 625 kbps.  The second network with 30 nodes and 40-m bus is also 
fully compliant at 625 kbps while the third network with 60 nodes and 200-m bus is fully compliant 
at 125bps. 
 
Conclusion: Evaluation of Arbitration as a Quantitative Benchmark 
 
Clearly, testing for proper arbitration is a more stringent test than merely watching for bus errors 
in normal operation and suggests that an application can appear to be quite functional although it 
is unable to support proper arbitration.  Arbitration problems are invisible to a user if no 
operational errors are encountered in the application.  Both the first and second experimental 
networks operate without bus errors at much higher signaling rates than each network could 
support with proper arbitration.   
 
Proper arbitration is critical to CAN performance because this is the mechanism that guarantees 
message collisions do not decrease bandwidth with multiple retransmission or loose messages.  
The quantitative benchmark produced by this method of testing a network for proper arbitration 
compliance is therefore defined as the maximum bus speed attainable on a safety critical network 
with the full data security enabled by CAN protocol.    
 
This method is compatible with any network topology.  Special care should be taken in the 
application of this method when selecting the location of nodes to monitor (A, B, or C) to ensure 
that the C monitor node is the worst-case node.  Node C should be positioned to maximize the 
propagation delay, signal reflections, and other network conditions of the final application.  This 
assures the greatest difference between the response of nodes B and C to node A.  Therefore, 
networks with completely different topologies may be compared quantitatively with this arbitration 
benchmark. 
 
This method is also adaptable for use during normal network operation, and offers the ability to 
check protocol compliance and provides confirmation that maximum data security is being 
enforced in the application while the network continues normal operation.  If even more security is 
required for safety-critical systems, Time-Triggered CAN (TTCAN) has been developed by Bosch  
to addresses concerns about low-priority messages occupying a bus when a very high-priority 
message needs to be sent.  
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