

BQ27Z561-R1 to BQ27Z561-R2 Change List

Garry Elder and Eric Vos

ABSTRACT

The BQ27Z561-R2 firmware enables several feature additions and performance improvements to the BQ27Z561-R1 device, and this document describes the BQ27Z561-R2 additions and features. The BQ27Z561-R1 Impedance Track[™] Battery Gas Gauge Solution for 1-Series Cell Li-Ion Battery Packs Data Sheet (SLUSDH5), the latest ordering information, and the BQ27Z561-R2 Technical Reference Manual (SLUUC54) are available on TI.com.

1 Trademarks

Impedance Track[™] is the trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

2 Introduction

The Texas Instruments BQ27Z561-R2 Impedance Track[™] gas gauge solution is a highly integrated, accurate 1-series cell gas gauge with a flash programmable custom reduced instruction-set CPU (RISC) and SHA-256 authentication for li-ion and li- polymer battery packs. The 1-series cell capability includes parallel cells for increased capacity.

3 Change Details

Change Description	BQ27Z561	BQ27Z561-R1	BQ27Z561-R2	Comments
LiFePO4 chemistry support	Not present	New feature	Present	The LFP_RELAX feature supports slower relaxation at the end of charge. There is a change of OCVFR functionality when LiFePO4 is selected to clear after 48 hours or when cell voltage falls below <i>FlatVoltMin</i> . This new feature enables the option to use DOD data at a valid charge termination (VCT) and after relaxation is detected.
<i>ManufacturerInfoB()</i> support	Not present	New feature	Present	An additional block read of scratch pad data flash that can be 4 to 32 bytes long
Time-based lifetime features	Not present	New feature	Present	New time-based lifetime features that include total run time and time spent at different temperature ranges
Fast OCV update option	Not present	New feature	Present	When enabled, voltage data is used after a fixed time for OCV calculation rather than waiting for a dV/dt of 2 μ s, which is the normal method.
Battery Trip Point (BTP) feature	Not present	New feature	Present	Either the BTP feature or the INT feature can be selected to use with INT, which is also enabled with additional options.
Ability for charging thresholds to be manipulated by <i>RelativeStateOfCharge()</i> (RSOC)	Not present	New feature	Present	Reported charging parameters can be optionally changed based on a level of RSOC() rather than voltage.
Improved state-of-health (SOH) algorithm	Present, but with a less-enhanced algorithm	Enhanced feature	Present	 The state-of-health (SOH) algorithm now uses the following: Min Delta Voltage, rather than Delta Voltage, to calculate EDV The JEITA Rec Temp Charging:Voltage, rather than the present voltage at charge termination The new data flash SOH Temp A and SOH Temp K, which are generated and used in simulations along with SOH Load Rate The current used at EOC during simulation is Taper Current, rather than the measured current.
Enhanced ChargingCurrent() and ChargingVoltage() reporting options	Present, but with less-enhanced options	Enhanced feature	Present	ChargingCurrent() and ChargingVoltage() can have separate values for the JEITA ranges of STL and STH, and can be enabled with SLEEPCHG to report non-zero values when charging and when the device is in SLEEP mode.

Table 1. BQ27Z561-R1 to BQ27Z561-R2 Change Descriptions

www.ti.com

Change Description	BQ27Z561	BQ27Z561-R1	BQ27Z561-R2	Comments
Static ChargeVoltage()	Not present	Not present	New feature	A configuration option to select between <i>ChargingVoltage()</i> or a static parameter, <i>Charge Term Voltage</i> , to determine if cell voltage is within range for charge termination.
ChargeVoltage() override	Not present	Not present	New feature	A MAC to overwrite the charging voltages in data flash, which determines ChargingVoltage() based on temperature. This MAC is available in SEALED mode.
ChargeVoltage() compensation for system resistance	Not present	Not present	New feature	While charging, increase <i>ChargeVoltage()</i> to compensate for the voltage drop across the system resistance such that the voltage at the cell equals the originally desired charging voltage.
SOC-based lifetimes features	Not present	Not present	Enhanced feature	An SOC-based lifetime feature that includes total runtime spent at different states of charge and temperature
QMax update based on discharge (DSG) cycles	Not present	Not present	New feature	Adjust QMax down based on cycle count since last QMax update
Active flat zone detection	Not present	Not present	New feature	Indication bit to inform the system if relaxing in current location would result in a valid DOD update
QMax Day MAC	Not present	Not present	New feature	Command to return elapsed time in days when QMax was last updated
QMax Cycle Count	Not present	Not present	New feature	Command to return cycle count at the last update to QMax
ChargeVoltage() degrade	Not present	Not present	New feature	Method to reduce ChargeVoltage() based on SOH, cycle count, total run time, time at high temp, or time at high temp and high SOC.
Cell Swelling	Not present	Not present	New feature	Temporary ChargeVoltage() reduction if cell temperature and SOC are high
Hold 1% until termination voltage	Not present	Not present	New feature	This new feature prevents early report of SOC = 0 by hold SOC at 1% until termination voltage has been reached.
TURBO Mode 3.0	Not present	Not present	New feature	The BQ27Z561-R2 TURBO Mode 3.0 helps the system to adjust the power level by providing information about maximum power, depending on the battery state-of-charge, temperature, and present battery impedance, and provides improved prediction of allowed high load pulses.
HIBERNATE mode	Not present	Not present	New feature	This is the lowest power mode for the device. In this mode, all measurement and clocking circuits are turned off; thus, the mode should only be entered when no charging or discharging of the battery is expected (for instance, when the pack is out of the system). This mode is exited upon two valid communication events.
ManufacturerInfoC() support	Not present	Not present	New feature	An additional block read of scratch pad data flash that can be 4 to 32 bytes long

2

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated