

EV2200-45

Evaluation System User Guide

Contents

Section	Page No.
Introduction	1
Kit Contents	1
Hardware and Software Setup	2
Software Installation	2
Hardware Connection	2
Operation	2
Starting the Program	2
Reading the Smart Battery Data Set	3
Interfacing the EEPROM	3
Reading the EEPROM	3
Programming the EEPROM	3
Programming with Direct I2C	3
Programming with Through SMBus	4
Resetting the bq2945	5
Access Protect	5
Status Screen	5
Advanced Functions	6
Adding a Smart Charger and Selector	6
Pro Screen	6
Selector Screen	7
Calibration	7
Voltage Calibration	8
Current Calibration	9
Temperature Calibration	10

Introduction

The EV2200–45 evaluation board with software provides an interface environment for a bq2945-based smart battery. The EV2200 allows the user to read or write to the bq2945 data set, program the configuration EEPROM, and interface a smart battery selector, a smart battery charger, or the host controller in the smart battery system.

Kit Contents

The EV2200-45 contains the following items:

- 1 EV2200 Interface Board
- 1 Serial PC cable
- 1 Serial EEPROM clip
- 2 Software disks entitled *EV2200-45* Software

Important Note: There are two versions of the interface software: rev1.0 and rev1.4. This user's guide reflects the rev1.4 interface; however, the other is similar. Rev1.4 adds support for current and temperature measurement calibraton over the SMBus. This is useful to calibrate current and temperature measurements in sealed packs.

In addition to the contents listed above, the EV2200 requires the following for operation with a bq2945-based smart battery:

- A PC running Windows 3.x or 95 compatible PC
- A smart-battery connector with wire leads

Additional test equipment is required to calibrate a bq2945-based circuit module. The calibration routines can be performed on a stand-alone circuit module (module not incorporated in a battery pack) or on a sealed battery pack (module incorporated in a battery pack). The calibration procedure is discussed in the Advanced Function section.

EV2200-45

Hardware and Software Setup

Software Installation

The following steps install the EV2200 software,

- 1. Insert the setup disk into a 3 ½ inch floppy drive.
- 2. Select the 3 ½ inch drive using **My Computer** or **File Manager**.
- 3. Double click the **Setup.exe** icon.
- 4. The setup program prompts for the remaining disks and installs a Window's application group.

Hardware Connection

The following steps configure the hardware for interface of a smart battery,

- 1. Connect the wire leads of the smart battery connector to the VSS, SMBC, and SMBD outlets of the terminal block on the EV2200.
- 2. Connect the wire leads of the blue EEPROM clip to the VSS, E2 VCC, SCL and SDA outlets of the terminal block on the EV2200 according to the color code:

Wire Color	Terminal Block Outlet
Black	VSS
Red	E2 VCC
White	SCL
Brown	SDA

- 3. Connect the PC serial cable to the EV2200 and the PC COM port.
- 4. Insert the smart battery connector into the smart battery.

The EV2200 is now set up for operation.

Operation

Starting the Program

To start the program,

- 1. Click the bq2945 pro icon in the applications group to start the interface program. The software requests the PC communications port the first time it is run after installation.
- 2. Choose the **Retry Auto detection** button for automatic port configuration. After the port is detected, the software displays the bq2945 data screen:

Figure 1. bq2945 Data Screen

Rev. B Board

Version Information

Click **Options Version Info** or **About** to see what version of the software is running.

Reading the Smart Battery Data Set

The software uses the communication port detected or set the previous time the software ran. Proper communication is indicated with the **Board Status: RS-232 Interface Ok** message in the upper left corner of the display screen. If communication is not established, use the pull-down menu to set the communications port and the polling rate.

To set the communications port,

- Select Communications Settings.
- Choose the Force Detection on a Port or Retry Autodetection button for automatic configuration.
- If Force Detection is chosen, select the appropriate COM port (Comm1 through Comm4) and click OK.
- Click **Continue with program** to return to the data screen.

To set the polling rate:

- Select **Options Poll bq2945** registers.
- Choose Fast or With Pause. A check mark appears next to the selection made.

The yellow box scrolls through each element of both columns. This indicates that the EV2200 and the smart battery are functioning properly. To read the string data, Design Capacity and Design Voltage, click **Read**. The yellow box scrolls through each element in that area.

Interfacing the EEPROM

The EV2200 can be used to read and write to the EE-PROM in a bq2945 based smart battery circuit. The EV2200 interfaces the EEPROM in a circuit module connected to a battery or as a stand-alone circuit module (module not connected to a battery).

Important Note: Depending on the type of EE-PROM used in the circuit, it may be necesary to power the bq2945 when interfacing the EEPROM on a stand-alone circuit module. To power the bq2945, apply the Design Voltage (V) across the battery positive and battery negative contacts of the smart battery circuit module (with no battery connected). Reading the EEPROM

To read the EEPROM in a bq2945 based smart battery circuit, the serial EEPROM clip must be connected to the EV2200 as described in the Hardware Connection section and attached to the EEPROM according to the following color coding:

Wire Color	EEPROM Pin
Black	4-GND
Red	8-V _{CC}
White	6-SCL
Brown	5-SDA

Once the clip is securely attached to the EEPROM, click the **Read** button in the EEPROM box. The yellow box scrolls through each element on the screen and displays the contents of each location. Figure 2 shows an example of the EEPROM contents.

Programming the EEPROM

The EEPROM may be programmed using the EV2200. There are two methods available to do this. One method programs the EEPROM directly over the serial EEPROM clip; the other uses the smart battery bus (SMBus) to modify EEPROM locations.

Important Note: Please carefully review the bq2945 data sheet for details on the information required in the EEPROM configuration memory. The content of the memory affects critical aspects of bq2945 operation. The elements marked with an asterisk are calibration locations that vary from circuit to circuit. They should set to an estimated or a default value initially. The calibration utility can then be used to calculate the precise values for maximum measurement accuracy. Read the description of these registers in the bq2945 data sheet for the default values and the information to estimate the initial settings.

To select the write method,

 Select Options EEPROM Write Mode and choose Direct I2C or Through SMBus. A check mark appears next to the selection made.

Programming with Direct I2C

To write an EEPROM location,

- Connect the serial EEPROM clip to the EEPROM.
- Make sure **Direct I2C** is selected as the EEPROM write mode.

Rev. B Board

June 1998

Figure 2. EEPROM Data Screen

- Place the cursor on the desired element to program and click.
- Enter the value and press ENTER.

Once the data for each element is loaded and entered, the EEPROM configuration file may be saved to disk.

To save an EEPROM to disk,

- Select File Save EEPROM Configuration.
- Enter the file name to be saved and click **Ok**.

The file can then be loaded to program additional EE-PROMs.

To load an EEPROM file,

- Select File Retrieve EEPROM Configuration.
- Enter the file name to be loaded and click **OK**

Once the file is loaded, select the **Write** button in the EEPROM box to program all locations.

The gray elements can only be programmed one way. During a write operation, the gray elements will be programmed with factory recommended values. Be sure to individually select and press ENTER for each gray box or use the **Write** button in the EEPROM box to properly program the gray elements.

Once the EEPROM is programmed, select the **Read** button in the EEPROM box to verify the data. Rev. B Board Important Note: With the Direct I2C mode, the EE-PROM programming will not take effect until the bq2945 is reset.

Programming with Through SMBus

Most EEPROM locations can also be written with commands over the SMBus. This is particularly useful when it is required to change the contents in an EEPROM contained in a sealed smart battery that leaves no direct access to the configuration memory. The bq2945 must be in the unprotected mode for programming with **Through SMBus** to function. New EEPROM values take effect immediately in the bq2945 when the EE-PROM is programmed with the **Through SMBus** mode.

To write an EEPROM location:

- Make sure **Through SMBus** is selected as the EE-PROM write mode
- Place the cursor on the desired element to program and click.
- Enter the value and press ENTER.

Each element must be selected individually, loaded, and ENTER pressed to write the contents of the EEPROM when using the **Through SMBus** mode.

Important Note: The Through SMBus method only works if the bq2945 in the smart battery circuit module is in the unprotected mode. The elements marked with ** or *** cannot or may not program correctly using the Through SMBus method. The Direct I2C method should be used to program these locations. With the Direct I2C method, the EEPROM programming will not take effect until the bq2945 is reset.

Resetting the bq2945

For the values in the EEPROM to be used by the bq2945 after **Direct I2C** programming, the bq2945 must be reset. Resetting is automatic when a stand alone circuit module is first connected to a battery. In the situation where the EEPROM is altered when the circuit is connected to a battery, the bq2945 can be reset in two ways:

- Disconnecting and then connecting the smart battery circuit from the battery
- Issuing a software reset command with the EV2200

To reset the bq2945 using the EV2200 software reset,

 From the bq2945 Data screen select Options Initialize bq2945 The bq2945 will now load the contents of the EEPROM into its internal registers for operation.

Important Note: Removal of power from the curcuit module may be used to force a reset of an access-protected pack.

Access Protect

The bq2945 enters the access protect mode when it is reset and the Access protect register in the EEPROM is set to 00h. In the access protect mode, only access to the SBD data set is allowed. The bq2945 is in the unprotected mode if it is reset and the Access protect register in the EEPROM is set to 08h. The **Through SMBus** EEPROM programming and software reset works only if the bq2945 is in the unprotected mode.

Status Screen

The status screen gives a summary of the smart battery's condition, including state-of-charge, current, voltage, alarm, status, and error settings.

Benchmarq bq2945 Pro				_ 🗆 ×
File Lommunications Uptions Help				
Board Status: h 5-232 Interface UK				
Relative State Of Charge:	73 %			
Remaining Capacity: 885 r	iAh Fu	III Charge Capaciț	y: 1200 mA	n
Current 1115 mA Average :	1112 mA	je 12	202 Volts	
Alams Over Charged Term. Dischar Term. Charge Remaining Ce Delta Temp. Remaining Tir	ge Initialized p. Discharging Fully Charged	Enc	JT\$:	
Over Temp.	Fully Discharged		Clear Erro	\$
bg2945 Data EPPROM Data Calib	ration Status	Pro	Selector	4:47:59 PM

Figure 3. Status Screen

June 1998

Rev. B Board

Advance Functions

Adding a Smart Charger and Selector

The EV2200 also interfaces a smart charger and selector as defined in a smart battery system. The DV2043S7 smart charger and selector development board from Benchmarq can be used in conjunction with the EV2200 to implement the additional functionality.

The following steps configure the hardware for interface of a smart battery:

- 1. Connect GND, SCL, and SDA of the DV2043S7 terminal block (TB1) to corresponding connections on the EV2200 terminal block.
- 2. Connect the charging supply (18V, 3A) across the TB1, GND and VI terminals.
- 3. Connect an optional load (2A max) across the TB1, GND and VO terminals for discharge evaluation.
- 4. Insert the smart battery into J1 or J2 of the DV2043S7.

The EV2200 can now interface the smart battery, smart charger, and selector using the Pro screen.

Pro Screen

The Pro screen allows the EV2200 to interface any subsystem in the smart battery system using the SMBus.

To select a subsystem and send a command:

- Click the SMBus Address bar arrow.
- Highlight the subsystem to address.
- Enter the command code.
- If writing a location, enter the LD and MS byte in the Write SMBus Word box and click Send.
- If reading a location, select the data format either Hex or Decimal in the **Read SMBus Word** box and click **Read**.
- For a continuous read of the location, click **Dwell** in the **SMBus Word Dwell** box.

් Benchmarg bg2945 Pro					
<u>File</u> Communications Options <u>H</u>	<u>H</u> elp				
Board Status:RS-232 Interface	Ok				
SMBUS Add (Sm Sm Sm Sm Sm Data to send (Hex) MS Byte D0 Send	ress (hex) for com art Battery) 16 art Battery) 16 art Charger) 12 art Selector) 14 BUS Host) 10 Re C	nunications:		SMBus Word Dwel	Stop
bg2945 Data E'PROM Data	Calibration	Status	Pro	Selector	4:50:20 PM

Figure 4. Pro Screen

Rev. C Board

June1998

Selector Screen

The Selector screen illustrates the status of the selector and allows the EV2200 to interface it directly with the **Read** and **Write** buttons.

Calibration

Each bq2945 based smart battery circuit module must be calibrated for voltage, current, and temperature measurements for maximum accuracy. The Calibration screen allows a circuit module to be calibrated when not connected to a battery or installed in a sealed battery pack. Only temperature and current can be calibrated on a module connected to a battery. The calibration procedure requires additional equipment, including the following:

- A variable DC power supply with a precision voltage meter
- An electronic load or calibrated fixed load (2–3A)
- A thermometer to measure ambient temperature

To calibrate the bq2945 based circuit, the bq2945 must not be in the access protect mode. After EEPROM programming and calibration is complete, the bq2945 can be put in access protect mode by writing the EEPROM access protect register to 00h and resetting the part.

ý	Benchmarq bq	2945 Pro					_ 🗆 ×
File	<u>C</u> ommunicatio	ns <u>O</u> ptions	<u>H</u> elp				
	Board Status:R	5-232 Interfac	e Ok				
		Selector S	State () Powered By A B C SMBus Select C A C Write Selector State	• AC	Present A B Charge Connect C A C E Read Selector State		
<u></u>	g2945 Data	E'PROM Data	Calibration	Status	Pro	Selector	4:52:00 PM

Figure 5. Selector Screen

Voltage Calibration

Before calibrating voltage,

- Connect the power supply between BAT+ (positive connection for the battery stack) and BAT- (negative connection for the battery stack).
- Select the EEPROM write mode under **Options**. If **Direct I2C** is selected, connect the serial EEPROM clip to the EEPROM.

Once the Calibration screen is selected, the Voltage calibration screen is displayed.

To calibrate voltage,

- Click the **Begin Calibration** button.
- Set the power supply voltage to the requested voltage displayed in the blue box.
- Click OK.

The program requests two more power supply settings. After each request enter the value and click **OK**.

Important Note: After setting the power supply to the requested value, wait 15-20 seconds before clicking OK. This allows the voltage reported by the bq2945 to update properly.

Once the calibration routine is completed, the calibration values appear in the **Calculated EEPROM Data** box. Click the **Save to EEPROM** button to save the calculated values to the EEPROM. If the calculated values are written with the **Direct I2C** method, the values will not take effect until the bq2945 is reset.

ි Benchmarg	bq2945 Pro	Jala				
Board Statu	s:RS-232 Interface	Ok				
E ² P	ROM Data Voltage Off: Max Battery Volta	set: 0. ge: 12.	000 Volts [600 Volts	Divider Value:	5.9609 8.000 Vol	ts
Meas	ured Battery Vo	iltage:	11.564	1 ∨olts		
5	Set Externally M Supply Vo	easured Itage To:	0.000	Volts	Begin Cal.	
Cal	culated EPROM D Voltage Off:	ata set:	mV Save To E*PROM	Cells:		
Volta	ge Calibration		Current Calibration		Temperature Ca	alibration
bg2945 Data	E'PROM Data	Calibration	Status	Pro	Selector	4-55-55 PM

Figure 6. Voltage Calibration Screen

Board

Current Calibration

Prior to calibrating voltage:

- Connect the power supply or battery stack and electronic load as shown in Figure 7.
- Select the EEPROM write mode under **Options**.

Important Note: Do not connect the serial EE-PROM clip to the EEPROM during the current calibration procedure. If Direct I2C is chosen as the EEPROM write mode, wait until the procedure calculates the new EEPROM values before attaching the clip to the EEPROM.

Once the Calibration screen is selected, the Current Calibration screen is displayed.

To calibrate current:

- If using a power supply, set the power supply to the Design Voltage.
- click the **Begin Calibration** button.
- Enter the typical discharge current of the application in the **Enter Calibration Parameter** box and click **OK**.
- Set the electronic load to the requested discharge current displayed in the blue box.
- Wait 15–20 seconds.

Figure 7. Current Calibration Set-up

Click OK.

Once the calibration routine is completed, the calibration value appears in the Calculated EEPROM Data box. Click the **Save to EEPROM** button to save the calculated values to the EEPROM. If the calculated values are written with the **Direct I2C** method, the values will not take effect until the bq2945 is reset.

ි Benchmarq bq2945 Pro 🗖 🗖 🗖
<u>File</u> <u>Communications</u> <u>Options</u> <u>H</u> elp
Board Status:RS-232 Interface Ok
E ³ PROM Data Sense Resistor: 0.0519 Ohms
Measured Battery Discharge Current:
Set Externally Measured Discharge Current To: 0.000 Amps Begin Cal.
Calculated EPROM Data
Sense Resistor: Ohms
<u>S</u> ave To EPROM
Voltage Calibration
voicage Calcination i Cultivation temperature Calcination temperature Calcination temperature Calcination Status Pro Selector 4-57-19 DM

Figure 8. Current Calibration Screen

June 1998

Rev. B Board

Temperature Calibration

Before calibrating voltage,

- Connect the power supply or battery stack between BAT+ (positive connection for the battery stack) and BAT- (negative connection for the battery stack).
- Select the EEPROM write mode under **Options**. If **Direct I2C** is selected, connect the serial EEPROM clip to the EEPROM.
- Once the Calibration screen is selected, the Temperature Calibration screen displays.

To calibrate temperature,

- Set the power supply to the Design Voltage.
- Click the **Begin Calibration** button.
- Enter the ambient temperature from the thermostat reading in the Enter Calibration Externally Measured Temperature box and click Ok.

Important Note: The temperature must be entered in degrees Kelvin.

Once the calibration routine is completed, the calibration value appears in the **Calculated EEPROM Data** box. Click the **Save to EEPROM** button to save the calculated values to the EEPROM. If the calculated values are written with the **Direct I2C** method, the values will not take effect until the bq2945 is reset.

ි Benchmarg bo	q2945 Pro					
<u>File</u> <u>C</u> ommunication	ons <u>O</u> ptions <u>H</u>	<u>l</u> elp				
Board Status:R	IS-232 Interface	Ok				
E2PROM	Data Temp	erature Offset:	14.8] *K]
Measu	ured Tempera	ature:	297.6	۴K		
Ent	er Externally I Tei	Measured [mperature:	0.0	۴K	Begin Cal.	ו
Calcul	ated E²PROM D∂ Ten	ata nperature Offset:	<u>s</u> ave To E®PROM	к]	°K = °C + 273.15 °C = (°F - 32) × 5/9	
Voltage	Calibration		Current Calibration		Temperature C	alibration
bg2945 Data	E ^a PROM Data	Calibration	Status	Pro	Selector	4-59-07 PM

Figure 9. Temperature Calibration Screen

Notes

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated