

TPS2546 / TPS2546Q1 Production Silicon Checklist

ABSTRACT

TI has discovered a bug with TPS2546 and TPS2546Q1 load detect feature. The bug is related to /STATUS pin being triggered when TPS2546/Q1 is programmed in SDP2 mode (1110) and a USB device is attached to the TPS2546/Q1 port.

This bug has no affect in systems (like most notebooks and desktops) where only one TPS2546 device is used. Even in systems where multiple TPS2546/Q1 devices are installed the bug will impact only those systems that implements port power management (PPM) feature in CDP/SDP2 mode as described in the datasheet (visit www.ti.com to download latest version). PPM implementation in DCP_Auto mode or in CDP/SDP1 mode is not affected by this bug.

Important:

TI fixed the SDP2 mode bug (outlined in this document) in all TPS2546 and TPS2546Q1 devices manufactured after October 31st 2014.

This bug only affects TPS2546 and TPS2546Q1 parts that were manufactured **before** October 31st 2014. Customers can easily verify if the part they are using is affected by this bug, by inspecting top-side marking on the part.

Parts that have the bug fixed will have date code 4B* or higher (i.e. 4B, 4C, 51, etc). In the heighted alphanumeric character, the number represents the year of manufacture, hence 4 is year 2014 and a 5 means 2015 and so on). The second character is a HEX for the month (1 = January, 2 = February.. A = October etc.).

When in doubt please contact your local TI sales office.

BUG: /STATUS is asserted in SDP2

Silicon Bug: /STATUS Output is Active in SDP2 Mode

<u>Description:</u> Refer to device truth table (Table 2 and Table 3 in TPS2546 and TPS2546-Q100 datasheet respectively). As shown in the table below, there are two SDP modes that the device can be programmed to via the CTL pin setting, SDP1 and SDP2. Key difference between SDP1 and SDP2 mode is presence or absence of discharge event. Transition from CDP to SDP2 does not involve a discharge event, whereas from CDP to SDP1 the device will initiate a discharge.

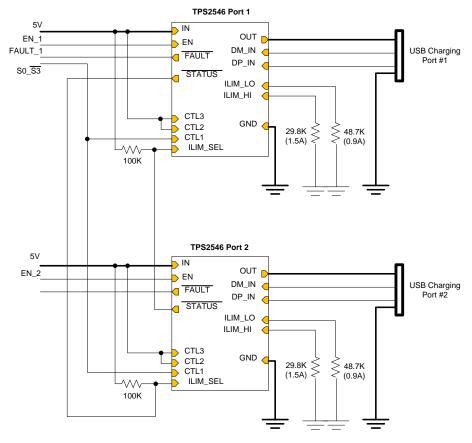
In either SDP1 or SDP2 mode /STATUS output is deactivated (OFF), however the silicon bug discovered makes the /STATUS output active in SDP2 mode when a USB device is attached.

CTL1	CTL2	CTL3	ILIM_SEL	MODE	CURRENT LIMIT SETTING	STATUS OUTPUT (Active low)	COMMENT	
0	0	0	0	Discharge	N/A	OFF	OLT bold by	
0	0	0	1	Discharge	N/A	OFF	OUT held low	
0	0	1	0	DCP_Auto	ILIM_HI	OFF	Data lines disconnected	
0	0	1	1	DCP_Auto	I _{OS PW} and ILIM_HI ⁽¹⁾	DCP load present ⁽²⁾	Data lines disconnected and Load Detect function active	
0	1	0	0	SDP1	ILIM_LO	OFF	Data linear consists of	
0	1	0	1	SDP1	ILIM_HI	OFF	Data lines connected	
0	1	1	0	DCP_Auto	ILIM_HI	OFF	Data lines disconnected	
0	1	1	1	DCP_Auto	ILIM_HI	DCP load present ⁽³⁾	Data lines disconnected and Load Detect function active	
1	0	0	0	DCP_Shorted	ILIM_LO	OFF	Device forced to stay in DCP BC1.2 charging mode	
1	0	0	1	DCP_Shorted	ILIM_HI	OFF		
1	0	1	0	DCP / Divider1	ILIM_LO	OFF	Device forced to stay in DCP Divider1 charging	
1	0	1	1	DCP / Divider1	ILIM_HI	OFF	mode	
1	1	0	0	SDP1	ILIM_LO	OFF		
1	1	0	1	SDP1	ILIM HI	OFF	Data lines connected	
1	1	1	0	SDP2 ⁽⁴⁾	ILIM_LO	OFF _		
1	1	1	1	CDP(4)	ILIM_HI	CDP load present(0)	Data lines connected and Load detect active	

⁽¹⁾ The TPS2546-Q1 current-limit (I_{OS}) automatically switches between I_{OS_PW} and the value set by ILIM_HI according to the Load Detection – Power Wake functionality.

Application Impact:

SDP2 /STATUS bug will render implementation of port power management, PPM (refer to device datasheet) problematic in CDP mode. *PPM when used in DCP_Auto mode or when device is configured to go to SDP1 mode (from CDP mode during a PPM event) the device will work as defined in the datasheet.*


To illustrate the bug refer to Figure 1 where Port 1 and Port 2 are both configured as CDP ports (1111) with no USB device attached. Assume a USB device capable of drawing load current >700 mA is connected to Port 1. TPS2546/Q1 attached to this port (#1) will assert its /STATUS output low. This will force ILIM_SEL on #2 TPS2546 to go low, thereby changing its operating state from 1111 (CDP) to 1110 (SDP2).

⁽²⁾ The DCP load present is governed by the Load Detection - Power Wake limits.

⁽³⁾ The DCP load present is governed by the Load Detection – Non-Power Wake limits.

⁽⁴⁾ OUT does not discharge when changing between 1111 and 1110.

⁽⁵⁾ The CDP load present is governed by the Load Detection - Non-Power Wake limits and BC1.2 primary detection

Port Power Management Implementation Figure 1.

Now if another USB device is attached to Port #2, the SDP2 bug in the #2 TPS2546/Q1 will erroneously assert its /STATUS output low thereby forcing port 1 to SDP2 mode (1111 -> 1110) from CDP mode.

This is an undesired operation for PPM as USB device connected to port 1 will be switched to lower charging current (set by ILIM_LO) when it requested for higher current set by ILIM_HI.

Work around:

Use device PPM feature in DCP_Auto mode or when using in CDP mode the second device will need to be programmed to go to SDP1 mode as shown below. There is no workaround to use PPM in CDP mode with SDP2

 Table 1.
 Port Power Management Valid and Invalid Transitions

	CTL1	CTL2	CTL3	ILIM_SEL	MODE	CURRENT LIMIT SETTING	STATUS OUTPUT (Active low)	COMMENT
	0	0	0	0	Discharge	N/A	OFF	OUT held low
○K	0	0	0	1	Discharge	N/A	OFF	OUT field low
	0	0	1	0	DCP_Auto	ILIM_HI	OFF	Data lines disconnected
	0	0	1	1	DCP_Auto	I _{OS_PW} and ILIM_HI ⁽¹⁾	DCP load present ⁽²⁾	Data lines disconnected and Load Detect function active
	0	1	0	0	SDP1	ILIM_LO	OFF	- Data lines connected
	0	1	0	1	SDP1	ILIM_HI	OFF	
	0	1	1	0	DCP_Auto	ILIM_HI	OFF	Data lines disconnected
	0	1	1	1	DCP_Auto	ILIM_HI	DCP load present(3)	Data lines disconnected and Load Detect function active
	1	0	0	0	DCP_Shorted	ILIM_LO	OFF	Device forced to stay in DCP BC1.2 charging
	1	0	0	1	DCP_Shorted	ILIM_HI	OFF	mode
	1	0	1	0	DCP / Divider1	ILIM_LO	OFF	Device forced to stay in DCP Divider1 charging mode
	1	0	1	1	DCP / Divider1	ILIM_HI	OFF	
	1	1	0	0	SDP1	ILIM_LO	OFF	
	1	1	0	1	SDP1	ILIM_HI	OFF	Data lines connected
	1	1	1	0	SDP2 ⁽⁴⁾	ILIM_LO	OFF 💢	
	1	1	1	<u>1</u>	CDP ⁽⁴⁾	ILIM_HI	CDP load present(5)	Data lines connected and Load detect active

Resolution:

TI has fixed the SDP2 bug in silicon, see first page of this document for details.

Impacted Device:

Device	Package	Top-Side Marking
TPS2546	QFN16	2546
TPS2546Q1	QFN16	2546Q

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Products	Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity