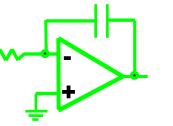

TI signal chain tech seminar for UIH

Van Yang Analog FAE van-yang@ti.com

The Signal Chain...



TI has an Amplifier For your Application

TI delivers a broad portfolio of amplifiers including precision and high speed op amps, instrumentation and differential amplifiers along with comparators. Ti has all types of packages to fi your space constrained needs.

High Speed Amplifiers...

- Test & Measurement
- Wireless/Wired Communications ____
- Defense: SIGINT, RADAR, EW

Low Power Amplifiers...

- Cellphones / Tablets
- Metering
- Mobile Devices

Audio Amplifiers...

- Cellphones / Tablets
- Portable Audio
- Home Theater
- Stand-alone speakers

Instrumentation Amplifiers...

- Scales
- Measurement
- Data Acquisition
- Medical

Precision Amplifiers...

- Battery Operated Systems
- Battery Monitoring
- High Impedance Sensors

Special Function Amplifiers...

- Audio Equipment
- Multiplexers
- High Impedance Sensors
- Opto-electronics

Comparators, Current Shunt Monitors, Difference Amplifiers, Voltage to Current, 4-20mA loop Amps, Video Amps, Voltage References

And More...

Ti Has All Types...

Precision Op Amps

Parameter	Value
Voltage Offset (Vos)	1µV – 20mV
Vos Drift	3nV/C - 50µV/⁰C
Input Voltage Noise	.88 – 800nV/rtHz
Input Bias Current	.02pA - 7µA

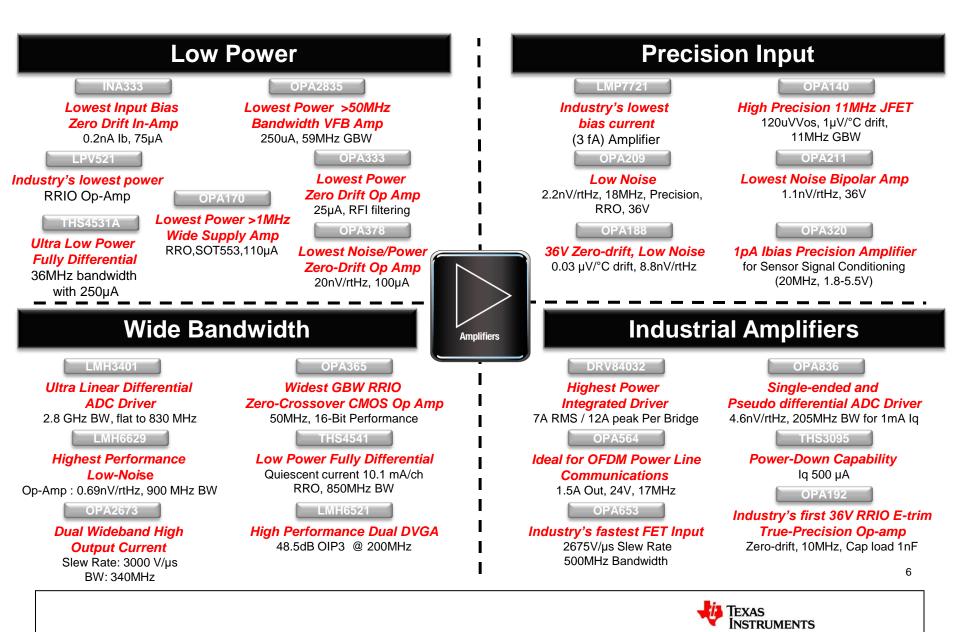
High Speed Op Amps		
Parameter Value		
Bandwidth	1MHz – 7 GHz	
Gain	1 – 19 V/V	
Slew Rate	1.4 – 18,000 V/µS	
Supply Current	.25 – 150mA	
Supply Voltage	1.4 – 44V	

Low Power Op Amps

Parameter	Value
Supply Current	.400nA – 5mA
Supply Voltage Range	1.1 – 45V
Voltage Offset (Vos)	5µV – 15mV
Package	1.9 – 170mm ²

Instrumentation Op Amps		
Parameter	Value	
CMRR	60 – 130dB	
Voltage Offset (Vos)	15µV – 10mV	
Input Offset Drift	0.1 - 850µV/⁰C	
Gain	.1 – 2000 V/V	
Input Bias Current	.025pA - 12µA	

Audio Op Amps		
Parameter	Value	
THD+Noise	0.003 - 0.00001%	
Input Voltage Noise	0.88 - 11nV/rtHz	
Slew Rate	3.7 – 2,000V/µS	
Supply Current	1.1mA – 23mA	



Product Nomenclature....

Prefix	Туре
ΟΡΑ	Operational Amplifier
INA	Instrumentation Amplifier or Difference Amplifier or Current Shunt
LOG	Logarithmic Amplifier
XTR	Current Loop Driver
PGA	Programable Gain Amplifier (Digital)
VCA	Voltage Controlled Variable Gain Amplifier
IVC	Current to Voltage Converter
TLV	Low Voltage CMOS Amplifiers & Comparators
TLC	CMOS Amplifier
TLE	Bipolar/BiFET Amplifier
TL	Bipolar Amplifier
THS	High Speed Amplifier
ТРА	Audio Power Amplifier
LMH	High Speed Amplifier
LMP	Current Shunt Monitor

Amplifiers At a Glance...

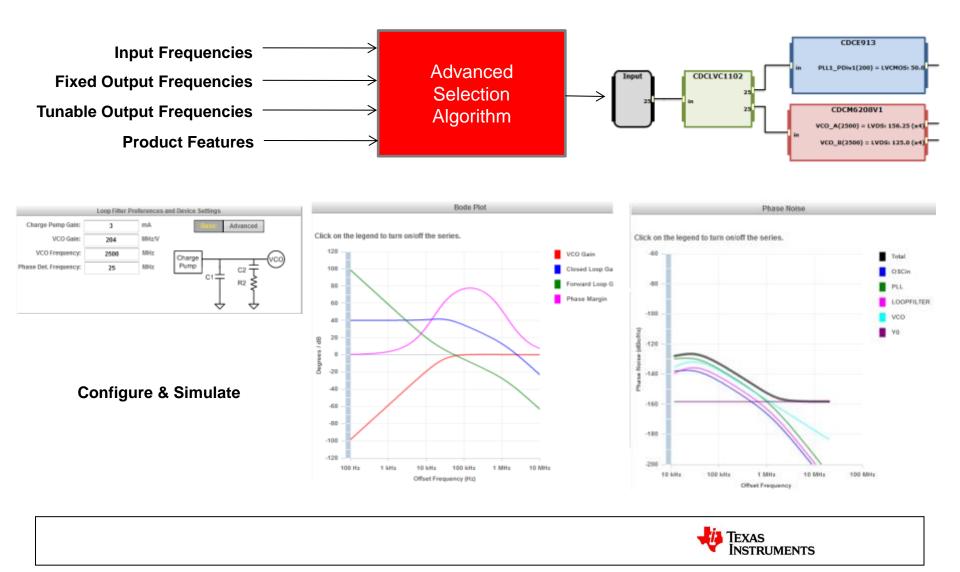
Tools & Resources....

Design Tools	
<u>TINA-TI</u>	SPICE-Based Analog Simulation Program
<u>FilterPro</u>	Active Filter Design Application
Opamps Selection Guide	Amplifier Product Selection Guide Software

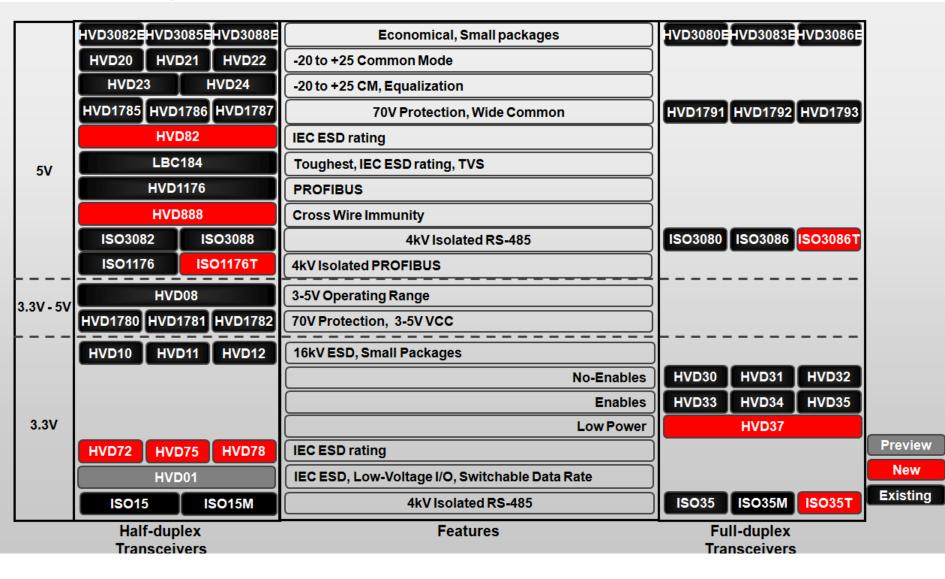
Haptic Feedback with Bluetooth® Low Energy and iOS App Reference Design

50 mA-20 A, Single-Supply, Low-Side or High-Side Current Sensing Solution

Low Side 0.5A 8ch Digital Output Module for PLC

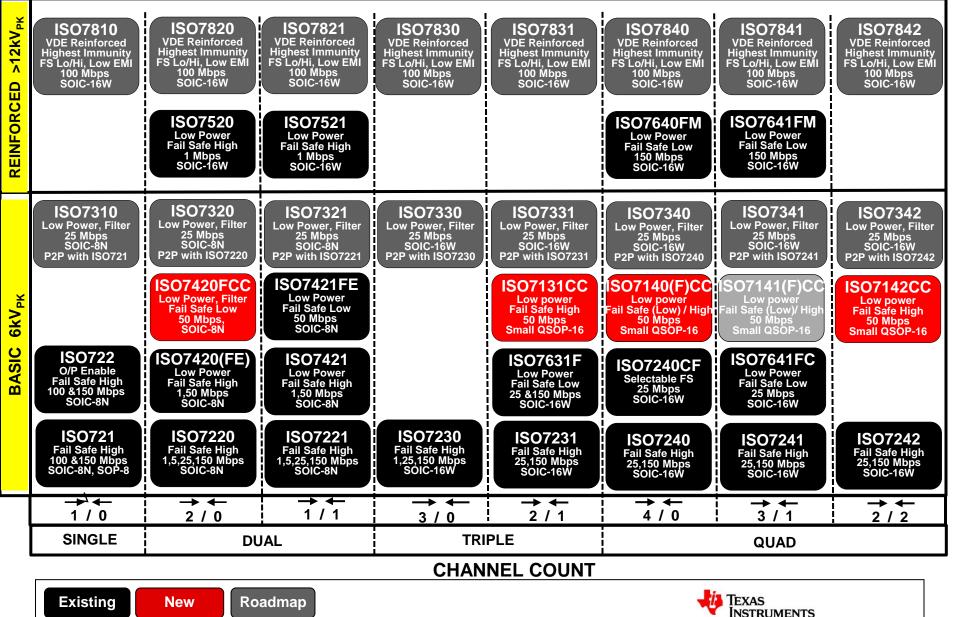

TI E2E[™] Community 📭 🎧

engineer to engineer, solving problems

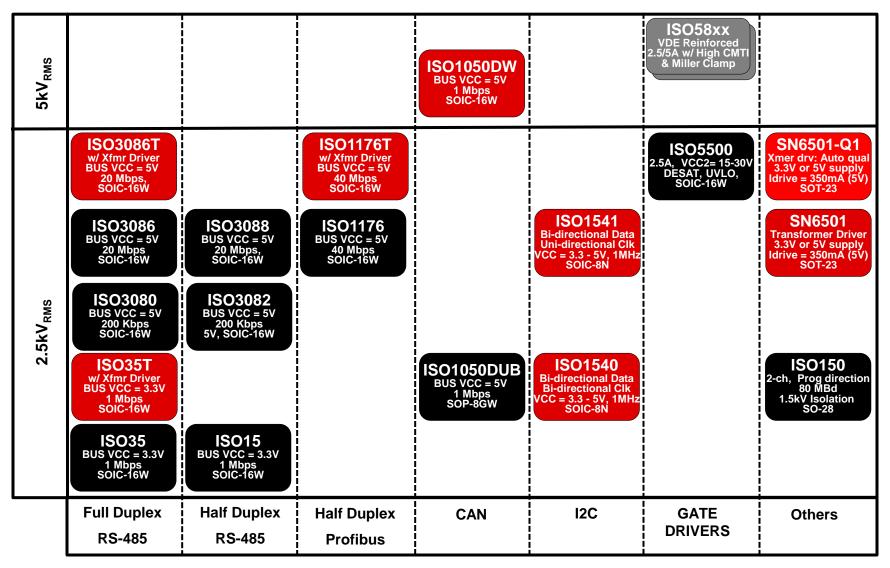


Clock & Tim Buffer / Distributor	ning Portfolio Clock Generator	Jitter Cleaner "Best Electronic Design 2012"	PLLatinum™ RF PLL / Synth
 Key Features Low additive jitter Integrated LDO Prog. outputs formats Prog. output dividers High max. clock freq Low output skew Replace Osc Applications Wired & wireless comm Telecom / Networking Test & measurement Medical Eq (Ultrasound,) Consumer / Prosumer 	 Key Foatures Ultra-low jitter Flexible in/out formats Flexible freq. plan Crystal or XO input Fractional / integer dividers I2C/SPI/EPROM Programming Crystals & ators Applications Wired & wireless comm Telecom / Networking Test & measurement Medical Eq (Ultrasound,) Consumer / Prosumer 	 Key Features Single or dual PLL Sub 50-fsec RMS jitter Maximum programmability High max. clock freq. Holdover mode JESD204B support Best Performance for smallest BOM for smallest BOM Mired & wireless comm Telecom / Networking Test & measurement Military & Satellite 	 Key Features High RF freq. range Low spurious fractional PLL Ultra wideband synth. Low phase noise & spurs Ultra-Low power for mobile Integrated VCO(s) Extend the Range of your Wireless Applications Wireless communications Test & measurement Consumer / Prosumer Military & Satellite Automotive
 One of the Largest Clock & Timing Portfolios Lead the Industry on Performance Easy Design-in with WEBENCH Clock Architect 		Devices	
LMK0033x – low-noise PCle LMK0030x – differential (PCle,) LMK0010x – single-ended CDCLVCxxx – single-ended LMK0180x – diff w/ dividers	CDCM6208 – ultra flexible LMK03806 – 100-fsec jitter CDCM9102 – PCIe Gen 2/3 CDCE(L)9xx – xtal replacement CDCS501/2 – xtal replacement	LMK04828 – JESD204B support LMK04906 – networking clocks LMK04816 – 4-in redundancy LMK0480x – 4-in redundancy	LMX2581 – wideband synth LMX2541 – low noise synth LMX2531 – low-power synth LMX248x – Frac-N PLL LMX2492 14 GHz PLL
		•	Texas Instruments

WEBENCH® Clock Architect



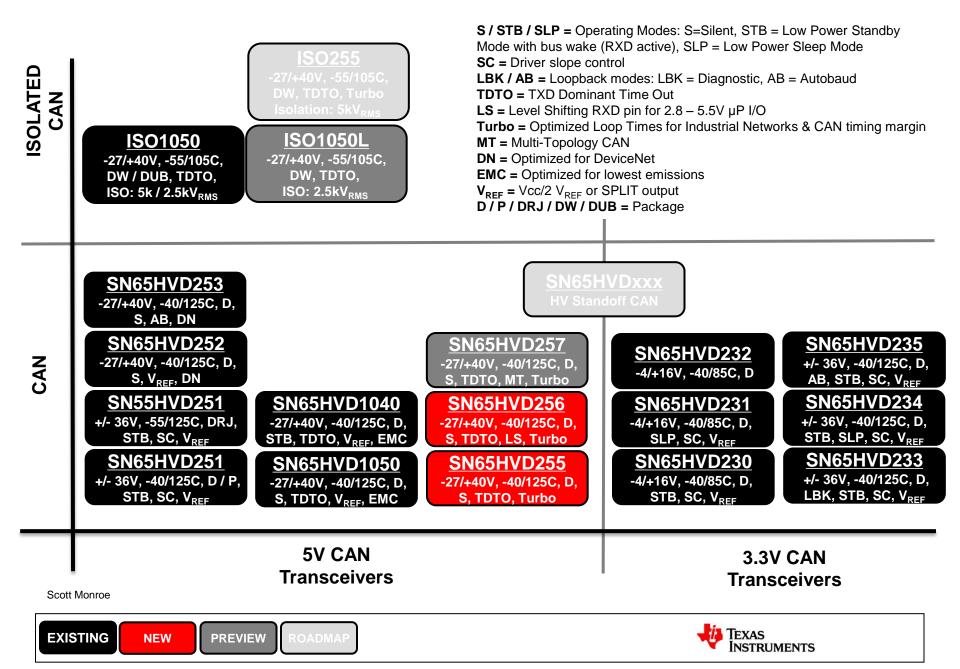
RS-485 portfolio



Digital Isolators Portfolio & Roadmap

Isolated Functions

New Roadmap


Reference Material

Go to <u>www.Tl.com</u> and enter the bold literature numbers into the Keyword Search field.

- Removing Ground Noise in Data Transmission Systems (slla268)
- Interface Circuits for TIA/EIA-485 (RS-485) (Rev. C) (slla036c)
- Detection of RS-485 signal loss (slyt257)
- Overtemperature Protection in RS-485 Line Circuits (slla200)
- Device spacing on RS-485 buses (slyt241)
- PROFIBUS Electrical-Layer Solutions (Rev. A) (slla177a)
- A statistical survey of common-mode noise (slyt153)
- Failsafe in RS-485 data buses (slyt080)
- The RS-485 unit load and maximum number of bus connections (slyt086)
- Using Signaling Rate and Transfer Rate (Rev. A) (slla098a)
- Operating RS-485 Transceivers at Fast Signaling Rates (slla173)
- RS-485 for E-Meter Applications (Rev. A) (slla112a)
- Failsafe in RS-485 Data Buses (slyt064)
- Use Receiver Equalization to Extend RS-485 Data Communications* (slla169)
- The RS-485 Unit Load and Maximum Number of Bus Connections (slla166)
- Comparing Bus Solutions (Rev. A) (slla067a)
- RS-485 for Digital Motor Control Applications (slla143)
- 422 and 485 Standards Overview and System Configurations (Rev. C) (slla070c)
- TIA/EIA-485 and M-LVDS, Power and Speed Comparison (slla106)
- Live Insertion with Differential Interface Products (slla107)
- The ISO72x Family of High-Speed Digital Isolators (slla198)

TI CAN Transceiver Portfolio

Silicon Temp. Sensors (Thermistor Alternative)

	2014 Her	o Products	
Digital Output: Thermistor Alternative utilizing I2C, SPI, or other Digital interfaces	TMP112: TMP103: SOT-563 Pkg, Iq 10uA WCSP 0.76x0.76mm, (Max), Iq 3uA (Max), Local = 3°C		Eliminates calibration needs making it easier on the software
Analog Output:Thermistor Alternative providesincreased linearity, accuracy, andpower consumption across a wideTemp. Range		50 to 150C, SC70 Pkg, Local =	 Added power savings Fewer components for smaller, easier layout Highly linear across temperature
SPI Output: SPI TM -Compatible ADC device with an integrated temp. sensor Voltage[V] vs. Temperature [°C] Voltage[V] vs. Temperature [°C] Voltage[V] vs. Temperature [°C]		1018: grated Temp. Sensor C accuracy Ultra-Small OEN LMT87/NTC Output Error [°C] vs. Temp -20 0 20 0 0 0 0 100 120 -20 0 0 0 0 0 0 0 100 120 -20 0 0 0 0 0 0 0 100 120 -20 0 0 0 0 0 0 0 0 0 100 120 -20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SPI output temperature sensor

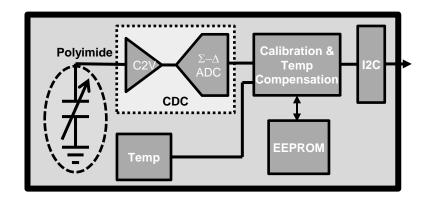
HDC1000

Integrated Low Power Humidity and Temperature Digital Sensor

Features

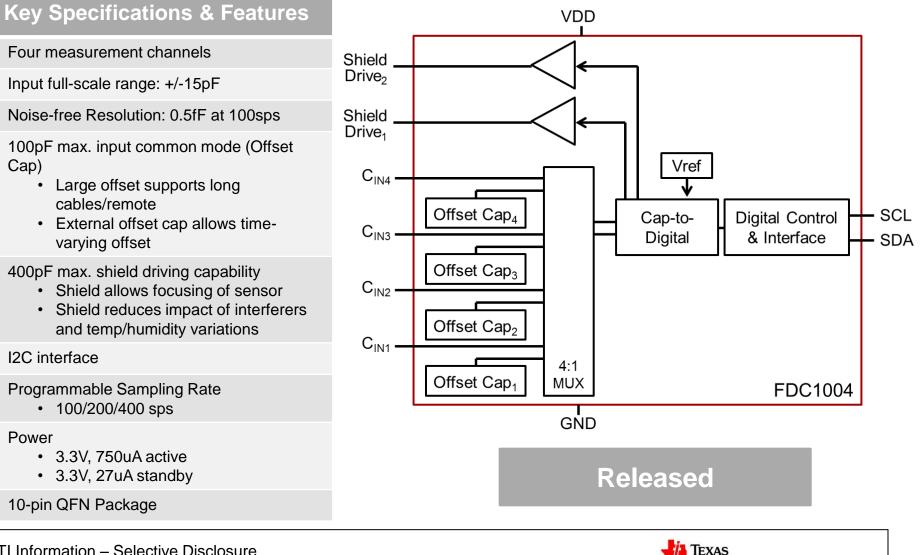
- Relative Humidity Range
 0% to 100%
- Humidity Accuracy ±3%
- Supply Current (Measuring) 110 uA
- Avg. Supply Current (H+T @1sps) 1.2uA
- Temperature Accuracy
- Temperature Range -40°C to +125°C
- Operating Voltage
- Package

- 3V to 5V 8 pin WCSP (1 59 x 2 04mm)
- (1.59 x 2.04mm)


±0.2°C

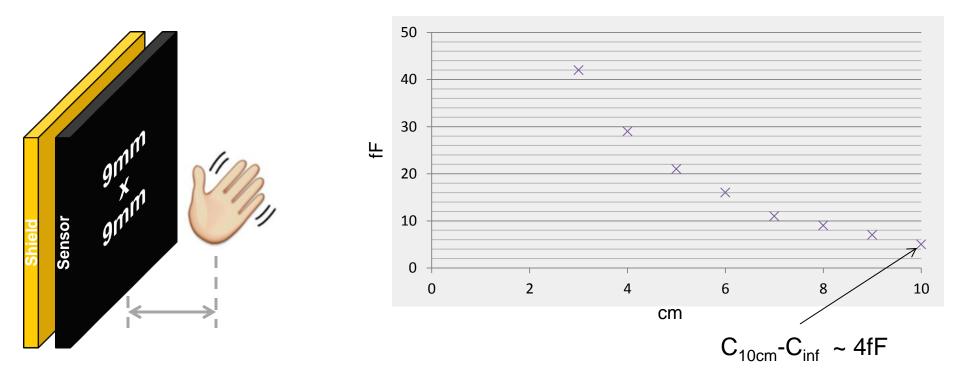
Applications

- HVAC
- White goods (dryer, fridge, microwave, dishwasher)
- Printers
- Handheld Meters
- Camera Defog
- Smart Thermostats and Room Monitors
- Medical Devices


Benefits

- Completely integrated humidity and temperature IC provides guaranteed performance
- Fully calibrated sensor enables quick time-to-market
- Very low power consumption
- Small package size supports compact designs

FDC1004 4-Ch General Purpose Cap-to-Digital Converter


NSTRUMENTS

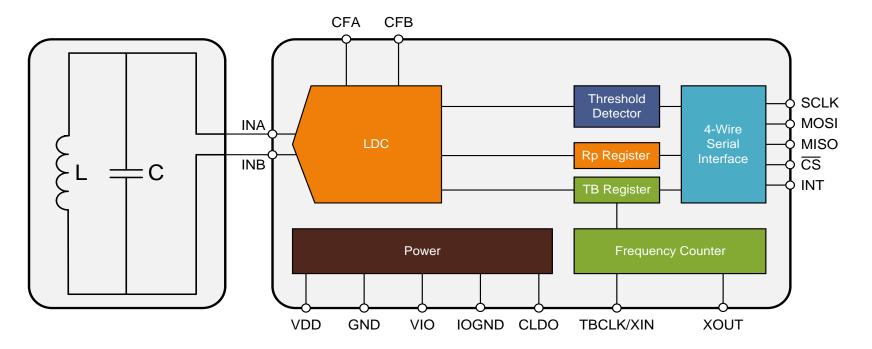
TI Information – Selective Disclosure

•

FDC Applications

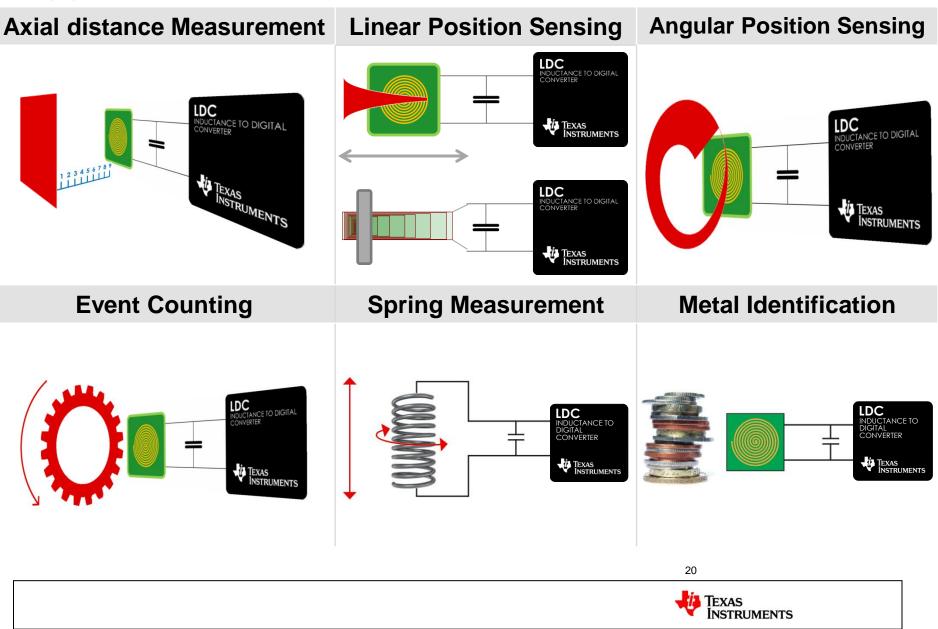
→ Detecting a target at 10cm can be achieved with the FDC1004 resolution

Advantages vs.	Lower power solution
Existing	Lower system cost
Technologies	Flexible sensor design


- Display wakeup
- Car kick sensor
- Door activation

TI Information – Selective Disclosure

LDC1000

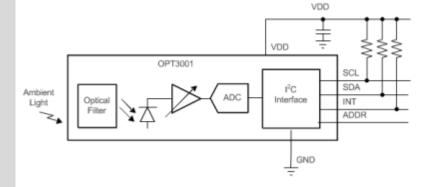

	Oscillation Frequency Range 5kHz-5MHz		
	Oscillation Amplitudes	1Vpp, 2Vpp, 3Vpp, 4Vpp	Power
LDC	Rp Range	1.25kΩ-5MΩ	
LDC	Rp Measurement Resolution	0.1%	Interface
	Response Time	96-3072 cycles	Intenace
	Recovery Time	<10* T osc	Packago
f Counter	Time-Base Clock/XTAL Frequency	8MHz	Package

	VDD Range	4.5-5.5V
Power	VIO Range	3.0-3.6V
	Isupply	2mA (max)
Interface	Interface	4-Wire SPI
Intenace	Interface Speed	4MHz
Package	Package	DFN
Fackage	Pin Count	16

Application Use Cases

OPT3001: Ambient Light Sensor

Features


- High Performance Optical Filtering To Match The Human Eye.
 - Over 99% IR rejection
- Broad Capabilities:
 - Wide Dynamic Range: 0.01 Lux to 83k Lux
 - 23-Bit Effective Resolution
- Automatic Gain Configuration
- Ultra Low Power & Small Packaging
 - Supply Range: 1.6V to 3.6V
 - Quiescent Current: 2.5uA (max)
 - Shutdown Current: 1uA (max)
 - 2.0 x 2.0mm

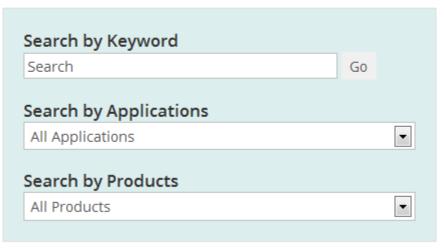
Benefits

- Directly reports out Lux equivalent to what the human eye perceives regardless of light source (Sun, Halogen, Incandescent, Fluorescent, LED)
 - Strong IR rejection helps maintain accuracy when sensor is placed behind dark glass
- High resolution even at low light levels
- Simplifies system design
 - Automatically maximize full scale range of ADC in all lighting conditions

- Backlight Control
 - Thermostat, Notebook, Tablets
- Outdoor Displays
 - Digital Signage, Sporting Equipment with displays
- Building Automation
 - Daylight Sensors & Artificial lighting control

TI designs

TI Home >



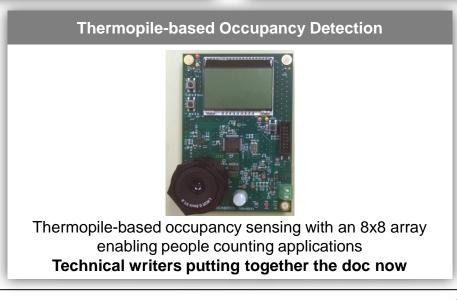
Reference Design Library

Jump start system design and speed time to market

- Comprehensive designs include schematics or block diagrams, BOMs, design files and test reports
- » Created by experts with deep system and product knowledge
- » Spans TI's portfolio of analog, embedded processor and connectivity products
- » Supports a broad range of applications including industrial, automotive, consumer, medical and more
- View the Important Notice for TI Designs covering authorized use, intellectual property matters and disclaimers.

Search TI Designs

TI designs example


Contactless Current Sensing using Hall Sensing

Contactless monitoring for AC wire loads using the DRV5053 Hall Sensor

Capacitive-based technology using conductive ink/paint as sensor for flexible industrial design

Thank You

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated