
Abstract

This report presents the effect of neutron displacement damage (NDD) on the TPS7H3301-SP device. The results show that all devices were fully functional and within production test limits after having been irradiated up to a neutron fluence of $1 \times 10^{13} \mathrm{n} / \mathrm{cm}^{2}$ ($1-\mathrm{MeV}$ equivalent). A sample size of nine units was exposed to radiation testing per (MIL-STD-883, Method 1017 for Neutron Irradiation) and an additional unirradiated sample device was used for correlation. All devices used in the experiment were from lot date code 1729A and assembly lot 7003811 . Electrical testing was performed at Texas Instruments before and after neutron irradiation using the production test program for TPS7H3301-SP.

Contents

1 Overview... 2

Appendix A Test Results ..
List of Figures
1 TPS7H3301-SP Device ... 2

List of Tables

1 Overview Information... 2

3 TPS7H3301-SP Specifications... 4

Trademarks

All trademarks are the property of their respective owners.

Texas
InsTruments

1 Overview

The TPS7H3301-SP is a radiation-hardened double data rate (DDR) 3-A termination regulator with built-in VTTREF buffer. The regulator is specifically design to provide a complete, compact, low-noise solution for space DDR termination applications such as single board computers, solid state recorders, and payload processing.

General device information and testing conditions are listed in Table 1.
Table 1. Overview Information

TI Part Number	TPS7H3301-SP
SMD Number	5962R1422801VXC
Device Function	DDR 3-A Termination Regulator
Die Name	RTPS7H3301A1VM
Technology	LBC7
A/T Lot Number / Date Code	$7003811 / 1729 \mathrm{~A}$
Unbiased Quantity Tested	9
Exposure Facility	VPT Rad
Neutron Fluence (1-MeV equivalent)	$1.0 \times 10^{12}, 5.0 \times 10^{12}, 1.0 \times 10^{13} \mathrm{n} / \mathrm{cm}^{2}$
Irradiation Temperature	$25^{\circ} \mathrm{C}$

TI may provide technical, applications or design advice, quality characterization, and reliability data or service providing these items shall not expand or otherwise affect TI's warranties as set forth in the Texas Instruments Incorporated Standard Terms and Conditions of Sale for Semiconductor Products and no obligation or liability shall arise from Semiconductor Products and no obligation or liability shall arise from Tl's provision of such items.

2 Test Procedures

The TPS7H3301-SP was electrically pre-tested using the production automated test equipment program. General test procedures were MIL-STD-883, Method 1017 for Neutron Irradiation of TPS7H3301-SP.

Table 2. Neutron Irradiation Conditions

Group	Sample Qty	Neutron Fluence (n/cm $\left.{ }^{\mathbf{2}}\right)$	Bias
A	3	1.0×10^{12}	Unbiased
B	3	5.0×10^{12}	Unbiased
C	3	1.0×10^{13}	Unbiased

Figure 1. TPS7H3301-SP Device

3 Facility

The University of Massachusetts's Fast Neutron Irradiation (FNI) facility is an experimental facility that replaced the three beam ports that originally existed on the left side of the research reactor. It is designed to give a fast flux level $\geq 1011 \mathrm{n} / \mathrm{cm}^{2}-\mathrm{s}$, with relatively low thermal fluence and gamma dose rates.
Samples with a cross-sectional area as large as $30 \mathrm{~cm}(12 \mathrm{in}) \times 30 \mathrm{~cm}(12 \mathrm{in})$ and up to 15 cm (6 in) thick can be irradiated. The fast neutron flux is designed to be nearly uniform over the $30-\mathrm{cm}$ ($12-\mathrm{in}$) $\times 30-\mathrm{cm}$ ($12-\mathrm{in}$) area facing the core, and the fast fluence variation through the sample thickness is minimized via a single 180° rotation of the sample canister at the midpoint of the irradiation period. The FNI facility offers a significantly larger sample volume than previously available within the University of Massachusetts Lowell Research Reactor (UMLRR).
The fluences are calculated based on 1-MeV equivalences.
Detailed information of the radiation facility is available at the following link:
www.uml.edu/docs/FNI\ Brochure_tcm18-90375.pdf

4 Results

There were no functional failures at any irradiation level. All parametric measurements remained well within all data sheet (SLVSCJ5) limits for all exposure levels. All parametric measurements remained well within the production test limits which are guard-banded from the data sheet limits.
The full parameter list and graphs are found in Appendix A
Table 3 lists the TPS7H3301-SP specification compliance matrix.
Table 3. TPS7H3301-SP Specifications

PARAMETER		TEST CONDITION	TPS7H3301-SP				ATE Test \#	
		MIN	TYP	MAX	UNIT			
$\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\text {TT }}$ OUTPUT								
$\mathrm{V}_{\text {LDOIN }}-\mathrm{V}_{\text {TT }}$	$\mathrm{V}_{\text {LDOIN }}>\mathrm{V}_{\text {TT }}$		$\begin{aligned} & \mathrm{VIN} / \mathrm{VDD}=2.95 \mathrm{~V}, \mathrm{VVDDQSNS}=2.5 \mathrm{~V}, \mathrm{VTT}=\mathrm{VVTTREF}-50 \mathrm{mV} \text { (DDR1), } \\ & \mathrm{IO}=0.5 \mathrm{~A} \end{aligned}$		62	230	mV	26.x
		$\begin{aligned} & \text { VIN / VDD=2.95 V, VVDDQSNS=2.5V, VTT=VVTTREF - 50mV (DDR1), } \\ & \text { IO=1A } \end{aligned}$		129	300	mV	26.x	
		$\begin{aligned} & \text { VIN / VDD=2.95 V, VVDDQSNS=2.5V, VTT=VVTTREF - } 50 \mathrm{mV} \text { (DDR1), } \\ & \mathrm{IO}=2 \mathrm{~A} \end{aligned}$		272	400	mV	26.x	
		$\begin{aligned} & \mathrm{VIN} / \mathrm{VDD}=2.375 \mathrm{~V}, \mathrm{VVDDQSNS}=1.8 \mathrm{~V}, \mathrm{VTT}=\mathrm{VVTTREF}-50 \mathrm{mV} \text { (DDR2), } \\ & \mathrm{IO}=0.5 \mathrm{~A} \end{aligned}$		57	230	mV	27.x	
		VIN / VDD=2.375V, VVDDQSNS=1.8V, VTT=VVTTREF - 50mV (DDR2), $10=1 \mathrm{~A}$		118	300	mV	27.x	
		VIN / VDD=2.375V, VVDDQSNS=1.8V, VTT=VVTTREF - 50mV (DDR2), $10=2 \mathrm{~A}$		245	400	mV	27.x	
		VIN / VDD=2.375V, VVDDQSNS=1.5V, VTT=VVTTREF - 50mV (DDR3), $\mathrm{IO}=0.5 \mathrm{~A}$		54	230	mV	28.x	
		$\begin{aligned} & \mathrm{VIN} / \mathrm{VDD}=2.375 \mathrm{~V}, \mathrm{VVDDQSNS}=1.5 \mathrm{~V}, \mathrm{VTT}=\mathrm{VVTTREF}-50 \mathrm{mV} \text { (DDR3), } \\ & \mathrm{IO}=1 \mathrm{~A} \end{aligned}$		109	300	mV	28.x	
		VIN / VDD=2.375V, VVDDQSNS=1.5V, VTT=VVTTREF - 50mV (DDR3), $1 \mathrm{O}=2 \mathrm{~A}$		230	400	mV	28.x	
		VIN / VDD=2.375V, VVDDQSNS=1.35V, VTT=VVTTREF - 50 mV (DDR3L), IO=0.5A		53	230	mV	28.x	
		VIN / VDD=2.375V, VVDDQSNS=1.35V, VTT=VVTTREF - 50 mV (DDR3L), IO=1A		107	300	mV	28.x	
		VIN / VDD=2.375V, VVDDQSNS=1.35V, VTT=VVTTREF - 50 mV (DDR3L), IO=2A		223	400	mV	28.x	
		$\begin{aligned} & \text { VIN / VDD=2.375V, VVDDQSNS=1.2V, VTT=VVTTREF - } 50 \mathrm{mV} \text { (DDR4), } \\ & \text { IO }=0.5 \mathrm{~A} \end{aligned}$		51	230	mV	29.x	
		$\begin{aligned} & \mathrm{VIN} / \mathrm{VDD}=2.375 \mathrm{~V}, \mathrm{VVDDQSNS}=1.2 \mathrm{~V}, \mathrm{VTT}=\mathrm{VVTTREF}-50 \mathrm{mV} \text { (DDR4), } \\ & \mathrm{IO}=1 \mathrm{~A} \end{aligned}$		105	300	mV	29.x	
		VIN / VDD=2.375V, VVDDQSNS=1.2V, VTT=VVTTREF - 50mV (DDR4), $1 \mathrm{O}=2 \mathrm{~A}$		216	400	mV	29.x	
V Votolintttol	Output voltage tolerance to $V_{\text {DDQSNS }}$	$-3 \mathrm{~A}<\mathrm{IVO}<3 \mathrm{~A}$, across Vin voltage range	-35	+/- 25	35	mV	20.x, 21.x, 22.x	

in Texas
Instruments

Table 3. TPS7H3301-SP Specifications (continued)

PARAMETER		TEST CONDITION	TPS7H3301-SP				ATE Test \#	
		MIN	TYP	MAX	UNIT			
$\mathrm{V}_{\text {doasns }}$ AND $\mathrm{V}_{\text {VTTREF }}$ OUTPUT								
$\mathrm{V}_{\text {DDOSNS }}$	Voltage range			1		3.6	V	Covered in all tests
$\mathrm{V}_{\text {TTREF }}$	$\mathrm{V}_{\text {TTREF }}$ voltage			VDDQSNS/2		v	16.x, 17.x	
$\mathrm{V}_{\text {Vttref }}$	$\mathrm{V}_{\text {VTTREF }}$ voltage tolerance to $V_{\text {DDQSNS }}$	-10 mA < IVVTREF < 10 mA , VVDDQSNS $=2.5 \mathrm{~V}$	-15		15	mV	16.x, 17.x	
		-10 mA < IVVTREF < 10 mA , VVDDQSNS $=1.8 \mathrm{~V}$	-15		15	mV	16.x, 17.x	
		-10 mA < IVVTREF < 10 mA , VVDDQSNS $=1.5 \mathrm{~V}$	-15		15	mV	16.x, 17.x	
		-10 mA < IVVTREF < 10 mA , VVDDQSNS $=1.35 \mathrm{~V}$	-15		15	mV	16.x, 17.x	
		-10 mA < IVVTREF < 10 mA , VVDDQSNS $=1.2 \mathrm{~V}$	-15		15	mV	16.x, 17.x	
UVLO / EN LOGIC THRESHOLD								
$I_{\text {enleak }}$	Logic input leakage current	EN, $T A=25^{\circ} \mathrm{C}$	-1		1	$\mu \mathrm{A}$	2.7	

Test Results

This appendix contains the detailed test results.

Delta Threshold 10.00%

NDD Report
THS7H3301-SP
NDD Report
THS7H3301-SP

NDD Report
THS7H3301-SP

		16.6_VTTRef_delta_1p35VIdo		
	Test Site	Junkins	Junkins	
	Tester	FETS10	FETS10	
	Test Number	EF636800	EF636800	
	Unit	mV	mV	
	Max Limit	14	15	
	Min Limit	-14	-15	
n/cm2	Serial \#	Pre	Post	Delta
0	67	0.343	0.362	-0.019
1E+12	78	0.387	0.293	0.094
$1 \mathrm{E}+12$	81	0.306	0.330	-0.024
$1 \mathrm{E}+12$	82	0.305	0.330	-0.025
5E+12	75	0.331	0.301	0.030
$5 \mathrm{E}+12$	79	0.378	0.286	0.092
$5 \mathrm{E}+12$	80	0.304	0.357	-0.053
1E+13	68	0.357	0.295	0.062
$1 \mathrm{E}+13$	71	0.329	0.313	0.016
$1 \mathrm{E}+13$	74	0.340	0.296	0.044
	Max	0.387	0.362	0.094
	Average	0.338	0.316	0.022
	Min	0.304	0.286	-0.053
	Std Dev	0.029	0.027	0.052

NDD Report
THS7H3301-SP

NDD Report THS7H3301-SP

NDD Report THS7H3301-SP

		18.4__VTTRef_noload_1p2VIdo		
	Test Site	Junkins	Junkins	
	Tester	FETS10	FETS10	
	Test Number	EF636800	EF636800	
	Unit	V	V	
	Max Limit	0.625	0.625	
	Min Limit	0.585	0.585	
n/cm2	Serial \#	Pre	Post	Delta
0	67	0.606	0.606	-0.001
1E+12	78	0.605	0.605	0.000
1E+12	81	0.606	0.606	0.000
1E+12	82	0.606	0.606	0.000
5E+12	75	0.609	0.608	0.000
5E+12	79	0.605	0.605	0.000
$5 \mathrm{E}+12$	80	0.609	0.609	0.000
1E+13	68	0.608	0.608	0.000
1E+13	71	0.604	0.604	0.000
1E+13	74	0.609	0.608	0.000
	Max	0.484	0.524	0.053
	Average	0.415	0.437	-0.022
	Min	0.384	0.391	-0.140
	Std Dev	0.028	0.044	0.055

NDD Report
THS7H3301-SP

NDD Report
 THS7H3301-SP

18.33 _VTpadefesfisnklload_2p5I

NDD Report
THS7H3301-SP
Average
Min
Min
0.757
0.754
0.757
0.757
0.000 0.001

NDD Report
THS7H3301-SP

120.000
18.35__VTTRef_LoadRegsnk_2p5VIdo
120.000

Page 38

NDD Report
 THS7H3301-SP

NDD Report
THS7H3301-SP

Page 40

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

