
Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 1

Low-Cost Video Interface
White Paper

May 22, 2003

ti

Copyright © 2003, Texas Instrument Incorporated

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 2

Contents
INTRODUCTION ...3

SYSTEM DESIGN GOALS..4

SYSTEM BLOCK DIAGRAM...4
PROCESSOR SELECTION CONSIDERATIONS ..5
FPGA SELECTION CONSIDERATIONS...5
MEMORY SELECTION CONSIDERATIONS..5

SYSTEM OPERATION OVERVIEW ..7

VIDEO DECODERS..7
FPGA VIDEO INPUT TRANSLATION...7
VIDEO INPUT FIFO..8
VIDEO INPUT BUFFER ..8
PROCESSOR ACTION ..13
VIDEO OUTPUT BUFFER...13
VIDEO OUTPUT FIFO ..16
FPGA VIDEO OUTPUT TRANSLATION ...16

RGB Component Video Output ..16
VGA Component Video Output ..16

STEREO AUDIO ..17

COMPATIBILITY ACROSS PROCESSORS ...18

FPGA IMPLEMENTATION...18
PROCESSOR SPEED...19
DMA...19
MEMORY CONFIGURATION..20

FEATURES TO ASSIST DEMONSTRATION AND EVALUATION ..21

PERFORMANCE MEASUREMENTS...22

PROCESSOR UTILIZATION ..22
MEMORY UTILIZATION..22
EXTERNAL BUS UTILIZATION ..23

DESIGN EXTENSIONS ...27

MEMORY REDUCTION..27
SOFTWARE INTEGRATION WITH TI-SUPPLIED C6X VIDEO ROUTINES ..27
OPTIONS FOR THE AUDIO SAMPLE RATE ...28

CONCLUSIONS..29

REFERENCES ..30

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 3

Introduction
The Low-Cost Video Interface platform is intended to show a cost-effective means to interface
video decoders with ITU-R.656 interfaces (such as the TVP5145 and TVP5150) to the external
memory interface (EMIF) of a low-cost processor, such as the TMS320C6204. The method used
is to interface the video decoder to RAM connected to the processor’s bus through glue logic.
This glue logic is implemented in an FPGA (field programmable gate array). The platform
delivers both the FPGA programming and the DSP software needed to successfully transfer data
from the video decoders into the DSP, transform the data into RGB format (used for computer
monitors), and transfer the data out of the DSP to a video DAC to be shown on a computer
monitor.

This paper describes the design at a high level. (Details of the hardware and software design can
be found in the “Low-Cost Video Interface Hardware Description” and “Low-Cost Video
Interface Software Architecture” documents.) The intent is to give enough background to allow
the platform to be used as a base for an actual video design. The paper also contains information
how to the design can be extended or modified under certain conditions.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 4

System Design Goals
The goal of the system was to provide a low-cost method to interface a video decoder to low-cost
members of the C62x/C67x DSP families. It was important to make the interface applicable to
as many members of the C62x and C67x families of processors as possible.

System Block Diagram
Figure 1 shows the block diagram for the system.

Figure 1. Block Diagram of Video Interface

The basic flow of the video data is from the video interface connectors into either the TVP5145
or TVP5150 video decoder. The digital data from the decoders are output to the FPGA, which
places the data into the SDRAM. The DSP takes the decoded data (in YCbCr format), reads it
into internal memory, and then transforms it into RGB format. The data is written out to the
SDRAM. The FPGA takes the RGB data from the SDRAM and writes it to the THS8133B
video DAC, where it can be seen on a computer monitor.

The basic flow of audio data is from the audio input through the TLV320AIC23 codec into the
DSP through a McBSP port. The audio data is delayed to match the video processing delay, and
then output through the McBSP to the codec to be output on speakers.

A more detailed description of the data flow is given in the “System Operation Overview”
section of this paper.

The remainder of this section details the rationale for the processor, memory, and FPGA
selections for this platform.

3

TVP5145
Video

Decoder

TVP5150
Video

Decoder

THS8133
Video
DAC

FPGA
(Glue
Logic)

SDRAM
8Meg x 32bit

TMS320C62xx/
TMS320C67xx

DSP

RS232
Command
& Control

Port
SN75C3221

Serial
EEPROM
Code &

FPGA Image

V
id

eo
 In

te
rf

ac
e

C
on

ne
ct

or
s

Power
TPS70402
TPS75733

I2C

2

3

Loader
FPGA

TLV320
AIC23
Audio
Codec

A
udio Interface C

onnectors

MCBSP Ports 0 & 1

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 5

Processor Selection Considerations
The Low-Cost Video Interface platform was designed with consideration of alternate processor
selections and, where possible, the design was made to support as many options as possible.
Toward this end the following constraints were imposed:
• The host port / expansion bus / PCI bus was completely avoided as it varies or is not

present in many members of the C6xxx family.
• The floating point capabilities of the C67xx family were avoided.
• The DMA was limited to 4 channels.
• The McBSP was limited to 2 ports.
• Only two timers were used.

FPGA Selection Considerations
For this design an Altera® ACEX® family FPGA was chosen, specifically the EP1K30.

The choice of an Altera® part over a Xilinx® part was influenced by a less complicated timing
model. Other than this, part cost was the driving factor for choice.

The ACEX family of FPGA’s was at the time the least expensive of Altera’s SRAM based
FPGA’s that also included enough on board RAM to implement the necessary FIFO’s for the
video data.

The part used on this platform comes in several package configurations and speed grades. The
one chosen is the least expensive package and slowest speed grade offering for this family. It is
an inexpensive package partly because it is not a low profile device or BGA device. These
factors will ultimately need to be re-evaluated for any design migrations.

Further, the code use on this design can be compiled using Altera’s free web based design
software eliminating the need for a full design suite of HDL tools and associated costs.

After the platform design was frozen, Altera released its Cyclone family of FPGA’s that appear
to be capable of replacing the ACEX part used in this design. This new family of FPGA is
priced considerably lower than the one used on this platform and thus could provide another
level of cost reduction based on this design. Note: No attempt has been made to implement or
verify this option.

Memory Selection Considerations
Several memory options were available for use on this design and include SRAM, SDRAM, and
SBSRAM (Synchronous Burst SRAM). As the platform was intended to showcase a low cost
design, cost was the major driving factor in memory selection.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 6

The choice matrix for the different types of memory is shown here

Category SRAM SDRAM SBSRAM
Cost/Bit Medium Low High
Speed Medium High High
Capacity Medium Large Medium
Interface Asynchronous Synchronous Synchronous

Except for the complexity of a synchronous interface, SDRAM won in all categories and thus
was chosen for implementation on this design.

Another memory requirement was storage for the programming image of the FPGA and the
processor code.

Should the design require large amounts of processor code then Flash memory would be
appropriate to hang on the processor bus. It is recommended to use a 32 bit wide Flash
architecture to minimize any asymmetric loading of the bus.

Since this design required only a small code set for the processor, a small serial EEPROM was
chosen instead. A boot loader stored in one of the FPGA memories was used to load the
processor code into the internal processor RAMs.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 7

System Operation Overview
The purpose of this platform is to specifically demonstrate the capability of the C6xxx processor
family to deal with real time video input and output. To this end, an FPGA was used in which
input and output FIFO’s were created to manage the asynchronous nature of the processor bus
and also to implement necessary translations of data required for maximization of bus
bandwidth.

Video Decoders
There are two video decoders used on this platform. They are tied to a common bus through
tri-state buffers which is managed by the processor through register bits within the FPGA.

The input to the FPGA requires a 4:2:2 YCbCr data format as described by the ITU-R.BT-601
standard. One exception to this is in the number of pixels per line, allowing for the so called
square pixel formats to be used providing the ITU-R.BT-601 EAV and SAV codes are embedded
in the video data.

Both 525 and 625 line systems are supported.

FPGA Video Input Translation
Because the processor bus bandwidth is maximized using full bus width accesses, the video input
stream is translated to a slightly different representation from that of the ITU-R.BT-601 4:2:2
YCbCr standard.

The video data is received from the decoders in the following format:

Cb0, Y0, Cr0, Y1, Cb2, Y2, Cr2, Y3, Cb4, Y4, Cr4, Y5, …

It is translated to the following format for 8 bit data:

Cb0, Cb2, Cb4, Cb6, Y0, Y1, Y2, Y3, Cr0, Cr2, Cr4, Cr6, Y4, Y5, Y6, Y7,
Cb8, Cb10, Cb12, Cb14, Y8, Y9, Y10, Y11, Cr8, Cr10, Cr12, Cr14, Y12, Y13, Y14, Y15, …

and is translated to the following format for 10 bit data:

Cb0, Cb2, Cb4, Y0, Y1, Y2, Cr0, Cr2, Cr4, Y3, Y4, Y5,
Cb6, Cb8, Cb10, Y6, Y7, Y8, Cr6, Cr8, Cr10, Y9, Y10, Y11, ….

The 10-bit format is packed as 3 10-bit data word in one 32-bit word with 2 bits of padding in the
MSB’s of the word.

Thus in 8-bit mode, data is always represented as a group of 8 pixels; in 10-bit mode, it is
always represented as a group of 6 pixels.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 8

At the end of a line of video, the EAV sequence is written to the input FIFO, and the data is
padded with undefined values to complete the 6- or 8-pixel grouping depending on whether the
mode is set to 8 or 10 bits. Note: The SAV sequence is not written to the FIFO at the beginning
of the line.

Video Input FIFO
The video input FIFO in the FPGA manages the difference between the synchronous video data
rate and the asynchronous access rates of the processor.

Translated input video data is stored in a 32-bit by 256-word FIFO. Once 128 words have been
stored in the FIFO, the processor bus is requested by the FPGA. After the processor relinquishes
control of the memory bus, 128 words of data are burst out to the video buffers in the SDRAM.

Always bursting 128 words guarantees that the FIFO always makes accesses within a single page
of the SDRAM, thus minimizing overhead on the bus.

Once a complete field has been received from the input video translator logic, the FIFO is filled
with undefined data until a 128 word boundary is achieved. An additional 256 words of
undefined data is then pushed into the FIFO to force all valid video data remaining in the FIFO
to be flushed out to the SDRAM video buffers.

Finally, the odd/even field bit is set in the FPGA register, an interrupt is generated, signaling the
processor that a complete field has been received, and, if the last field received was an even field,
the buffer address is reset to the beginning of the buffer. The FIFO then waits for the next field
of video data to start.

Video Input Buffer
The video input buffer is a continuous region of memory in the SDRAM capable of holding one
entire frame of video (both even and odd frames).

Each line of video data is stored in increasing addresses in memory.

The odd field is stored at the beginning of the input buffer and the even field is stored
immediately after.

The various structures of the video input buffer are shown in the following diagrams.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 9

Odd Field

Even Field

Increasing
Addresses

Video Input Buffer

Field Line 1

Field Line 2

Field Line 3

Field Line n-1

Field Line n

Field Pad to modulo 128 words (if needed)

Increasing
Addresses

256 words of pad due to FIFO flushing

Field Structure within Video Input Buffer

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 10

6 or 8 Pixel Group, Group 1 of Line

6 or 8 Pixel Group, Group 2 of Line

6 or 8 Pixel Group, Group 3 of Line

6 or 8 Pixel Group, Group n-1 of Line

6 or 8 Pixel Group, Group n of Line

Pixel Group Containing EAV Sequence and Pad

Increasing
Addresses

Structure of one line of video in the Video Input Buffer

09101920293031

Cbn+4

Yn+2

Crn+4

Yn+5

Increasing
Addresses

1 32 bit word LSBMSB

CbnCbn+2

Yn+1

Crn+2

Yn+4

Yn

Crn

Yn+3

Pad

Pad

Pad

Pad

Structure of one 10-bit pixel group accessed as 32-bit words

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 11

0781516232431

Cbn+2

Yn+1

Crn+2

Yn+5

Increasing
Addresses

1 32 bit word LSBMSB

Cbn+6Cbn+4

Yn+2

Crn+4

Yn+6

Yn+3

Crn+3

Yn+7

Cbn

Yn

Crn

Yn+4

Structure of one 8-bit pixel group accessed as 32-bit words

Note the byte ordering within the word is backwards. This is due to endianess issues. Since a
majority of algorithms access 8 bit data as bytes rather than words, the order was modified to
allow the order represented as bytes to be increasing as shown in the next figure.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 12

07

Cbn+2

Yn+1

Crn+2

Yn+5

Increasing
Addresses

1 byte
LSBMSB

Cbn+6

Cbn+4

Yn+2

Crn+4

Yn+6

Yn+3

Crn+3

Yn+7

Cbn

Yn

Crn

Yn+4

Structure of one 8-bit pixel group accessed as 8-bit bytes

Since the number of lines per field and number of pixels per line is dependent solely on the SAV
and EAV sequences, the input FIFO can handle any arbitrary sized video frame. It is the
responsibility of the software to know these values.

The 4:2:2 YCbCr format decimates the color samples to half the rate of the luminance samples.
Therefore, pixels in the format are always represented as pairs with one Cb and one Cr sample
being shared by two Y samples.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 13

Processor Action
After the video input FIFO interrupt is signaled, the processor reads the data from the most
recent field, does whatever work is necessary on it, then writes it to the output video buffer for
display (generally the previous frame is written).

Since data accesses are, by nature, required by the processor at the time of execution of the
instruction, they have a high priority on the external bus. Data accesses are also, by definition,
random on a generalized machine. These two aspects of data accesses can cause considerable
overhead on the external memory bus thus reducing the available bandwidth to the system.

To avoid this overhead, the processor reads one line at a time from the external video input
buffer and stores it in internal RAM via a DMA channel. Once the color space conversion has
been completed, the processor then puts the data into the external video output buffer again via a
DMA channel. This allows for accesses to the SDRAM in a highly sequential format which
minimizes overhead of activate and deactivate cycles on the bus.

Video Output Buffer
The video output buffer is a continuous region of memory in the SDRAM capable of holding one
entire frame of video.

Each line of video data is stored in increasing addresses in memory.

The output video buffer is stored in a progressive format thus only one field is present.

There are no additional data beyond active pixel RGB triplets required in the output buffer. Thus
the data is a direct representation of the video displayed.

The video frame size is determined by constant values defined within the FPGA code. Changing
to other frame sizes requires recompilation of the FPGA code. See the section on the FPGA
register for more detail.

The various structures of the video output buffer are shown in the following diagrams.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 14

Frame Line 1

Frame Line 2

Frame Line 3

Frame Line n-1

Frame Line n

Increasing
Addresses

Frame Structure within Video Output Buffer

RGB Triplet 1

RGB Triplet 2

RGB Triplet 3

RGB Triplet n-1

RGB Triplet n

Increasing
Addresses

Line Structure within Video Output Buffer

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 15

09101920293031

Rn

Rn+1

Rn+2

Rn+3

Increasing
Addresses

1 32 bit word LSBMSB

BnGn

Gn+1

Gn+2

Gn+3

Bn+1

Bn+2

Bn+3

Pad

Pad

Pad

Pad

Structure of 10-bit RGB triplets accessed as 32-bit words

Note: 8 bit formats would use the 10-bit format by shifting the 8-bit data up 2 bits and padding
the least significant bits of each field.

05101516212631

Bn+6

Increasing
Addresses

1 32 bit word LSBMSB

Rn+6 Gn+6

2027 11 4

Bn+4Rn+4 Gn+4

Bn+2Rn+2 Gn+2

BnRn Gn

Bn+7Rn+7 Gn+7

Bn+5Rn+5 Gn+5

Bn+3Rn+3 Gn+3

Bn+1Rn+1 Gn+1

Structure of 5:6:5 bit RGB triplets accessed as 32-bit words

Note the order is swapped once again for endianess issues of the 16-bit representations.

The processor does the interleaving of the fields as it writes the output lines to the buffer. This
requires the output buffer to be somewhat synchronized with the output FIFO as glitches will
occur in the video if the processor and FIFO addresses cross during display updating.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 16

Video Output FIFO
The video output FIFO in the FPGA manages the difference between the synchronous video data
rate and the asynchronous access rates of the processor.

RGB output video data is stored in a 32-bit by 256-word FIFO. Once 128 words have been read
from the FIFO, the processor bus is requested by the FPGA. After the processor relinquishes
control of the memory bus, 128 words of data are burst read from the video output buffer in the
SDRAM.

Always bursting 128 words guarantees that the FIFO will always make accesses within a single
page of the SDRAM thus minimizing overhead on the bus.

After a full frame of video has been output, the FIFO will contain extraneous data from beyond
the end of the video output buffer.

Once a full frame has been output, flushing reads are implemented until the FIFO is on a 128-
word boundary. The buffer pointer is then reset to point to the beginning of the video output
buffer and 256 flushing reads of the FIFO are made to remove extraneous data from the previous
frame and fill the FIFO with the beginning of the current frame.

After the flushing reads are complete, the FIFO is ready to output the new frame of video data.

FPGA Video Output Translation
At the beginning of a frame, each RGB triplet is read from the FIFO and separated into its
component video values. Each component value is then presented to the Video DAC for display.

In between each output video frame, appropriate synchronization signals are generated
depending on the type of output video being generated.

RGB Component Video Output
RGB component video output requires synchronization signals to be embedded within the video
signals themselves. These blanking and synchronization signals are generated by toggling
appropriate pins on the Video DAC. See the THS8133 specification sheet for details.

VGA Component Video Output
VGA output requires separate horizontal and vertical synchronization signals. These signals are
generated using the same timing as those for embedded signals in RGB component video. The
video signals, however, do not have synchronization information embedded in them as the VGA
monitor does not recognize values below black but instead interprets this as video information.

Further, there is a single 100% white pixel generated at the beginning of every horizontal
synchronization signal (including during vertical blanking and synchronization) to aid the VGA
monitors Variable Gain Amplifier to track 0% and 100% signal levels. This will show up as a

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 17

white line on the right side of the monitor if the monitor is adjusted in a manner in which it can
be seen.

Stereo Audio
The platform includes a stereo audio codec which is managed entirely by a timer and a DMA
engine within the C6204. Audio signals correlated to the input video signal are digitized and
stored in a circular buffer. The audio data is then routed back to the audio codec after being
appropriately delayed to correlate with the output video signal.

Since the buffer is in memory accessible by the processor, there is full capability for the DSP to
do audio processing as well as video processing on a complete set of audio/video signals.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 18

Compatibility across Processors
The design goal was to make the interface applicable to as many members of the C62xx, C64xx,
and C67xx families of processors as possible. To this end, the method of attachment was
decided to be the memory interface.

There are other interfaces available to the designer depending on which processor from the
C6xxx family is chosen but only the memory interface is reasonably common across all
processors of the family.

For example, the C6204 processor used on this design has an extra external memory bus capable
of interfacing with synchronous FIFO’s. It is entirely conceivable to implement the FPGA in a
manner which would mimic a synchronous FIFO, thus freeing up the memory interface entirely
for code. However, this interface is not available on all members of the C6xxx family and for
this reason was not chosen as the attachment point.

Members of the C64xx processor family contain more elaborate memory interfaces than those of
the C67xx and C62xx families. These differences are significant but should not burden the
designer who wishes to use them as the FPGA talks to the SDRAM memory directly through
proper bus arbitration mechanisms.

Having the FPGA arbitrate the bus directly significantly lessens the burden of hardware
compatibility between processors and this is why all members of the C6xxx processor family are
available for implementation using this video interface scheme.

FPGA Implementation
The most important aspect of the platform, the video interface implemented in the FPGA, is
compatible across the C62xx, C64xx, and C67xx families. To this end, only the EMIF (External
Memory Interface) was used as it is the only (relatively) common interface to all processors in
the C6xxx family.

The C6204 processor has one of the most limiting EMIF’s and thus defines the minimum
hardware requirements necessary for implementation. These limits are listed here.

1. The SDRAM must operate with a read latency of 2 clock cycles
2. The SDRAM mode is limited to burst lengths of 1

Upon initialization of the SDRAM, the C6204 writes a value of 0x30 into the mode register of
the SDRAM. The FPGA code assumes this value in the mode register as well.

Since the C6204 writes only this value and no others, some optimizations of the memory bus on
the circuit board were made to simplify layout issues. These optimizations can be seen on the
Memory page of the schematic as pin swaps of data, address, bank, and DMQ pins. This

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 19

swapping maintains the integrity of the 0x30 write to the mode register as well as appropriate
data and address transformations for row, column, and byte accesses.

These optimizations were for the sole purpose of layout simplification and are not necessary for
proper operation of the system. Note that this optimization is not compatible across all C6xxx
processors, as other members of the family can write different values into the mode register.

Some processors in the C6xxx family are capable of 133MHz bus rates. The FPGA chosen is the
slowest speed grade in its family (this helps minimize cost). Currently the FPGA code does not
compile to a speed fast enough to operate at this data rate using this part. Test compilations
targeting a faster grade FPGA did accomplish this timing requirement but were not tested on a
circuit board.

The FPGA does not attempt to refresh the SDRAM memories so the processor refresh must be
enabled or data will be lost.

Some processors in the C6xxx family have 64-bit and/or 16-bit data buses for the external
memory interface. For those with a 64-bit bus, the FPGA should be capable of hooking directly
to one half of the bus. This will of course not optimize bus accesses but will require no
modifications to the FPGA.

If a 64- or 16-bit bus architecture is required, the FPGA code will require significant
modification.

A 16-bit bus should be capable of transferring video at full rate on a 100MHz bus with around
65% utilization (according to measurements on the 32 bit bus). Thus a 16-bit implementation
would not be out of the question for 8-bit data, but doubtful for 10-bit data.

Since the output of the video is progressive, the output video is a 50Hz/60Hz frame rate for a
25Hz/30Hz frame input video rate.

Processor Speed
Processors slower than the 200 MHz C6204 used on the platform may be limited in terms of the
video bandwidth they can support. So, for instance, it may not be possible to support large
display sizes without dropping frames.

DMA
One area where it was not possible to maintain compatibility across all processors was the DMA.
Some members of the C6xxx family have an EDMA (enhanced DMA) peripheral block instead
of a DMA block. Selecting one of these processors will require fairly significant re-writes of
some sections of the code. The DMA is used for three functions on the Video Interface platform:
UART interfacing, audio buffering, and video transfers. The related files which will require
modification are: periph.c, audio.c, and video.c, as well as the configuration (.cdb) file. The

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 20

basic features in the DMA should be completely reproducible using an EDMA peripheral, so
while some translation will be required, the functionality should be re-creatable without
significant work. Reference 5, which was used as the foundation of the UART implemented on
the platform, has example configurations for the EDMA which may prove useful. No attempt
has been made to replicate the other functions (audio and video) using the EDMA.

Memory Configuration
Another area that may need addressing, depending on processor choice, is the memory
configuration. To minimize external bus traffic, the program and data are kept internal to the
DSP on the platform, which uses a good portion of both the 512 Kbits allocated to internal
program space and the 512 Kbits of internal data space on the C6204. On processors with less
internal memory, external program/data memory may be required and caching may need to be
employed. For more sophisticated video algorithms, the internal memory limitations may also
require the use of cached program and/or data. The subsequent increase of bus traffic may have
an impact on the capability of the platform to perform real-time video transfers without dropping
frames.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 21

Features to Assist Demonstration and Evaluation
Some features have been added to the demonstration platform to assist in the evaluation of the
video interface function. These features are described here.

The C6204 contains a McBSP interface that can be easily tied to a PC’s UART through a level
translator (e.g., the SN75LV4737A). A command interface has been developed that allows the
video function to be controlled from a program on the host PC. Using this program, the video
source and audio volume can be controlled.

Several LED’s have been placed on the board to indicate when power is good on the unit, when
UART communication is taking place, and when the processor is running normally.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 22

Performance Measurements
The following sections describe various performance metrics associated with the Low-Cost
Video Interface demonstration platform.

The information is intended to aid a designer in determining applicability of how components of
this system may be applied to their own design.

Processor Utilization
The DSP code implemented on the low-cost interface platform utilizes approximately 36% of the
available processing power when video is streaming through the system. If video is halted the
background BIOS tasks take about 20%.

The video’s 16% can be explained almost entirely by the conversion function,
ycbcr422pl_to_rgb565(), which requires (46 + numPixels*3) clock cycles each time it is called
(once for each line in this case). For a 720X480 display this requires 480*(46 + 720*3), or
1,058,880 clock cycles. With the 200 MHz TMS320C6204, this results in 5.3 ms per frame.
With a 30 Hz frame rate, each frame takes 33.3 ms. 5.3 / 33.3 = 15.9%

The remaining 20% for the BIOS background task is primarily due to the high rate at which the
BIOS loop is run. A 50 sµ time period was selected for the BIOS timer primarily for the I2C
serial interface that it clocks. Because Timer1 is still available, one could separate the I2C clock
from the BIOS timer, significantly reduce the BIOS rate, and free up additional MIPS if needed.

Memory Utilization
There are three sections of memory accessible to the DSP on the video platform: internal
program RAM, internal data RAM, and external SDRAM.

The internal RAM blocks are 0x10000 bytes each. Because the machine word size is 32-bits,
this equates to 16384 instructions in the program space and 16384 words in the data space. The
external SDRAM was originally sized to handle multiple frames of a large display; 32 MB are
available in the two SDRAMs (most is unused).

The C6000 family allows the processor to operate in a cache mode which would allow
executable code to be stored in the SDRAM if desired. The video platform, however, operates
without cache and keeps the executable code in internal program space. 78% of the available
program space is used by the platform in this configuration.

The internal data space allocated on the platform takes up 84% of what is available. By far the
largest block of internal data is the audio buffer used to delay the audio track to sync with the
video. One quarter of the internal data RAM is used for this purpose. Putting the audio buffer in
SDRAM would free up internal RAM at the expense of more EMIF bus traffic.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 23

The SDRAM contains an input buffer, an output buffer, and an image of both the DSP code and
the FPGA which are used for programming EEPROM. Together, these use 25% of the SDRAM.
Additionally, the video buffers are oversized; with an NTSC ITU-R BT.601 signal only 16% of
the allocated video buffers are used (a 1600 X 1200 display would use almost 92%).

External Bus Utilization
The external memory bus bandwidth must be managed by the designer in order to ensure video
data throughput is maintained.

Calculation of bus bandwidth is some what heuristic in nature due to required idle cycles
between certain bus commands like precharge, activate, deactivate, and arbitration.

The processor refresh for SDRAM occupying the full memory range available to a chip enable
signal runs approximately 1%. Smaller sized memories would require fewer refresh cycles per
unit of time, reducing this overhead proportionately.

One frame of video requires 5 accesses of the memory to complete. First, the FPGA stores the
decoded video data into memory; second, the DSP reads the data out of memory via a DMA
channel; third, the DSP writes modified video data out to memory via another DMA channel;
fourth, the FPGA reads the data from memory and routes it to the video DAC.

The fourth access actually transfers each pixel twice, as the output frame rate is twice that of the
input frame rate. Writing each pixel twice is an artifact of displaying the output video buffer
after each field is updated rather than only after a complete frame is updated. This method was
chosen as a means to minimize temporal distortions.

It is because the fourth access makes two accesses that there are 5 equivalent accesses of
memory for each complete frame.

A rough estimate of the number of accesses per frame can be given as:

()














++

+
=

frame
wordsWPL

S
SPL

A RGBlf
w

plf
f 7683

2
2

where fA is the number of word accesses per frame, fL is the number of lines per frame, lP is
the number of pixels per line, pS is the average number of samples per YCbCr pixel, wS is the
number of YCbCr samples per 32 bit word, and RGBW is the average number words per RGB
pixel.

The number 2 represents the 2 accesses per word for input video, the 3 represents the 3 access
per word for output video (one by the DSP and the other 2 by the double rate output), the 2
added to the number of pixels per line represents the additional 2 pixels per line which the EAV

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 24

sequence occupies on input, and the 768 represents the number of additional accesses made
during buffer flushing for both input and output video buffers.

For 8-bit PAL/SECAM ITU input mode and 5:6:5 RGB output mode this results in:

() ()







=+⋅⋅++=++
+

=
frame
wordsWPL

S
SPL

A RGBlf
w

plf
f 1038720768

2
17205763

4
2272057627683

2
2

For 8 bit NTSC ITU input mode and 5:6:5 RGB output mode this results in:

() ()








=+⋅⋅++=++

+
=

frame
wordsWPL

S
SPL

A RGBlf
w

plf
f 914382768

2
17205073

4
2272050727683

2
2

The reason the lines per frame parameter, fL , is 507 and not 480 is due to the TVP5145 decoder
decoding more than the standard number of lines. There are 254 lines decoded for the odd field
and 253 decoded in the even field.

From the above values, the amount of time on the bus can be estimated as:

() 






+=
frame
timeBAAT otff

where fT is the time per frame spent accessing the bus, tA is the time for a single 32 bit word
access, and oB is the bus overhead time per burst access (this includes precharge, activate,
deactivate, and bus arbitration).

For 8-bit PAL/SECAM ITU input mode and 5:6:5 RGB output mode this results in:

() 






≈






⋅
+=+=

frame
BAAT otff

ms85.11
100000000128

18
100000000

11038720

For 8-bit NTSC ITU input mode and 5:6:5 RGB output mode this results in:

() 






≈






⋅
+=+=

frame
BAAT otff

ms43.10
100000000128

18
100000000

1914382

The bus overhead is an estimated average derived from the FPGA design implementation,
SDRAM mode register settings, and refresh cycles.

The bandwidth usage of the bus can be calculated as:

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 25

[]%100% BandWidth
T
T

BW
v

f
bus =

where vT is the time period of a single video frame

This yields for 8-bit PAL/SECAM ITU input mode and 5:6:5 RGB output mode:

[]%6.29
40

85.11100% BandWidthBWbus ==

and for 8-bit NTSC ITU input mode and 5:6:5 RGB output mode:

[]%3.31
3.333
0.431100% BandWidthBWbus ==

The measured values were 30.6% for PAL and 30.5% for NTSC. These numbers correspond
well with estimated values in these modes.

For 10-bit modes (the DSP software does not support these modes but the FPGA does) the
calculations would be:

10-bit PAL/SECAM ITU input mode and 10:10:10 RGB output mode:

() ()








=+⋅⋅⋅++=++

+
=

frame
wordsWPL

S
SPL

A RGBlf
w

plf
f 179942476817205763

3
2272057627683

2
2

() 






≈






⋅
+=+=

frame
BAAT otff

ms52.20
100000000128

18
100000000

11799424

[]%3.51
40

52.02100% BandWidthBWbus ==

10-bit NTSC ITU input mode and 10:10:10 RGB output mode:

() ()








=+⋅⋅⋅++=++

+
=

frame
wordsWPL

S
SPL

A RGBlf
w

plf
f 158396076817205073

3
2272050727683

2
2

() 






≈






⋅
+=+=

frame
BAAT otff

ms01.18
100000000128

18
100000000

11583960

[]%0.54
3.333

01.81100% BandWidthBWbus ==

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 26

These results have not been measured and so are only estimates of expected bandwidth usage
rates in these modes assuming software to support it.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 27

Design Extensions
This portion of the paper considers how the design might be modified and extended to use less
memory and integrate the video library routines available from TI.

Memory Reduction
The current implementation has two 4-Meg by 32-bit SDRAM memory components for a total of
32MB of external data space comprising all of the chip enable spaces 2 and 3. This was done
primarily to show the system would work in other than just a minimal configuration.

Recognizing the memory components can be significant contributors to the cost of the entire
system, one may wish to reduce the amount of memory on a product implementation as a cost
reduction measure.

The current incarnation of the system only requires 2-Meg by 32-bit of external data space for
the video buffers. This allows storage of single frames of video storage for frames as large as
1920x1080 (standard video format) or 1600x1200 (computer display). If the target
implementation will never use frames of this size, further reduction in memory requirements can
be achieved.

Reduction of the video frames below the current 2-Meg by 32-bit buffer size will require
changing some constants in the FPGA code and recompiling it. This change is minor and
documented in the FPGA code itself.

Software Integration with TI-supplied C6x Video Routines
TI supplies code to implement various functions related to video processing. For example, the
conversion routine used in the platform, “ycbcr422pl_to_rgb565,” is from this source. The video
product being designed will determine how these functions are used. With a theoretical 1600
MIPS, the C6204 can perform the matrix YCbCr to RGB conversion on a pixel by pixel basis in
real time. In addition to MIPS, memory may be a constraint for some video functions. For
example, edge detection may require multiple complete frames to be stored for comparison.
This would likely require external memory, and probably could not be done without dropping
frames.

On the video platform the DSP’s interface to the FPGA and the video data is through shared
external SDRAM and an interrupt from the FPGA (tied to INT4). Upon completion of a video
field (one half of an interlaced frame), the FPGA sends and interrupt to the DSP signaling the
event. This is the cue for the DSP to begin processing. There are three buffers in the SDRAM
defined for video data: two for the odd and even input fields, and one for a progressive RGB
output. These are declared inputFrame[2] and outputFrame in the DSP code. They are located at
0x0200:0000 and 0x0210:0000 respectively.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 28

For algorithms operating on entire frames the DSP probably needs to either halt the FPGA from
overwriting these buffers or else make a shadow copy elsewhere in SDRAM for post-processing.
If the required field processing time is less than one-half of the video frame rate, then the
processing can be done in real time without missing frames, as is done in the conversion routine
performed in the platform. If the required processing time is greater than the field time, the DSP
will not be able to complete its work without missing frames.

Options for the Audio Sample Rate
The Low-Cost Video Interface platform accepts an audio channel, which it delays by a
programmable number of samples in order to allow syncing of the audio and video channels.
There are several reasonable options for sample rates on the audio stream. Typical audio
standards are multiples of 48 kHz or 44.1 kHz. In reality, on the platform, the audio input and
output are analog signals and the digitized data is not modified which makes the choice of
sample rates somewhat arbitrary, as long as it is high enough to maintain adequate fidelity. If
some signal processing was being performed on the audio data, an exact standard would likely be
more critical. There are a couple reasonable options in this regard.

On the platform the ‘AIC23 is configured to run in “USB mode” which allows various audio
sample rates related to both the 44.1kHz CD standard, and the 48 kHz standard. To get exact
standard frequencies, the USB mode requires a 12 MHz input clock. On the platform they are a
little off because the clock driving the AIC23 comes from a divided clock out of the DSP at 200
MHz / 16 = 12.5 MHz. This doesn't make any discernable difference in audio quality, but does
differ from the standard. Exact frequencies could be generated by changing the DSP's clock
input to be 48 MHz.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 29

Conclusions
The Low-Cost Video Interface demonstration platform clearly demonstrates the capability for
interfacing full frame rate video and audio to Texas Instruments’ line of C6xxx processor family.

Further, the performance measurements indicate there is ample room for additional
computational bandwidth both within the processor and on the memory bus. This opens the door
for many video applications areas.

The ability to also incorporate stereo audio through the processor allows options such as audio
source tracking and triggering to also be available to the system designer.

Ti Low-Cost Video Interface Platform
White Paper

May 22, 2003 30

References
1. K. Jack, Video Demystified, 3rd edition, Elsevier Science, 2001.
2. Texas Instruments, “TVP5145PFP NTSC/PAL/SECAM/Component Digital Video

Decoder with MacrovisionTM Detection,” SLES029A, May 2002.
3. Texas Instruments, “TVP5150 Ultra Low Power NTSC/PAL Video Decoder,” March

2003.
4. Texas Instruments, “TMS320C62x Image/Video Processing Library Programmer’s

Reference,” SPRU400A, April 2002.
5. Texas Instruments, “TMS320C6000 McBSP: UART Application Report,” SPRA633A,

August 2001.
6. Altera, “ACEX 1K Programmable Logic Device Family Data Sheet,” September 2001.
7. Texas Instruments, “TMS320C6000 EMIF-to-External SDRAM Interface Application

Report,” SPRA433B, December 2001.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2004, Texas Instruments Incorporated

http:\\amplifier.ti.com
http:\\dataconverter.ti.com
http:\\dsp.ti.com
http:\\interface.ti.com
http:\\logic.ti.com
http:\\power.ti.com
http:\\microcontroller.ti.com
http:\\www.ti.com\audio
http:\\www.ti.com\automotive
http:\\www.ti.com\broadband
http:\\www.ti.com\digitalcontrol
http:\\www.ti.com\military
http:\\www.ti.com\opticalnetwork
http:\\www.ti.com\security
http:\\www.ti.com\telephony
http:\\www.ti.com\video
http:\\www.ti.com\wireless

