

FPD to Serdes (UR) Translator Chip DS99R421 Evaluation Kit

User's Manual

NSID: FPDXSDUR-43USB

Rev 0.0

National Semiconductor Corporation Date: 4/23/2014

Page 1 of 39

Table of Contents

TABLE OF CONTENTS	2
INTRODUCTION:	3
CONTENTS OF THE EVALUATION KIT:	4
SERDES TYPICAL APPLICATION:	4
HOW TO SET UP THE EVALUATION KIT:	6
EVALUATION BOARD POWER CONNECTION:	6
DS99R421 TRANSLATOR BOARD DESCRIPTION:	7
CONFIGURATION SETTINGS FOR THE SERIALIZER BOARDTRANSLATOR INPUT FPD-LINKII AND OUTPUT FPD-LINK II PINOUT BY IDC CONNECTORBOM (BILL OF MATERIALS) TRANSLATOR PCB:	11
DS90UR124 RX DE-SERIALIZER BOARD:	13
CONFIGURATION SETTINGS FOR THE DE-SERIALIZER BOARD OUTPUT MONITOR PINS FOR THE DE-SERIALIZER BOARD DE-SERIALIZER FPD-LINKII PINOUT AND LVCMOS BY IDC CONNECTOR BOM (BILL OF MATERIALS) DE-SERIALIZER PCB:	15 17
TYPICAL CONNECTION AND TEST EQUIPMENT	19
TYPICAL CONNECTION DIAGRAM DS99R421 – USER QUICK REFERENCE	21
TYPICAL CONNECTION DIAGRAM RX – USER QUICK REFERENCE	22
TROUBLESHOOTING	23
APPENDIX	25
SERIALIZER (TX) PCB SCHEMATIC:	25
DE-SERIALIZER (RX) PCB SCHEMATIC:	28
SERIALIZER (TX) PCB LAYOUT:	32
SERIALIZER (TX) PCB STACKUP:	35
DESERIALIZER (RX) PCB LAYOUT:	36
DESERIALIZER (RX) PCR STACKUP·	39

Introduction:

National Semiconductor's DS99R421 standard multi-channel LVDS to FPD-LinkII translator SERDES evaluation kit contains 1 - DS99R421 translator board and 1 - DS90UR124 De-serializer (Rx) board, and 1 - two (2) meter high speed USB 2.0 cable. Note: the evaluation boards are not for EMI testing. The evaluation boards were designed for easy accessibility to device pins with tap points for monitoring or applying signals, additional pads for termination, loading, and multiple connector options.

The DS99R421 and DS90UR124 chipset supports a variety of display and general purpose applications. The single LVDS (FPD-LinkII) interface is well-suited for any display system interface. Typical applications include: navigation displays, automated teller machines (ATMs), POS, video cameras, global positioning systems (GPS), portable equipment/instruments, factory automation, etc.

The DS99R421 can be used to take existing standard multi-channel LVDS and convert them to a single channel FPD-Link II format. DS99R421 can be used as a 21-bit general purpose LVDS translator used in conjunction with the DS90UR124 FPD-LinkII De-serializer chipset and transmit data at clocks speeds ranging from 5 to 43 MHz.

The DS99R421 LVDS to FPD-LinkII translator board accepts four (4) standard LVDS multi-channel LVDS input signals and converts them into a single serialized FPD-LinkII data pair with an embedded LVDS clock. The serial data stream toggles at 28 times the base clock rate with an input clock at up to 43 MHz. The maximum transmission rate for the FPD-LinkII line is 1.204Gbps.

The DS90UR124 de-serializer board accepts the FPD-LinkII serialized data stream with embedded clock and converts the serialized data back into parallel 3.3V_LVCMOS signals and clock. Note that NO reference clock is needed to prevent harmonic lock.

Suggested equipment to evaluate the chipset are: a standard LVDS signal source such as a video generator, or FPD or Channel Link or equivalent transmitter and/or word generator or pulse generator and oscilloscope with a bandwidth of at least 43 MHz will be needed.

The user needs to provide the standard multi-channel LVDS inputs to the FPD-LINKII translator and also provide a proper interface from the de-serializer output to an LCD panel or test equipment. The translator and de-serializer boards can also be used to evaluate device parameters. A cable conversion board or harness scramble may be necessary depending on type of cable/connector interface used on the input to the DS99R421 and to the output of the DS90UR124.

Example of suggested display setup:

- 1) video generator with an 18 bit data LVDS output
- 2) 18-bit LCD panel with a 3.3V_LVCMOS input interface.

National Semiconductor Corporation

Contents of the Evaluation Kit:

- 1) One DS99R421 LVDS to FPD-LinkII translator board
- 2) One DS90UR124 De-serializer board
- 3) One 2-meter high speed USB 2.0 cable (4-pin USB A to 5-pin mini USB)
- 4) Evaluation Kit Documentation (this manual)
- 5) DS99R421 and DS90UR241/124 Datasheet

SERDES Typical Application:

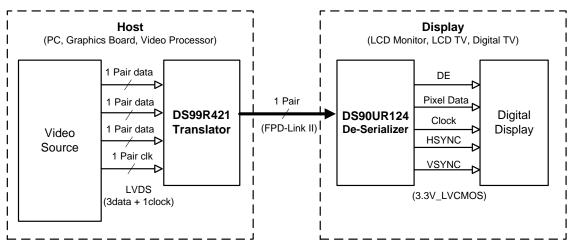


Figure 1a. Typical Application (18-bit RGB Color)

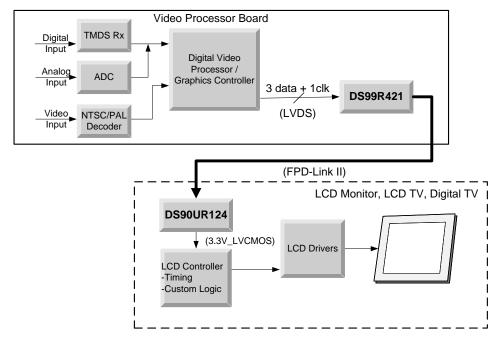


Figure 1b. Typical SERDES System Diagram

Date: 4/23/2014 Page 4 of 39 Figures 1a and 1b illustrate the use of the chipset (DS99R421/DS90UR124) in a Host to Flat Panel Interface.

The chipsets support up to 18-bit color depth TFT LCD Panels.

Refer to the proper datasheet information on chipset provided on each board for more detailed information.

National Semiconductor Corporation

Date: 4/23/2014

Page 5 of 39

How to set up the Evaluation Kit:

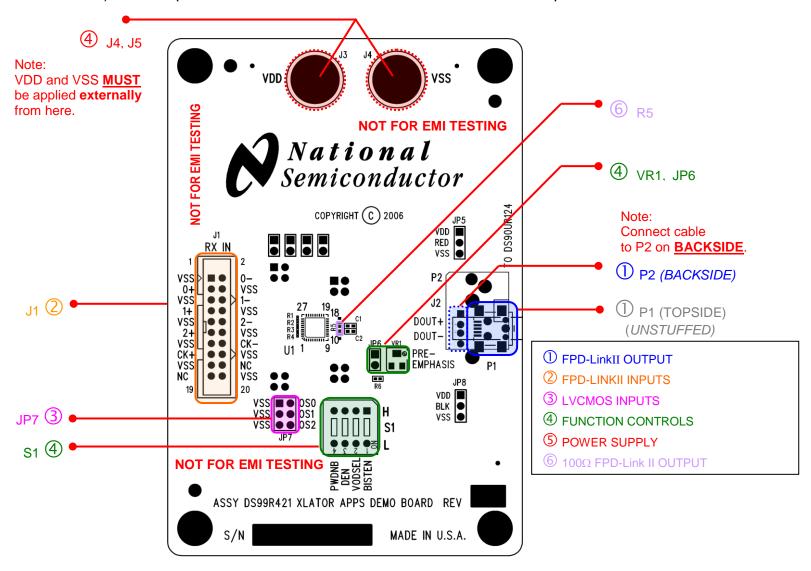
The PCB routing for the translator LVDS input pins (RxIN) have been laid out to plug directly into FPD HSL Tx demo board (note only 6 bit mapping is used). The FPD-Link II TxOUT/RxIN (DOUT/RIN) interface uses a standard USB 2.0 connector/cable assembly. The PCB routing for the Rx output pins (ROUT) are accessed through a 50-pin IDC connector. Please follow these steps to set up the evaluation kit for bench testing and performance measurements:

- 1) A two (2) meter high speed USB 2.0 cable has been included in the kit. Connect the 4-pin USB A side of cable harness to the DS99R421 board and the other side the 5-pin mini USB jack to the DS90UR124 deserializer board. This completes the FPD-Link II interface connection.

 NOTE: The DS99R421 and DS90C124 are NOT USB compliant and should not be plugged into a USB device nor should a USB device be plugged into the evaluation boards.
- 2) Jumpers and switches have been configured at the factory; they should not require any changes for immediate operation of the chipset. See text on Configuration settings for more details. From the Video Decoder board, connect a flat cable (not supplied) to the translator board and connect another flat cable (not supplied) from the De-serializer board to the panel.
- 3) Power for the Tx and Rx boards must be supplied externally through Power Jack (VDD). Grounds for both boards are connected through Power Jack (VSS) (see section below).

Evaluation Board Power Connection:

The translator and de-serializer boards must be powered by supplying power externally through J3 (VDD) and J4 (VSS) on the translator board and J4 (VDD) and J5 (VSS) on de-serializer board. Note +4V is the absolute MAXIMUM voltage (not operating voltage) that should ever be applied to the translator (DS99R421) or de-serializer (DS90UR124) VDD terminal. Damage to the device(s) can result if the voltage maximum is exceeded.


National Semiconductor Corporation Date: 4/23/2014

DS99R421 Translator Board Description:

The 20-pin IDC connector J1 accepts standard 18-bit 3-channels of LVDS RGB data (RxIN0+/-, RxIN1+/-, RxIN2+/-) and clock (RxCLK+/-). The 100 ohm terminations are integrated in the DS99R421 FPD-LINKII RxIN inputs so no external resistors are required.

The translator board is powered externally from the J3 (VDD) and J4 (VSS) connectors shown below. For the serializer to be operational, the Power Down (S1-PWDNB) and Data Enable (S1-DEN) switches on S1 must be set HIGH. The board is factory configured. JP1 and JP2 are configured from the factory to be shorted to VSS; these are the unused power wires in the cable harness.

The USB connector P2 (USB-A side) on the bottom side of the board provides the interface connection to the FPD-Link II signals to the De-serializer board. Note: P1 (mini USB) on the top side is un-stuffed and not to be used with the cable provided in the kit.

National Semiconductor Corporation

Date: 4/23/2014

Page 7 of 39

Configuration Settings for the Serializer Board

Table 1.

S1: Serializer Input Features Selection

Reference	Description	Input = L	Input = H	S1
PWDNB	PoWerDowN Bar	Powered Down	Normal operation (Default)	
DEN	Serializer Output Data ENabled	Disabled	Enabled (Default)	
VODSEL	FPD-LINKII output VOD SELect	≈350mV (Default)	≈700mV	PWDNB DEN VODSEL BISTEN ON
BISTEN	BIST ENabled	BIST DISABLED MUST be low for normal operation (Default)	BIST ENABLED. Note: DS90 <u>UR</u> 124 BISTEN MUST also be set High. (see datasheet for operational modes)	A V O V BIS

National Semiconductor Corporation

Date: 4/23/2014 Page 8 of 39

Table 2.

JP6, VR1: Pre-Emphasis Feature Selection

Reference	Description	OPEN (floating)	CLOSED (Path to GND)	
JP6	Pre-Emphasis – helps to increase the eye pattern opening in the FPD-LINKII stream	Disabled – no jumper (Default) JP6	Enabled – With jumper	JP6
JP6 & VR1	Pre-Emphasis adjustment (via screw) JP6 <u>MUST</u> have a jumper to use VR1 potentiometer. VR1 = 0Ω to $20K\Omega$, JP6 + VR1 + $6K\Omega$ ($R6$) = $\sim 6K\Omega$ (maximum preemphasis) to $\sim 26K\Omega$ (minimum preemphasis*). IPRE = [1.2/(RPRE)] x 40, RPRE (minimum) $\geq 6K\Omega$ *Note: maximum is based on resistor value. In this case $\sim 26K\Omega$ value is based on the $\sim 6k\Omega$ fixed resistor plus $\sim 20K\Omega$ maximum potentiometer value. User can use hundreds of Kohms to reduce the preemphasis value.	VR1 increases RPRE value which decreases pre- emphasis	Counter-Clockwise VR1 decreases RPRE value which increases pre- emphasis	VR1

Pre-emphasis user note:

Pre-emphasis must be adjusted correctly based on application frequency, cable quality, cable length, and connector quality. Maximum pre-emphasis should only be used under extreme worse case conditions; for example at the upper frequency specification of the part and/or low grade cables at maximum cable lengths. Typically all that is needed is minimum pre-emphasis. Users should start with no pre-emphasis first and gradually apply pre-emphasis until there is clock lock and no data errors. The best way to monitor the pre-emphasis effect is to hook up a differential probe to the 100Ω termination resistor (R1) on the DS90UR124 Rx demo board (NOT to R5 on the DS99R421 demo board). The reason for monitoring R1 on the Rx side is because you want to see what the receiver will see the attenuation signal AFTER the cable/connector.

National Semiconductor Corporation

Date: 4/23/2014 Page 9 of 39

Table 3.

JP5, JP8: USB Red and Black wire

Reference	Description	VDD	VSS	OPEN
JP5	Power wire in USB cable	Red wire tied	Red wire	Red wire
	thru P2 <i>(and P1 not</i>	to VDD	tied to VSS	floating
	mounted) connector		(Default)	(not
	Jumper RED to VSS –			recommended)
	recommended	JP5	JP5	JP5
		VDD 📮	VDD	VDD
	Note: Normally VDD in USB application	RED -	RED T	RED •
IDO	Dower wire in LICE askle	VSS Displaying	VSS 🕒	VSS Diagle wire
JP8	Power wire in USB cable	Black wire	Black wire	Black wire
	thru P2 (and P1 not	tied to VDD	tied to VSS	floating
	mounted) connector		(Default)	(not
	Jumper BLACK to VSS –			recommended)
	recommended	JP8	JP8	JP8
		VDD	VDD	VDD
	Note: Normally VSS in USB application	VSS •	VSS	BLK VSS ●
	[
to	op side thru the board view			
(1)	nounted on solder side)			
RED WIRE	I uid			
+ [‡[.	Z utd			
<u> </u>	<u>ε utd</u> P2			
BLACK WIRE	₽ uīdi			

Translator Input FPD-LINKII and Output FPD-Link II Pinout by IDC Connector

The following four tables illustrate how the LVDS and FPD-LINKII inputs are mapped to the IDC connector J1, the FPD-Link II outputs on the USB-A connector P3, and the mini USB P1 (not mounted) pinouts. There are also three (3) 3.3V_LVCMOS over-sampled bits OS1, OS2, OS3 (extra unused bits, not required for operation); see datasheet for description of these bits. Note – labels are also printed on the evaluation boards for both the LVDS input and FPD-Link II outputs.

LVDS INPUT		
J1 pin no.	Symbol	
1	VSS	
2	RxIN0-	
3	RxIN0+	
4	VSS	
5	VSS	
6	RxIN1-	
7	RxIN1+	
8	VSS	
9	VSS	
10	RxIN2-	
11	RxIN2+	
12	VSS	
13	VSS	
14	RxCLKIN-	
15	RxCLKIN+	
16	VSS	
17	VSS	
18	NC	
19	NC	
20	VSS	

FPD-LinkII OUTPUT		
P3 pin no.	Symbol	
1	RED	
2	DOUT+	
3	DOUT-	
4	BLK	

	-		
	P1		
(to	pside)		
(not i	mounted)		
FPD-Lin	kII OUTPUT		
pin no.	pin no. name		
5	JP2		
4	NC		
3 DOUT-			
2 DOUT+			
1	JP1		

OS INPUT (3.3v_LVCMOS)		
JP3 pin no.	Symbol	
1	OS1	
2	VSS	
3	OS2	
4	VSS	
5	OS3	
6	VSS	

Date: 4/23/2014 Page 11 of 39

BOM (Bill of Materials) Translator PCB:

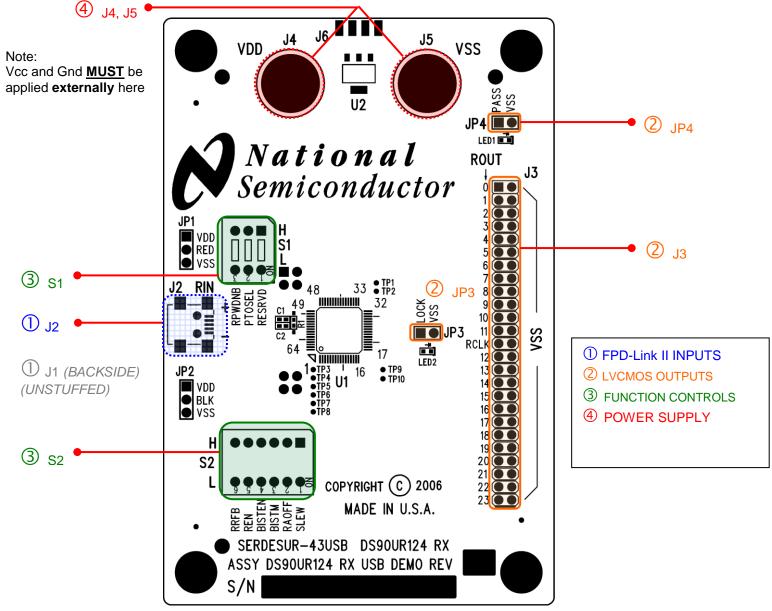
DS99R421 Xlator Bench Board - Board Stackup Revised: Friday, February 29, 2008

DS99R421 Xlator Bench Board Revision: 1 Bill Of Materials February 29,2008 18:31:46

Item	Qty	Reference	Part	PCB Footprint
1	2	C1,C2	0.1uF	CAP/HDC-0402
2	1	C18	22uF	CAP/N
3	1	C19	2.2uF	3528-21_EIA
4	1	C20	0.1uF	CAP/HDC-1206
5	7	C21,C22,C23,C30,C33,C36,C41	22uF	CAP/EIA-B 3528-21
6	7	C24,C26,C28,C32,C35,C37,C40	0.1uF	CAP/HDC-0603
7	7	C25,C27,C29,C31,C34,C38, C39	0.01uF	CAP/HDC-0603
8	2	JP2,JP1	3-Pin Header	Header/3P
9	1	JP2	2-Pin Header	Header/2P
10	1	JP3	2X3-Pin Header	Header/2X3P
11	1	J1	2X10-Pin Header, open	Header/2X10P
12	1	J2	2mm_2X5	CON/HDR-10P-B
13	2	J5,J4	BANANA	CON/BANANA-S
14	1	P1	mini USB 5pin_open	mini_B_USB_surface_mount
15	1	P2	USB A	USB_TYPE_A_4P
16	1	R5	100 ohm,0402	RES/HDC-0402
17	1	R8	5.76K	RES/HDC-0402
18	7	R10,R11,R12,R13,R14,R15, R16	0 Ohm,0402	RES/HDC-0402
19	4	R18,R20,R21,R23	10K	RES/HDC-0805
20	1	S1	SW DIP-4	DIP-8
21	1	U1	DS99R421	36 ld LLP socket
22	1	VR1	SVR20K	Surface Mount 4mm Square
23	2	X2,X1	TP_0402	TP/0402

National Semiconductor Corporation

Date: 4/23/2014


Page 12 of 39

DS90UR124 Rx De-serializer Board:

The USB connector J2 (mini USB) on the topside of the board provides the interface connection for FPD-Link II signals to the Serializer board. Note: J1 (mini USB) on the bottom side is un-stuffed and not used with the cable provided in the kit.

The SERDES de-serializer board is powered externally from the J4 (VDD) and J5 (VSS) connectors shown below. For the de-serializer to be operational, the Power Down (RPWDNB) and Receiver Enable (REN) switches on S1 and S2 must be set HIGH. Rising or falling edge reference clock is also selected by S1: HIGH (rising) or LOW (falling).

The 50 pin IDC Connector J3 provides access to the 24 bit LVCMOS and clock outputs.

Date: 4/23/2014

Page 13 of 39

Configuration Settings for the De-serializer Board

Table 4.

S1, S2: De-serializer Input Features Selection

Reference	Description	Input = L	Input = H	S1
RPWDNB	PoWerDowN Bar	Power Down (Disabled)	Normal Operational (Default)	H S1 L
PTOSEL	Progressive Turn On SELect	Enabled (Default)	Disabled	RPWDNB TOSEL TOSEL
RESRVD	RESeRVeD	Don't care	Don't care	<u> </u>
Reference	Description	Input = L	Input = H	S2
RRFB	Latch input data on Rising or Falling edge of TCLK	Falling Edge (Default)	Rising Edge	H •••••
REN	Receiver Output Data ENabled	Disabled	Enabled (Default)	S2
BISTEN	BIST ENable Note: MUST set DS99R421 BISTEN = H. Use in combination with BISTM pin.	Normal Operating Mode, BIST Disabled (Default)	BIST Mode Enabled	RRFB REN BISTEN BISTA RAOFF SLEW
BISTM	BIST Mode Don't care if BISTEN=L. BISTEN MUST be High (enabled) for this pin to be functional.	Per Channel pass/fail; RxOUT[23:0] =H: pass; RxOUT[23:0] =H: fail	RxOUT[7:0]: binary error counting mode (up to 255 errors); RxOUT[23:8]: normal operation	
RAOFF	RAndomizer OFF	Randomizer ON. (Default) Note: DS99R421 RAOFF MUST also be set Low.	Randomizer OFF. Note: DS99R421 RAOFF MUST also be set High.	
SLEW	SLEW rate control for ROUT[23:0] and RCLK	(Default)	~2X slew rate, ~2X drive strength	

National Semiconductor Corporation

Date: 4/23/2014 Page 14 of 39

Output Monitor Pins for the De-serializer Board

Table 5.

JP3: Output Lock Monitor

Reference	Description	Output = L	Output = H	JP3
LOCK	Receiver PLL LOCK Note: DO NOT PUT A SHORTING JUMPER IN JP3.	unlocked	PLL LOCKED (LED2 will illuminate)	SSA JP3

JP4: PASS Monitor

Reference	Description	Output = L	Output = H	JP4
PASS	Receiver BIST monitor	FAIL	PASS	8
	PASS flag		(LED1 will	PASS
	Note:		illuminate)	
	DO NOT PUT A SHORTING			JP4 ■●
	JUMPER IN JP1.		LEVI 🚚	LED1

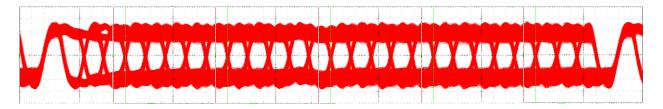

National Semiconductor Corporation Date: 4/23/2014
Page 15 of 39

Table 6.

JP1, JP2: USB Red and Black wire

Reference	Description	VDD	VSS	OPEN		
JP1	Power wire in USB cable	Red wire tied	Red wire	Red wire		
	thru J2 <i>(and J1 not</i>	to VDD	tied to VSS	floating		
	mounted) connector		(Default)	(not		
	Jumper RED to VSS –			recommended)		
	recommended	■ VDD	VDD	■ VDD		
	Note: Normally VDD in USB application	JP1 RED VSS	JP1 RED VSS	JP1 ● RED ● VSS		
JP2	Power wire in USB cable	Black wire	Black wire	Black wire		
31 2	thru J2 (and J1 not	tied to VDD	tied to VSS	floating		
	mounted) connector	tied to VDD	(Default)	(not		
	Jumper BLACK to VSS –		(Delault)	recommended)		
	recommended	□ VDD	■ VDD	VDD		
	Todominonada	JP2 BLK	JP2 BLK	JP2 BLK		
	Note: Normally VSS in USB application	● VSS	VSS	● VSS		
Г	~ ~					
,n	nini USB					
<u> </u>	pin 1 RED WIRE					
ļ	pin 2 i					
J2	pin.3.i					
NO contract						
top side	pin 5; BLACK WIRE					
	on component side)					

The following picture depicts a typical example of the FPD-Link II serial stream. This snapshot was taken with a differential probe across the 100 ohm termination resistor R1 on the DS90UR124 Rx evaluation board. R1 is the termination resistor to the RxIN +/-. Note: The scope was triggered, with a separate probe, on TCLK, the input clock into the DS90UR241 Tx. To view the serial stream correctly, do not trigger on the probe monitoring the serial stream.

De-serializer FPD-LINKII Pinout and LVCMOS by IDC Connector

The following two tables illustrate how the FPD-LINKII inputs are mapped to the mini USB connector J2 and the Rx outputs are mapped to the IDC connector J3. Note – labels are also printed on the demo boards for both the FPD-LINKII inputs and LVCMOS outputs.

FPD-LINKII INPUT			
J2 pin no. Syml			
1	RED		
2	DIN+		
3	DIN-		
4	NC		
5	BLK		

LVCMOS OUTPUT			
J3 pin no. Symbol			
1	ROUT0		
3	ROUT1		
5	ROUT2		
7	ROUT3		
9	ROUT4		
11	ROUT5		
13	ROUT6		
15	ROUT7		
17	ROUT8		
19	ROUT9		
21	ROUT10		
23	ROUT11		
25	ROUT12		
27	ROUT13		
29	ROUT14		
31	ROUT15		
33	ROUT16		
35	ROUT17		
37	ROUT18		
39	ROUT19		
41	ROUT20		
43	ROUT21		
45	ROUT22		
47	ROUT23		
49	TCLK		
all even pins	VSS		

LVCMOS OUTPUT			
JP3 pin no. Symbol			
1 LOCK (PLL			
2 VSS			

LVCMOS OUTPUT			
JP4 pin no. Symbol			
1	PASS (BIST)		
2	VSS		

BOM (Bill of Materials) De-serializer PCB:

DS90UR124 Rx USB Demo Board - Board Stackup Revised: Monday, October 23, 2006

DS90UR124 Rx USB Demo Board Revision: 1

Bill Of Materials October 23, 2006

Item	Qty	Reference	Part	PCB Footprint
1	2	C2,C1	0.1uF	CAP/HDC-0402
2	27	C3,C7,C8,C9,C10,C11,C12, C13,C14,C15,C16,C17,C18, C19,C20,C21,C22,C23,C24, C25,C26,C27,C28,C29,C30, C31,C42	open0402	CAP/HDC-0402
3	1	C4	2.2uF	3528-21_EIA
4	1	C5	22uF	CAP/N
5	1	C6	0.1uF	CAP/HDC-1206
6	8	C32,C33,C34,C41,C47,C50, C53,C54	22uF	CAP/EIA-B 3528-21
7	8	C35,C38,C40,C43,C46,C48, C52,C55	0.1uF	CAP/HDC-0603
8	8	C36,C37,C39,C44,C45,C49, C51,C56	0.01uF	CAP/HDC-0603
9	2	JP2,JP1	3-Pin Header	Header/3P
10	2	JP4,JP3	2-Pin Header_open	Header/2P
11	1	J1	mini USB 5pin_open	mini_USB_surface_mount
12	1	J2	Hirose GT17H-4P-2H	Hirose GT17H-4P-2H
13	1	J3	IDC2X25_Unshrouded	IDC-50
14	2	J4,J5	BANANA	CON/BANANA-S
15	1	LED1	0402_orange_LED	0402
16	1	LED2	0603_green_LED	0603 (Super Thin)
17	1	R1	100 ohm,0402	RES/HDC-0402
18	9	R2,R3,R4,R34,R35,R36,R37, R38,R39	10K	RES/HDC-0805
19	1	S1	SW DIP-3	DIP-6
20	1	S2	SW DIP-6	DIP-12
21	1	U1	DS90UR124	64 pin TQFP

National Semiconductor Corporation

Date: 4/23/2014 Page 18 of 39

Typical Connection and Test Equipment

The following is a list of typical test equipment that may be used to generate signals for the TX inputs:

- 1) Digital Video Source for generation of specific display timing such as Digital Video Processor or Graphics Controller with 18-bit RGB LVDS output.
- 2) Astro Systems VG-835 This video generator may be used for video signal sources for 18-bit RGB LVDS output.
- 3) Any other signal / video generator that generates the correct input levels as specified in the datasheet.
- 4) Optional Logic Analyzer or Oscilloscope

The following is a list of typical test equipment that may be used to monitor the output signals from the RX:

- 1) LCD Display Panel which supports digital RGB (3.3V_LVCMOS) inputs.
- 2) National Semiconductor DS99R421 LVDS to FPD-Link II translator
- 3) Optional Logic Analyzer or Oscilloscope
- 4) Any SCOPE with a bandwidth of at least 43MHz for LVCMOS and/or 2GHz for looking at the differential signal.

LVDS/ FPD-LinkII signals may be easily measured with high impedance / high bandwidth differential probes such as the TEK P6330 differential probes.

National Semiconductor Corporation Date: 4/23/2014

Page 19 of 39

The picture below shows a typical test set up using a Graphics Controller and LCD Panel.

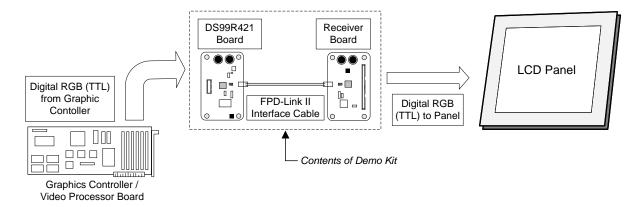


Figure 2. Typical SERDES Setup of LCD Panel Application

The picture below shows a typical test set up using a generator and scope.

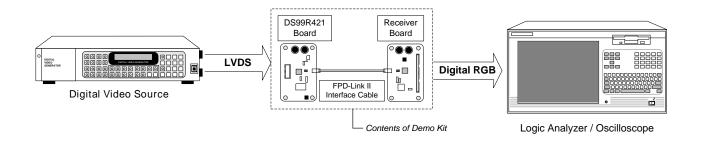
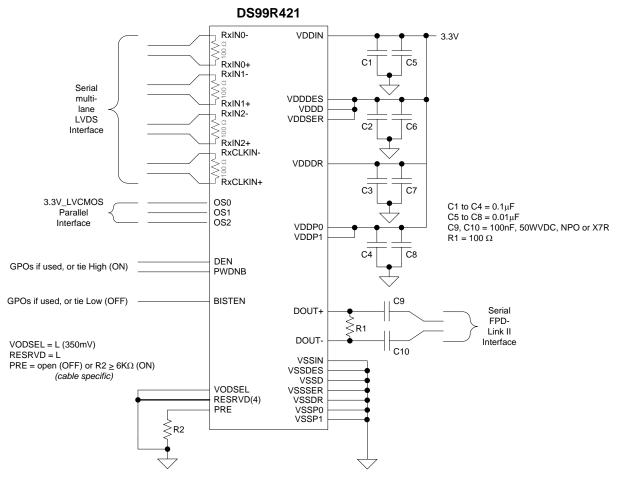
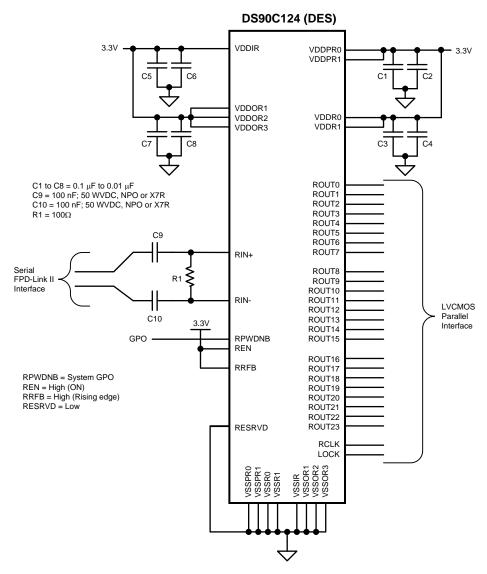



Figure 3. Typical SERDES Test Setup for Evaluation

Date: 4/23/2014 Page 20 of 39

Typical Connection Diagram DS99R421 – User Quick Reference

Note:


VDDs can be combined into four (4) groupings as shown (top to bottom): 1-Analog-LVDS, 2-Digital, 3-Analog-FPD-Link II, and 4-Analog-PLL/VCO for best performance. Absolute minimum grouping should be Analog Power and Digital Power.

Decoupling specified (C1-C8) is the minimum that should be used.

Figure 6. Typical DS90C241 Tx SERDES Hookup

Date: 4/23/2014 Page 21 of 39

Typical Connection Diagram Rx – User Quick Reference

Note:

VDDs can be combined into a minimum of four (4) groupings as shown above: Analog-PLL/VCO, Digital-Logic, Analog-LVDS, Digital-LVCMOS O/P Decoupling specified (C1-C8) is the minimum that should be used.

Figure 7. Typical DS90C124 Rx SERDES Hookup

National Semiconductor Corporation Date: 4/23/2014

Page 22 of 39

Troubleshooting

If the demo boards are not performing properly, use the following as a guide for quick solutions to potential problems. If the problem persists, please contact the local Sales Representative for assistance.

QUICK CHECKS:

- 1. Check that Power and Ground are connected to both Tx AND Rx boards.
- 2. Check the supply voltage (typical 3.3V) and also current draw with both Tx and Rx boards. The Serializer board should draw about 55-65mA with clock and all data bits switching at 43MHz, (R_{PRE} =9K Ω). The De-serializer board should draw about 75-85mA with clock and all data bits switching at 43MHz, (minimum ROUT loading).
- 3. Verify input clock and input data signals meet requirements for VILmin, VILmax, VIHmin, VIHmax, tset, thold), also verify that data is strobed on the selected rising/falling (RFB pin) edge of the clock.
- 4. Check that the Jumpers and Switches are set correctly.
- 5. Check that the cable is properly connected.

TROUBLESHOOTING CHART

Problem	Solution		
There is only the output clock. There is no output data.	Make sure the data is applied to the correct input pin.		
	Make sure data is valid at the input.		
No output data and clock.	Make sure Power is on. Input data and clock are active and connected correctly.		
	Make sure that the cable is secured to both demo boards.		
Power, ground, input data and input clock are connected correctly, but no outputs.	Check the Power Down pins of both Translator and De-serializer boards to make sure that the devices are enabled (/PD=Vcc) for operation. Also check DEN on the Serializer board and REN on the Deserializer board is set HIGH.		
The devices are pulling more than 1A of current.	Check for shorts in the cables connecting the Translator and RX boards.		
After powering up the demo boards, the power supply reads less than 3V when it is set to 3.3V.	Use a larger power supply that will provide enough current for the demo boards, a 500mA minimum power supply is recommended.		

Date: 4/23/2014 National Semiconductor Corporation

Note: Please note that the following references are supplied only as a courtesy to our valued customers. It is not intended to be an endorsement of any particular equipment or hardware supplier.

Connector References

Hirose Electric Europe B.V. Beech Avenue 46 1119 PV Schiphol-Rijk The Netherlands

Phone: +31 20 655 7467. Fax: +31 20 655 7469

www.HiroseEurope.com

Cable References

Nissei Electric Co., LTD 1509 Okubo-Cho, Hamamatsu-City Shizuoka-Pref, 432-8006 Japan

Phone: +81 53 485 4114, Fax: +81 53 485 6908

www.nissei-el.co.jp

Cable Recommendations

- For optimal performance, we recommend Shielded Twisted Pair (STP) 100 Ω differential impedance cable for high-speed data applications.

Equipment References

Astro Systems 425 S. Victory Blvd. Suite A Burbank, CA 91502

Phone: (818) 848-7722, Fax: (818) 848-7799

www.astro-systems.com

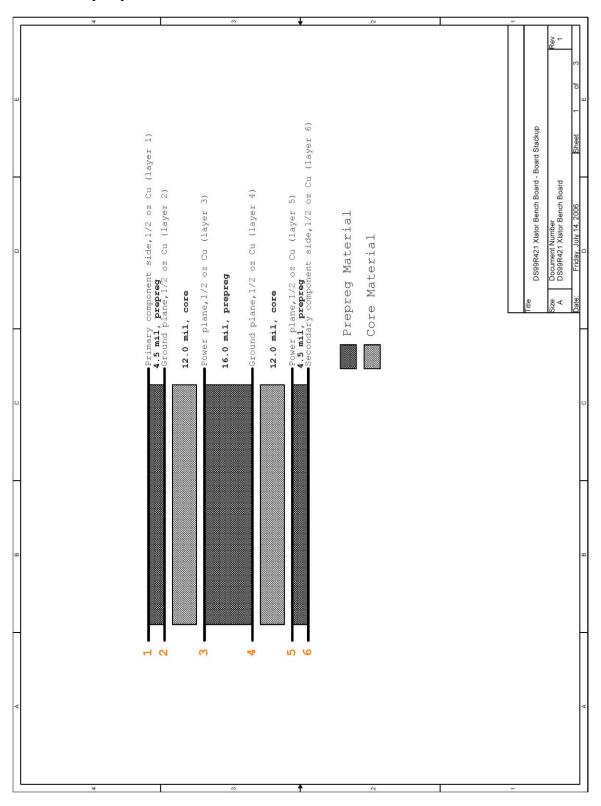
Digital Video Pattern Generator – Astro Systems VG-835 (or equivalent):

Extra Component References

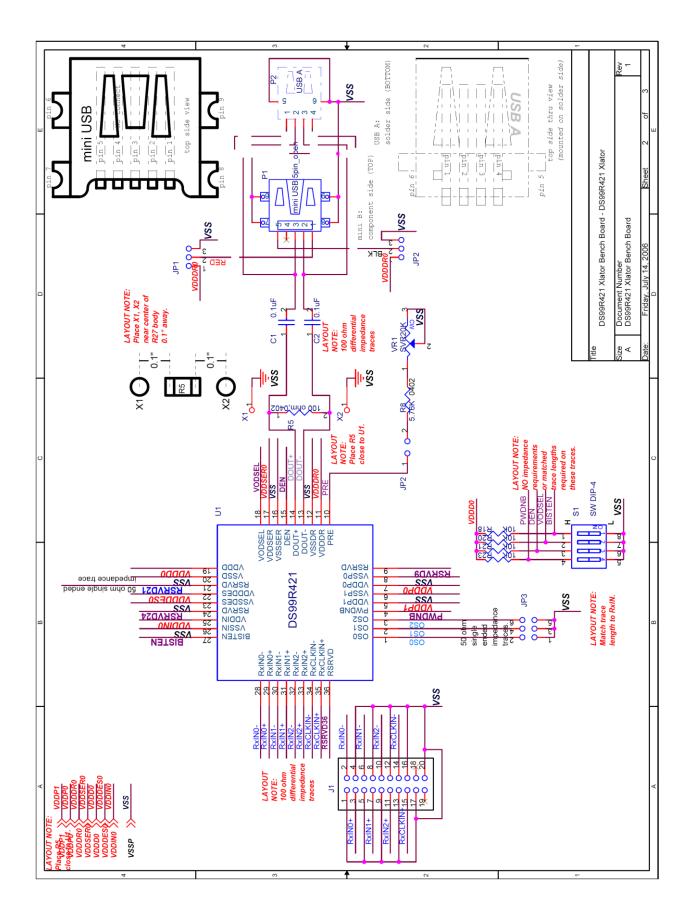
TDK Corporation of America 1740 Technology Drive, Suite 510 San Jose, CA 95110

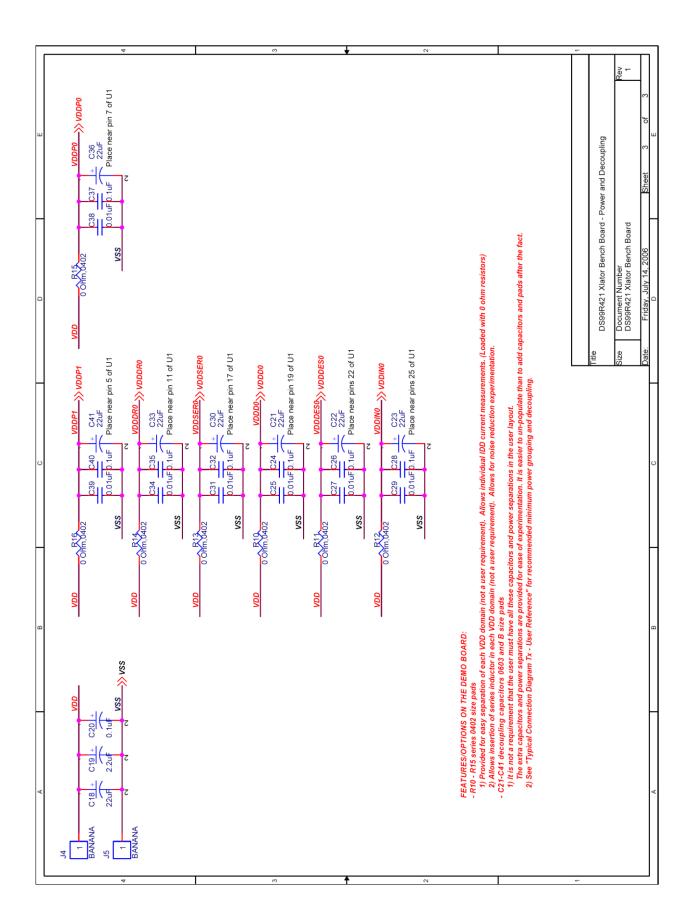
Phone: (408) 437-9585, Fax: (408) 437-9591

www.component.tdk.com

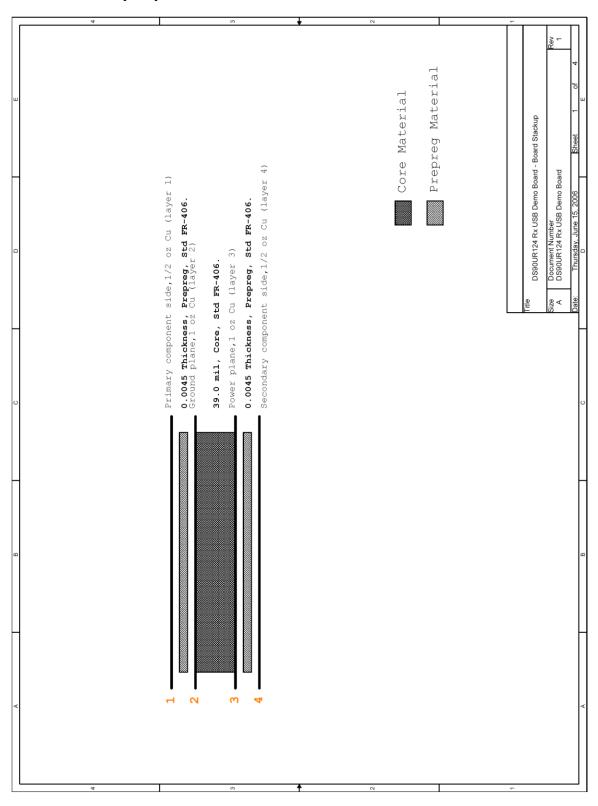

Optional EMI Filters – TDK Chip Beads (or equivalent)

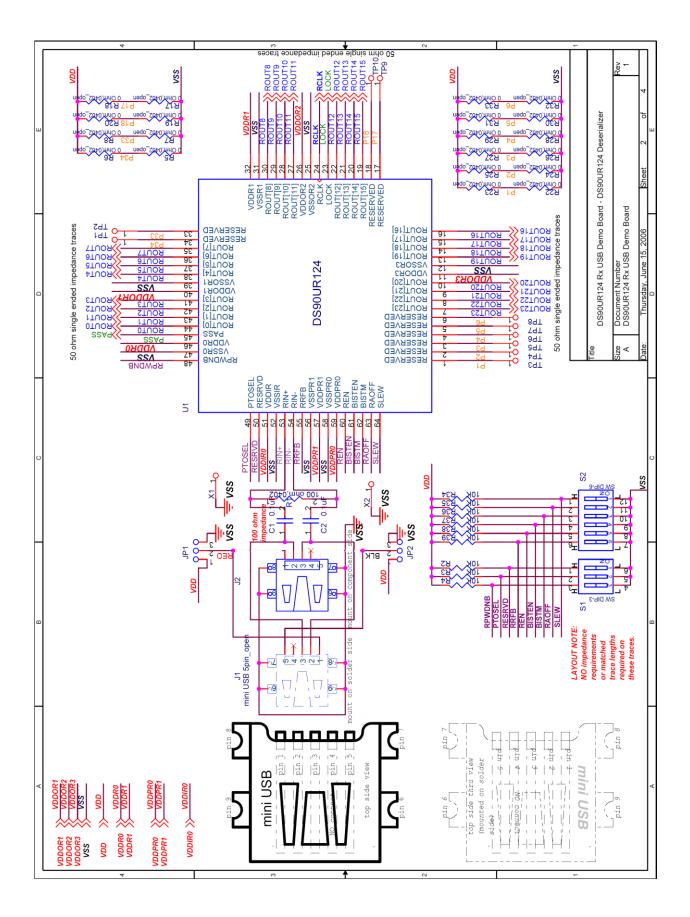
Date: 4/23/2014 National Semiconductor Corporation

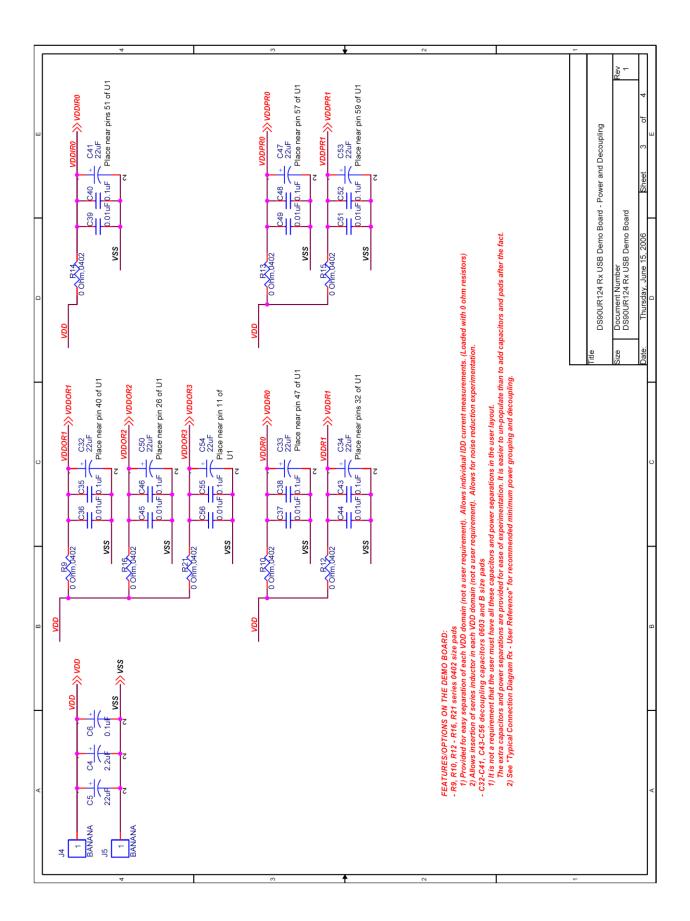

Page 24 of 39

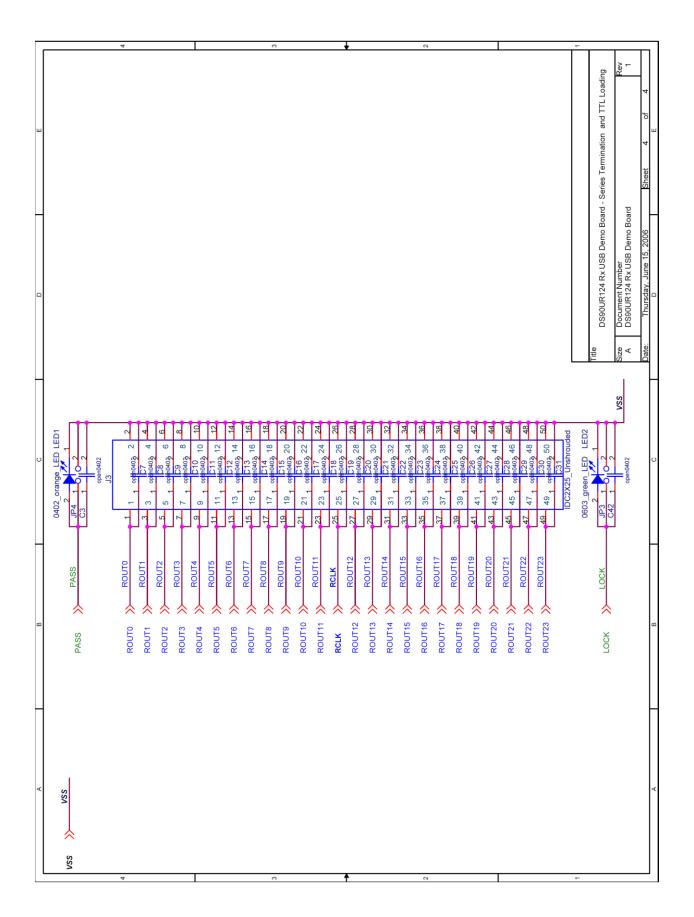

Appendix

Serializer (Tx) PCB Schematic:

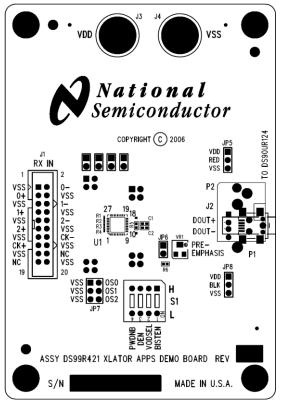


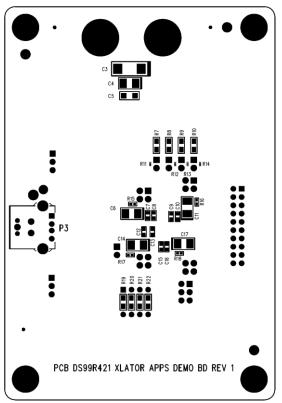

Date: 4/23/2014 Page 25 of 39



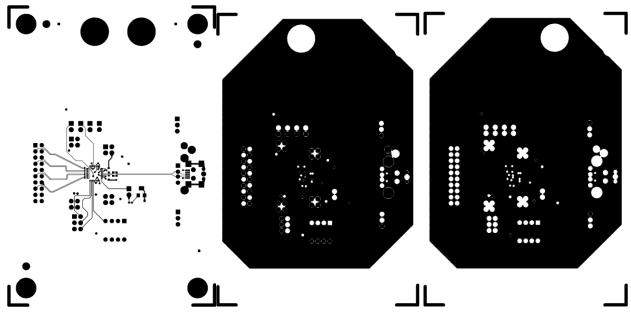


De-serializer (Rx) PCB Schematic:



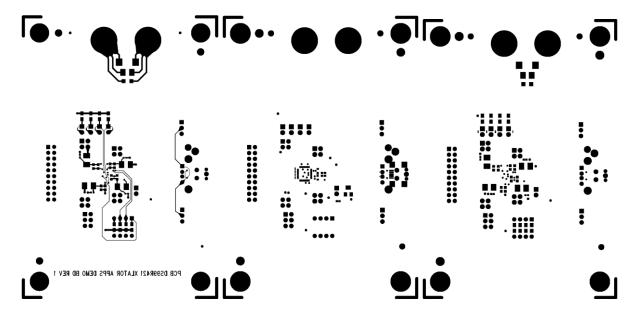


Serializer (Tx) PCB Layout:

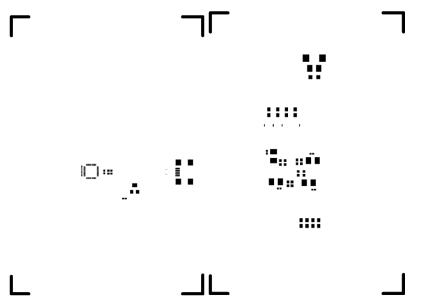


TOP VIEW BOTTOMSIDE VIEW

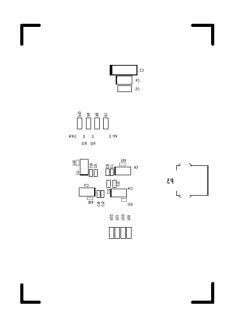
National Semiconductor Corporation


Date: 4/23/2014 Page 32 of 39

PRIMARY COMPONENT SIDE – LAYER 1

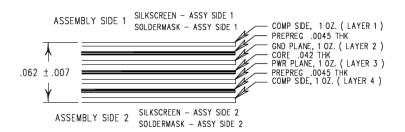

GROUND PLANE (VSS) – LAYER 2

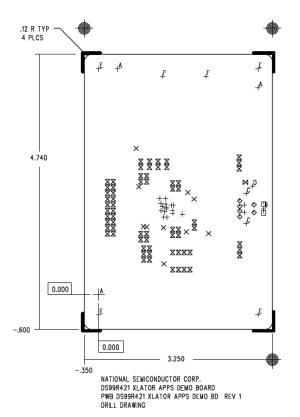
POWER PLANE (VDD) – LAYER 3



SECONDARY COMP SIDE – LAYER 4

 $PRIMARY\ COMP\ SIDE-SOLDER\ MASK\ (LAYER\ 1) \\ SECONDARY\ COMP\ SIDE-SOLDER\ MASK\ (LAYER\ 4)$


 $PRIMARY\ COMP\ SIDE-SOLDER\ PASTE\ (LAYER\ 1) \qquad SECONDARY\ COMP\ SIDE-SOLDER\ PASTE\ (LAYER\ 4)$


SILKSCREEN COMP SIDE – SILKSCREEN (LAYER 4)

Date: 4/23/2014 Page 34 of 39

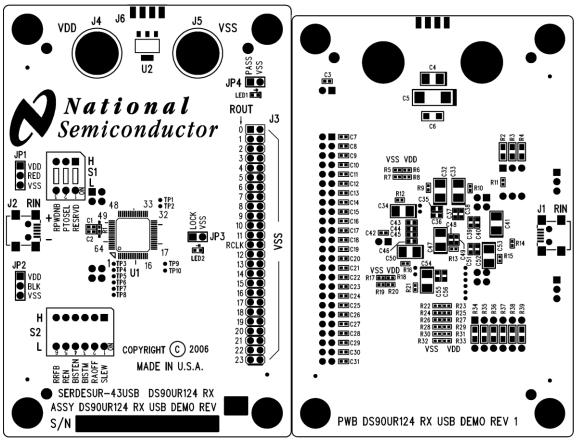
Serializer (Tx) PCB Stackup:

HOLE CHART					
HOLE CHART					
CODE	SIZE	QTY	PLATED	TOL	
+	0.011	18	YES	± .003	
X	0.014	9	YES	± .003	
	0.024	2	YES	± .003	
\Diamond	0.036	6	YES	± .003	
X	0.040	66	YES	± .003	
\bowtie	0.063	1	YES	± .002	
Α	0.125	3	NO	+.003000	
В	0.078	1	N0	± .003	
С	0.091	2	YES	± .003	
D	0.094	1	N0	± .003	
E	0.156	4	YES	± .004	
F	0.265	2	YES	± .005	

NOTES: UNLESS OTHERWISE SPECIFIED

- 1. PRIMARY COMPONENT SIDE IS SHOWN.
- 2. HOLES MARKED " A " ARE TOOLING HOLES, UNPLATED, AND SHALL BE "ONCE" DRILLED.
- FABRICATE USING MASTER FILM DS99R421 XLATOR APPS DEMO BD REV 1. USE GERBER FILE A517BOA.PHO FOR BOARD ROUTE.
- 4. ACCEPTABILITY SHALL BE BASED ON IPC-A-600, CLASS 2
- 5: MATERIAL: BASE MATERIAL IS POLYCLAD FR-370HR OR EQUIV (Tg >=170 DEG C) (Td >=350 DEG C), COLOR GREEN, 0.062 +/-.006 INCH NOM. THICKNESS COPPER CLADDING SHALL BE 1 OZ.
- PLATING: ALL HOLES AND CONDUCTIVE SURFACES SHALL BE PLATED WITH A MIN. OF .001 INCH COPPER. SURFACE PLATING TO BE ELECTROLESS NICKEL / IMMERSION GOLD (ENIG).
- 7. FABRICATION TOLERANCES:

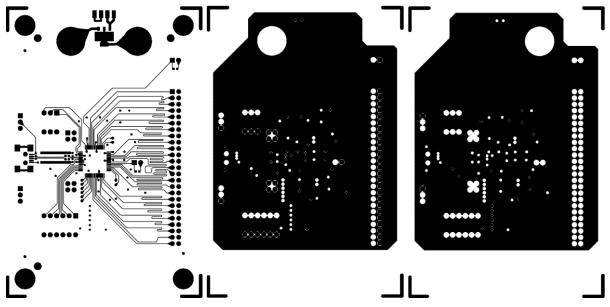
END PRODUCT CONDUCTOR WIDTHS AND LAND DIAMETERS SHALL NOT VARY MORE THAN .002 INCH FROM THE 1:1 DIMENSIONS OF THE MASTER PATTERN. THE CONDUCTIVE PATTERN SHALL BE POSITIONED SO THAT THE LOCATION OF ANY LAND SHALL BE WITHIN .002 INCH DIAMETER TO THE TRUE POSITION OF THE HOLE IT CIRCUMSCRIBES THE MINIMUM ANNULAR RING SHALL BE .002 INCH. BOW AND TWIST SHALL NOT EXCEED .07 INCH PER INCH.

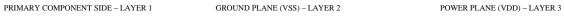

- SOLDERMASK BOTH SIDES PER IPC-SM-840, TYPE A, CLASS B. COLOR-GREEN. THERE SHALL BE NO SOLDERMASK ON ANY LAND.
- SILKSCREEN THE LEGEND ON BOTH SIDES USING NON CONDUCTIVE EPOXY INK, COLOR-WHITE. THERE SHALL BE NO INK ON ANY LAND.
- 10. THE .008 TRACES (LAYER 1) TO BE 50 OHM SINGLE ENDED IMPEDANCE THE .007 TRACES (LAYER 1) TO BE 100 OHM DIFFERENTIAL IMPEDANCE, AND THE DIELECTRIC REFERENCED IN BOARD STACK DETAIL IS SUGESTED. HOWEVER, TRACE WIDTHS AND OR DIELECTRIC THICKNESS MAY BE MICRO-MODIFIED IN ORDER TO FABRICATE BOARDS TO THE REQUIRED IMPEDANCE NOMINALS TO A TOLERANCE OF +/- 5x.
- 11. THE PCB SHALL BE E.U. ROHS COMPLIANT.

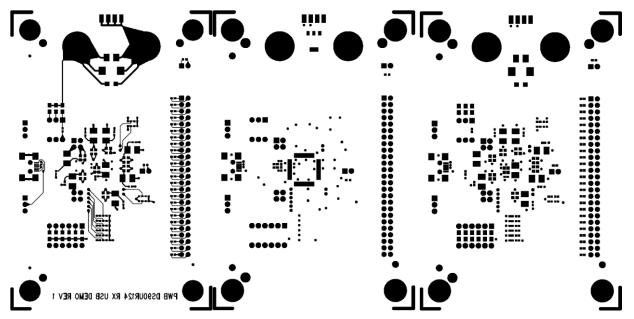
National Semiconductor Corporation

Date: 4/23/2014

Page 35 of 39

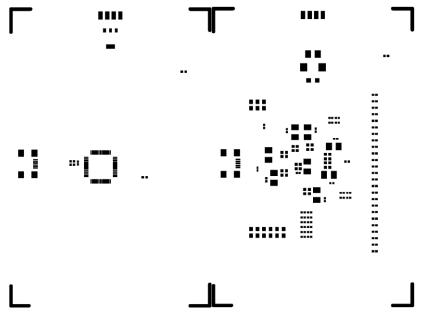

Deserializer (Rx) PCB Layout:

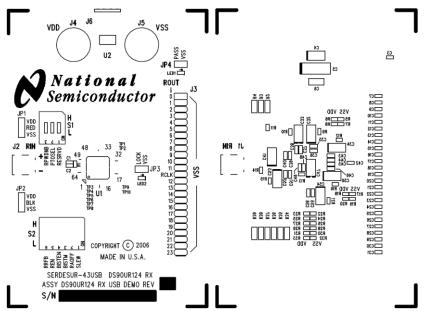



TOP VIEW BOTTOMSIDE VIEW

National Semiconductor Corporation

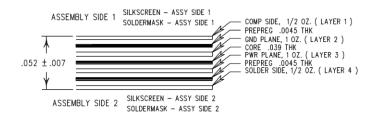
Date: 4/23/2014 Page 36 of 39



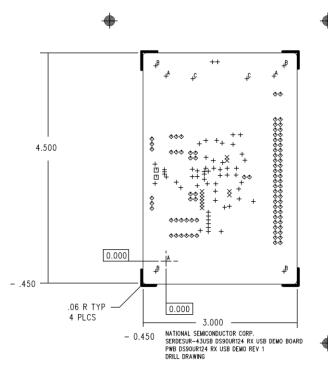


SECONDARY COMP SIDE – LAYER 4

 $PRIMARY\ COMP\ SIDE-SOLDER\ MASK\ (LAYER\ 1) \\ SECONDARY\ COMP\ SIDE-SOLDER\ MASK\ (LAYER\ 4)$



PRIMARY COMP SIDE – SOLDER PASTE (LAYER 1) SECONDARY COMP SIDE – SOLDER PASTE (LAYER 4)



 $PRIMARY\ COMP\ SIDE-SILKSCREEN\ (LAYER\ 1) \\ SILKSCREEN\ COMP\ SIDE-SILKSCREEN\ (LAYER\ 4)$

Deserializer (Rx) PCB Stackup:

HOLE CHART				
CODE	SIZE	QTY	PLATED	TOL
+	0.011	57	YES	± .003
X	0.016	10	YES	± .003
	0.035	2	YES	± .003
\Diamond	0.043	86	YES	± .003
Α	0.125	3	NO	+.003000
В	0.156	4	YES	± .005
С	0.265	2	YES	± .005

NOTES: UNLESS OTHERWISE SPECIFIED

- PRIMARY COMPONENT SIDE IS SHOWN.
 HOLES MARKED " A " ARE TOOLING HOLES, UNPLATED, AND SHALL
 BE "ONCE" DRILLED.
 FABRICATE USING MASTER FILM DS90UR124 RX USB DEMO REV 1.
 USE BOARD OUTLINE FILE A472BOA,PHO FOR BOARD ROUTE.
 ACCEPTABILITY SHALL BE BASED ON IPC-A-600, CLASS 2
 MATERIAL: BASE MATERIAL IS NEMAL-1 GRADE FR-406, COLOR GREEN,

- 0.052 INCH NOM. THICKNESS. COPPER CLADDING SHALL BE 1/2 OZ. OUTSIDE LAYERS AND 1 OZ INSIDE LAYERS.
- OF JOHN CHILD HOLES AND CONDUCTIVE SURFACES SHALL BE PLATED WITH A MIN OF JOH INCH CU. SURFACE FINISH: GOLD FLASH, JODGOD MIN.
- 7. FABRICATION TOLERANCES:
 - END PRODUCT CONDUCTOR WIDTHS AND LAND DIAMETERS SHALL NOT VARY MORE THAN .003 INCH FROM THE 1:1 DIMENSIONS OF THE MASTER PATTERN. THE CONDUCTIVE PATTERN SHALL BE POSITIONED SO THAT THE LOCATION OF ANY LAND SHALL BE WITHIN .010 INCH DIAMETER TO THE TRUE POSITION OF THE HOLE IT CIRCUMSCRIBES THE MINIMUM ANNULAR RING SHALL BE .002 INCH. BOW AND TWIST SHALL NOT EXCEED .010 INCH PER INCH.
- 8. SOLDERMASK BOTH SIDES PER IPC-SM-840, TYPE A, CLASS B. COLOR-GREEN. THERE SHALL BE NO SOLDERMASK ON ANY LAND.
- SILKSCREEN THE LEGEND ON BOTH SIDES USING NON CONDUCTIVE EPOXY INK, COLOR-WHITE. THERE SHALL BE NO INK ON ANY LAND.
- THE .008 (LAYER 1) TRACES TO BE 50 OHM SINGLE ENDED IMPEDANCE AND THE .007 TRACES (LAYER 1) TO BE 100 OHM DIFFERENTIAL IMPEDANCE AND THE DIELECTRIC REFERENCED IN BOARD STACK DETAIL IS SUGGESTED. HOWEVER, TRACE WIDTHS AND OR DIELECTRIC THICKNESS MAY BE MICRO-MODIFIED IN ORDER TO FABRICATE BOARDS TO THE REQUIRED IMPEDANCE NOMINALS TO A TOLERANCE OF +/- 5%
- 11. BOARD TO BE FABRICATED IN COMPLIANCY TO ROHS REQUIREMENTS.

National Semiconductor Corporation

Date: 4/23/2014 Page 39 of 39

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have *not* been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.