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Introduction

Analog Applications Journal is a collection of analog application articles
designed to give readers a basic understanding of TI products and to provide
simple but practical examples for typical applications. Written not only for
design engineers but also for engineering managers, technicians, system
designers and marketing and sales personnel, the book emphasizes general
application concepts over lengthy mathematical analyses.

These applications are not intended as “how-to” instructions for specific
circuits but as examples of how devices could be used to solve specific design
requirements. Readers will find tutorial information as well as practical
engineering solutions on components from the following categories:

e Data Acquisition

e Power Management

e Interface (Data Transmission)
e Amplifiers: Op Amps

Where applicable, readers will also find software routines and program
structures. Finally, Analog Applications Journal includes helpful hints and
rules of thumb to guide readers in preparing for their design.
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Clock jitter analyzed in the time
domain, Part 2

By Thomas Neu

Systems and Applications Engineer

Introduction Figure 11. Test setup for correlation with filtered clock
Part 1 of this three-part article series

focused on how to accurately estimate

jitter from a clock source and combine it CDCE72010 Gl 1R
with the aperture jitter of an ADC. In this Clock-Source | | Clock Synf‘hronizer
article, Part 2, that combined jitter will be 10-MHz Generator | | Jittor Cleaner
used to calculate the ADC’s signal-to-noise Reference i
ratio (SNR), which will then be compared i

MV Y T $ 3900909 ———- 122.88-MHz
against actual measurements. Signal-Source Clock E5052A

. . gGenerator A Signal-Source
Measurements with filtered Bandpass /—\ Analyzer
sampling clock Filter ;
An experi h 1l '
periment was set up to .see oW we Bandpass /_\ J

the measured clock phase noise matched Filter L
the clock jitter extracted from the ADC’s | fin . /ADS54RF63[
measured SNR. As shown in Figure 11, a "N\ ADS5483 |
Texas Instruments (TI) CDCE72010 with a
Toyocom 491.52-MHz VCXO was used to

generate a 122.88-MHz sampling clock, and

the filtered phase-noise output was mea-
sured with the E5052A from Agilent. Two Figure 12. Measured phase noise of the filtered clock

different TI data converters (ADS54RF63
and ADS5483) were evaluated by using an
input frequency whose SNR was predomi-
nantly limited by the sampling-clock jitter. 20 Limit Due to
The size of the fast Fourier transform Bandpass Filter

(FF'T) was chosen to be 131,000 points. —-40 y
The plot in Figure 12 illustrates the mea- 500 Hz to 7 MHz

sured output phase noise of the filtered -60 T Litter = 90 fs il

CDCET72010 LVCMOS output. An FFT size 80 | i

of 131,000 points sets the lower integration
bandwidth to ~500 Hz. The upper integra- -100 ™

tion limit is set by the bandpass filter, whose \
effect is clearly visible in the phase-noise -120

plot. Phase noise beyond the bandpass-filter 140 \\ Noise Floor

limit shown in the plot is the noise floor of M of E5052A |
the E5052A and should not be included in ~160 /

LVCMOS (Filtered) Phase Noise (dB)

the jitter calculation. The integration of the W

filtered phase-noise output resulted in a -180 T T T T T

clock jitter of ~90 fs. 100 1k 10 k 100 k 1M 10M 100 M
Next, a baseline for the thermal noise was Frequency Offset (Hz)

established. Both ADCs were sampled with
a filtered sampling clock directly from the
clock-source generator with ~35 fs of jitter,

and the CDCE72010 was bypassed. The input frequency the SNR was mainly jitter-limited. Since the sampling-clock
was set to 10 MHz, where no impact on the SNR from clock jitter is much lower than the estimated ADC aperture jitter,
jitter was expected. Then the aperture jitter for each ADC the calculation should be very accurate. It is also impor-
was determined by increasing the input frequency to where tant to remember that the output amplitude of the clock

= ======7T"= J
www.ti.com/aa
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source should be increased (but not so much
that it exceeds the maximum ratings of the
ADC), boosting the slew rate of the clock signal
until the SNR levels off.

Texas Instruments Incorporated

Figure 13. Impact of clock filter on sampling
clock’s slew rate

Since it is known that the external clock jitter
from the filtered output of the clock-source gen-
erator is ~35 fs, the ADC aperture jitter can be
calculated by using the measured SNR results
and solving Equations 1, 2, and 3 in Part 1
(Reference 1) for aperture jitter. Please see
Equation 4 below. The measured SNR results as
well as the calculated aperture jitter for each
ADC are listed in Table 3.

With the ADC aperture jitter and the sampling-
clock jitter of the CDCE72010, the ADC’s SNR
can be calculated and compared against the
actual measurement. Using the ADC aperture
jitter permits the sampling-clock jitter of the
CDCE72010 to be calculated from the measured
SNR values, as illustrated in Table 4. At first

Sampling Clock (500 mV/div)

LVCMOS
(No Bandpass Filter) ™

LVCMOS
with i+
Bandpass Filter

\

Clock Generator \
with Bandpass Filter

J/(
N

glance the predicted SNR values are somewhat
close to the measured values. However, compar-

Time (1 ns/div)

ing the calculated sampling-clock jitter for the
two ADCs against the measured value of 90 fs
reveals a different picture. There is quite a bit of mismatch.
The reason for the mismatch is that the calculated aper-
ture jitter is based on the fast slew rate of the clock-source
generator. The bandpass filter on the LVCMOS output of
the CDCE72010 eliminates the higher-order harmonics of

the clock signal that help create fast rising and falling
edges. The scope plot in Figure 13 demonstrates how the
bandpass filter drastically reduces the slew rate of the
unfiltered LVCMOS output and turns the square wave into
a sine wave.

_ SNRMeasured
10 20

2 _ _ SNR Thermal Noise 2
10 20

tAperture_ADC = ot
IN

(4)

2
- (tJ itter,Clock _Input )

Table 3. Measured SNR and calculated jitter

THERMAL NOISE MEASURED SNR AT HIGH f CALCULATED
DEVICE (MEASURED SNR AT f;y = 10 MHz) (JITTER-LIMITED) APERTURE JITTER
(dBFS) (dBFS) (fs)
ADS54RF63 64.4 61.0 (fyy = 1 GHz) ~115
ADS5483 79.1 78.2 (f,y = 100 MHz) ~85
Table 4. SNR results with 90-fs clock jitter
CALCULATED SNR WITH CALCULATED JITTER FROM
DEVICE 90-fs CLOCK JITTER MEA?::FESI; SNR MEASURED SNR
(dBFS) (fs)
ADS54RF63 (fy = 1 GHz) 59.9 58.7 ~130
ADS5483 (f,y, = 100 MHz) 778 771 ~125
High-Performance Analog Products www.ti.com/aaj 40 2010 Analog Applications Journal
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One way to improve the slew rate is to add a low-noise
RF amplifier with a fair amount of gain between the
LVCMOS output of the CDCE72010 and the bandpass filter
(see Figure 14). The amplifier should be placed before the
filter so that its noise contribution to the clock signal is
limited to the filter bandwidth and not to the clock input
bandwidth of the ADC. Since the amplifier in the next
experiment has a gain of 21 dB, a variable attenuator was
added after the bandpass filter to match the slew rate of
the filtered LVCMOS signal to the filtered output of the
clock generator. The attenuator also protects the clock
input of the ADCs from exceeding the maximum ratings.

With the low-noise RF amplifier included in the clock’s
input path, the SNR measurement at high input frequency
was repeated for both data converters. The results are
shown in Table 5. It can be observed that the measured
SNR matches the predicted SNR very well. Using Equa-
tion 5 below provided calculated clock-jitter values that
are within 5 fs of the 90-fs clock jitter, which was derived
from the phase-noise measurement.

Data Acquisition

Figure 14. RF amplifier added in front of
bandpass filter to reduce slew rate

CDCE72010

RF Amplifier
0.002 to 500 MHz
Gain =21 dB

Experiment with unfiltered sampling clock

To stress the importance of filtering the sampling clock, the
clock bandpass filter was removed from the CDCE72010
output in the next experiment. The E5052A phase-noise
analyzer was used to capture the clock phase noise as
shown in the setup in Figure 15. Unfortunately, however,

Table 5. SNR results with 90-fs clock jitter and RF amplifier

CALCULATED SNR WITH MEASURED SNR CALCULATED JITTER FROM
DEVICE 90-fs CLOCK JITTER WITH RF AMPLIFIER MEASURED SNR
(dBFS) (dBFS) (fs)
ADS54RF63 (fy = 1 GHz) 59.9 60.0 ~85
ADS5483 (f;y = 100 MHz) 77.8 716 ~95

_ SNRMeasured 2 _ _ SNR Thermal Noise 2
10 20 10 20

tJitter,Clock_Input =

2mx fIN

2
- (tAperture_ADC) (5)

Figure 15. Test setup for unfiltered sampling-clock input

CDCE72010 491.52 MHz
Clock-Source N Clock Synchronizer
Generator ! and
10-MHz f Jitter Cleaner
Reference i
I
Signal-Source 122.88-MHz SigE:Iogiﬁrce
G t ;
enerator Clock Analyzer
|
Bandpass
Fiter |/ \ Y S
| fin__ /ADS54RF63[
i ADS5483 |
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the analyzer measures the phase noise only up to a 40-MHz
offset of the carrier frequency and doesn’t give any clue
about the phase-noise characteristic beyond that point.

To set the correct upper integration limit when an
unfiltered clock is used, the sampling theory has to be
reviewed again. The unfiltered clock output of the
CDCET72010 looks like a square wave with fast rising and
falling edges caused by the higher-order harmonics of the
fundamental sinusoid of the clock frequency. These har-
monics have lower amplitude than the fundamental, and
their amplitude decreases as the harmonic order increases.

At the sampling instant, both the fundamental sine wave
and the higher-order harmonics mix with the input signal
as illustrated in Figure 16. (For simplification, only one
harmonic is shown.) Therefore, the phase noise around

at sampling instant

Figure 16. Clock fundamental and its harmonics mix with input signal

Texas Instruments Incorporated

the third-order harmonic (for example) mixes with the
input signal, and the third harmonic creates a mixing
product as well. However, since the third harmonic of the
clock signal has lower amplitude, the amplitude of this
mixing product is also reduced.

When the two sampled signals are combined, it can be
seen that the overall degradation of the phase noise
caused by the third harmonic becomes minimal once the
amplitude difference exceeds ~3 dB. Since the crossover
point between the fundamental and the third harmonic is
at 2 x f, integrating the wideband phase noise to 2 x f;
should give a fairly accurate result.

As shown later in Figure 19, the phase noise of the
unfiltered LVCMOS output of the CDCE72010 levels out
around —153 dBc/Hz, starting at an offset frequency of

/

Clock Signal . .
_____________ Third Harmonic
of
x dB Clock Signal
Clock Phase @ ¥ _ _ _ __ _
Noise
f. 2 x f. 3 x f.
Input Signal ¥ xls Xls
ADC \
Input Signal Input Signal
Sampled with fg Sampled with 3 x fg
f

fIN

Both samples get fin
combined at sampling

instant

Phase-noise

contribution from 3 x fg
/ \ can be neglected

"de/\

fIN
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Table 6. SNR results with 1.27-ps clock jitter

Data Acquisition

CALCULATED SNR WITH CALCULATED JITTER FROM
DEVICE 1.27-ps CLOCK JITTER MEA?:B“FESI; SNR MEASURED SNR
(dBFS) (fs)
ADS54RF63 (fy = 1 GHz) 428 51.35 ~450

~10 MHz, which is likely due to the thermal noise of the
LVCMOS output buffer. The ADS54RF63 EVM has a clock
input bandwidth of ~1 GHz (limited by the transformer);
hence, theoretically the phase noise should be integrated
to ~1 GHz (rolling off at 3 dB at a 900-MHz offset). This
would result in ~1.27 ps of sampling-clock jitter and would
reduce the SNR at fjy = 1 GHz to ~42.8 dBFS!

The actual SNR measurement was quite a bit better
than that, as demonstrated in Table 6. There is a huge gap
between the calculated clock jitter and the SNR compared
to the actual measurement. This suggests that the phase
noise of the LVCMOS output indeed is limited well before
the 900-MHz offset boundary set by the transformer.

To prove that the phase noise of the unfiltered clock
signal needs to be integrated to roughly twice the sampling
frequency, the following experiment was set up: Different
low-pass filters were added between the CDCE72010 out-
put and the clock input of the ADS54RF63.

It is important to remember that a low-pass filter with a
bandwidth of less than 3x the clock frequency reduces the
slew rate of the clock signal just like the bandpass filter
did in the earlier experiment. The low-pass filter elimi-
nates the higher-order harmonics that produce the faster
rise time and slew rate of the clock signal, thus increasing
the aperture jitter of the ADC. For that reason, the same
low-noise RF amplifier from the earlier experiment was
added to the clock path, and the slew rate was matched to
the signal generator by using the variable attenuator (see
Figure 17).

Figure 17. RF amplifier added in front of

low-pass filter to reduce slew rate

CDCE72010

RF Amplifier
0.002 to 500 MHz
Gain =21 dB

Using low-pass filters with different corner frequencies
on the sampling clock of the ADS54RF63 (as depicted in
Figure 18) resulted in the interesting values in Table 7.
The results of this experiment suggest that the phase-
noise impact of the LVCMOS output on the clock jitter is
limited to roughly 200 to 250 MHz, which corresponds to
an 80- to 130-MHz offset from the 122.88-MHz clock signal
and is approximately 2x the sampling frequency. Therefore,

Table 7. Measured SNR for ADS54RF63

MEASURED SNR AT f =1 GHz
FILTER TYPE (dBFS) IN
Unfiltered Clock 51.35
140-MHz Low-Pass Filter 54.01
200-MHz Low-Pass Filter 51.81

Figure 18. Different low-pass filters limit phase noise

Low-Pass
Clock Signal Filter Third Harmonic
of
Clock Signal
fs 3 xfs
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Table 8. SNR results with 445-fs clock jitter

Texas Instruments Incorporated

CALCULATED SNR WITH CALCULATED JITTER FROM
DEVICE 445-fs CLOCK JITTER MEAf(:’:Fg'; SNR MEASURED SNR
(dBFS) (fs)
ADS54RF63 (fy = 1 GHz) 51.6 51.35 ~460
ADS5483 (f, = 100 MHz) 7.2 70.60 ~480

Table 9. Measured SNR with filtered and unfiltered clock

BANDPASS- BANDPASS-FILTERED CLOCK
DEVICE FILTERED CLOCK UNFI”;E:E:[;)CLOCK WITH EXTERNAL AMPLIFIER
(dBFS) (dBFS)
ADS54RF63 (fy = 1 GHz) 58.7 51.35 60.0
ADS5483 (f;y = 100 MHz) 77.1 70.60 71.6
extending the wideband phase noise out to a 123-MHz Reference

offset results in a clock jitter of ~445 fs, as can be seen in
Figure 19. Ideally the lower integration limit should be at
500 Hz (because of the chosen 131,000-point FFT); how-
ever, the jitter contribution from a 500-Hz to 1-kHz offset
is extremely low, so it was neglected here in this measure-
ment for simplification.

With the adjusted phase-noise plot, the calculated jitter
matches the SNR measurement results very well, to within
10 to 30 fs for both the ADS54RF63 and the ADS5483 (see
Table 8). Considering that there is probably a minor clock-
jitter contribution from the phase noise around the third
harmonic, the calculated SNR is a very close estimation.

Conclusion
This article has shown how to properly estimate a data
converter’s SNR when a filtered or unfiltered clock source
is used. The results are summarized in Table 9.
While a bandpass filter on the clock input is
necessary to minimize the clock jitter, exper-
iments showed that it reduces the clock slew
rate and degrades the aperture jitter of the

. . 0
ADC. Therefore, the optimum clocking solu-
tion consists of a bandpass filter to limit the & —20
phase-noise contribution as well as some o)
amplification of the clock amplitude and slew & —40
rate to minimize the aperture jitter of the ADC. 2
; . ) X > —60
Part 3 of this article series will show some @
practical implementations on how to boost £ -80
the performance of existing clocking solutions. 3
5 —100
5 -120
8
2 -140
3]
2 -160
-180
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The IBIS model: A conduit into signal-
Integrity analysis, Part 1

By Bonnie Baker

Senior Applications Engineer

Texas Instruments (TI) is developing a new arsenal of digi-
tal input/output buffer information specification (IBIS)
simulation models to meet a variety of customer needs.
This style of model (Figure 1) might be used in a simula-
tion environment to help solve board-level overshoot,
undershoot, or crosstalk problems, to name a few. On a
more fundamental level, IBIS models provide useful prod-
uct information, such as the pin capacitance and parasitics
or the rise/fall times of the digital output buffers.

This article, Part 1 of a three-part series, shows the
fundamental elements of IBIS models and how they are
generated in the SPICE environment. Part 2 will investi-
gate IBIS-model validation. Part 3 will show how IBIS users
investigate signal-integrity issues and problems during the
development phase of a printed circuit board (PCB).

As Figure 1 shows, the IBIS model contains the package
parasitics and the silicon input capacitance (C_comp) for
all pins. The IBIS model also includes tables of data that
represent the product’s DC operation within the product’s
operating range and beyond the power supplies (power-
clamp, ground-clamp, pullup, and pulldown boxes). In

interactions with nodes inside the chip. The IBIS model
simulates the system-level PCB behavior, specifically
modeling the connection from the outside world to the
product’s digital input/output (I/0) buffers.

Foundations of the IBIS model

An IBIS model contains information relating to the digital
buffers of an IC chip. The core of the IBIS model contains
the product buffer’s DC information in the form of current-
voltage (I-V) tables, and its AC information in the form of
voltage-time (V-t) tables. If these tables are generated with
the product’s SPICE deck, it is possible to include nominal,
strong, and weak corners with variations in process, supply
voltage, and temperature. Table 1 shows an example of six
corners for the DAC8812, which is a dual serial-input,
16-bit multiplying digital-to-analog converter. Three of
these corners (1, 2, and 3) are centered around a nominal
digital power-supply voltage (Vpp) of 3.3 V. The other

Table 1. Process, voltage, and temperature corners for
DAC8812 IBIS model

addition, the output-model structure in Figure 1 provides CORNER PROCESS VOLTAGE TEMPERATURE
tables that represent the AC or transient response (rising NUMBER (V) (°C)
ramp and falling ramp) within the operating range of the 1 Weak 3.0 85
product. 2 Nominal 33 25
An IBIS model includes AC and DC tables that reflect the
. . . 3 Strong 3.6 40
operation of the product. This type of model has pin- and
package-parasitics elements that complete the interface to 4 Weak 4.5 8
the PCB. The simulation model produces the performance 5 Nominal 5.0 25
of the digital buffer’s interaction with the PCB but omits 6 Strong 5.5 -40
Figure 1. Block diagram of IBIS model with digital 1/0 buffers
P Input-Model Structure R i P Output-Model Structure R
Voo oM e ; AN 9o Voo
I$ """"" i Power i Rising Pullu Power '"""""%I
x i Ramp P Clamp C_comp
i (V-t)
Input/ Threshold i
Enable and .
Pins 3-State ! !
Control ' Falling Pull- Ground Q;
I Ramp |— down Clamp C_comp
T (1-v) i (V-1) (1-V) (-v)
GND W: . ! | i
'g """"" ' ¢—— Package _ ___——— % '"""""g
Parasitics
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three corners (4, 5, and 6) are cen-
tered around a nominal Vpp of 5.0 V.
An IBIS model created at the bench
is limited to the tests from one to a
few devices. The bench-tested IBIS

models usually do not show silicon-
process variations.
IBIS models can contain data for any
%ESD

Figure 2. Example of input buffer’s basic functionality
for an IBIS model

of several different buffer types: input,
output, I/O, tri-state, terminator,
output_open_source, output_open_sink,
1/O_open_source, I/O_open_sink,

) Input

Input Buffer Input [] |

IC ECOp Clock [] |

input_ECL, output_ECL, and I/O_ECL. Output |
The voltage at an input or output ) Shable

buffer’s pin in the DC tables extends f_elc_‘\‘,";ﬁgr:ittz:ri stics of input. Dir [l o
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—Vpp 10 2 x Vpp, This exercises the 3. Minimaum 8c\>l:lta(\gllg_t|ﬁ%‘f)t.he buffer will take Vo O e

product buffer’s ESD structures as logic HIGH (VIN_HIGH).

beyond the supply voltage. In this 4. Input impedance (C_comp).

manner, IBIS models are capable of

showing the overshoot and under-

shoot responses of poorly terminated

PCB signals. IBIS models contain I-V data for input and voltage (Vpp). Note that the IBIS model does not

output buffers. require circuitry beyond the immediate interface. IBIS
The example of an input buffer in Figure 2 shows the models do not reflect the product’s interior logic and

input buffer, the ESD cells, and the buffer’s capacitance interactions. Figure 3 shows a composite graphical

(C_comp). An IBIS model for an input buffer provides I-V example of an input buffer’s power-clamp and ground-

tables of data that extend beyond ground and the supply clamp I-V tables from an IBIS model.

Figure 3. Graphical representation of IBIS model’s |-V tables
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V-t tables represent the AC behav-
ior of an output buffer like the one
in Figure 4. With V-t tables, the out-

Figure 4. Example of two-state output buffer’'s basic functionality
for an IBIS model

put buffer’s pin remains inside the
product’s power-supply rails. IBIS _,_—_|_
models are capable of simulating the Vee =
buffer within its operating range, exhib-
iting accurate simulations of rise and m
fall times. Output Output

Figure 4 shows the pullup and pull- ° l |ntema=|’ <::| (2-State) O [ Input
down circuitry as well as the input C_comp [Pultdown] | “input o
capacitance of a two-state output I (3-State) 1 [ Clock
buffer. With the output buffer, an IBIS = == Vo O - Output
model will typically have I-V tables as ) Enable
well as V-t tables. Once again, the IBIS ?.ﬁ?vléﬁgriittae}istics of pullup and pulldown circuit. Ground [] 1 Dir
model does not require circuitry 2. Time required for the output to switch from LOW
beyond the immediate inferface ; (oMt with s load commeced (e tine el ol o
because the model does not reflect the to LOW (fall-time data).
product’s interior logic and interac- 4. Output impedance (C_comp).
tions. Figure 5 shows a graphical

example of the rising-time waveform
from an IBIS model’s V-t table.

Figure 5. Graphical representation of rising time from
IBIS model’s V-t table
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Format of IBIS model

The format of the IBIS model starts with a header, which
is generated by hand and includes a description of the
relevant IC or ICs. Following the IC description is general
information about the model, including origination date,
model source, and user notes. Figure 6 shows an example
header of an IBIS model for TT's TMP512 and TMP513,
which are temperature and supply-system monitors with
an SMBus interface. The “Notes” section is the most
important portion of the IBIS model header, where details
of the model creation are found along with the basic format
of the digital buffers.

The model header is followed by detailed information
about the package(s) for the product(s), including values
for pin resistance, inductance, and capacitance. To find
the total capacitance for a specific pin, the capacitance
values in this section are combined with the capacitance
(C_comp) values called out next in the buffer tables. The
core of the IBIS model follows with I-V and V-t tables
buffer by buffer.

Extracting single-ended SPICE buffer data

The last section of this article will explain how to obtain
the I-V and switching information (V-t) from a buffer’s
transistor-level model. An automated simulation template,
an extraction tool (such as S2IBIS3), or manual simula-
tions can be used. This discussion will include only totem-
pole CMOS structures.

Extracting I-V data from SPICE simulations

To extract the I-V data for an IBIS model from a SPICE
input buffer, the buffer pad is connected to an indepen-
dent voltage source (Vgourcr)- Once the buffer’s input is
set to its desired state (LOW, HIGH, or OFF), VqqupcE is
exercised with a DC-analysis function over the sweep
range of —Vawpgp t0 2 X Vawprp, where the Vowggp limit is
set by the product’s supply voltage (Vpp). For instance, if
the buffer is powered by a 5-V supply, the range of Vawgrp
will be =5 V to 10 V. While performing this sweep, the sim-
ulator records the current that goes into the buffer.

If the buffer is configured in a high-impedance state
(OFF), the data collected produces the ground-clamp and
power-clamp tables. The data in the ground-clamp table is
referenced to ground, and the data in the power-clamp
table is referenced to Vpp.

Extracting the I-V data for an output buffer’s IBIS model
results in a pulldown table and a pullup table. Data for the
pulldown table is collected while the buffer is in an output
LOW state. Data for the pullup table is collected while the
buffer is in an output HIGH state. Data in the pulldown
table is referenced to ground, and data in the pullup table
is referenced to Vpp.
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Figure 6. IBIS model header for TMP512
and TMP513

|
|Texas Instruments Incorporated
|Temperature and Supply System Monitors SMBus interface

|
| Marketing part#

Digital Voltage Analog Voltage Package # Pins

| Range Range Type
[TMP512AIDG4 21Vto3.6V 3.0Vto26V SO-14 14
|[TMP512AIDRG4 21Vto 3.6V 3.0Vto26V  SO-14 14
|

[TMP513AIDG4 21Vto 3.6V 3.0Vto26V  SO-16 16
|[TMP513AIDRG4 21Vto 3.6V 3.0Vto26V SO-16 16

[TMP513AIRSATG4 2.1Vto 3.6V  3.0Vto26V  QFN-16 16
[TMP513AIRSARG4 2.1Vto 3.6V  3.0Vto26V  QFN-16 16

|

[IBIS Ver] 4.0

[File name] tmp512_3.ibs
[File Rev] 1.0

[Date] 04/14/2010

[Source] Texas Instruments Incorporated.
Analog-eLab, HPA
12500 TI Blvd

Dallas, TX -75243
For Support e-mail: elab_ibis@list.ti.com

[Notes] Revision History:
1.0: 04/14/2010
- Initial version of the model
- Initial Model generated from simulations in TISPICED
- Model not matched to measurements
- Non-monotnic warnings -combined pulldown and pullup data
The GPIO non-monotonic current delta is less than 1 mAin a
full-scale range of ~95 mA. Given these conditions, these
warnings are deemed insignificant.
1.1: 04/18/2010 corrected spelling errors
|
[Disclaimer]
|
This product is designed as an aid for customers of Texas Instruments.
No warranties, either expressed or implied, with respect to this third
party software (if any) or with respect to its fitness for any
particular purpose is claimed by Texas Instruments or the author. The
software (if any) is provided solely on an "as is" basis. The entire
risk as to its quality and performance is with the customer
|
[Copyright] (C) Copyright 2009 Texas Instruments Incorporated.
All rights reserved.

Extracting V-t data from SPICE simulations

When a CMOS buffer is modeled, the required simulations
that relate to the ramp rate and V-t tables are straightfor-
ward. For each simulation corner (typical, minimum, and
maximum), there are four V-t data sets. Data for two of
the waveforms is gathered by switching the buffer output
from LOW to HIGH with the load referenced to a low volt-
age. Data for the other two waveforms is collected with a
load referenced to Vpp. For the latter two curves, the
buffer’s output switches from HIGH to LOW. From these
simulations, the ramp rate or dV/dt ratio is extracted as
the device is switching HIGH against a low-voltage refer-
ence and switching LOW against a high-voltage reference.

40 2010 Analog Applications Journal


http://www.ti.com/aaj

Texas Instruments Incorporated

Required and recommended IBIS-model curves

There is a variety of buffer types that the IBIS standard
describes with I-V and V-t tables. Tables 2 and 3 from
Reference 1 list the required and recommended buffer
data for each type of buffer.

Conclusion

An IBIS model assists PCB designers during their evalua-
tions of signal-integrity issues and problems. The model’s
silicon-based DC and AC data facilitates the evaluation of
over-power-supply behavior as well as rise- and fall-time
behavior. In Part 2, the validity of the IBIS model will be
evaluated by verifying that it meets IBIS standards and by
comparing it to SPICE simulations.

Data Acquisition
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Table 2. Required and recommended I-V data versus IBIS buffer types

Model_type [Pullup] [Pulldown] [POWER Clamp] [GND Clamp] Notes
Input n/a n/a Recommended Recommended
/0 Required Required Recommended Recommended
I/Ofopenfsm'k n/a Required Recommended Recommended 1
1/0_open_drain
1/0_open_source Required n/a Recommended Recommended 1
Open_sink .
. n/a Required Recommended Recommended 4
Open_drain
Open_source Required n/a Recommended Recommended 4
Output Required Required Recommended Recommended 4
3-state Required Required Recommended Recommended 2
Series_switch n/a n/a n/a n/a 3
Series n/a n/a n/a n/a 3
Terminator n/a n/a Recommended Recommended 3
Input ECL n/a n/a Recommended Recommended
I/O_ECL Required Required Recommended Recommended 2
Output ECL Required Required Recommended Recommended 4
3-state_ ECL Required Required Recommended Recommended 2

1. Keywords listing “n/a” may be included if the currents are set to 0 for all voltage points
2. Functionally similar to 1/0, but without input threshold information (Vinh, Vinl, etc.)

3. Special syntax required; use of clamp data on pins that also feature buffers using these Model_types is allowed

4. Clamp data may technically be excluded; however, this data aids analysis of reflections arriving at the driving buffer

Table 3. Required and recommended V-t data versus IBIS buffer types

[Rising Waveform] [Falling Waveform]
Model_type Load to Vce Load to GND Load to Vee Load to GND Notes
Input n/a n/a n/a n/a
1/0 Recommended | Recommended | Recommended Recommended
1/0O_open_drain Recommended n/a Recommended n/a 1
1/0_open_source n/a Recommended n/a Recommended 1
I/O*OPen*sm.k Recommended n/a Recommended n/a 1
1/0_open_drain
Open_source n/a Recommended n/a Recommended
Open_smk Recommended n/a Recommended n/a
Open_drain
3-state Recommended | Recommended | Recommended Recommended
Series_switch n/a n/a n/a n/a 2
Series n/a n/a n/a n/a 2
Output Recommended | Recommended | Recommended Recommended
Terminator n/a n/a n/a n/a
Input ECL n/a n/a n/a n/a
1/0_ECL Recommended (to Vee —2) Recommended (to Vee —2) 3
Output ECL Recommended (to Vee —2) Recommended (to Vee —2) 3
3-state ECL Recommended (to Vec — 2) Recommended (to Vce — 2) 3

1. The presence of internal terminations may require adding waveforms in place of “n/a”
2. Special syntax required
3. For ECL, the fixture is Vce-2; multiple waveforms to various voltages using the same load impedance may be

useful in some contexts

Tables 2 and 3 from Reference 1 reproduced with permission of the IBIS Open Forum and TechAmerica.
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A low-cost, non-isolated AC/DC buck
converter with no transformer

By Jeff Falin, Senior Applications Engineer,
and Dave Parks, Senior Member, Technical Staff

Introduction

Off-line equipment such as a smart meter or a power
monitor has electronics that require non-isolated DC power
under 10 W. Until recently, the only practical options for
providing a low-power DC power rail from an AC source
were to use an extremely inefficient, unregulated resistive/
capacitive divider following the rectifier, or a flyback DC/DC
converter that was cumbersome to design. Advances in
MOSFET technology and an innovative gate-drive circuit
for a hysteretic buck controller have resulted in an ultra-
low-cost DC power rail.

Figure 1 shows the entire converter. The rectifier circuit
uses a standard, fast-switching rectifier diode bridge (D1)
and an LC filter (L1 and C2). The remaining components
will be explained in more detail.

Figure 1. AC/DC buck-converter circuit

The basic buck converter

The TPS64203 is a hysteretic buck controller designed to
drive a high-side pFET and has minimum turn-on and
minimum turn-off switching-time requirements. Unlike a
traditional hysteretic converter with a switching frequency
that varies with load current, the minimum on and off
times essentially clamp the switching frequency when the
converter begins to run in continuous-conduction mode at
high output-power levels. Other members of the TPS6420x
family actively avoid switching in the audible frequency
range, effectively having a maximum on and off time.
Originally designed for battery-powered applications, the
TPS6420x family has an input-voltage range of 1.8 V to

6.5 V and very low quiescent current (35 pA maximum).
During start-up, the TPS64203 is biased by Zener diode
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D2 and high-voltage resistors R2 and R3. After the 5-V rail
is up, Schottky diode D4 allows the 5-V output rail to
power the controller.

Power FET Q4 must have a high enough Vpg voltage
rating not to be damaged by the input voltage, and a high
enough current rating to handle Ipyogmms) = louTmax) %
VDpax- It must also be in a package capable of dissipating
Ptona = Tourmax) X YDmax)? X Rpg(on)- Traditionally, high-
voltage p-channel FETs have had a gate capacitance or
turn-on/off times that were too large, a drain-to-source
resistance (Rpgon)) that was too high, a threshold voltage
(V) that was too large, and/or have simply been too
expensive to make a circuit like the one in Figure 1 practi-
cal (i.e., efficient enough relative to cost). Since the high
line of 230 Viyg + 10% tolerance comes from the 350-Vpy
AC line, the FET, filter, and input capacitors need to be
rated for 400 V.

The FQD2P40 is a relatively new, 400-V p-channel
MOSFET. With an Rpg oy 0f 5.0 Q from a 10-V gate drive
and a total gate charge of less than 13 nC, this FET can
easily be switched by the controller—with relatively fewer
conductive and switching losses than older FETs—with the
help of the innovative drive circuit consisting of Q2, Q3, C4,
and D3. The converter’s rectifying Schottky diode, D5, is
selected with a voltage rating capable of blocking the input
voltage, a peak-current rating slightly higher than the out-
put voltage, and an average current rating of Injoge(ave) =
(1 - D) x Ipypmax). With @ Dy of 5 V/120 V = 0.04 and
such low output power, the peak-current rating and the
power dissipation are not a concern in either switch.

The buck power stage’s LC filter is designed as explained
in the TPS6420x family data sheet. With the input voltage
being much larger than the output voltage, all of the
TPS6420x controllers will run in minimum-on-time mode.
Equation 1 computes the recommended buck-converter

Figure 2. Output ripple at Vjy = 250 VDC and
IOUT =500 mA
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inductance at high line, assuming that K = 0.4 for the
inductor’s ripple-current factor.

Lo (Vin = Vour )*tonminy (230 V-5 V)x0.65 ps
B Al B 0.4x0.750 A (D

=488 pH — 470 pH

The relatively high K value minimizes inductor size and
proves to be acceptable because the steady-state output-
ripple requirement for this particular application was no
larger than 0.02 x Vo, or 100 mVpp at high load. Being
hysteretic, the TPS6420x controllers typically work best
with some ripple on the output voltage. An output capaci-
tor with at least 50-mQ ESR is recommended and would
produce a ripple voltage of AVppggg) = Aly, X Rpgg, which
typically far exceeds the capacitive component of the volt-
age ripple. The measured ripple for this application is
shown in Figure 2.

Because the TPS64203 is hysteretic, its output voltage
will have higher ripple at lower output power when it is
running in pulsed-frequency mode. The measured operat-
ing frequency of the converter is approximately 32 kHz,
which agrees with the predicted value of

Dpin 5 V250V
0.65 s

min

=31 kHz.

£ =
SW t

on (min) -

How the drive circuit works

Bipolar transistor Q1 and resistors R4 and R5 form a
constant-current-driven level shifter that allows the low-
voltage TPS64203 controller to operate the discrete gate-
drive circuit formed by Q2 and Q3. Like the controller, the
level shifter is powered by Zener diode D2 at start-up and
the regulated 5-V rail, through Schottky diode D4, after
start-up. Power FET Q4’s gate must be overdriven just
enough to provide the required output current with an
acceptable Rpg . Too much drive increases switching
losses, while too little increases conduction losses. From a
review of the FQD2P40 data sheet and some trial and
error, Vgg = 12 V was selected.

Capacitor C4 and diode D3 are critical to the drive
circuit’s functionality. Resistor R5 is selected to set the
gate-drive level of 12 V below the voltage at the rectifier’s
output. Diode D3 clamps capacitor C4 to this level. Specif-
ically, when Ul’s switch pin outputs a low signal to turn on
the power FET, the signal gets level shifted to the base of
Q3. Transistor Q3 turns on and quickly charges Q4’s gate-
to-source capacitance, Cgg, to 12 V. Without C4 and D3,
turning off Q4 would have required Q3 to be an expensive,
high-voltage bipolar transistor with its drain tied to ground.
When Ul’s switch pin outputs a high signal to turn off the
power FET, the signal gets level shifted to the base of Q2.
Q2 turns on, effectively tying Q4’s gate to the input voltage.
It is important to note that without capacitor C4 acting as
a local power supply, transistors Q2 and Q3 would not be
able to provide the fast current spikes necessary to quickly
—and therefore efficiently—pull up or pull down Q4’s gate
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capacitance. Also, the level shifter’s current, I; g, set by R4,
must be high enough to move Q4’s gate charge, Qgate,
during the t, y- That is,

on(min

Iis =Vz(pay — VBE - Qgate
R4 ton (min)
Capacitor C4 is sized to be much larger than Q4’s gate
capacitance, but it must be small enough that it can be
recharged during the shorter of the controller’s minimum
on and off times. Figure 3 shows the gate and drain turn-
on/off times during one switching cycle with an input
voltage of 300 V and a 500-mA load. Measured conversion
efficiency is shown in Table 1.

Current limit and soft start

In low-voltage applications, the TPS6420x uses a high-
side current-limit circuit to compare the drop across

a current-sense resistor, placed between the VIN and
ISENSE pins, to a reference voltage. If the voltage across
the sense resistor exceeds that voltage, the circuit turns
off the switch, thereby implementing a pulse-by-pulse
current limit. In a high-voltage application, the current-
limit circuit cannot be used without overvoltage on the
ISENSE pin, so the ISENSE pin is tied high to VIN. There-
fore, the circuit in Figure 1 does not have a current limit.
A high-side series fuse is recommended to provide short-
circuit protection.

In typical applications during start-up, the TPS64203’s
current-limit value is slowly ramped up to provide a
current-limited, controlled soft start. In this application,
the current-limit circuit and therefore the soft start are
disabled; therefore, the start-up inrush current may be
large and the output voltage may overshoot slightly, as
shown in Figure 4.

Conclusion

Using a level shifter and gate driver with a localized power
source allows the use of a low-voltage buck controller to
provide a DC voltage from an AC power source. Conversion
efficiency near 60% can be achieved by using a simple
circuit and no transformer. This circuit can also be used
for DC/DC conversion where the input DC voltage is above
the maximum rating of the TPS6420x.

Related Web sites
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Figure 3. Q4 gate and drain voltages during
one switching cycle
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Table 1. Measured conversion efficiency

Vin Iin P lour Vour Pour | EFFICIENCY
(V) (A) (W) (A) (V) (W) (%)

100 0.043 4.3 0.5 5.023 |25115 58.40698
200 0.021 42 0.5 5.023 |25115 59.79762
300 0.015 45 0.5 5.023 |25115 55.81111
100 0.066 6.6 0.75 5.023 |3.76725 | 57.07955
200 0.031 6.2 0.75 5.023 |3.76725 | 60.7621
300 0.022 6.6 0.75 5.023 |3.76725 | 57.07955

Figure 4. Start-up into a 10-Q2 load with
le = 300 V

Output Voltage (1 V/div)
[———

Time (1 ms/div)
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Save power with a soft Zener clamp

By John Betten
Applications Engineer and
Senior Member, Technical Staff

Figure 1. Zener diode with resistor provides soft clamp for
no-load output voltage

Flyback converters are wildly popular due to 9.5
their low cost, their isolation, and the ease |
with which additional output voltages can be 9.0

implemented. For multiple-output flybacks,
one output voltage—typically the highest-
power output—is tightly regulated by means
of feedback to the control circuit. Additional
outputs are usually added by tightly coupling
transformer windings to the main regulated
winding. Linear regulators or DC/DC switch-
ers may be added, or the outputs can be left

8.5

6.8-V Zener
\

Output Voltage (V)

unregulated. This last option is the most

efficient, but many times voltage regulation —

suffers when the outputs are heavily or

lightly loaded while the main output voltage 6.0

has the opposite load level. This cross- 0.00 0.01 0.02 0.03

regulation problem is highly dependent on Output Current (A)

the transformer leakage and winding struc-

ture, as well as on other parasitic circuit

components. One of the worst scenarios is

when the main output is heavily loaded and the unregu- hard to control. Higher-power converters can potentially

lated winding is completely unloaded. Any voltage ringing source a large current and easily destroy a Zener diode.

present on the transformer’s secondary winding is often For this reason, it is risky to add a small Zener diode and

peak-detected by the output rectifier, causing the unregu- difficult to calculate the power dissipated.

lated output voltage to greatly increase. It is not uncom- Another option is to use a snubber to dissipate the leak-

mon for the output voltage to rise to twice its nominal age energy. This generally dissipates more power than

voltage in this situation. This can be catastrophic to any using a preload resistor and does not always provide as

downstream load that cannot tolerate a higher voltage or much no-load voltage reduction on the output.

that does not present minimal loading at all times to A soft Zener clamp, which consists of a resistor in series

dissipate the leakage energy. with a Zener diode, can provide a good compromise. It
Several solutions can remedy this no-load overvoltage can clamp the unregulated output voltage to a level that is

condition. The simplest solution would be to add a preload lower than that of the unclamped output voltage but higher

to the unregulated output in the form of a resistor. This than that of a Zener diode alone. To determine the resis-

will load the output enough to dissipate the leakage energy tor’s value, the output can be loaded with just enough

and to lower the output voltage to an acceptable level. current to reduce the high output voltage to the desired

Unfortunately, this load will always be present and causes safe level. Figure 1 shows an example where the desired

a loss of efficiency that is often considered unacceptable. no-load output voltage is 7.4 V. The series resistor’s value
A second option is to simply add a Zener diode to the can be calculated by subtracting the Zener diode’s nominal

unregulated output. The diode’s voltage rating must be voltage from this voltage and dividing the result by the

set higher than the nominal output voltage after the typi- preload current. The benefit of this circuit is that it does

cal 5% or 10% part tolerance is included. This means the not dissipate power at loads that would typically be seen

diode won'’t conduct or dissipate power until the output in operation. Under extreme cross-load conditions, this

voltage rises high enough. While this may seem like an circuit clamps the “runaway” output voltage to a much

ideal solution, several potential problems exist. Once the more predictable level.

Zener diode conducts, its impedance drops significantly .
and provides little resistance to current flow. The current B?I_a_t_e E’ _v_v_e _b site
flow into the diode, and hence the power dissipated in it, power.ti.com

is determined by parasitic circuit components and thus is
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Interfacing high-voltage applications to

low-power controllers

By Thomas Kugelstadt

Senior Applications Engineer

A common requirement of industrial applications is to
interface high-voltage potentials, such as signal outputs of
sensor switches and AC rectifiers, to the peripheral input
ports of low-voltage microcontrollers (MCUs) and digital
signal processors. A new generation of interface circuits
providing this function are digital-input serializer (DIS)
devices. They can sense digital input voltages ranging
from as low as 6 VDC up to 300 VDC and convert them
into 5-V serial data streams while consuming almost 80%
less power than a discrete design. This capability makes
DIS devices the most power- and cost-efficient solution in
industrial interface applications.

This article explains the functional principle of a DIS and
its configuration in a typical industrial interface design.

Functional principle

Understanding the operational principle of a DIS is faster
accomplished by seeing the device in the context of an
entire interface design as shown in Figure 1. A high-voltage
supply in the range of 10 to 34 V supplies the sensor
switches, SO to S7, and the DIS. The ON/OFF status of
each sensor switch is detected by the eight parallel field

Figure 1. Stand-alone digital-input system

inputs of the device, then internally processed and made
available to the low-voltage inputs of a parallel-in, serial-
out shift register. An MCU provides the necessary control
signal to the serial interface of the DIS via a digital isolator.
Firstly, a load pulse at the LD input latches the switch’s
status information into the shift. Then a clock signal
applied to the CLK input serially shifts the register content
out of the DIS into a controller register via the isolator.

S0 to S7 comprise a wide range of sensor switches, such
as proximity switches, relay contacts, limit switches, push
buttons, and many more. While the input resistors, Ry, to
Rn7, are optional, they can serve two purposes when
implemented. One is that in high-voltage applications,
some industrial standards might require input resistors as
a safety precaution to prevent fire hazards in the event of
an input short circuit. The other purpose is to raise the
ON/OFF threshold voltage of a sensor switch.

Internally, each input signal is checked for signal
strength and stability. A current comparator detects
whether the input current is higher than a predefined
leakage threshold, and a voltage comparator checks
whether the input voltage is higher than an internally
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fixed reference voltage. If both comparator outputs are
logic high, a programmable debounce filter checks whether
the new input status is caused by a short but strong noise
transient, or whether the signal presence outlasts the
debounce time and thus presents a true input signal.

For a true input signal, the filter output presents the
corresponding logic level to the parallel inputs of the shift
register and also switches the output of the internal cur-
rent limiter accordingly. For an OFF condition (when the
switch is open), the filter output is low, and the output of
the current limiter is switched to ground. For an ON
condition, the filter output is high, and the output of the
current limiter is connected to a signal-return output
(RE). Connecting a light-emitting diode (LED) to an RE
output allows for the visible indication of a switch’s status.

Input configuration

To configure a DIS for various applications, the current
and voltage capability of its input, IPx, must be known, as
well as its switching thresholds. For that purpose, Figure 2
shows a more detailed block diagram of a channel’s input
stage. During a sensor switch’s OFF-to-ON transition, the
two parameters of interest are the positive-going voltage

Interface (Data Transmission)

threshold at a device input, Vip_gy, and its selected current
limit, Tpyp -

While Vip_y is internally fixed at 5.2 V, I can be
adjusted via an external precision resistor, Ry ;. Note that
setting the current limit affects all device inputs equally.
Ivounv Is derived from a reference current, Iggp, via a cur-
rent mirror, making Iy = 72 X Izgp. I[zer is determined
by the ratio of an internal bandgap reference to the resis-
tor value, Ry (Iggr = Vrer/Rin)- The current limit can
therefore be expressed as a function of Ry pp:

125V 90V
RLIM RLIM

IN-Lv = 72% ¢))
Solving for Ry then provides the required resistor value
for a desired current limit:

90V

Rim =1
IN-LIM

(2)
For low-voltage applications using a 12-V supply, setting
the current limit via Ry might be the only calculation
required. Because the device inputs can tolerate voltages
of up to 34 V, switching the 12-V supply directly to a digital

Figure 2. Simplified block diagram of a single-channel input stage
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input causes no damage to the device. With Vip oy =5.2 'V,
the ON threshold lies almost in the middle of the 12-V
input-voltage range. Figure 3 shows the schematic of this
simple circuit design. With the low-current LED indicator
requiring a forward current of Iy = 2 mA, Ry is
determined via Equation 2 to be 45 kQ, with the closest
1% value being 44.8 kQ.

However, for high-voltage designs using a supply of 24 V
or more, an input resistor is needed to raise the ON thresh-
old into the middle of the input-voltage range. Figure 4
presents this case, with the input-current limit assumed to
be 2 mA. The input resistor now separates the device’s
input voltage, Vip, from the field input voltage, Vi, thus
raising the actual ON threshold to Vix.on = Vip.on + Rin
x Ine- Inserting the specified 5.2-V threshold for Vip gy

Texas Instruments Incorporated

and expressing Ijn . through Equation 1 yields Viyon =
5.2V + Ry x 90 V/R| . Solving for Ryy then provides the
required input-resistor value for a desired ON threshold:

R
Rpy = (Vineon =52 V) xgg—l\lf (3)

In order to set the ON threshold in the circuit in Figure 4
to Vin.on = 12V, the input resistor is determined via
Equation 3:
44.8 kQQ
90V
with the closest 1% value being 3.4 kQ.
This simple design methodology can be applied to input
voltages of up to 60 V. Higher voltages, however, will
increase Vip above its specified maximum of 34 V, so a

Ry =(12V-5.2V)x =3.385 kQ,

Figure 3. sWitch ON condition: VlP-ON =52 V, IlN-LlM =90 leLlM
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clamping element in the form of a Zener diode is required
to prevent the device input from overvoltage stress.
Figure 5 gives an example of a mains voltage detector,
often used in building automation systems. Here the AC
mains voltage of 240 V,, ; is rectified, thus yielding a peak
input of 340 VDC. At such high voltages it is necessary to
minimize the I12R losses within the input resistor. Therefore,
the current limit is simply set to 0.5 mA by making Ry =
90 V/0.5 mA = 180 kQ.

The ON threshold is set to 1560 V by making Ry =
(150 V-5.2 V) x 180 kQ/90 V = 289.6 kQ, with 291 kQ as
the closest 1% value. At Viy_on = 150V, Vip_on = 5.2V, and
current limiting sets in. Beyond the ON threshold, Vip
increases linearly until the Zener voltage of approximately
30 Vis reached. At that moment, the Zener diode starts

Interface (Data Transmission)

clamping; and the Zener current, I, adds to the current
limit (I to make up the total input current, Ijy.

Serial interface

Reading the status information of the digital field inputs is
easy and can be performed by using either shift register
timing or serial peripheral interface timing.

When shift register timing is used, a short low-active
pulse applied to the load input (LD) latches the status
information of the digital inputs into the shift register. A
subsequent clock signal at CLK, consisting of eight con-
secutive clock cycles, serially shifts the data out of the DIS
register into the input register of an MCU. Each data shift
occurs at the rising edge of the clock signal (Figure 6).

Figure 5. Switch ON condition: Vjy_on =150 V, Iy = 0.5 mA
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Designing input modules with a high channel count is
possible by daisy-chaining multiple DIS devices. In this
case the serial output of a leading device is connected
with the serial input of a following device. Figure 7 shows
the simplicity of a daisy-chained, 64-channel digital-input
module requiring only three interface lines.

Powering the interface

DIS devices allow for a variety of power-supply configura-
tions. When powered from an industrial 24-V bus, the DIS

Texas Instruments Incorporated

can supply 5-V regulated output to digital isolators and
MCUs. For 5-V controllers (Figure 8a), the direct connec-
tion of supply and serial interface (SIF) lines is straight-
forward. However, 3.3-V controllers require a low-dropout
regulator (LDO) for the supply line and a voltage divider
in the serial output (SOP) line (Figure 8b). Control signals
from a 3.3-V controller towards the DIS are correctly
interpreted.

In applications without a bus supply, it is possible to
back-supply a DIS by driving the 5-V output as a supply

Figure 7. Daisy-chained, 64-channel digital-input module
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Figure 9. Back-supplied digital-input system
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Figure 9 shows two back-supply options for interfacing to
a 3.3-V controller. In Figure 9a, the 5-V system supply
powers the DIS directly but requires an LDO to supply the
controller. In Figure 9b, a 3.3-V supply powers the control-
ler directly but requires a charge pump to boost the supply
voltage to the required 5-V level of the DIS.

Conclusion

DIS devices represent the most versatile solution for
interfacing a low-power controller to high DC voltages.
Supporting the interface design between low-voltage con-
trollers and high-voltage applications, the SN65HVS88x
family of DIS devices provides a wide variety of features,
such as undervoltage detection, current limiting, debounce
filtering, thermal protection, parity generation, and a single
5-V supply.
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Using single-supply fully differential
amplifiers with negative input voltages

to drive ADCs

By Jim Karki
Member, Technical Staff, High-Performance Analog

Introduction

Fully differential amplifiers (FDAs) with a single +5-V
supply can be easily used to convert single-ended signals
that swing around ground to differential signals that are
level-shifted to match the input common-mode require-
ments of differential-input ADCs. There is no real trick to
it, but typically it is best to use a device like the THS4521
with an input common-mode voltage range (Vi) that
includes ground. A circuit is proposed and analyzed to
show how an FDA with a single +5-V supply can be used
to implement the design.

FDAs have been compared to two standard inverting
single-ended-output operational amplifiers (op amps)
configured in differential architecture and tied together
via a common-mode output loop. While this is valid as a
concept, there are important differences. For this discus-
sion, an important difference to remember is that when
a standard single-ended-output op amp in inverting con-
figuration is used, the input common mode is controlled;
but when an FDA is used, the output common mode is
controlled.

When a standard single-ended-output op amp in invert-
ing configuration is used, the positive input is not driven
from the source and is usually tied to ground or some
other reference voltage. The input common-mode voltage
at the input pins of the op amp is held at the voltage

applied to the positive input by negative feedback, where
the op amp drives the error voltage across its input pins to
0 V. This is usually referred to as a virtual short, which is
an important concept in op amp theory.

When an FDA is used to convert a single-ended input to
a differential output, the alternate input that is not driven
by the source is driven by the output through the feed-
back network. The virtual-short concept is still valid, but
the inputs are no longer tied to a reference and move
around with the signal. The output common-mode voltage
is controlled by the input to the Vi pin.

In the following discussion, it is assumed that the reader
is familiar with FDA concepts and use. For more informa-
tion on FDA fundamentals, please see Reference 1.

Circuit analysis

Proposed circuit

The proposed circuit for a single-ended bipolar input signal
is shown in Figure 1. Vg, is the power supply to the ampli-
fier; and the negative supply input is grounded. Vpy is the
input-signal source. It is shown as a ground-referenced
signal swinging around ground (=0 V) and is thus a bipolar
signal. Rz and Ry are the main gain-setting resistors for
the amplifier. Vop, and Voo are the differential output
signals to the ADC. They are 180° out of phase and are
level-shifted to Vo

Figure 1. Single-ended bipolar input circuit
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Analysis
For analysis, it is convenient to assume that the FDA is an
ideal amplifier with no offset and with infinite gain.

The gain from the single-ended input to the differential
output is set by Rp and Rg:

Yours _ B (0
Vi Rg

Note that there is no multiplication by 2 as with other
devices and circuit architectures that can also be used to
convert single-ended inputs to differential outputs.

Each single-ended output is half the differential-output
common-mode voltage (+Vpo):

Vin _Rp
Vour+ = 5 % Re +Voem

and

~Vin Ry
V = x—+ Voo
out- =5 g+ Voou

For proper operation, the input voltages at Vp and Vy
must not exceed the input common-mode voltage range
(Vigr) of the amplifier, and the outputs must be able to
support the voltage-swing requirements of the ADC input.
Violating Vi will lead to nonlinear operation that increases
distortion and is sometimes mistaken for output-saturation
problems.

To verify that the Vg is not violated, the virtual-short
concept can be used to calculate the voltage at either FDA
input pin, since Vp = Vy. Either of the following two equa-
tions can be used, but Equation 3 is easiest.

Rg Rp

Vo, =V, +V 2

P OUT’XRG+RF INXRG+RF e
Rg

Vi = Vi, X ——9 3

A T )

Due to the difference in output and input common-
mode voltage, the feedback circuit draws a current equal
to the difference in the common-mode voltages divided by
Rp + Rg. If the gain-setting resistors on the two sides of
the FDA are not matched, the difference in common-mode
voltage will also cause an offset in the output. So it is impor-
tant to use resistors with a low tolerance of 1% or better.

Example

To see how the circuit works, assume that the input signal
is 2 Vpp and the ADC to be driven is the ADS1278. The
ADS1278’s full-scale differential input is 5 Vpp, and the
input common-mode voltage is +2.5 V. The THS4521 with
a single +5-V supply can be used as the FDA.

It must first be verified that the THS4521 can support
the required voltages. The maximum gain to avoid saturat-
ing the ADC is 2.5 V/V. Equation 1 can be used to set Rp
at 1 kQ and Rg; at 400 Q. To set the ADC’s required input
common-mode voltage at +2.5 'V, the Vi of the THS45621
can simply be bypassed to ground with a 0.1-uF capacitor,

Analog Applications Journal 40 2010
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because Vo defaults to midsupply (+2.5 V) if not driven.
Each output will then swing 2.5 Vpp (£1.25 V) around
+2.5'V, so the outputs need to support +1.25 V to +3.75 V.
A check of the THS4521 data sheet shows that the required
output-voltage range is within specification. Note that
other converters with different requirements for the input
common-mode voltage will need the Vjy pin to be DC-
biased to meet those requirements.

Equation 2 can be used to calculate Vp at the positive
and negative peaks of the input signal. At Vi =-1V,
Vour. = +3.75 V.

Vp :3.75VXM— XM=+O.357V
1400 Q 1400 Q
At VIN =+1 \], VOUT— = +125 V.
Vp =1 wa+l.25 Vx 1000 & =+1.071V
1400 Q 1400 Q

Alternatively, Equation 3 can be used to calculate Vy at
the positive and negative peaks of the input signal. At
VIN =-1 V, VOUT+ =+1.25V.

Vy =125 wa =+037V
1400 ©

At VIN =+1 \], VOUT+ =+3.75 V.

Vy =3.75 VxS0 Q
1400 Q

=+1.071V

The voltages calculated for Vp and Vi are the same as pre-
dicted. A check of the THS4521 data sheet shows that the
required input-voltage range is within specification.

Even though the input signal swings negative below
ground, no negative voltages are required at the FDA pins.
When used for conversion from single-ended to differential,
the input common-mode voltage to the FDA is modulated
with the signal. In contrast, when the input and output are
both differential, variation of the input common-mode volt-
age is much lower and approximately equal to the weighted
average (set by Rp and R;) of the output common-mode
and input common-mode voltages.

What happens to Vicg when the gain is decreased or
increased?

e When the gain decreases, the input voltages (Vp and Vy)
are driven closer to the output voltage. For a gain of 1,
Vicr equals half the output swing on either output.
Attenuation, where the gain is less than 1, is a special
case; please see Reference 2 for more information.

e When the gain increases, the input voltages (Vp and Vy)
are driven closer to the input source voltage. As the gain
increases, Rp becomes larger and/or R; becomes smaller;
and, assuming that the output-voltage swing is the
same, the input-signal swing becomes smaller. Vi
equals the input common mode of the source, which in
this case is 0 V, or ground. For a more practical exam-
ple, given the same 5-Vpp differential output as before
but with the input reduced so the required gain is 10,
Vicr = +0.114 V to +0.341 V.
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Simulation

It is always a good idea to simulate circuit ideas to catch
errors and verify that assumptions are valid. Figure 2
shows the result of a transient analysis from TINA-TI™.,

sIyt394 and click Open to view the WinZip directory online
(or click Save to download the WinZip file for offline use).
If you have the TINA-TI software installed, you can open
the file THS4521_SE_to_DIFF. TSC to view the example.
To download and install the free TINA-TI software, visit

Conclusion
Parameters were established for a bipolar single-ended
source that needs to be amplified and level-shifted to drive
an ADC with a +2.5-V input common-mode voltage and a
full-scale input of up to 6 Vpp. A good option for driving
such an ADC is an FDA with a single +5-V supply, a Vicg
ranging from —0.1 V to +2 V, and an output voltage ranging
from +1 V to +4 V. The THS4521 is an excellent choice for
this application, with specifications for a single +5-V sup-
ply as follows:
e [nput-voltage range = 0 to +3.5 V (minimum to maxi-
mum over a temperature range of —40°C to +85°C)

e Qutput-voltage range = +0.2 to +4.65 V (minimum to
maximum over a temperature range of —40°C to +85°C)

Table 1 shows the TI ADCs that are compatible with the
output-drive characteristics and performance of the
THS4521.

When an FDA with a single +5-V supply is used to drive
an ADC with a single +5-V supply (like the THS4521 driv-
ing the ADS1278), the potential problem of saturating the
ADC’s inputs is avoided because its outputs cannot exceed
the power-supply voltage.

Please refer to the “Application Information” section of
Reference 3 for details on how the THS4521 performs
when driving some of these ADCs and for other applica-

Figure 2. TINA-TI™ simulation of example circuit
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Table 1. TI ADCs compatible with THS4521

CONVERTER TYPE DEVICES
Successive approximation | ADS8317/8, ADS8321, ADS8361/4/5,
register (SAR) ADS7861/2/3/4/5/9

ADS1251/2/3/4/8, ADS1281/2, ADS1158,

Delta-sigma ADS1271/4/8, ADS1174/8

. PCM1804, PCM3110, PCM3160/8,
Audio

PCM4201/2/4

tion information.
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