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Precision signal conditioning for safety-
enabled AIMs in factory automation

Introduction
Industry 4.0 refers to the fourth Industrial Revolution; an 
Industry 4.0-outfitted smart factory has machines 
augmented with cloud connectivity. These machines are 
connected to a system that can visualize the entire 
production chain and make decisions autonomously. 
Continued automation and data exchange within the 
Internet of Things are raising the bar for the performance 
of factory-automation infrastructure, especially for elec-
tronic brains such as programmable-logic controllers 
(PLCs) inside factory-automation networks.

An analog-input module (AIM) is a key subsystem in a 
PLC. AIMs vary based on what real-world physical param-
eters they monitor, such as temperature, pressure, force or 
strain, and they communicate via command signals in 
either voltage (±10 V, for example) or current (4 to 20 mA, 
for example). Figure 1 shows a typical example of a simple 
industrial process, where proper automation requires the 
acquisition of different analog signals from various sensors. 
Each type of signal (voltage, current, temperature) 
requires a suitable AIM with corresponding 
performance parameters.

A multichannel AIM offers flexibility, space 
efficiency and power efficiency when compared 
to many single-channel, dedicated input 
modules. Reference 1 discusses different 
multichannel AIM architectures and their 
trade-offs.

The focus in this article is solely on multi-
plexed architectures (both integrated and 
external multiplexers) and their relevance in 
high-channel-count and high-density systems 
with slow-changing process quantities such as 
temperature or pressure.

Functional safety considerations of 
multichannel AIMs
Designing the functional-safety architecture 
of an AIM requires considering its hardware 
fault tolerance (HFT), that is, its ability to 
operate in a safe state even during a hard-
ware failure. HFT also requires the ability to 
detect and report a hardware failure through 
monitoring and diagnostics.[2] Multiple chan-
nels are often used in parallel, known as a 
redundant-channel architecture, to make the 

design robust in terms of HFT. A one-out-of-two (1oo2) 
architecture uses two identical channels in parallel. If the 
channel outputs don’t match, the system enters into a safe 
state. However, without further diagnostics on the chan-
nels, it is not possible to determine which channel has the 
fault. Correspondingly, in a two-out-of-four architecture, 
four identical channels create a system with safe operation 
of two independent channels.[2]

A clearly defined safety goal for the system is required. 
For example, if the required target accuracy in normal 
operation is 0.1%, the safety goal could be defined as being 
able to still operate with 1% accuracy in failure mode. A 
well-defined safe state is also needed. For an AIM, this 
could be as simple as having the analog-to-digital converter 
(ADC) deliver a code outside the valid code range.[3]

The next section compares three alternative implemen-
tations of the signal chain and analyzes their performance 
and trade-offs in the context of functional safety. The 
system requirements are defined first and then each 
implementation is described individually.

By Ralph Oberhuber
Precision Amplifiers

Figure 1. AIM application in industrial process 
control or factory automation
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(Source: Ahmed Noeman and Matthieu Chevrier)
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System specifications for an AIM signal chain
Table 1 is an example set of system-level requirements for 
an AIM channel that has only voltage-type inputs. While 
this article limits analysis to a single-type module for 
simplicity, the concepts outlined in this article are also 
applicable to universal AIMs with multiple types of inputs.

The goal is to compare three different implementations 
of an analog signal chain—named A, B and C—in order to 
meet the requirements in Table 1.

Implementation A: Instrumentation amplifier with 
filter and multiplexed-input ADC
Figure 2 is the simplified circuit diagram of implementa-
tion A. An instrumentation amplifier such as TI’s INA819 
provides the differential-to-single-ended conversion, 
followed by a fourth-order antialiasing filter and a multi-
plexed-input ADC with an integrated multiplexer. The 
figure shows only one out of eight channels for the signal-
conditioning circuit up to the ADC input.

Figure 2. Implementation A: Simplified circuit diagram of AIM signal chain
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Table 1. System-level requirements for a high-channel-density, functional safety-enabled AIM

System Parameter Target Value

Operating/storage temperature –20°C to 60°C/–40°C to 85°C
Input type and range Voltage input: 0 to 10 V
Number of channels 8
Input impedance >10 MΩ
Signal type Differential

Maximum sampling rate and filtering 100 kSPS; ADC sampling speed of 250 kSPS to accommodate a background diagnostics 
signal that needs fast sampling

Antialiasing filter Fourth-order antialiasing low-pass filter with 60-kHz bandwidth
Functional diagnostics Yes
Connection diagnostics Broken wire/short circuit
Input overvoltage protection Minimum ±40 V beyond supply rails
Common-mode input voltage range Signal plus common-mode voltage must be within ±12 V
Common-mode rejection ratio (CMRR) >80 dB
Maximum total unadjusted error 0.1% at room temperature
Overall design challenge High-channel-density, functional safety-capable AIM
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The external resistor sets the gain (G) for the INA819 
or will not be populated for a G = 1. The system-level 
error budgeting is fairly complex for an instrumentation 
amplifier: Reference 4 provides a comprehensive analy-
sis. The fourth-order filter is constructed using two 
stages of the multiple-feedback active filter type. 
Multiple feedback filters:

•	 Are efficient in realizing higher-order filters (two poles 
per amplifier).[5, 6]

•	 Have better stopband rejection compared to Sallen-
Key filters.

•	 Have zero gain for the noninverting current noise  
and/or DC bias current.

•	 Offer a very straightforward implementation of non-
zero gain given by the ratio of resistors expressed in 
Equation 1:

  
Gain

R

R
= − 3

1  
(1)

Equation 2 calculates the cut-off frequency for the 
multiple-feedback filter:

 
f

R R C C
C. =

× × × ×
1

2 1 2 1 22π  
(2)

The OPA182 serves as both the filter’s operational 
amplifier as well as the ADC’s input/multiplexer driver 
due to its excellent DC precision, sufficient bandwidth 
(5 MHz) and high-voltage operation. The ADS8166 
provides excellent DC precision, a sampling rate as high 
as 1 MSPS and an eight-channel input multiplexer.

If higher throughput requirements are required, 
consider placing a mux-friendly operational amplifier 
such as the OPA192 or a device from the OPA189 family 
between the multiplexer output and the ADC input; see 
Reference 7 for a detailed explanation of this technique.

Functional safety consideration No. 1: Protection features 
such as overvoltage
Protection against surges is an important consideration 
of every AIM used in factory automation and process 
control because the input terminals will interface to the 
outside world. This type of protection may or may not be 
considered a functional safety feature, as the problem is 
caused by operation outside recommended conditions. 
Designers often use transient-voltage suppressor (TVS) 
diodes as shown in Reference 2 to meet requirements in 
the International Electrotechnical Commission (IEC) 
61000-4-5 standard, but these devices exhibit inherent 
leakage current, which causes systemic offset errors and 
degraded precision. The inputs of the INA819 are 
 individually protected for voltages up to ±60 V through 
internal circuitry, as shown in Figure 3.[8]

Figure 3. Conventional vs. integrated 
overvoltage protection
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Functional safety consideration No. 2: Fault detection and 
diagnostics
The designs presented in References 9 and 10 demon-
strate how the introduction of redundant channels and/or 
components facilitates the detection of system faults. For 
example, a redundant external reference could be used in 
addition to the internal (ADC) reference, or the use of a 
parallel signal path with a discrete instrumentation 
 amplifier to compare multiple measurements and detect 
an error.

Also, the higher the number of channels needed for 
redundancy (in a 1oo2, or even a 1oo3 architecture), the 
higher the need for small size and lowest overall cost. 
Internal diagnostic features such as window comparators, 
alerts and digital error checks such as cyclic-redundancy 
check (CRC), some of which are available in the ADS8166, 
are useful but cannot usually support a higher safety-level 
certification by themselves.

Additional device requirements may have to be taken 
into account, such as the 250-kSPS capability 

listed previously in Table 1. This requirement is meant to 
accommodate a sine-wave-shaped, higher-frequency diag-
nostic signal processed to test the signal chain by sending 
a known high-frequency test pattern and verifying the 
output versus an expected result. 

Functional safety consideration No. 3: Pin-to-pin short and 
fault tolerance of the ADC
During failure-mode-effects and diagnostics analysis 
(FMEDA) of any functional safety module, it is important 
to consider the possibility of a pin-to-pin short as well as a 
stuck-high on the INA819 output pin. In this situation, the 
ADC must be protected from damage so that it can still 
transmit a valid diagnostic signal to the controller. For a 
multistage (and thus discrete) signal chain, the implemen-
tation of fault isolation is fairly straightforward. As shown 
in Figure 4, expanding the feedback resistor network by 
using multiple high-impedance components in series 
provides a simple but effective way to limit push-through 
currents, and decouples the ADC from a potentially 
damaged input device.

Figure 4. Isolation technique to enable failure tolerance 
against pin-to-pin shorts or an output stuck high
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TINA-TI™ software: DC and transient simulations
Figure 5 is a more detailed schematic of implementation A 
and Figures 6 and 7 show TINA-TI software simulation 
results. 

Figure 5. TINA-TI™ simulation schematic
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Figure 6. TINA-TI software simulation results: 
INA819 and OPA182 filter DC sweep
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Note the DC-transfer characteristics in Figure 6 where the 
differential input signal is swept from 0 V to 10 V and the 
output of the filter stage (ADC input) is monitored. The 
simulation shows that the 0- to 10-V input voltage is 
scaled correctly to the desired 0.1- to 4-V range.
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The transient simulation in Figure 7 includes the ADC 
input stage of the TINA-TI model and shows the settling 
behavior at the ADC input (signal Vsamp). The error 
signal, Verr, is the deviation from the expected input 
voltage, and must be within one least-significant-bit (LSB) 
magnitude based on the ADC full-scale range to guarantee 
the recommended signal-to-noise ratio and total harmonic-
distortion performance of the overall circuit solution.[11] 
As shown in Figure 7, the error signal settles within 1 LSB 
inside the acquisition time period.

Figure 7. TINA-TI software simulation results: INA819, OPA182 and ADS8166 transient simulations
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Implementation B: Discrete amplifier front end 
with an external multiplexer and ADC
Implementation B uses operational amplifiers to realize 
both high input impedance and the common-mode 
 rejection needed to extract the differential input signal 
(a discrete INA implementation), and an external multi-
plexer in front of an ADC, as shown in Figure 8.

Figure 8. Implementation B: Simplified circuit diagram of AIM signal-chain
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Functional-safety consideration No. 4: Component count 
and failure-in-time (FIT) rate for type-A vs. type-B elements 
IEC 61508 categorizes type-A (simple) and type-B 
(complex) elements.[12] Failure modes of type-A elements 
are well defined, and it is possible to completely determine 
their behavior under fault conditions. Passive components, 
discrete transistors and switches, as well as low pin count 
(such as 6- or 8-pin amplifiers) and low-transistor-count 
integrated circuits (ICs), are typically considered type-A 
elements.

Not all failure modes are well defined for type-B 
elements, and it is not possible to completely determine 
their behavior under fault conditions. High-pin-count and 
high-transistor-count ICs such as DC/DC converters, 
microcontrollers and highly-integrated data converters are 
typically considered type-B elements.

For a targeted HFT, a specific safe-failure fraction (SFF) 
of an element can support a higher safety-integrity-level 
(SIL) performance for a type-A versus a type-B element. 
For example, if HFT = 1 and the SFF is between 60% and 
90%, SIL 3 can be supported for a type-A element, but 
only SIL 2 for a type-B element.[12] This difference 
between type-A and type-B elements suggests that the 
decision to build a more discrete solution from simple 
com po nents, such as operational amplifiers, could be favor-
able for systems with higher functional-safety targets.[13]

Considerations for precision performance 
As far as accuracy is concerned, the fully-discrete imple-
mentation has a major disadvantage due to the depen-
dence of the CMRR on resistor matching from discrete 
components. The CMRR is dominated by a mismatch 

tolerance of resistors Rd1, Rd2, Rd3 and Rd4 (assuming that 
Rd3 = Rd1 and Rd4 = Rd2). Equation 3 gives the CMRR, 
according to Reference 14, as:

 
CMRR dB

R R

T
d dlog

/

/
( ) =

+





20
1

4 100
2 1

 
(3)

where T is the resistor tolerance in percent.
As shown in Reference 15, even for an external resistor 

tolerance of 0.01%, the CMRR performance will be limited 
to 74 dB due to resistor mismatch, which does not meet 
the target specification of >80 dB (shown in Table 1).

A modern monolithic device such as the INA819 
provides a CMRR of >90 dB across all process variations 
and temperatures by using thin-film resistor technologies, 
which enable on-chip resistor matching at the 0.001% 
level. See Reference 15 for an in-depth analysis of the 
impact of resistor matching on CMRR performance.

Implementation C: A fully integrated ADC with an 
internal multiplexer and programmable gain stage
Figure 9 shows a fully integrated and compact solution 
using the ADS125H02. Due to the oversampling architec-
ture and availability of various filter options, the external 
anti-aliasing filter can be omitted.[16, 17]

On the following page, Table 2 summarizes the four 
functional-safety considerations covered in this article and 
how they apply to implementation C. One limitation of 
implementation C is that the system throughput is lower 
compared to implementations A and B, and will not cover 
the 250-kSPS requirement previously shown in Table 1 
that is necessary for background diagnostics.

Figure 9. Implementation C: Simplified circuit diagram of AIM signal-chain
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Conclusion
Table 2 compares all three implementations, summarizing 
the findings, and how each implementation addresses 
concerns related to functional safety.

Table 2 also shows that each one of the architectures is 
a valid solution in terms of functional safety; the main 
difference is in performance, as well as component count 
or cost. Economic aspects might also play a role during 
the decision process that make the fully-discrete circuit 
the most attractive solution—such as the ability to reuse 
simple, generic-function building blocks like operational 
amplifiers, multiplexers and passives across multiple 
projects.
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