

#### ABSTRACT

The purpose of this study was to characterize the single-event effects (SEE) performance due to heavy-ion irradiation of the TL7700-SEP supply-voltage supervisor. Heavy-ions with an effective linear energy transferred (LET<sub>EFF</sub>) of 20 to 48 MeV·cm<sup>2</sup>/mg were used to irradiate the devices with fluences of  $1 \times 10^6$  to  $2 \times 10^7$  ions/cm<sup>2</sup>. The results demonstrate that the TL7700-SEP is SEL-free up to LET<sub>EFF</sub> = 43MeV·cm<sup>2</sup>/mg at 125°C, and SEB-free up to 48MeV·cm<sup>2</sup>/mg at 25°C. SET characterization at 20 and 48 MeV·cm<sup>2</sup> on the RESET output of the device are also presented and discussed.

### **Table of Contents**

| 1 Trademarks                                       | 1 |
|----------------------------------------------------|---|
| 2 Overview                                         | 2 |
| 3 SEE Mechanisms                                   |   |
| 4 Test Device and Test Board Information           |   |
| 5 Irradiation Facility and Setup                   | 6 |
| 6 Depth, Range, and LET <sub>EFF</sub> Calculation | 7 |
| 7 Results                                          | 9 |
| 7.1 Single Event Latch-Up (SEL)                    | 9 |
| 7.2 Single-Event-Burnout (SEB)                     |   |
| 7.3 Single-Event Transients (SET)                  |   |
| 8 Event Rate Calculations                          |   |
| 9 Summarv                                          |   |
| 10 Revision History                                |   |
| A Confidence Interval Calculations                 |   |
| B References                                       |   |
|                                                    |   |

### 1 Trademarks

All trademarks are the property of their respective owners.

1



# 2 Overview

The TL7700-SEP is a bipolar integrated circuit designed for use as a reset controller in microcomputer and microprocessor systems. The SENSE voltage can be set to any value greater than 0.5 V using two external resistors. Circuit function is very stable with supply voltage in the 1.8-V to 40-V range. The TL7700-SEP device is designed for operation from –55°C to 125°C.

Additional technical details and documents can be found on the TL7700-SEP Product Page

| Table 2-1. Overview Information | Table 2-1 | . Overview | Information |
|---------------------------------|-----------|------------|-------------|
|---------------------------------|-----------|------------|-------------|

| DESCRIPTION (1)           | DEVICE INFORMATION                                                        |  |
|---------------------------|---------------------------------------------------------------------------|--|
| TI Part Number            | TL7700-SEP                                                                |  |
| VID Number                | V62/19602                                                                 |  |
| Device Function           | Radiation hardened supply-voltage supervisor in space enhanced<br>plastic |  |
| Technology                | JI1                                                                       |  |
| Exposure Facility         | Radiation Effects Facility, Cyclotron Institute,<br>Texas A&M University  |  |
| Heavy Ion Fluence per Run | $1 \times 10^{6} - 2 \times 10^{7}$ ions/cm <sup>2</sup>                  |  |
| Irradiation Temperature   | 125°C (for SEL testing)                                                   |  |
| Irradiation Temperature   | 25°C (for SEB and SET testing)                                            |  |

(1) TI may provide technical, applications or design advice, quality characterization, and reliability data or service providing these items shall not expand or otherwise affect TI's warranties as set forth in the Texas Instruments Incorporated Standard Terms and Conditions of Sale for Semiconductor Products and no obligation or liability shall arise from Semiconductor Products and no obligation or liability shall arise from TI's provision of such items.



### **3 SEE Mechanisms**

The primary single-event effect (SEE) events of interest in the TL7700-SEP are single-event latch-up (SEL). From a risk/impact point-of-view, the occurrence of an SEL is potentially the most destructive SEE event and the biggest concern for space applications. The bipolar process JI1 was used for the TL7700-SEP. CMOS circuitry introduces a potential for SEL and SEB susceptibility. SEL can occur if excess current injection caused by the passage of an energetic ion is high enough to trigger the formation of a parasitic cross-coupled PNP and NPN bipolar structure (formed between the p-sub and n-well and n+ and p+ contacts). The parasitic bipolar structure initiated by a single-event creates a high-conductance path (inducing a steady-state current that is typically orders-of-magnitude higher than the normal operating current) between power and ground that persists (is "latched") until power is removed or until the device is destroyed by the high-current state. The TL7700-SEP exhibited no SEL with heavy-ions up to an LET<sub>EFF</sub> of 43 MeV-cm<sup>2</sup>/mg at a fluence of 10<sup>7</sup> ions/cm<sup>2</sup> and a chip temperature of 125°C.

To evaluate the SEL effects a bias voltage of 40 V on V<sub>s</sub> supply voltage was used. Heavy ions with LET<sub>EFF</sub> = 43 MeV·cm<sup>2</sup>/mg were used to irradiate the devices. Flux of  $10^5$  ions/s-cm<sup>2</sup> and fluence of  $10^7$  ions/cm<sup>2</sup> were used during the exposure at 125°C temperature.

For SEB evaluation, a bias voltage of 40 V on V<sub>s</sub> was used with <sup>109</sup>Ag providing a LET<sub>EFF</sub> = 48 MeV·cm<sup>2</sup>/mg to irradiate the device. Flux of 10<sup>5</sup> ions/s-cm<sup>2</sup> and fluence of 2 × 10<sup>7</sup> ions/cm<sup>2</sup> were used during the exposure.

Evaluaition of SET effects was performed at the minimum recommended bias voltage of 1.8 V on V<sub>s</sub> as lower voltages are usually considered worst-case for SET effects. The heavy ion species <sup>109</sup>Ag was used to generate an LET<sub>EFF</sub> = 48 MeV·cm<sup>2</sup>/mg and <sup>63</sup>Cu was used for generate an LET<sub>EFF</sub> = 20 MeV·cm<sup>2</sup>/mg. The device was tested using both heavy ion species at a flux of 10<sup>4</sup> ions/s·cm<sup>2</sup> and fluence from 1 × 10<sup>6</sup> to 5 × 10<sup>6</sup> ions/cm<sup>2</sup>.

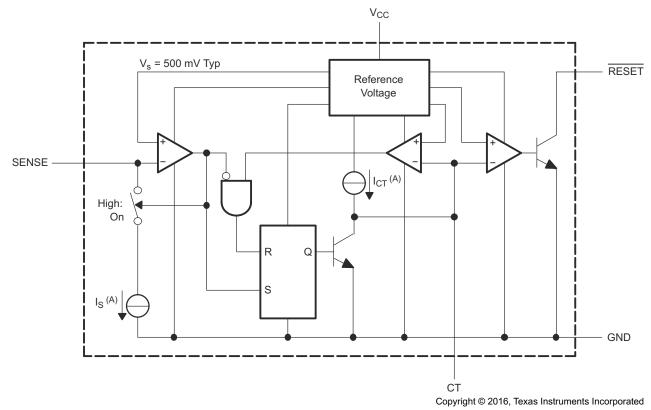
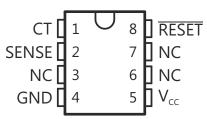
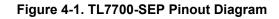




Figure 3-1. Functional Block Diagram of the TL7700-SEP




# 4 Test Device and Test Board Information

The TL7700-SEP is packaged in a 8-pin, TSSOP shown with pinout in Figure 4-1. The TL7700-SEP bias board used for the SEE characterization is shown in Figure 4-2 and bias diagram in Figure 4-3.



NC – No internal connection The package was decapped to reveal the die face for all heavy ion testing.



|            | and a   | UNIV. OP-AMP E                            | VM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | []e              | 100 L          |             |
|------------|---------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-------------|
|            |         | GENERATION 2                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |             |
|            |         | QUAD                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11/2/            |                |             |
|            |         | TSSOP - AREA 3                            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tex              | as             |             |
|            |         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Instrume         |                |             |
|            | NK-1-   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SLOP247<br>REV 2 | /              |             |
|            | 0 A 73  |                                           | R301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WWW.TI.Co        |                |             |
| -          | 0-0750M | R302                                      | R303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                |             |
| -2.1       | 0030    | C301                                      | C302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S.M              | A.             |             |
| 0          | 0000    | R304                                      | C303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                |             |
|            | 0000    | R305                                      | R306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                |             |
| 0          | 0000    | R307                                      | R308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | A301-          |             |
| -          | 0000    | C304                                      | C305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | A302-          |             |
|            | 0000    |                                           | R309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | A303+          |             |
|            | 0000    |                                           | C306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | A304+          |             |
|            | 0000    |                                           | <ul> <li>R310</li> <li>R312</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | A3_FLT         |             |
|            | 0000    |                                           | • R312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | A3_OUT         |             |
|            | 0000    |                                           | R313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | B301-<br>B302- |             |
|            | 0000    | And a | R315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | B302-          |             |
|            | 0000    |                                           | C310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                |             |
|            | 0000    | (Martineers)                              | R318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                |             |
|            | 0000    | 0 0319                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | B3_OUT         |             |
|            |         | R320                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | V3-            |             |
|            |         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | AB3/SD         |             |
|            | 000     | The state                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000              | GND3           |             |
| 1000       | 000     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | CD3/SD         |             |
| C.L. LEWIS | 0000    | Million Provident                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000              | VREF3          |             |
|            | 0000    | 0302                                      | The state of the s |                  | V3+            |             |
|            |         |                                           | C313 C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | v3+<br>C301-   |             |
|            | 0000    |                                           | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                |             |
|            |         | Z 🗾 C316 🔟                                | R322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | C302-          |             |
|            |         | R323                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000              | C303+          |             |
|            |         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000             | C304+          |             |
|            |         | KOZO IN                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000              |                |             |
|            | 000     | 🖅 🔯 Ç318 🔯                                | E 2319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | C3 OUT         | 100 A 100 A |

Figure 4-2. TL7700-SEP Bias Board Used for SEE Testing



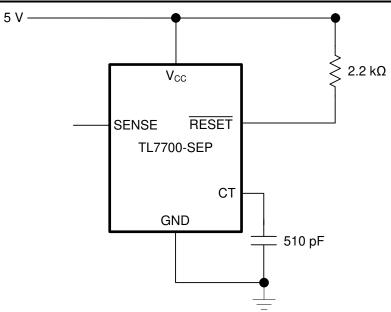



Figure 4-3. TL7700-SEP Bias Diagram



# **5 Irradiation Facility and Setup**

The heavy ion species used for the SEE studies on this product were provided and delivered by the TAMU Cyclotron Radiation Effects Facility [3] using a superconducting cyclotron and advanced electron cyclotron resonance (ECR) ion source. Ion beams are delivered with high uniformity over a 1-in diameter circular cross sectional area for the in-air station. Uniformity is achieved by means of magnetic defocusing. The intensity of the beam is regulated over a broad range spanning several orders of magnitude. For the bulk of these studies, ion fluxes between 10<sup>4</sup> and 10<sup>5</sup> ions/s-cm<sup>2</sup> were used to provide heavy ion fluences between 10<sup>6</sup> and 10<sup>7</sup> ions/cm<sup>2</sup>. For these experiments silver (Ag) and copper (Cu) ions were used. Ion beam uniformity for all tests was in the range of 91% to 99%.

The TL7700-SEP test board used for the experiments at the TAMU facility is shown in Figure 3. Although not visible in this photo, the beam port has a 1-mil Aramica (DuPont® Kevlar®) 1-in diameter window to allow in-air testing while maintaining the vacuum within the accelerator with only minor ion energy loss.



# 6 Depth, Range, and $\text{LET}_{\text{EFF}}$ Calculation

|            | 🛷 Seuss 2021                        |                             |                                             |                     |                    | ×                                         |
|------------|-------------------------------------|-----------------------------|---------------------------------------------|---------------------|--------------------|-------------------------------------------|
| <b>↑</b>   | Current settings                    | Cyclotron operator controls |                                             | User controls       |                    |                                           |
|            | Log file: CI-TAMU Feb 2020          | Enable                      | Open S1 Close S1                            | Layers: Define      | Load Edit          | Reports (click to view):                  |
|            | Beam: 15.0 MeV/u Ag @ K500          | Select log file             | Open S2 Close S2                            | Control Positioning | Set Run Parameters | User file contents<br>Run summary         |
| _          | Al degrader (mil): 0.000            |                             | et Hardware Check Beam                      | Set Options         |                    | Layer details<br>Log file<br>User options |
| E          | Layers: 4(TL7700_) Summary          | Select Beam                 | Detector Shield                             | Help                | Run                | Current settings<br>Range table           |
| PO Nitride | Beam energy (MeV/u): 9.80           |                             | AT M                                        | Comment             |                    | Beam history                              |
| Motal 1    | Beam energy (MeV): 1067             | Change Setup                | Exit Program                                |                     | To Log File T      | o Test File To Screen                     |
| Oxide      | Target substrate: silicon           | CYCLOTRO                    | N INSTITUTE                                 | Calibration factor: |                    |                                           |
|            | Nominal LET (MeVcm²/mg): 48.0       | Radiation Effect            | ts Testing Facility                         | Measure             | Se                 | t 🗌 Lock 🗔 T=0                            |
| Silicon    | Nominal range (µm): 92.6            | Positioning coordinates     | Beam characteristics                        |                     |                    |                                           |
|            | Effective LET (MeVcm²/mg): 48.0     | × -0.000 in                 | Flux (ions/(cm²s)):                         | 2.38E+004 TL        | 2355               | 2357 TR                                   |
|            | Effective range (µm): 92.6          | Y -0.000 in                 | Uniformity (%):                             | 98                  | CSC 2380           | o csc 🔀                                   |
|            | DUT Location: In-air                | Z -0.000 cm                 |                                             |                     | ·                  |                                           |
|            | DUT Position: Current               | T -0.000 deg                | Central shift (%):                          | 1 BL                | 2288               | 2397 BR                                   |
|            | Bias (V): 380 380 377 350 290       | U 0.000 deg                 | Axial gain:                                 | 1.01E+000           |                    |                                           |
|            | Beam flux control (simulation only) | V 0.000 in                  | Calibration factor:<br>Refresh in 7651 cnts | 9.91E-001           |                    |                                           |
| •          | Increase Decrease                   | S -0.000 steps              | Status:                                     |                     |                    | Clear                                     |
|            | Show Attenuation Factor             | R 0.000 deg                 |                                             |                     |                    |                                           |

# Figure 6-1. Generalized Cross Section of the JI1 Technology BEOL Stack on the TL7700-SEP [Left] and GUI of Seuss Application Used to Determine Key Ion Parameters [Right]

The TL7700-SEP is fabricated in the TI Linear JI1-Bipolar process with a back-end-of-line (BEOL) stack consisting of one level of standard thickness aluminum. The total stack height from the surface of the passivation to the silicon surface is 8.6µm based on nominal layer thickness as shown in Figure 6-1. No polyimide or other coating was present; the uppermost layer was the nitride passivation layer (PON). Effective LET (LET<sub>EFF</sub>) at the surface of the silicon substrate, the depth, and the ion range was determined using TAMU's Seuss application shown in Figure 6-1. The Seuss software accounts for energy loss through the 1-mil thick Aramica beam port

7



window, the 40-mm air gap, angle of incidence, and the BEOL stack over the TL7700-SEP. Results of the calculations performed by Seuss are shown in Table 6-1, and in the the LET<sub>EFF</sub> and Range plot in Figure 6-2.

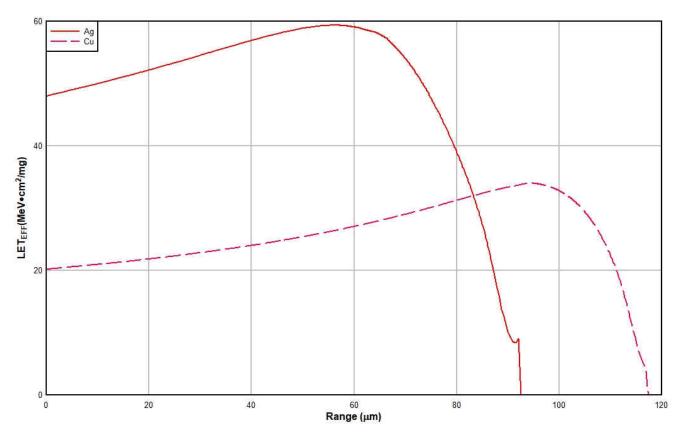


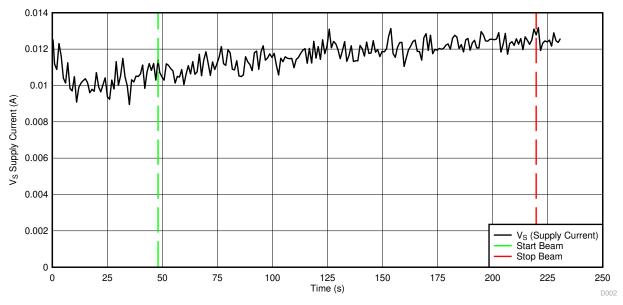

Figure 6-2. Plot of  $\mathsf{LET}_{\mathsf{EFF}}$  and Range in TL7700-SEP for Ag and Cu

| lon Type          | Air Distance (mm) | Angle of Incidence<br>(°) | Depth in Silicon<br>(µm) | Range in Silicon<br>(µm) | LET <sub>EFF</sub> (MeV·cm²/mg) |
|-------------------|-------------------|---------------------------|--------------------------|--------------------------|---------------------------------|
| <sup>109</sup> Ag | 40                | 0                         | 92.6                     | 92.6                     | 48.47                           |
| <sup>63</sup> Cu  | 40                | 0                         | 117.4                    | 117.4                    | 20                              |

| Table 6-1. Ion LET <sub>EFF</sub> | , Depth, and | Range in | Silicon |
|-----------------------------------|--------------|----------|---------|
|-----------------------------------|--------------|----------|---------|

# 7 Results

### 7.1 Single Event Latch-Up (SEL)


During SEL characterization, the device was heated using forced hot air, maintaining the IC temperature at 125°C. The temperature was monitored by means of a K-type thermocouple attached as close as possible to the IC. The species used for the SEL testing was a silver ( $^{109}$ Ag) ion with an angle-of-incidence of 0° for an LET<sub>EFF</sub> = 43 MeV-cm<sup>2</sup>/mg. The kinetic energy in the vacuum for this ion is 1.634 GeV (15-MeV/amu line). A flux of approximately 10<sup>5</sup> ions/cm<sup>2</sup>-s and a fluence of approximately 10<sup>7</sup> ions were used for three runs. The V<sub>s</sub> supply voltage is supplied externally on board at recommended maximum voltage setting of 40 V and the Vsense is set at 0.503 V. Run duration to achieve this fluence was approximately 2 minutes. No SEL events were observed during the run shown in Table 7-1. Figure 7-1 shows a plot of the current vs time.

7.1.1

#### Table 7-1. TL7700-SEP SEL Conditions Using <sup>109</sup>Ag at an Angle-of-Incidence of 0°

| RUN # | DISTANCE<br>(mm) | TEMPERATURE<br>(°C) | ION | ANGLE | FLUX<br>(ions∙cm²/mg)  | FLUENCE<br>(# ions)    | LET <sub>EFF</sub><br>(MeV.cm²/mg) |
|-------|------------------|---------------------|-----|-------|------------------------|------------------------|------------------------------------|
| 44    | 40               | 125                 | Ag  | 0°    | 1.00 × 10 <sup>5</sup> | 1.00 × 10 <sup>7</sup> | 43                                 |

No SEL events were observed, indicating that the TL7700-SEP is SEL-immune at LET<sub>EFF</sub> = 43 MeV-cm<sup>2</sup>/mg and T = 125°C. Using the MFTF method described in Appendix A, the upper-bound cross-section (using a 95% confidence level) is shown in Table 7-2.





| Table 7-2. | Upper | Bound | Cross | Section | for SEI |
|------------|-------|-------|-------|---------|---------|
|            | opper | Dound | 01033 | Section |         |

| LET <sub>EFF</sub><br>(MeV·cm <sup>2</sup> /mg) | Total Fluence<br>(# ions) | # of Events | Cross-Section<br>[cm <sup>2</sup> /device] |  |
|-------------------------------------------------|---------------------------|-------------|--------------------------------------------|--|
| 43                                              | 2.00 × 10 <sup>7</sup>    | 0           | 1.84 × 10 <sup>-7</sup>                    |  |

### 7.2 Single-Event-Burnout (SEB)

The device was evaluated for SEB at the maximum recommended voltage of 40 V. The RESET output of the device was set to the logical low state by forcing a voltage below the 0.5 V reference of 0.45 V into the SENSE pin of the device. The species used for the SEB testing was a silver ( $^{109}$ Ag) ion with an angle-of-incidence of 0° for an LET<sub>EFF</sub> = 48 MeV-cm<sup>2</sup>/mg. A flux of approximately 10<sup>5</sup> ions/cm<sup>2</sup>-s and a fluence of approximately 2 × 10<sup>7</sup> ions were used. During SEB testing, no abnormal behaviour was observed in the input current.

#### 7.2.1

#### Table 7-3. TL7700-SEP SEB Conditions Using <sup>109</sup>Ag at an Angle-of-Incidence of 0°

| RUN # | DISTANCE<br>(mm) | TEMPERATURE<br>(°C) | ION | ANGLE | FLUX<br>(ions∙cm²/mg)  | FLUENCE<br>(# ions)    | LET <sub>EFF</sub><br>(MeV·cm²/mg) |
|-------|------------------|---------------------|-----|-------|------------------------|------------------------|------------------------------------|
| 7     | 40               | 25                  | Ag  | 0°    | 1.00 × 10 <sup>5</sup> | 2.00 × 10 <sup>7</sup> | 48.47                              |

During SEB testing the RESET output was set to the logical low state, and the input current was monitored for increases that would indicate a momentary upset that changed the output state of the deivce. The device was not damaged in testing, and no increases in device input current current were observed over the period of approximately 200 seconds needed to reach the target fluence of  $2 \times 10^7$  ions.

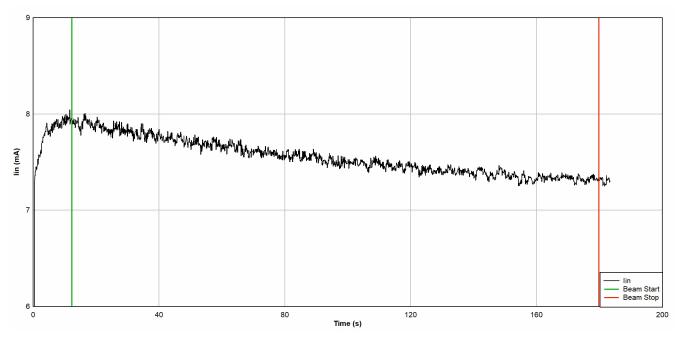



Figure 7-2. Current vs Time (I vs t) Data for V<sub>s</sub> Current During SEB Run #7

| LET <sub>EFF</sub> Total Fluence           (MeV·cm²/mg)         (# ions) |                        | # of Events | Cross-Section<br>[cm <sup>2</sup> /device] |
|--------------------------------------------------------------------------|------------------------|-------------|--------------------------------------------|
| 48.47                                                                    | 2.00 × 10 <sup>7</sup> | 0           | 1.84 × 10 <sup>-7</sup>                    |

Table 7-4. Upper Bound Cross Section for SEB

# 7.3 Single-Event Transients (SET)

SETs are defined as heavy-ion-induced transients on the RESET of the TL7700-SEP. SET testing was performed at room temperature (no external temperature control used), using Silver (<sup>109</sup>Ag) and Copper (<sup>63</sup>Cu) heavy-ions. For both ions an angle of 0° for LET<sub>EFF</sub> of 20 and 48 MeV·cm2 /mg, respectively. Two units underwent SET characterization, one was exposed to <sup>109</sup>Ag during two tests where the output was set to logical high, and two where the output was logical low. A second unit was used for one output high and one output low test while being exposed to <sup>63</sup>Cu. During tests where the output was high, transients were captured using a negative edge trigger at the enable low value of 1.05 V, for output low tests the rising enable value of 1.18 V was selected and a rising edge trigger was used to capture transients. The reason these values were selected was that in most cases the TL7700-SEP will be used to disable a point of load when the output voltage goes below a desired voltage that is considered problematic for the system in case. The device was evaluated for SET at the minimum recommended voltage of 1.8-V. Usually the minimum voltage is considered the worst-case condition for SET. Run duration needed to achieve fluences used in the six tests shown in Table 7-5 ranged from 10 seconds to 1 minute.

Transients consisted of a partial or full dropout of the voltage from the output of the device. These dropouts typically recovered quickly (less than 100µs) and had a maximum duration of approximately 140µs. The histogram of all recorded transients is shown on Figure 7-3. Time domain plots for typical transients are shown on Figure 7-4 and Figure 7-5, for the slow and fast transient time, respectively.

#### 7.3.1

| RUN # | DISTANCE<br>(mm) | TEMPERATUR<br>E<br>(°C) | ION | ANGLE | FLUX<br>(ions∙cm²/mg<br>) | FLUENCE<br>(# ions) | LET <sub>EFF</sub><br>(MeV·cm²/<br>mg) | RESET | Number of<br>Transients<br>(#) |
|-------|------------------|-------------------------|-----|-------|---------------------------|---------------------|----------------------------------------|-------|--------------------------------|
| 1     | 40               | 25                      | Ag  | 0°    | 1.00E+04                  | 1.00E+06            | 48.47                                  | High  | 2054                           |
| 2     | 40               | 25                      | Ag  | 0°    | 1.00E+04                  | 3.00E+06            | 48.47                                  | High  | 5788                           |
| 3     | 40               | 25                      | Ag  | 0°    | 1.00E+04                  | 1.00E+06            | 48.47                                  | Low   | 1                              |
| 4     | 40               | 25                      | Ag  | 0°    | 1.00E+04                  | 5.00E+06            | 48.47                                  | Low   | 0                              |
| 5     | 40               | 25                      | Cu  | 0°    | 1.00E+04                  | 1.00E+06            | 20                                     | High  | 1771                           |
| 6     | 40               | 25                      | Cu  | 0°    | 1.00E+04                  | 1.00E+06            | 20                                     | Low   | 0                              |

#### Table 7-5. TL7700-SEP SET Conditions Using <sup>109</sup>Ag and <sup>63</sup>Cu at an Angle-of-Incidence of 0°

During tests where the device's output was set to the logical high state, the number of captured transients scaled linearly with the fluence the device was exposed to. After post-processing it was observed that in some instances more than a single transient per record was present. In the cases that all the waveforms were not saved into memory the transient linearly scale by using the following formula:

# of Upsets = 
$$\left(\frac{\# \ of \ Upsets \ After \ Post - Processing}{\# \ of \ Recorded \ Upsets}\right) \times Total \ Count \ of \ Triggers$$
 (1)

For the case in which the output was set to the logical low state, only one transient was observed at  $LET_{EFF} \approx 48$  MeV·cm<sup>2</sup>/mg, this transient was observed at the beginning of the run.



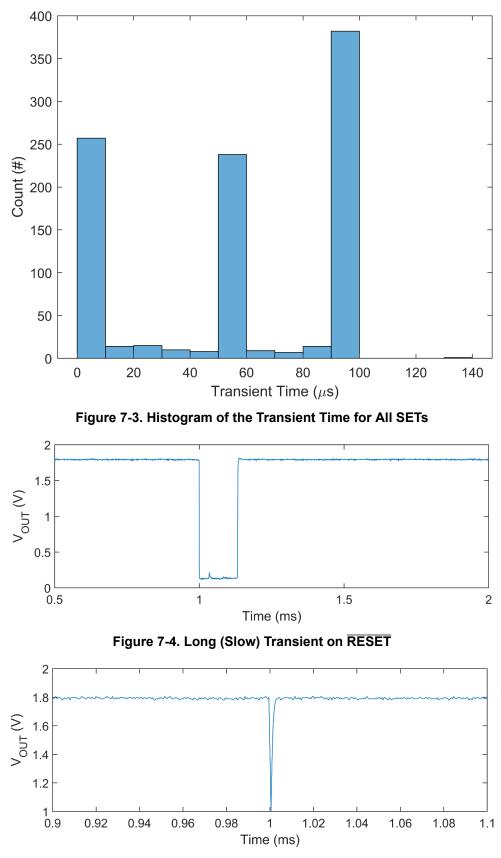



Figure 7-5. Short (Fast) Transient on RESET

| LET <sub>EFF</sub><br>(MeV·cm²/mg) | RESET | Total Fluence<br>(# ions) | # of RESET Transients | RESET Cross-<br>Section<br>[cm <sup>2</sup> /device] |
|------------------------------------|-------|---------------------------|-----------------------|------------------------------------------------------|
| 48.47                              | High  | 4.00 × 10 <sup>6</sup>    | 7842                  | 2.00 × 10 <sup>-3</sup>                              |
| 40.47                              | Low   | 6.00 × 10 <sup>6</sup>    | 1                     | 9.29 × 10 <sup>-7</sup>                              |
| 20                                 | High  | 1.00 × 10 <sup>6</sup>    | 1771                  | 1.86 × 10 <sup>-3</sup>                              |
| 20                                 | Low   | 1.00 × 10 <sup>6</sup>    | 0                     | 3.70 × 10 <sup>-6</sup>                              |

### Table 7-6. Upper Bound Cross Section for RESET SETs

# 8 Event Rate Calculations

Event rates were calculated for LEO (ISS) and GEO enviornments by combining CREME96 orbital integral flux estimations and simplified SEE cross-sections according to methods described in Heavy Ion Orbital Environment Single-Event Effects Estimations application report. We assume a minimmum sheilding configuration of 100 mils (2.54 mm) of aluminum, and "worst-week" solar activity (this is similar to a 99% upper bound for the enviornment). Using the 95% upper-bounds for the SET, SEL, and SEB. Event rate calculation for SEL and SEB is shown on table Table 8-1 and Table 8-2 respectively. It is important to note that these numbers are for refrecnce since no SEL or SEB events were observed.

| Orbit<br>Type | Onset LET <sub>EFF</sub><br>(MeV·cm²/mg) | CREME96 Integral<br>FLUX (/day/cm <sup>2</sup> ) | σSAT (cm²)              | Event Rate (/<br>day)     | Event Rate (FIT)         | MTBE (Years)            |
|---------------|------------------------------------------|--------------------------------------------------|-------------------------|---------------------------|--------------------------|-------------------------|
| LEO (ISS)     | 40                                       | 4.56 × 10 <sup>-4</sup>                          | 1.84 × 10 <sup>-7</sup> | 1.178 × 10 <sup>-10</sup> | 4.907 × 10 <sup>-3</sup> | 2.326 × 10 <sup>7</sup> |
| GEO           | 43                                       | 1.497 × 10 <sup>-3</sup>                         | 1.04 ^ 10 *             | 3.997 × 10 <sup>-10</sup> | 1.665 × 10 <sup>-2</sup> | 6.855 × 10 <sup>6</sup> |

#### Table 8-1. SEL Event Rate Calculations for Worst-Week LEO and GEO Orbits

#### Table 8-2. SEB Event Rate Calculations for Worst-Week LEO and GEO Orbits

| Orbit<br>Type | Onset LET <sub>EFF</sub><br>(MeV·cm²/mg) | CREME96 Integral<br>FLUX (/day/cm <sup>2</sup> ) | σSAT (cm²)              | Event Rate (/<br>day)     | Event Rate (FIT)         | MTBE (Years)            |
|---------------|------------------------------------------|--------------------------------------------------|-------------------------|---------------------------|--------------------------|-------------------------|
| LEO (ISS)     | 48.47                                    | 4.56 × 10 <sup>-4</sup>                          | 1.84 × 10 <sup>-7</sup> | 8.021 × 10 <sup>-11</sup> | 3.342 × 10 <sup>-3</sup> | 3.416 × 10 <sup>7</sup> |
| GEO           | 40.47                                    | 1.497 × 10 <sup>-3</sup>                         | 1.04 ^ 10               | 2.624 × 10 <sup>-10</sup> | 1.093 × 10 <sup>-2</sup> | 1.044 × 10 <sup>7</sup> |

#### Table 8-3. RESET Low SET Event Rate Calculations for Worst-Week LEO and GEO Orbits

| Orbit<br>Type | Onset LET <sub>EFF</sub><br>(MeV·cm²/mg) | CREME96 Integral<br>FLUX (/day/cm <sup>2</sup> ) | σSAT (cm²)              | Event Rate (/<br>day)    | Event Rate (FIT)        | MTBE (Years)            |
|---------------|------------------------------------------|--------------------------------------------------|-------------------------|--------------------------|-------------------------|-------------------------|
| LEO (ISS)     | 20                                       | 4.56 × 10 <sup>-4</sup>                          | 9.29 × 10 <sup>-7</sup> | 4.788 × 10 <sup>-6</sup> | 1.549 × 10 <sup>2</sup> | 5.722 × 10 <sup>2</sup> |
| GEO           | 20                                       | 1.497 × 10 <sup>-3</sup>                         | 9.29 ~ 10               | 3.719 × 10 <sup>-5</sup> | 6.171 × 10 <sup>3</sup> | 7.367 × 10 <sup>1</sup> |



### 9 Summary

Radiation effects of TL7700-SEP radiation hardened supply-voltage supervisor in space enhanced plastic was studied. This device passed total dose rate of up to 20 krad(Si) and is latch-up and burn-out immune up to  $LET_{EFF} = 43 \text{ MeV-cm}^2/\text{mg}$  and T = 125°C. SET characterization for the deice is also presented and discussed.

#### **10 Revision History**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| С | hanges from Revision * (June 2022) to Revision A (August 2022) | Page |
|---|----------------------------------------------------------------|------|
| • | Added SEB and SET evaluation                                   |      |
| • | Added depth, range, and LET calculation                        | 7    |
| • | Added SEB results                                              | 9    |
| • | Added SET results                                              | 10   |
| • | Added SEB event rate calculations                              | 14   |



### A Confidence Interval Calculations

For conventional products where hundreds of failures are seen during a single exposure, one can determine the average failure rate of parts being tested in a heavy-ion beam as a function of fluence with high degree of certainty and reasonably tight standard deviation, and thus have a good deal of confidence that the calculated cross-section is accurate.

With radiation hardened parts however, determining the cross-section becomes more difficult since often few, or even, no failures are observed during an entire exposure. Determining the cross-section using an average failure rate with standard deviation is no longer a viable option, and the common practice of assuming a single error occurred at the conclusion of a null-result can end up in a greatly underestimated cross-section.

In cases where observed failures are rare or non-existent, the use of confidence intervals and the chi-squared distribution is indicated. The Chi-Squared distribution is particularly well-suited for the determination of a reliability level when the failures occur at a constant rate. In the case of SEE testing, where the ion events are random in time and position within the irradiation area, one expects a failure rate that is independent of time (presuming that parametric shifts induced by the total ionizing dose do not affect the failure rate), and thus the use of chi-squared statistical techniques is valid (since events are rare an exponential or Poisson distribution is usually used).

In a typical SEE experiment, the device-under-test (DUT) is exposed to a known, fixed fluence (ions/cm<sup>2</sup>) while the DUT is monitored for failures. This is analogous to fixed-time reliability testing and, more specifically, time-terminated testing, where the reliability test is terminated after a fixed amount of time whether or not a failure has occurred (in the case of SEE tests fluence is substituted for time and hence it is a fixed fluence test [5]). Calculating a confidence interval specifically provides a range of values which is likely to contain the parameter of interest (the actual number of failures/fluence). Confidence intervals are constructed at a specific confidence level. For example, a 95% confidence level implies that if a given number of units were sampled numerous times and a confidence interval estimated for each test, the resulting set of confidence intervals would bracket the true population parameter in about 95% of the cases.

In order to estimate the cross-section from a null-result (no fails observed for a given fluence) with a confidence interval, we start with the standard reliability determination of lower-bound (minimum) mean-time-to-failure for fixed-time testing (an exponential distribution is assumed):

$$MTTF = \frac{2nT}{\chi_2^2(d+1); 100(1-\frac{\alpha}{2})}$$
(2)

Where *MTTF* is the minimum (lower-bound) mean-time-to-failure, *n* is the number of units tested (presuming each unit is tested under identical conditions) and *T*, is the test time, and  $\chi^2$  is the chi-square distribution evaluated at  $100(1 - \alpha / 2)$  confidence level and where *d* is the degrees-of-freedom (the number of failures observed). With slight modification for our purposes we invert the inequality and substitute *F* (fluence) in the place of *T*:

$$MFTF = \frac{2nF}{\chi^2_2(d+1); 100(1-\frac{\alpha}{2})}$$
(3)

Where now *MFTF* is mean-fluence-to-failure and *F* is the test fluence, and as before,  $\chi^2$  is the chi-square distribution evaluated at 100(1 –  $\alpha$  / 2) confidence and where *d* is the degrees-of-freedom (the number of failures observed). The inverse relation between *MTTF* and failure rate is mirrored with the *MFTF*. Thus the upper-bound cross-section is obtained by inverting the *MFTF*:

$$\sigma = \frac{\chi_2^2(d+1); 100(1-\frac{\alpha}{2})}{2nF}$$
(4)

Assume that all tests are terminated at a total fluence of  $10^6$  ions/cm<sup>2</sup>. Also assume there are a number of devices with very different performances that are tested under identical conditions. Assume a 95% confidence level ( $\sigma = 0.05$ ). Note that as *d* increases from 0 events to 100 events the actual confidence interval becomes

smaller, indicating that the range of values of the true value of the population parameter (in this case the crosssection) is approaching the mean value + 1 standard deviation. This makes sense when one considers that as more events are observed the statistics are improved such that uncertainty in the actual device performance is reduced.

|                        |          |                     | Calculate                       | alculated Cross Section (cm <sup>2</sup> ) |                                 |  |
|------------------------|----------|---------------------|---------------------------------|--------------------------------------------|---------------------------------|--|
| Degrees-of-Freedom (d) | 2(d + 1) | χ <sup>2</sup> @95% | Upper-Bound @ 95%<br>Confidence | Mean                                       | Average + Standard<br>Deviation |  |
| 0                      | 2        | 7.38                | 3.69E-06                        | 0.00E+00                                   | 0.00E+00                        |  |
| 1                      | 4        | 11.14               | 5.57E-06                        | 1.00E-06                                   | 2.00E-06                        |  |
| 2                      | 6        | 14.45               | 7.22E–06                        | 2.00E-06                                   | 3.41E-06                        |  |
| 3                      | 8        | 17.53               | 8.77E-06                        | 3.00E-06                                   | 4.73E-06                        |  |
| 4                      | 10       | 20.48               | 1.02E–05                        | 4.00E-06                                   | 6.00E–06                        |  |
| 5                      | 12       | 23.34               | 1.17E–05                        | 5.00E-06                                   | 7.24E–06                        |  |
| 10                     | 22       | 36.78               | 1.84E05                         | 1.00E–05                                   | 1.32E–05                        |  |
| 50                     | 102      | 131.84              | 6.59E–05                        | 5.00E-05                                   | 5.71E–05                        |  |
| 100                    | 202      | 243.25              | 1.22E–04                        | 1.00E–04                                   | 1.10E–04                        |  |

| Table A-1. Experimental | <b>Example Calculation</b> | of MFTF and $\sigma$ Using | a 95% Confidence Interval |
|-------------------------|----------------------------|----------------------------|---------------------------|
|                         |                            |                            |                           |



# **B** References

- 1. M. Shoga and D. Binder, "Theory of Single Event Latchup in Complementary Metal-Oxide Semiconductor Integrated Circuits", *IEEE Trans. Nucl. Sci., Vol.* 33(6), Dec. 1986, pp. 1714-1717.
- 2. G. Bruguier and J. M. Palau, "Single particle-induced latchup", *IEEE Trans. Nucl. Sci., Vol. 43(2)*, Mar. 1996, pp. 522-532.
- 3. TAMU Radiation Effects Facility website. http://cyclotron.tamu.edu/ref/
- 4. "The Stopping and Range of Ions in Matter" (SRIM) software simulation tools website. www.srim.org/ index.htm#SRIMMENU
- 5. D. Kececioglu, "Reliability and Life Testing Handbook", Vol. 1, PTR Prentice Hall, New Jersey, 1993, pp. 186-193.
- 6. ISDE CRÈME-MC website.https://creme.isde.vanderbilt.edu/CREME-MC
- 7. A. J. Tylka, J. H. Adams, P. R. Boberg, et al., "CREME96: A Revision of the Cosmic Ray Effects on Micro-Electronics Code", *IEEE Trans. on Nucl. Sci., Vol. 44(6)*, Dec. 1997, pp. 2150-2160.
- 8. A. J. Tylka, W. F. Dietrich, and P. R. Boberg, "Probability distributions of high-energy solar-heavy-ion fluxes from IMP-8: 1973-1996", *IEEE Trans. on Nucl. Sci., Vol. 44(6)*, Dec. 1997, pp. 2140-2149.

### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated