

1

AN-2002 Replacing the CLC014 Adaptive Cable Equalizer with the LMH0074

ABSTRACT

This application report discusses the process to replace the CLC014 adaptive cable equalizer with the LMH0074 adaptive cable equalizer.

Contents

1	Introc	luction	2
2		To Replace the CLC014 with the LMH0074	
	2.1	Input Interface	4
	2.2	Output Interface	4
	2.3	AEC Capacitor Value	4
	2.4	Carrier Detect and Mute	4
	2.5	Other Features	4
	2.6	100Ω DIfferential Twisted Pair Cable Applications	4
3	LMH	0074 Enhancements over the CLC014	5

List of Figures

1	CLC014 Typical Application	3
2	LMH0074 Typical Application	3
3	CLC014 Differential Twisted Pair Input Interface	5
4	LMH0074 Differential Twisted Pair Input Interface	5
	List of Tables	

1 CL	.C014 and LMH0074 Key Differences 2
------	-------------------------------------

All trademarks are the property of their respective owners.

www.ti.com

2

1 Introduction

The LMH0074 SD-SDI adaptive cable equalizer can replace the CLC014 adaptive cable equalizer in many applications. The LMH0074 and CLC014 are both adaptive cable equalizers designed to recover data sent over long cables, primarily for the SMPTE 259M interface. The supported data rates and cable lengths are similar between the two devices. The LMH0074 and CLC014 are both rated for industrial temperature range operation (-40°C to +85°C).

The LMH0074, the newer generation SDI equalizer, has more advanced features and is pin compatible with the LMH0044 HD-SDI equalizer and the LMH0344 or LMH0384 3G-SDI equalizer. This allows a forward migration path from SD to HD to 3G. The LMH0074 also offers a lower supply voltage (3.3V), enabling system designers to migrate to lower-power designs. The LMH0074 provides a 28% power savings over the CLC014, with typical power of 209 mW in comparison with 280 mW for the CLC014.

Table 1 shows the key differences between the CLC014 and LMH0074.

-			
	CLC014	LMH0074	
Power Supply (V _{cc})	5.0V	3.3V	
Package	14-pin SOIC	16-pin LLP	
Data Rates	50 to 650 Mbps	125 to 540 Mbps	
ESD Rating	≥±500V HBM	≥±8 kV HBM	
Input Interface	Requires 100Ω series resistor on each input	Requires return loss network of 6.8 nH in parallel with 75Ω on active input	
Output Structure	Open collector, requires external 75Ω pullups to 5V	CML with internal 50Ω pullups (to 3.3V)	
AEC Capacitor Value	100 pF	1.0 μF	
Carrier Detect / Mute Polarity	CD, MUTE	CD, MUTE	
Other Features	OEM	MUTE _{REF} , BYPASS	

Table 1. CLC014 and LMH0074 Key Differences

2 How To Replace the CLC014 with the LMH0074

Replacing the CLC014 with the LMH0074 requires a few simple steps. The device packages and pinouts are quite different so this change requires a new PCB layout; however, the equalizer core and features are similar. To replace the CLC014 with the LMH0074, follow these steps:

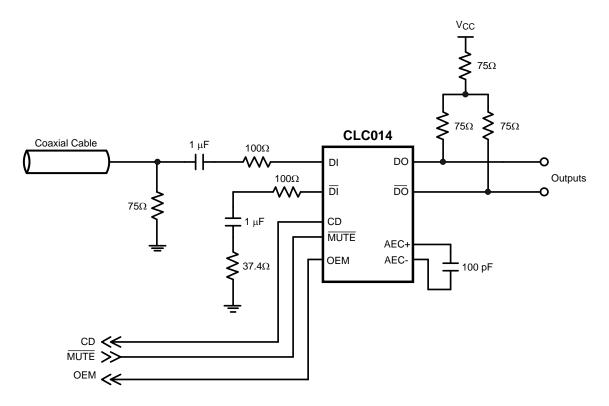
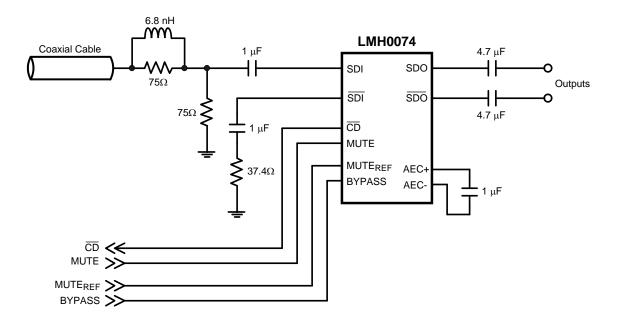
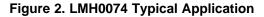

- 1. Change the power supply from 5V to 3.3V.
- 2. Remove the 100Ω series resistors at the input to the equalizer.
- 3. Add an input return loss network consisting of a 6.8 nH inductor in parallel with a 75 Ω resistor on the active input between the BNC and the 75 Ω termination.
- 4. Removed the 75 Ω pullups on the output and replace with a 100 Ω differential termination located at the input of the next stage. The outputs may also be AC coupled, but no pullups are required.
- 5. Replace the 100 pF AEC capacitor with a 1.0 μ F AEC capacitor.

Figure 1 shows the typical application for the CLC014, and Figure 2 shows the typical application for the LMH0074.




www.ti.com

3

2.1 Input Interface

For the typical input interface, the equalizer receives a single-ended signal over 75Ω coaxial cable. The CLC014 requires a 75Ω termination to ground, a 1.0 µF input coupling capacitor, and a 100Ω series resistor on each input. On the unused input, the 75Ω termination to ground is replaced by 37.4Ω to match the impedance on the active side (which has the 75Ω cable in parallel with the 75Ω termination).

The 100 Ω series resistors are not required for the LMH0074; however, a 6.8 nH inductor in parallel with a 75 Ω resistor should be added in series on the active input between the input BNC and the 75 Ω pulldown resistor (see Figure 2). This network provides excellent input return loss. All of these components should be placed close to the LMH0074 input pins.

2.2 Output Interface

The CLC014 outputs are open collector and require 75Ω pullups to 5V to generate an output voltage. This structure has some limitations when interfacing to non-5V systems. The CLC014 outputs are essentially cut off if the DO output voltage drops below V_{CC}-1.6V (typically 3.4V), so this prevents DC-coupling to other 3.3V devices.

The LMH0074 provides much more flexibility. The LMH0074 outputs are CML with internal 50 Ω pullups to 3.3V. They may be DC coupled to many more types of inputs, including the LMH0026 or LMH0036 reclocker and the LMH0001 cable driver. Typically only a far-end differential termination (a simple resistor) is required. If the LMH0074 output common mode voltage is not compatible with the input common mode voltage of the receiving device, the outputs may be AC coupled as shown in Figure 2. The outputs do not require pullups to V_{CC}.

2.3 AEC Capacitor Value

The CLC014 AEC capacitor is typically 100 pF and may be changed to change the adaptive loop time constant. For the LMH0074, the AEC capacitor should be 1.0 μ F only. The LMH0074 was designed and optimized for a 1.0 μ F AEC capacitor and it should not be changed.

2.4 Carrier Detect and Mute

In CLC014 applications, the carrier detect pin (CD) is typically tied to the $\overline{\text{MUTE}}$ pin to inhibit the output when there is no input signal. For the LMH0074 this can be done as well. The only difference is that the polarity of the carrier detect and mute is reversed for the LMH0074; the carrier detect pin, $\overline{\text{CD}}$, is active low, and the mute pin, MUTE, is active high.

2.5 Other Features

4

The CLC014 has an Output Eye Monitor which shows the equalized eye pattern prior to the output comparator. This feature is not included in the LMH0074; however, the LMH0074 includes features in addition to those in CLC014, such as the MUTE_{REF} and BYPASS functions. MUTE_{REF} sets the threshold for \overline{CD} and (with \overline{CD} tied to MUTE) determines the amount of cable to equalize before muting the outputs. This may be useful to limit the maximum cable length that can be equalized, or for very noisy environments where \overline{CD} would need to be less sensitive. BYPASS passes the input signal through to the output with no equalization. This may be useful for very low data rate applications.

2.6 100Ω DIfferential Twisted Pair Cable Applications

The equalizers can both be used for differential twisted pair cable applications. Figure 3 shows the differential twisted pair input interface for the CLC014 and Figure 4 shows the differential twisted pair input interface for the LMH0074.

www.ti.com

5

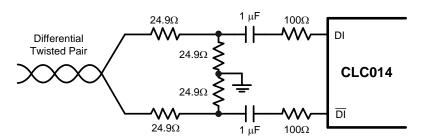


Figure 3. CLC014 Differential Twisted Pair Input Interface

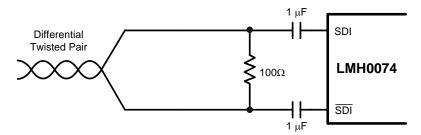


Figure 4. LMH0074 Differential Twisted Pair Input Interface

3 LMH0074 Enhancements over the CLC014

The LMH0074 is a solid upgrade and good replacement for the CLC014. It is designed in a newer, more advanced process. The LMH0074 offers lower power, better ESD protection, a more flexible output interface, and new features such as the ability to bypass equalization. The LMH0074's smaller, space-saving package allows for more compact designs. The PCB layout is simpler as the LMH0074 requires less PCB components overall than the CLC014. In addition, the LMH0074's pin compatibility with HD-SDI and 3G-SDI equalizers offers an easy upgrade path and allows future-proof designs.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications		
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive	
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications	
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers	
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps	
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy	
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial	
Interface	interface.ti.com	Medical	www.ti.com/medical	
Logic	logic.ti.com	Security	www.ti.com/security	
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense	
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video	
RFID	www.ti-rfid.com			
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com	
Wireless Connectivity	www.ti.com/wirelessconnectivity			

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated