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Analog Applications Journal is a collection of analog application articles 
designed to give readers a basic understanding of TI products and to provide 
simple but practical examples for typical applications. Written not only for 
design engineers but also for engineering managers, technicians, system 
designers and marketing and sales personnel, the book emphasizes general 
application concepts over lengthy mathematical analyses.

These applications are not intended as “how-to” instructions for specific 
circuits but as examples of how devices could be used to solve specific design 
requirements. Readers will find tutorial information as well as practical 
engineering solutions on components from the following categories:

• Data Acquisition

• Power Management

• Interface (Data Transmission)

• Amplifiers: Audio

• Amplifiers: Op Amps

• Low-Power RF

• General Interest

Where applicable, readers will also find software routines and program 
structures. Finally, Analog Applications Journal includes helpful hints and 
rules of thumb to guide readers in preparing for their design.

Introduction
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Clock jitter analyzed in the time  
domain, Part 3

Introduction
Part 1 of this three-part article series focused 
on how to accurately estimate jitter from a 
clock source and combine it with the aperture 
jitter of an ADC.1 In Part 2, that combined jitter 
was used to calculate the ADC’s signal-to-noise 
ratio (SNR), which was then compared against 
actual measurements.2 This article, Part 3, 
shows how to further increase the SNR of the 
ADC by improving the ADC’s aperture jitter, 
with a focus on optimizing the slew rate of the 
clock signal.

As shown in Parts 1 and 2, a bandpass filter 
on the clock signal is a key component for 
achieving an ADC’s data-sheet SNR values. The 
far-end phase noise of the clock signal adds a 
substantial amount to the total jitter of the clock 
signal, causing the SNR to degrade even faster 
at higher input frequencies.

Unfortunately, there are two major disadvan-
tages associated with the bandpass filter. The 
first is that it not only removes the clock signal’s 
far-end phase noise, it also eliminates the higher- 
order odd harmonics of the fundamental clock 
frequency, turning a square wave into a sine wave. These 
odd harmonics (third, fifth, etc.) are essential for achieving 
a fast slew rate to minimize the ADC’s aperture jitter. The 
second disadvantage of the bandpass filter, depending on 
topology and order, is that it has some loss associated with 
it that can typically range anywhere from 1 to 9 dB. This 

Data Acquisition

By Thomas Neu
Systems and Applications Engineer
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Figure 21. Bandpass-filter input and output 
with 1.8-V and 3.3-V logic

loss is equivalent to attenuating the clock amplitude and 
thus reducing the slew rate of the clock signal even further.

The slew rate’s impact on an ADC’s SNR performance is 
often shown in the ADC’s data sheet as SNR plotted versus 
clock amplitude, as in Figure 20. This figure, taken from 
the Texas Instruments (TI) ADS54RF63 data sheet,3 shows 
that the larger the clock’s amplitude is, the larger its slew 
rate will be. Figure 20 also demonstrates that, as expected, 
the SNR sensitivity to the clock’s slew rate increases as 
the input frequency, fIN, increases. However, the plot also 
indicates that overdriving the clock input too much may 
actually cause clipping or damage inside the ADC, nega-
tively impacting the SNR.

In an effort to lower the intrinsic noise and reduce the 
power consumption, manufacturers produce clock- 
distribution ICs with smaller process nodes and conse-
quently lower power-supply rails. For example, it is much 
more difficult to generate a fast-slew-rate clock signal 
from a 1.8-V device than from a 3.3-V device; and the loss 
from the bandpass filter only makes this deficiency worse 
(see Figure 21).

The remainder of this article focuses on two practical 
ways to maximize the slew rate of the filtered clock signal 
in real applications by trying to “restore” the removed 
clock harmonics. Essentially, the clock edges need to be 
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squared up again, and the signal swing needs to be 
increased as much as possible to compensate for the loss 
from the bandpass filter (BPF). Both tasks can be accom-
plished by increasing the signal gain through either an 
active or a passive circuit (see Figure 22). Both options 
have advantages and disadvantages, all of which will be 
discussed next along with the key considerations for  
making a selection.

Using a low-noise amplifier for active gain
System designers often don’t want to use active gain 
because it adds noise to the system and consumes extra 
power. However, in some cases it may be the only option, 
as (for example) when the design uses a high clock fre-
quency that exceeds the bandwidth of the step-up  
transformer.

There are several parameters the system designer needs 
to consider when selecting the amplifier:

Bandwidth specification—There are a lot of RF amplifi-
ers available, but very few extend down to intermediate 
frequencies (<250 to 500 MHz). The noise figure of stan-
dard CMOS amplifiers isn’t low enough to be considered 
(<2 dB), so the best practice is to choose an RF amplifier. 
The amplifier’s usable bandwidth needs to be wide enough 
to include at least the third and preferably the fifth har-
monic of the fundamental clock frequency. Therefore, an 
amplifier for a 122.88-MHz clock needs to cover at least 
368.64 MHz, and for a 500-MHz clock at least 1.5 GHz.

Noise figure—To minimize the additional noise contribu-
tion of the low-noise amplifier (LNA), its noise figure 

should be at least 2 dB or better. Most LNAs, even with low 
noise figures, add broadband noise to the clock signal. 
Hence the LNA should be placed between the clock- 
distribution device and the bandpass filter (BPF) (see 
Figure 23) to limit the amount of extra noise (see Figure 
24). (The TI CDCE72010 used for Figures 23 and 24 is the 
clock synchronizer used in the examples in Part 2 of this 
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Figure 22. Addition of circuitry to boost 
slew rate
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for BPF losses
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article series.) Better noise figures typically require more 
power consumption, which may set some practical limits 
to the amplifier search.

P1dB compression point—The P1dB compression point 
essentially defines the maximum possible output swing. To 
achieve a clock signal of about 2 VPP, the P1dB needs to 
be at least 10 dBm.

Voltage rail—The voltage rail of the amplifier can be 
used to avoid exceeding the maximum voltage rating of 
the ADC’s clock pins. However, for maximum perform ance, 
a new voltage rail may be necessary, adding cost and board 
space to the system.

Stability—A low-loss LC bandpass filter has a high reac-
tance. RF LNAs are designed to ideally drive a resistive 
50-W load, so driving a reactance may cause instability or 
distortion with additional unwanted spurs, which may 
require a matching network.

Gain—Even though the LNA is operated with high gain 
(>10 to 12 dB) similar to a comparator, the research in 
conjunction with this article showed that pure compara-
tors are not suitable for this function. They add too much 
noise to the output signal, and most often their slew rate 
is not fast enough.

Part 2 described the example of the CDCE72010 clock 
synchronizer driving the TI ADS54RF63 and ADS5483 
ADCs with a sampling frequency of 122.88 MSPS. The 
SPF-5043 LNA from RF Micro Devices was evaluated as a 
suitable amplifier for this example (see Figure 23). In an 
effort to keep the additional power consumption from the 
LNA to a minimum, the amplifier was operated from a 
3.3-V supply and the quiescent current was measured at 
about 41 mA, or a power consumption of about 131 mW.

The SPF-5043 data sheet lists the following  
specifications:

• Usable bandwidth extends down to 100 MHz

• Noise figure = 0.6 dB

• P1dB = ~19 dBm

• Gain = ~22 dB

Even though the LNA’s noise figure is really low, the SNR 
performance was better when the LNA was placed before 
the bandpass filter instead of following it.

The maximum output voltage of the SPF-5043 is limited 
by the 3.3-V voltage rail. However, when a step-up trans-
former is used to convert the signal from single-ended to 
differential, additional measures may be necessary to 
avoid exceeding the maximum voltage rating of the ADC’s 
clock inputs.

Using a step-up transformer for passive gain
The easiest way to improve the slew rate of the clock signal 
is by means of a step-up transformer. Since it is a passive 
component, it doesn’t add extra noise or increase power 
consumption. In power-sensitive or portable applications, 
a transformer-based solution may be the only practical 

choice; and oftentimes a transformer may already be used 
in the clock path to convert a clock input from single-ended 
to differential. However, there are some applications 
where a step-up transformer is not practical and the  
following parameters need to be considered:

Bandwidth requirement—Transformers themselves 
have the frequency response of a bandpass filter. The mag-
netic coupling between input and output gets weaker as 
the frequency gets close to DC, and at higher frequencies 
the transformer parasitics such as inner-winding capaci-
tance and leakage inductance are starting to dominate. 
The pass-band bandwidth of off-the-shelf transformers is 
typically less than that of a wideband LNA such as the 
SPF-5043, and the upper frequency limit decreases as the 
step-up ratio increases (1:8 versus 1:4).

Impedance transformation and transformer  
impedance ratio—Besides increasing the output voltage, 
the step-up transformer also changes the input impedance. 
For example, a transformer with a 1:4 impedance ratio 
changes a 50-W source into a 200-W source impedance 
(see Figure 25). Therefore, the ADC clock’s input imped-
ance needs to be considered when the transformer imped-
ance ratio is selected, because it is in parallel with the 
clock’s input termination (RT). For example, if the ADC 
clock’s input impedance is only 200 to 300 W, then a 1:8 
step-up transformer—even without any termination—
would pre sent a 25- to 40-W load to the clock source. This 
is a significant load that may keep the clock source from 
generating as high a swing because it can’t source enough 
output current.

Maximum voltage swing—The step-up transformer can 
easily generate output voltages larger than 5 V, quickly 
exceeding the maximum voltage ratings of the ADC’s clock 
input. A 5-V converter typically has a maximum input volt-
age of about 5.5 V, while a 3.3-V converter may tolerate a 
maximum of only about 3.6 V. Exceeding the maximum 
voltage rating of the ADC reduces its life span and may 
even result in catastrophic failure due to electrical over-
stress. Although the clock input typically is protected with 
ESD diodes, it is not good practice to rely solely on them. 
A better alternative for protecting against electrical over-
stress may be to employ external clipping diodes.

1:4

RT
RIN50 � 200 �

Figure 25. Step-up transformer changes 
input impedance

http://www.ti.com/aaj
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Using Schottky clipping diodes
Using clipping diodes is a common way to protect the data 
converter’s inputs from exceeding the maximum voltage 
rating. Because low-capacitance Schottky diodes, such as 
the HSMS-2812 from Avago Technologies, can maintain fast 
slew rates, they are well-suited for RF and high-speed appli-
cations. The HSMS-2812 has a forward voltage of 410 mV. 
Using a pair of anti-parallel diodes (see Figure 26) creates 
a differential clipping voltage of ±410 mV (820 mVPP). For 
ADCs that require a higher clock amplitude, two pairs of 
anti-parallel diodes can be placed back-to-back, doubling 
the clipping voltage to ±820 mV (1.64 VPP).

Figure 27 shows the filtered LVCMOS output of the 
CDCE72010 that results when a 1:4 transformer is used 

Single
Diode Pair (SDP)

Dual
Diode Pair (DDP)

Figure 26. Using clipping diodes to protect 
ADC inputs

1:8 Transformer
DDP

1:4 Transformer
SDP

1:4 Transformer
(No Clipping)

1:8 Transformer
SDP

1.6 VPP

Clipping diode reduces
peak-to-peak amplitude

Figure 27. Clock signal with different transformer and 
clipping-diode configurations

with and without a single diode pair (SDP). Also shown is 
the output for when a 1:8 transformer is used with an SDP 
or a back-to-back dual diode pair (DDP). It can be seen 
that with the 1:4 transformer, the SDP reduces the sine-
wave amplitude from about 1.6 to 0.9 VPP. However, the 
clipped output waveform no longer resembles a pure sine 
wave but looks instead like a square wave.

It is interesting to note that when the SDP configuration 
is used, there doesn’t seem to be an amplitude difference 
between using the 1:4 or the 1:8 transformer, although the 
waveform for the latter appears to have a slightly faster 
slew rate. For the DDP configuration with the 1:8 trans-
former, the output amplitude is about 1.6 VPP with a little 
better slew rate around the zero crossing point.

http://www.ti.com/aaj


Texas Instruments Incorporated

9

Analog Applications Journal 3Q 2011 www.ti.com/aaj High-Performance Analog Products

Data Acquisition

SNR measurements
An investigation was conducted to see whether the ADC’s 
aperture degradation due to the external clock’s slew-rate 
limitation could be improved. Different configurations 
using step-up transformers, an SPF-5043 LNA, and clip-
ping diodes were tested to maximize the ADC’s SNR when 
a real istic clocking solution such as the CDCE72010 was 
used (see Figure 28) rather than a low-jitter clock-source 
generator.

As highlighted in Part 2 of this article series, the filtered 
LVCMOS output of the CDCE72010 has about 90 fs of 
clock jitter, while the clock-source generator has only 
about 35 fs. Although the clock-jitter difference prevents 
the CDCE72010 from ever achieving the same SNR as 
when the clock-source generator is used, the goal was to 
find a configuration to reduce the resulting SNR gap as 
much as possible. The ADS54RF63 ADC was used with a 
sampling frequency (fS) of 122.88 MSPS and an input fre-
quency (fIN) of 1.0 GHz. The ADS5483 ADC was also used, 

CDCE72010

10-MHz
Reference

ADS54RF63
5483ADS

fIN

Clock-Source
Generator

Signal-Source

Generator

10 MHz

f 122.88 MHzS =

SPF-5043
LNA

Transformer

Clipping
Diodes

491.52 MHz

VCXO

Figure 28. Setup for testing different active- and passive-
gain circuits

with the same value for fS but with an fIN of 100 MHz.
The following different parameters were examined:

• Use of an LNA to boost the output voltage and slew rate 
of the CDCE72010

• Step-up transformers with ratios of 1:1, 4:1, 8:1, and 
16:1 (Coilcraft WBC series and Mini-Circuits ADT series)

• Avago’s HSMS-2812 clipping diodes—either SDPs or 
back-to-back DDPs in anti-parallel configuration

Measurements for ADS54RF63
The default configuration for the ADS54RF63 evaluation 
module (ADS54RF63EVM) used a Coilcraft WBC4-1 step-
up transformer, and the baseline SNR was about 60.7 dBFS 
when the low-jitter clock-source generator was used. If 
the CDCE72010 with the LVCMOS output was used as the 
clock source instead, the SNR dropped to 57.8 dBFS. 
However, with only about 90 fs of clock jitter, an SNR  
better than about 60 dBFS should theoretically be attain-
able, so there was room for at least a 2.2-dB improvement.

http://www.ti.com/aaj
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Figure 29 shows the different EVM 
clock-input configurations along with 
the measured SNR values of the 
ADS54RF63. It can be seen that the 
clipping diodes alone seemed to 
improve the SNR with the default 
WBC4-1 step-up transformer, while 
the addition of the SPF-5043 LNA 
provided a big boost in SNR. Using 
the single-diode-pair (SDP) configu-
ration along with the WBC4-1 trans-
former and the LNA improved the 
SNR to about 60.4 dBFS, which was a 
2.6-dB improvement! Using a purely 
passive solution, the WBC8-1 trans-
former with an SDP and no LNA, 
yielded an SNR of about 59.5 dBFS, 
very close to the 60-dBFS target.

Figure 30 shows a comparison of 
the clock-input waveforms that 
occurred with different configurations. 
The low-jitter clock-source generator 
combined with the WBC4-1 step-up 
transformer provided a very large 
slew rate. Figure 30 shows that the 
filtered output of the CDCE72010 had 
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a smaller peak-to-peak amplitude and thus a slower slew 
rate, which negatively impacted the ADC’s aperture jitter. 
Adding the SDP to that configuration seemed to slightly 
improve the slew rate around the zero crossing point, 
which also manifested itself as improved SNR performance. 
Adding the high-gain LNA to the CDCE72010 output sent 
a much larger signal with a much larger slew rate to the 
clipping diodes. This resulted in an even faster transition 
through the zero crossing point, which in turn further 
improved the aperture jitter of the ADC. The dual-diode-
pair (DDP) configuration seemed to improve the slew rate 
immediately before the zero crossing point a little bit. 
However, Figure 30 also shows that if the CDCE72010 
with the WBC4-1 transformer were used without the LNA, 
the output voltage might be too low to fully trigger the 
clipping event. The measurement results in Figure 29 
show better SNR performance with the WBC8-1 step-up 
transformer and DDPs.

Measurements for ADS5483
The ADS5483EVM employed a Mini-Circuits ADT4-1WT 
step-up transformer on the clock input. The baseline SNR 
with a low-jitter clock source was measured at 78.2 dBFS, 
while the CDCE72010 output yielded an SNR of about 
76.8 dBFS. The CDCE72010 with a clock jitter of about  
90 fs should provide an SNR of about 77.6 dBFS, which 
would be an improvement of almost 1 dB.

The measured SNR values of the ADS5483 with the  
various EVM clock-input configurations are illustrated in 
Figure 31. Adding the SDP to the ADT4-1WT transformer 
provided enough boost to the slew rate for the SNR with 
the CDCE72010 to improve by almost 1 dB to the 77.6-
dBFS target. A larger step-up ratio didn’t seem to add any 
further benefit. Adding the LNA in addition to the  
ADT4-1WT boosted the SNR to about 77.8 dBFS. It should 
be noted as well that a lower clock amplitude (WBC1-1) 
significantly degraded the SNR, as expected.

Conclusion
As explained in Parts 1 and 2 of this article series, the 
ADC’s aperture jitter is not fixed but dependent on the 
clock-input slew rate. While the bandpass filter is necessary 
to minimize the clock jitter as much as possible, it also 
reduces the clock’s slew rate by filtering out the higher-
order harmonics. This article has shown practical ways 
(using either active or passive gain) to improve the slew 
rate of an existing clocking solution with a bandpass filter, 
thus improving the ADC’s SNR by several decibels. The 
SNR measurements have shown that improving the slew 
rate of the clock signal makes the ADC’s SNR match the 
predicted SNR for a given amount of clock jitter.
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How delta-sigma ADCs work, Part 1

Analog techniques have dominated signal processing for 
years, but digital techniques are slowly encroaching into 
this domain. The design of delta-sigma (DS) analog-to-
digital converters (ADCs) is approximately three-quarters 
digital and one-quarter analog. DS ADCs are now ideal for 
converting analog signals over a wide range of frequencies, 
from DC to several megahertz. Basically, these converters 
consist of an oversampling modulator followed by a digital/
decimation filter that together produce a high-resolution 
data-stream output. This two-part article will look closely 
at the DS ADC’s core. Part 1 will explore the basic topology 
and func tion of the DS modulator, and Part 2 will explore 
the basic topology and function of the digital/decimation 
filter module.

DS converters: An overview
The rudimentary DS converter is a 1-bit sampling system. 
An analog signal applied to the input of the converter needs 
to be relatively slow so the converter can sample it multiple 
times, a technique known as oversampling. The sampling 
rate is hundreds of times faster than the digital results at 
the output ports. Each individual sample is accumulated 
over time and “averaged” with the other input-signal sam-
ples through the digital/decimation filter.

The DS converter’s primary internal cells are the DS 
modu lator and the digital/decimation filter. The internal 
DS modulator shown in Figure 1 coarsely samples the 
input signal at a very high rate into a 1-bit stream. The 
digital/decimation filter then takes this sampled data and 
converts it into a high-resolution, slower digital code. 
While most converters have one sample rate, the DS con-
verter has two—the input sampling rate (fS) and the out-
put data rate (fD).

The DS modulator
The DS modulator is the heart of the DS ADC. It is respon-
sible for digitizing the analog input signal and reducing 
noise at lower frequencies. In this stage, the architecture 
implements a function called noise shaping that pushes low- 
frequency noise up to higher frequencies where it is outside 
the band of interest. Noise shaping is one of the reasons 
that DS converters are well-suited for low-frequency, high-
accuracy measurements.

The input signal to the DS modulator is a time-varying 
analog voltage. With the earlier DS ADCs, this input-voltage 
signal was primarily for audio applications where AC signals 
were important. Now that attention has turned to precision 
applications, conversion rates include DC signals. This dis-
cussion will use a single cycle of a sine wave for illustration.
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Figure 1. Block diagram of DS ADC
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Figure 2a shows a single cycle of a sine wave for the 
input of a DS modulator. This single cycle has voltage 
ampli tude that changes with time. Figure 2b shows a  
frequency-domain representation of the time-domain  
signal in Figure 2a. The curve in Figure 2b represents the 
continuous sine wave in Figure 2a and appears as a 
straight line or a spur.

There are two ways to look at the DS modulator—in 
the time domain (Figure 3) or in the frequency domain 
(Figure 4). The time-domain block diagram in Figure 3 
shows the mechanics of a first-order DS modulator. The 
modulator converts the analog input signal to a high-speed, 
single-bit, modulated pulse wave. More importantly, the 
frequency analysis in Figure 4 shows how the modulator 
affects the noise in the system and facilitates the produc-
tion of a higher-resolution result.

The DS modulator shown in Figure 3 acquires many 
samples of the input signal to produce a stream of 1-bit 
codes. The system clock implements the sampling speed, 
fS, in conjunction with the modulator’s 1-bit comparator. 

Time Frequency

Input
Amplitude

Input
Magnitude

Figure 2. Input signal to the DS modulator

(a) Time domain (b) Frequency domain

Difference
Amplifier Integrator

Comparator
(1-Bit ADC)

1-Bit DAC

Analog
Input

VREF

x4

x4 yi

x2 x3

fS
eixi Output to

Digital Filter+

+

–

–

Figure 3. First-order DS modulator in the time domain

yi = xi – 1 + (ei – ei – 1)

In this manner, the quantizing action of the DS modulator 
is produced at a high sample rate that is equal to that of 
the system clock. Like all quantizers, the DS modulator 
produces a stream of digital values that represent the  
voltage of the input, in this case a 1-bit stream. As a result, 
the ratio of the number of ones to zeros represents the 
input analog voltage. Unlike most quantizers, the DS 
modulator includes an integrator, which has the effect of 
shaping the quantization noise to higher frequencies. 
Consequently, the noise spectrum at the output of the 
modulator is not flat.

In the time domain, the analog input voltage and the out-
put of the 1-bit digital-to-analog converter (DAC) are differ-
entiated, providing an analog voltage at x2. This voltage is 
presented to the integrator, whose output progresses in a 
negative or positive direction. The slope and direction of 
the signal at x3 is dependent on the sign and magnitude of 
the voltage at x2. At the time the voltage at x3 equals the 
comparator reference voltage, the output of the comparator 
switches from negative to positive, or positive to negative, 
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depending on its original state. The output value of the 
comparator, x4, is clocked back into the 1-bit DAC, as well 
as clocked out to the digital filter stage, yi. At the time that 
the output of the comparator switches from high to low or 
vice versa, the 1-bit DAC responds by changing the analog 
output voltage of the difference amplifier. This creates a 
different output voltage at x2, causing the integrator to pro-
gress in the opposite direction. This time-domain output 
signal is a pulse-wave representation of the input signal at 
the sampling rate (fS). If the output pulse train is averaged, 
it equals the value of the input signal.

The discrete-time block diagram in Figure 3 also shows 
the time-domain transfer function. In the time domain, the 
1-bit ADC digitizes the signal to a coarse, 1-bit output code 
that produces the quantization noise of the converter. The 
output of the modulator is equal to the input plus the 
quan tization noise, ei – ei – 1. As this formula shows, the 
quantization noise is the difference between the current 
quantization error (ei) and the pre vious quantization error 
(ei – 1). Figure 4 illustrates the frequency location of this 
quantization noise.

Sigma
(Integrator)Delta

xi yi

ei

fS

+

–

Magnitude

Frequency

Quantization
Noise

Signal

Analog
Input

Output to
Digital Filter

1-Sample
Delay

1-Bit
DAC

1-Bit
ADC

Figure 4. First-order DS modulator in the frequency domain

Figure 4 also shows that the combination of the integra-
tor and sampling strategy implements a noise-shaping filter 
on the digital output code. In the frequency domain, the 
time-domain output pulses appear as the input signal  
(or spur) and shaped noise. The noise characteristics in 
Figure 4 are the key to understanding the modulator’s  
frequency operation and the ability of the DS ADC to 
achieve such high resolution.

The noise in the modulator is moved out to higher fre-
quencies. Figure 4 shows that the quantization noise for a 
first-order modulator starts low at zero hertz, rises rapidly, 
and then levels off at a maximum value at the modulator’s 
sampling frequency (fS).

Using a circuit that integrates twice instead of just once 
is a great way to lower the modulator’s in-band quantization 
noise. Figure 5 shows a 1-bit, second-order modulator that 
has two integrators instead of one. With this second-order 
modulator example, the noise term depends on not just 
the previous error but the previous two errors.

Some of the disadvantages of the second- or multi-order 
modulators include increased complexity, multiple loops, 

Integrator Integrator

IN + +

ei

xi yi

OUT

– –

Σ Σ

1-Bit
DAC

1-Bit
ADC

Figure 5. Block diagram of a second-order DS modulator

yi = xi – 1 + (ei – 2ei – 1 + ei – 2)
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and increased design difficulty. However, most DS modula-
tors are higher-order, like the one in Figure 5. For instance, 
Texas Instruments DS converters include second- through 
sixth-order modula tors.

Multi-order modulators shape the quantization noise to 
even higher frequencies than do the lower-order modula-
tors. In Figure 6, the highest line at the frequency fS 
shows the third-order modulator’s noise response. Note 
that this modulator’s output is very noisy all the way out at 
its sampling frequency of fS. However, down at lower fre-
quencies, below fD and near the input-signal spur, the 
third-order modulator is very quiet. fD is the conversion 
frequency of the digital/decimation filter. Selecting a value 
for fD will be discussed in Part 2 of this article series.

Modulators: The first half of the story
The modulator of the DS ADC successfully reduces low-
frequency noise during the conversion process. However, 
the high-frequency noise is a problem and is undesirable 

in the final output of the converter. Part 2 of this article 
series will discuss how to get rid of this noise with a low-
pass digital/decimation filter.

References
1. R. Jacob Baker, CMOS: Mixed-Signal Circuit Design, 

Vol. II. John Wiley & Sons, 2002.
2. Texas Instruments, Nuts and Bolts of the Delta-Sigma 

Video Tutorial [Online]. Available: http://focus.ti.com/
docs/training/catalog/events/event.jhtml?sku= 
WEB408001

Related Web site
dataconverter.ti.com

Frequency

O
u

tp
u

t 
N

o
is

e

Third-Order

∆Σ Modulator

Second-Order

∆Σ Modulator

First-Order

∆Σ Modulator

fS

fD

fD

Figure 6. DS modulator noise shaping versus modulator order 
with a sampling frequency of fS

http://www.ti.com/aaj


17

Analog Applications Journal

Texas Instruments Incorporated

3Q 2011 www.ti.com/aaj High-Performance Analog Products

A boost-topology battery charger powered 
from a solar panel

Introduction
Solar charging of batteries has recently 
become very popu lar. A solar cell’s typical 
voltage is 0.7 V. Many panels have eight cells 
in series and are therefore capable of produc-
ing 5.6 V at most. This voltage is adequate for 
charging a single Li-ion battery, such as that 
used in cell phones, to 4.2 V with a buck or 
step-down charger. However, using the same 
panel to charge a multicell Li-ion battery like 
that used in laptop computers requires a 
boost or step-up charger. Most chargers  
currently on the market are based on a buck 
or step-down topology and therefore require 
their input voltage to be higher than the  
battery’s fully charged voltage. However, it is 
possible to modify a buck battery charger into 
a boost or step-up battery charger. This article 
identifies the key concerns in implementing such  
a modification and provides a design example that uses 
the Texas Instruments (TI) bq24650 solar battery charger.

The buck power stage versus the boost  
power stage
Figure 1 shows a simplified block diagram of a solar- 
powered battery charger. The charger-controller IC moni-
tors the charging current through a current-sense resistor 
(RSNS) and the battery voltage (VBAT) through the feed-
back resistors (RTFB and RBFB). The IC also adjusts the 
output of the power stage in order to meet the charging 
parameters. If the input source voltage (VSP) will always be 
higher than the maximum battery voltage, a buck power 
stage can be used. If VSP will always be lower than the 
maximum battery voltage, a boost power stage is required.

Figure 2 shows a synchronous buck power stage and a 
nonsynchronous boost power stage. Both use the high-
side gate drive (GDRVHI) to drive the power FET (QPWR). 
However, a buck controller cannot be easily configured to 
drive a synchronous rectifying switch for a boost converter; 
so QSYNC is replaced by diode DRECT, and the low-side gate 
drive (GDRVLO) is not used. A buck converter also provides 
continuous inductor current that is filtered by capacitors 
CIN and CBAT (see Figure 1) regardless of which switch is 
on. Unlike the buck converter, the boost converter uses 
QPWR only to charge the inductor. During this time the 
output capacitor must supply the battery-charge current. 
When DRECT turns on, the now charged inductor provides 
both the output-capacitor and the battery-charging cur-
rents. Therefore, the boost converter’s output-voltage ripple 
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will always be higher than that of a buck converter that 
uses the same inductor and output capacitance and the 
same output power. This ripple can cause inaccurate  
current measurement across the current-sense resistor. 
Compared to the buck power stage shown in Figure 1, the 
boost power stage will require a larger sense-voltage filter 
capacitor (CFLTR) and a larger output capacitance (CBAT).

Limiting precharge current when VBAT << VSP
The boost power stage’s rectifying diode provides a DC 
current path from VSP to the battery when the controller is 
not switching. With a deeply discharged battery, the battery 
voltage could be below the solar panel’s output voltage, 
causing the charger controller to stop switching and no 
longer regulate the battery-charging current. Therefore, a 
current-limiting resistor (RPrecharge) in series with the diode 
(see Figure 3) is required to limit the charge current to a 
lower, precharging current value. Once the battery voltage 
reaches VSP, the controller begins switching, and RPrecharge 
can be shorted out with a FET (QShort) to allow the con-
troller to provide higher charge currents. Figure 3 shows 
how RPrecharge can be used with QShort and a comparator 
to implement this functionality.

 RPrecharge is sized to give the maximum recommended 
precharge current for the battery at the solar panel’s maxi-
mum power-point voltage (VSP_MPP). QShort is sized to 
accommodate the maximum battery voltage (VBAT(max)) 
and the maximum charge current (ICHRG(max)). The com-
parator feedback resistor (RHYS) provides hysteresis. 
Therefore, resistor dividers are needed on the sensed- 
voltage inputs to the comparator.

Ensuring operation when VBAT > VSP or when 
VBAT < VBATSHT
A buck charger expects the battery voltage to always be 
less than the charger’s input voltage. In fact, many charg ers 
have a feature that puts the charger into sleep mode if 
VBAT is greater than VSP. Alternatively, if VBAT falls below a 
certain threshold (VBATSHT), the IC may assume the battery 
is shorted and enter protection mode. If the voltages at 
the current-sense pins (VRSNS+ and VRSNS–) are used to 
determine the battery’s state, the sensed voltages will 
need to be level shifted to avoid a false detection of a 
shorted output. Figure 4 shows how to use an instrumen-
tation amplifier, configured as a current-shunt monitor, to 
level shift the current information sensed across RSNS. 
This circuit lowers the DC set point of the sensed voltages 
enough that the IC will not enter sleep mode but keeps 
the voltages high enough that the IC does not enter short-
circuit-protection mode. If the charger does not have its 
own reference voltage (VREF), an external reference IC 
can be used.

QShort

VO_Charger

RPrecharge

RPwrUp

RHYS

VBAT

VSP

+
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Figure 3. Precharge circuitry
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Table 1. Cross-reference for controller pin names

FIGURE 1 CONTROLLER  
PIN NAME 

bq24650 PIN NAME

GDRVHI HIDRV

GDRVLO LODRV

VRSNS+ SRP

VRSNS– SRN

FB VFB

Computing the maximum charge current
A boost charger’s maximum charge current is a function of 
its available input power. A simple way to estimate the 
maxi mum charge current is to first estimate the input-to-
output efficiency, POUT/PIN = ηest, where ηest is an estimate 
of the boost charger’s efficiency in similar operating condi-
tions. The following equation can then be used to estimate 
the maximum charge current at a specific battery voltage:

SP _ MPP SP _ MPP est
CHRG(max)

BAT

V  I
I  ,

V

× × η
=

where VSP_MPP is the solar panel’s maximum power-point 
voltage, and ISP_MPP is the solar panel’s maximum power-
point current.

RSNS should be sized to provide ICHRG(max). QPWR has a 
voltage rating slightly higher than VSP(max), and QPWR and 
L1 have current ratings equal to at least ISP_MPP. The 
charg er’s control circuitry that manages input voltage and 
current will adjust the charge current to keep the charger 
operating at the solar panel’s maximum power point. 
Charge controllers such as the bq24650 perform the same 
function with maximum-power-point tracking (MPPT).

Design example using the bq24650
Table 1 maps the functional pin names from Figure 1 to the 
corresponding bq24650 pin names in Figure 5. Figure 5 

shows TI’s bq24650 charger controller configured to charge 
a 12.6-V, 3-cell Li-ion battery from a 5-V solar panel. The 
maximum charge current is limited to 1.2 A. The power 
n-channel FET (Q1) and rectifying diode (D1) are sized 
by using standard design guidelines for boost converters. 
The inductor (L1) and output capacitors (C3 and C4) are 
sized to reduce inductor-current ripple and the resulting 
output-voltage ripple. R18 is used to slow down the fast 
turn-on of Q1. Also, the controller’s PH pin is grounded to 
help provide the boosted output voltage. To prevent the 
output of the current-shunt monitor (U2) from loading the 
SRP pin, a unity-gain buffer (U3) is necessary.

U1
bq24650

VCC

VREF

MPPSET

TS

TERM_EN

STAT1

STAT2

HIDRV

PH

PGND

BTST

LODRV

SRP

SRN

VFB

REGN

VBATVSP

VREF

VBAT

VSP

VCC

VCC

VSP

3-Cell
Battery
Pack

Q2

R20

100 ΩC4
10 µF

C7
1 µF

C8
1 µF

C3
10 µF

C5
1 µF

C2
10 µF

C6
1 µF

C7
1 µF

C1
2.2 µF

R19

1 MΩ

R20

1 kΩ

R21

33 mΩ
D1

PDS1040L1

Q3
2N7002

Q1
CSD17308Q3

D3
IN4148

D2
BAT54C

R15

301 kΩ

R10

100 kΩ
R2

10 Ω

R1

2 Ω

R5

301 kΩ

R3

301 kΩ

R6

301 kΩ
R4

100 kΩ

R17

1 kΩR18

15 Ω

R11

499 kΩ

R12

100 kΩ

R16

301 kΩ

R13

301 kΩ

R14

301 kΩ

U2
INA139

U3
LM358

VCC

U4
TLV7211

+
–

+

–
+

–

+

–

Figure 5. The bq24650 configured as a boost charger
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Figure 6 shows the efficiency of the charger 
in Figure 5. Although the bq24650 is inter-
nally compensated as a buck charger, its 
small-signal control loop is stable over a wide 
operating range when the IC is operating as a 
boost charg er (see Figure 7). When using the 
bq24650 with different power-stage inductors 
and capacitors, the designer is responsible for 
confirming loop stability.

Conclusion
The demand for step-up battery chargers is 
growing, especially as the demand for charg-
ing from solar panels grows. Following the 
guidelines presented in this article, a designer 
can convert the bq24650 buck charger into a 
boost charger. When converting a different 
buck charger into a boost charger, the  
designer is responsible for understanding how 
that charger operates in order to determine 
which additional circuitry is necessary as well 
as to confirm stable operation.

Related Web sites
power.ti.com
www.ti.com/sc/device/partnumber
Replace partnumber with bq24650, CSD17308Q3, 
INA139, LM358, or TLV7211
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Isolated RS-485 transceivers support 
DMX512 stage lighting and special- 
effects applications

Stage lighting and special-effects applications in modern 
theaters, opera houses, sports arenas, and concert halls 
utilize complex data-transmission networks. These net-
works, often reaching distances of up to 1200 m, provide 
communication between several hundreds of network 
nodes that control dimmers, moving lights, fog machines, 
and other special-effects equipment.

The first standard ensuring reliable intercommunication 
for these applications was known as DMX512 and was 
originally developed in 1986 by the United States Institute 
for Theatre Technology (USITT) Engineering Commission. 
In 1998, the Entertainment Services and Technology 
Association (ESTA) took over maintenance of this stan-
dard. A revised version was approved by the American 
National Standards Institute (ANSI) in 2004. The standard 
was revised again in 2008 and is now officially known as 
ANSI E1.11-2008, entitled Entertainment Technology—
USITT DMX512-A—Asynchronous Serial Digital Data 
Transmission Standard for Controlling Lighting 
Equipment and Accessories, or DMX512-A in short.

Topology
A DMX512 network utilizes a multidrop topology similar  
to RS-422, where a single controller (master node) sends 
repetitive control data to multiple receivers (slave nodes). 

Within the network, all nodes are connected through daisy- 
chaining; that is, each slave node has an IN connector as 
well as an OUT connector. The controller, which has only 
an OUT connector, connects to the IN connector of the 
first slave. The OUT connector of the first slave connects 
to the IN connector of the next slave, and so on (see 
Figure 1). The OUT connector of the last slave in the 
chain connects to a 100-W or 120-W terminator plug.

So that the ingoing and outgoing data signals of a 
DMX512 port can be distinguished, the IN connectors are 
male XLR-5, and the OUT connectors are female XLR-5 
(see Figure 2).
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Protocol
A DMX512 controller transmits packets of asynchronous 
serial data at 250 kbps (see Figure 3). A data packet starts 
with a break (logic low) and is followed by a mark (logic 
high), a sequence known as mark-after-break (MAB). 
Following MAB is a time slot consisting of a start bit, eight 
data bits, and two stop bits. The entire packet consists of 
a maximum of 513 time slots, 512 of which are actual data 
slots. The first slot, known as the start code, specifies the 
type of data in the packet.

Physical layer
The DMX512-A standard specifies EIA-485 as the network’s 
physical layer, thus allowing for a maximum common-
mode loading of up to 32 unit loads and a maximum bus 
length of 1200 m. Network wiring typically consists of 
twisted-pair cable with a characteristic impedance of 
either 120 W for RS-485 cable or 100 W for CAT5 cable, 
with a termination resistor of equal impedance at the end 
of the bus.

In addition to EIA-485, DMX512-A recommends earth-
grounded transmitter ports and isolated receiver ports to 
avoid the formation of disruptive ground loops (see  
Figure 4).

Furthermore, DMX512-A makes provisions for enhanced-
functionality (EF) topologies that enable the use of 
respond ers. The responders are receiving nodes that can 
return status information to the controller. The two EF 
topologies most often applied are EF1 and EF2. EF1 pro-
vides a half-duplex link between the DMX512 network’s 
controller and responders. EF2 provides a full-duplex link 
between the network nodes. In both cases, the I/O port of 
responders, falling under the category of receiving devices, 
must have isolated transmit and receive ports.

Full-duplex RS-485 transceivers are the devices best 
suited for these applications because simple rewiring of 
the A,B and Y,Z bus terminals can accommodate not only 
the receiver-only configuration in standard DMX512 sys-
tems but also the half- and full-duplex configurations used 
respectively in EF1 and EF2 systems.

Legacy receiver designs often used a non-isolated trans-
ceiver in combination with opto-isolators. However, the 
mold compound in these isolators, basically representing 
the dielectric between the light-emitting diode and the 
receiving photo transistor, absorbed moisture over time, 
reducing the long-term stability of the isolation barrier.

A further drawback of legacy designs was the use of an 
isolated power supply that was required to provide the 
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supply voltage across the isolation barrier. Bulky DC/DC- 
converter modules were often applied whose cost exceed-
ed that of all the signal-path components—including the 
transceiver, isolators, and UARTs—by up to 300%.

With the recent introduction of digital capacitive-isolation 
technology, the issue of long-term reliability has been 
solved. The isolation barrier, consisting of small, high- 
voltage capacitors in the range of 120 fF, uses silicon  
dioxide (SiO2) as the isolation dielectric. SiO2 is one of the 
hardest isolation materials with little moisture absorption, 
thus providing extremely high, long-term reliability and 
long life.

Furthermore, the new Texas Instruments (TI) family of 
isolated RS-485 transceivers possesses integrated trans-
former drivers that drastically simplify the design of the 
isolated power supply. The on-chip transformer driver is 
basically a free-running oscillator with a typical frequency, 
fOSC, of 400 kHz. This oscillator drives two powerful output 
transistors, which in turn drive an external center-tapped 
transformer in a push-pull configuration. The relative high 
frequency allows for the use of small transformers that 
enable an overall small-form-factor design.

Figure 5 shows a complete solution for a responder cir-
cuit that complies with DMX512-A. As an isolated, 3.3-V, 
low-power transceiver, TI’s ISO35T provides RS-485-
compliant bus signals with a 1.5-V minimum and a 2-V 
typical differential output voltage at full differential and 
common-mode loading. The device’s maximum data rate 
of 1 Mbps satisfies the 250-kbps requirement of DMX512-A, 

and the longer rise and fall times of 200 ns ensure low 
electromagnetic interference.

Here the incoming control data from the DMX512 bus is 
signal-conditioned by the input comparator and sent across 
the isolation barrier towards the receiver output. Output 
data at the R terminal enters the UART interface of TI’s 
MSP430F2132, a low-power microcontroller. The micro-
controller converts the UART data into a synchronous, 
high-speed serial data stream to feed an eight-channel, 
high-voltage-output digital-to-analog converter (DAC). TI’s 
DAC7718 allows for bipolar outputs of up to ±16.5 V and 
unipolar outputs of up to 33 V.

Because stage special-effects equipment uses unipolar 
control voltages in the range of 0 to 10 V, the DAC7718 is 
an ideal analog interface for this type of application, 
enabling the control of up to eight light dimmers per  
network node.

The remaining node circuitry, including the DAC, the 
microcontroller, and the transceiver, operates from a single 
3.3-V supply. The 3.3-V low-dropout regulator (TI’s 
TPS76333) on the isolated side provides up to 150 mA of 
output current along with overcurrent limiting and ther-
mal protection.

Related Web sites
interface.ti.com
www.ti.com/sc/device/partnumber
Replace partnumber with DAC7718, ISO35T, ISO1176T, 
ISO3086T, MSP430F2132, or TPS76333
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Industrial data-acquisition interfaces  
with digital isolators

Galvanic isolation has become the mantra in the industrial 
engineering community as legal regulations call for its 
implementation in industrial system designs. Galvanic  
isolation allows for the exchange of information and power 
between two communicating points while preventing  
actual current flow at the same time.

Galvanic isolation has two main benefits. First, it protects 
people and equipment from potentially dangerous current 
and voltage surges. Second, it prevents the unintentional 
design of ground loops, whose noise would otherwise inter-
fere with signals from data links and other interconnections.

Legacy designs of analog I/O, instrumentation, motion-
control, and other sensor interfaces often used single-
channel isolation amplifiers to separate the sensor circuitry 
in the harsh environment of the factory floor from the  
signal-processing stage in the noise-free control-room 
environment. Advancements in technology and design 
have led to new space- and power-saving digital isolators 
whose multichannel capability permits equipment designs 
with smaller form factors. This article explains both types 

of isolators and their operational principles. Application 
examples are also provided.

Legacy isolation designs
A classic example of a legacy design using an isolation 
amplifier is the single-channel, isolated temperature- 
measurement circuit in Figure 1. Here a thermocouple 
converts the measured temperature into a low-voltage DC 
output. The following resistor-diode network conditions 
the input signal by providing operating-point biasing,  
compensating for temperature drift, and boosting the 
input sufficiently to match the input-voltage range of the 
isolation amplifier.

The isolation amplifier is a precision amplifier that uses 
duty-cycle modulation (DCM) to transmit the input signal 
across a capacitive isolation barrier. DCM ensures immunity 
to varying barrier characteristics while maintaining signal 
integrity. This results in high reliability and good common-
mode transient immunity.

By Thomas Kugelstadt
Senior Applications Engineer
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Inside the device, the input and output sections are  
galvanically isolated by two matched capacitors (see 
Figure 2). The input section converts the input voltage, 
VIN, into an input current, IIN, via an input resistor, RIN. 
Configured as an integrator, amplifier A1 integrates the 
difference between IIN and the current source until the 
input threshold of the following comparator is exceeded. 
Together, the comparator and the sense amplifier, AS1, 
force the current source to switch at the frequency of the 
internal 500-kHz oscillator. The resulting drive signal into 
the capacitive barrier is a complementary, duty-cycle- 
modulated square wave.

The output section demodulates the signal from the iso-
lation barrier through a balanced low-pass filtering. Sense 
amplifier AS2 detects signal transitions across the barrier 
and drives a switched current source into integrator A2. 
This stage balances the duty-cycle-modulated current 
against the feedback current through RF, thus yielding an 

average value of VOUT equal to VIN. The sample-and-hold 
(S/H) amplifiers in the feedback loop remove undesired 
voltage ripples inherent in the demodulation process.

Isolation amplifiers, while highly accurate and reliable, 
have several technological drawbacks. These amplifiers 
possess a low input-signal bandwidth no greater than  
50 kHz. Their requirement for a minimum power supply of 
±4 V does not support modern low-voltage designs. Their 
expensive manufacturing process requires the separate 
fabrication of input and output chips, laser trimming for 
precise circuit matching, and final assembly of both chips 
together with the isolation capacitors into one package.

Modern isolation designs
Modern data-acquisition designs use analog-to-digital  
converters (ADCs) whose inputs are multiplexed into a 
single-channel conditioning path (see Figure 3). A pro-
grammable gain amplifier (PGA) boosts the weak input 
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signal, and the converter applies delta-sigma modulation to 
the signal to convert it to a digital data stream. The digital-
conversion results are then transmitted across the digital 
isolator to a system controller for further processing in the 
digital domain.

Digital isolators can possess various isolation barriers 
that use magnetic, optoelectric, or capacitive isolation 
technologies. The isolator in Figure 4 is based on a capaci-
tive isolation-barrier technique. The device consists of two 
parallel data channels, a high-speed AC channel with a 
bandwidth ranging from 100 kbps up to 150 Mbps, and a 
low-speed DC channel covering the range from 100 kbps 
down to DC.

Inside the isolator, a single-ended input signal entering 
the AC channel is converted into a balanced signal through 
inverting and non-inverting input buffers. RC networks 
then differentiate the signal into transients, and compara-
tors convert the transients into short pulses. A final flip-
flop then converts these pulses into an output signal that 
is identical in phase and shape to the original input signal.

A decision logic (DCL) in the form of a watchdog timer 
measures the durations between signal transients. If the 
duration between two consecutive transients exceeds the 
maximum time window (as in the case of a low-frequency 
signal), the output multiplexer is switched from the high-
speed AC to the low-speed DC channel.

Because low-speed signals lack sufficient transitions to 
easily cross the tiny isolation capacitors, the carrier fre-
quency of an internal oscillator is applied to them via a 
pulse-width modulator (PWM). Past the barrier, a low-pass 
filter (LPF) removes the high-frequency content from the 
actual data prior to passing it on to the output multiplexer.

Industrial applications
The two most common applications for industrial data-
acquisition systems are in process control and factory 
automation. Process-control systems typically detect or 
measure multiple physical quantities, such as temperature 
and pressure, within one system, while factory automation 
usually monitors one physical quantity across multiple sys-
tems. Consequently, the configuration of data converters 
used in each application differs significantly. Process-
control systems addressing a wide range of sensor and 
transducer types require a wide range of parametric set-
tings for gain, sampling rate, measurement repetition, and 
impedance buffering. In strong contrast, factory automa-
tion often gets along with monitoring multiple sensors of 
the same type, thus requiring only a minimum number of 
parametric settings.

Because the number of parametric settings impacts the 
isolation efforts and the associated costs of the digital-
interface design, it is important to distinguish between 

PWM

OSC

DCL

IN OUT

DC Channel (DC to 100 kbps)

AC Channel (100 to 150 Mbps)kbps

VREF

LPF

VREF

0

1 S

Figure 4. Digital capacitive isolator
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process control and factory automation. Two typical designs 
of a data-acquisition system are shown in Figures 5 and 6 
to illustrate the difference.

In the Figure 5 configuration, a variety of sensors mea-
sure different quantities such as temperature, pressure, 
and current. Various gain settings maximize the input 
dynamic range of the ADC for each sensor. Switching 
between sampling rates might be necessary to match the 
rate of change at certain input channels. An optional  
power-down feature preserves ADC power when measure-
ments are not performed. This high versatility necessitates 
up to eight isolated control channels.

By contrast, in the Figure 6 configuration, four thermo-
couples of the same type measure the temperatures of  

different types of equipment continuously. While this design 
uses the same ADC as in Figure 5, the uniform sensor 
characteristics allow the settings for gain and sample rate 
to be fixed and the power-down feature to be disabled. 
This system configuration drastically reduces isolation 
requirements because there are only four lines for data 
and control.

Conclusion
Isolation amplifiers are out, and digital isolators are in. To 
save design time and board space and to keep the cost of 
materials down, it is imperative to understand the system 
requirements before deciding what type of isolator to use.
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Converting single-ended video to differential 
video in single-supply systems

Introduction
Video signals are commonly 
encoded, decoded, and pro-
cessed as single-ended, but it is 
often desirable to convert them 
to differential for transmission 
over cables. A good example is a 
security system where cameras 
are placed in various locations 
and the video feeds are routed 
back to a central location for 
observation and storage.

Because of its inherent resist-
ance to noise, differential trans-
mission has been used for many 
years in telephone lines and 
professional audio. Assuming 
noise is coupled equally into the differential transmission 
line(s), it shows up at the receiver as a common-mode  
signal that is rejected.

With single-supply devices becoming more and more 
common these days, it is nice to design the line-drive  
circuit to be single-supply as well. In single-supply systems, 
the signal levels are shifted to fit within the supply voltage, 
and the bias levels need to be accounted for so as not to 
cause unwanted offsets in the output. These tasks are 
aside from the normal ones like setting gains, choosing the 
type of line termination, and allowing for adequate band-
width and slew rate.

Single-ended-output operational amplifiers or fully  
differential amplifiers (FDAs) can be used to convert  
single-ended video signals to differential. The purpose of 
this article is to show how to use an FDA to convert single- 
ended video signals to differential to drive a Cat 5 cable 
with double termination in a single-supply system. It is 
assumed that the reader is familiar with FDA concepts 
and use. For more information on FDA fundamentals, 
please see Reference 1.

Typical video parameters
Figure 1 shows a composite video baseband signal (CVBS) 
showing grayscale that is often used with standard- 
definition (SD) video. SD video characteristics typically 
follow the analog-signal standards established for the NTSC 
or PAL television broadcast systems. The total peak-to-
peak output voltage is specified to be 140 IRE = 1 VPP, 
with only the sync and luminance (Y’) where the sync 
pulse is negative. With chrominance information added, a 

fully modulated composite video signal is about 1.23 VPP. 
To support the negative pulse, split-supply (±VS) opera-
tional amplifiers can be used, or AC coupling where the DC 
levels are restored at the receiver. Using a split supply or 
AC coupling requires more components and is more costly. 
DC coupling can lower cost, but moving to DC-coupled 
signals that sup port a single supply requires level shifting 
the signal. For example, the data sheet of the Texas 
Instruments (TI) TMS320DM368 video processor specifies 
video-buffer output voltages ranging from 0.35 V to 1.35 V 
with a 75-W load. In this way, a 1-VPP video signal can be 
supported with a shift in bias level and is acceptable in 
consumer video.

Other higher-definition video formats like enhanced- 
definition (ED) and high-definition (HD) do not encode as 
much different information into one line as SD. They use 
multiple lines with signals of varying duration and transition 
speed depending on the video content and specification.

So video signals are pulse-oriented by nature, and ampli-
fiers and transmission media need to have excellent pulse 
characteristics to properly reproduce them. Because of 
this, it is standard practice to use double termination of 
the transmission line. In double termination, the amplifier 
driving the line is designed to have the same output imped-
ance as the characteristic line impedance, and the receiver 
is designed to have the same input impedance as the 
charac teristic line impedance. With this configuration, 
reflections from pulse edges are minimized and the best 
signal integrity is maintained. Since operational amplifiers 
are ideally voltage sources, their outputs have very low 
impedance (near 0 W), and matching the output impedance 
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is easily done by adding a series output resistor. This out-
put resistor, in conjunction with the input impedance of 
the receiver, gives a 6-dB loss that is inherent in double 
termination. To make up for the loss, it is common practice 
for video buffers to be designed to have a gain of 2 V/V  
(6 dB) so the overall gain from video source to load is  
1 V/V (0 dB).

Category 5 (Cat 5) cabling is very common and used 
widely for computer local-area networks (LANs), but it is 
also used to carry other signals such as telephone, video, 
and audio. Most Cat 5 cables are low-cost and unshielded 
and use a twisted-pair design with differential signaling for 
noise rejection. The nominal characteristic impedance of 
Cat 5 cable is 100 W.

Circuit analysis
Proposed circuit #1
A first proposed circuit for converting a single-ended 
video signal from a single-supply video source like the 
TMS320DM368 to drive a differential line might be as 
shown in Figure 2. The function of the various elements is 
as follows:

VS+ is the power supply to the amplifier; and the nega-
tive supply input, VS–, is grounded.

VIN is the input from the TMS320DM368 video source, 
ranging from 0.35 V to 1.35 V.

RG and RF are the main gain-setting resistors for the 
amplifier. For a gain of 2 V/V, RF = 2RG.

VOUT+ and VOUT– are the differential output signals from 
the FDA. They are 180° out of phase and are level shifted 
to the common-mode output voltage, VOCM.

The two RO resistors are selected to match the charac-
teristic line impedance, ZO. For ZO = 100 W, RO = 50 W.

RL is the resistor selected to match ZO. For ZO = 100 W, 
RL = 100 W.

At first look the circuit in Figure 2 might appear to be 
acceptable, but closer inspection shows it needs some 
work. This circuit does not provide a 75-W load for the 
TMS320DM368 video buffer, so the buffer output voltages 
will not be correct. When driven from a video source like 
the TMS320DM368, whose video-buffer output range is 
0.35 V to 1.35 V, the output signals from this circuit will 
have a differential offset equal to the common-mode volt-
age of the video signal times the gain and will be level 
shifted to VOCM. Calculations show that the Figure 2 circuit 
output will have a 1.7-V differential offset. To correct the 
offset, RG on the undriven side of the FDA must be split 
and biased to make a Thevenin equivalent of RG on the 
driven side of the FDA. The Thevenin-equivalent input 
voltage equals the common-mode voltage from the video 
source; i.e., VTH = VIN_CM.

VOCM

RF

RF

RG

RG

FDA

+
+

–

–

VS+

CVBS

Video

VOUT–

VOUT+

0 V

VIN

RO

RO

RL

Cat  5

Z = 100O Ω
VOCM

VOCM

Problem:
With R to GND, input
offset from GND causes
differential-output offset

G

Figure 2. Proposed circuit #1 for converting single-ended video signals to differential
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Proposed circuit #2
A second proposed circuit for converting a single-ended 
video signal from a single-supply video source like the 
TMS320DM368 to drive a differential line is shown in 
Figure 3. In this version, the circuit is improved to correct 
the offset in circuit #1 by adding RT for a 75-W input termi-
nation and changing RG on the undriven side of the FDA 
to be the Thevenin equivalent of the driven side, with  
VTH = VIN_CM. The function of the components is the same 
as before, with RG on the undriven side replaced by RG2a 
and RG2b. An analysis and a simulation of circuit #2 follow.

Analysis of circuit #2
For analysis of circuit #2 in Figure 3, it is assumed that the 
FDA is an ideal amplifier with infinite gain and no offset. 
One goal of the design is to make the undriven side of the 
FDA a Thevenin equivalent of the driven side. This is 
working backwards from the normal way to use the theo-
rem, converting the simpler form of the driven side to a 
more complex circuit on the undriven side.

The first step is to set the parallel sum, RG2a || RG2b = 
RTH, where RTH = RG1 + RS || RT. This can be written in 
equation form as

 

S T
TH G1

S T

R R
R R .

R R

×
= +

+
 (1)

RS equals 75 W and is the output impedance of the 
TMS320DM368 video buffer. RT equals 82.5 W and is the 
resistance required to make the input impedance of the 
amplifier circuit equal 75 W. For detailed information on 
how to select RT and RG1 for proper termination and gain, 
see Reference 2.

The second step is to set VTH = VIN_CM, where

 

IN(min) IN(max)
IN _ CM

V V
V .

2

+
=  (2)

The required VTH is easy to analyze by using Figure 4 and 
is calculated by

 

G2b
TH S

G2a G2b

R
V V .

R R+= ×
+

 (3)

For completeness before going on, assuming the device 
has been set up per the foregoing, the gain from single-
ended input to differential output is set by

 

OUT F T

IN TH S T

V R R
G 2 .

V R R R
±= = × ×

+
 (4)

Each single-ended output is half the differential output 
and is level shifted to VOCM:

F T
OUT IN OCM

TH S T

R R
V V V

R R R+ = × × +
+

F T
OUT IN OCM

TH S T

R R
V V V

R R R− = − × × +
+
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–
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Figure 3. Proposed circuit #2 with corrected differential-output offset
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To find the unique values of RG2a and RG2b that will satisfy 
the design, Equations 1 and 3 need to be rearranged and 
solved simultaneously. One approach yields

 

S
G2a TH

TH

V
R R .

V
+= ×  (5)

This value can then be used to find

 

G2a TH
G2b

G2a TH

R R
R .

R R

×
=

−
 (6)

Calculation example for circuit #2
For this example of how to use circuit #2, it is assumed 
that the input signal is from the TMS320DM368, with a 
signal output range of 0.35 V to 1.35 V. Cat 5 cable is used, 
so RO = 50 W and RL = 100 W for double termination. The 
TI THS4521, an FDA with a single +5-V supply, was chosen 
for this example.

The THS4521 data sheet recommends that RF be equal to 
1 kW. To provide 75-W input termination and a value for G 
of 2 V/V (6 dB), RG1 can be set at 487 W and RT at 82.5 W 
per Reference 2. These values can be used in the follow ing 
equations to calculate the remaining resistor values.

Using Equation 1:

S T
TH G1

S T

R R 75 82.5 
R R 487 526 

R R 75 82.5 

× Ω × Ω
= + = Ω + = Ω

+ Ω + Ω

Using Equation 2:

IN(min) IN(max)
IN _ CM

V V 0.35 V 1.35 V
V 0.85 V

2 2

+ +
= = =

Using Equation 5:

S
G2a TH

TH

V 5 V
R R 526 3096 

V 0.85 V
+= × = Ω × = Ω

Using Equation 6:

G2a TH
G2b

G2a TH

R R 3096 526 
R 634 

R R 3096 526 

× Ω × Ω
= = = Ω

− Ω − Ω

The nearest standard 1% values, 3.09 kW and 634 W, are 
used in the following simulation.

Simulation with TINA-TI™ software
It is always a good idea to simulate a proposed circuit to 
catch errors and verify that any assumptions are valid. 
Figures 5 and 6 show the result of a transient and fre-
quency analysis performed with TINA-TI™ software. The 
simulation shows no unwanted offsets in the transient 
response with the output level shifted to VOCM = 2.5 V, and 
the AC frequency response shows that gain to the load is  
1 V/V (0 dB) as desired.

To see the TINA-TI simulation of this circuit, go to 
http://www.ti.com/lit/zip/slyt427 and click Open to view 
the WinZip directory online (or click Save to download the 
WinZip file for offline use). If you have the TINA-TI soft-
ware installed, you can open the file THS4521_SE_to_
DIFF_for_Cat5_video_drive.TSC to view the example. To 
download and install the free TINA-TI software, visit  
www.ti.com/tina-ti and click the Download button.
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Figure 5. TINA-TI™ example circuit
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Conclusion
The THS4521 is an excellent choice for converting  
standard-definition (SD) or enhanced-definition (ED) video 
signals from single-ended to differential in single-supply 
applications. Table 1 shows the most stringent NTSC and 
PAL video-buffer requirements of SD and ED versus 
THS4521 specifications. The THS4521 meets them all.

The THS4521 is capable of working for this application 
with a supply as low as +2.5 V. This, along with its low  
quiescent current and power-down capability, makes it 
ideal for remote, portable, and battery-powered devices.
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