
COP820CJ,COP840CJ,COP880C,COP884BC,
COP888CF,COP888CL,COP888EK,COP888FH,
COP888GW,COP8ACC5,COP8AME9,COP8CBE9,
COP8CBR9,COP8CCE9,COP8CCR9,COP8CDR9,
COP8SAA7,COP8SAC7,COP8SBR9,COP8SCR9,
COP8SDR9,COP8SGE5,COP8SGE7,COP8SGG5,
COP8SGH5,COP8SGK5,COP8SGR5,COP8SGR7,
COP912C

AN-596 COP800 Mathpak

Literature Number: SNOA110

TL/DD10376

C
O

P
8
0
0

M
a
th

P
a
k

A
N

-5
9
6

National Semiconductor
Application Note 596
Verne H. Wilson
June 1989

COP800 MathPak

OVERVIEW

This application note discusses the various arithmetic oper-

ations for National Semiconductor’s COP800 family of 8-bit

microcontrollers. These arithmetic operations include both

binary and BCD (Binary Coded Decimal) operation. The four

basic arithmetic operations (add, subtract, multiply, divide)

are outlined in detail, with several examples shown for both

binary and BCD addition and subtraction. Multiplication, divi-

sion, and BCD conversion algorithms are also provided.

Both BCD to binary and binary to BCD conversion subrou-

tines are included, as well as the various multiplication and

division subroutines.

Four sets of optimal subroutines are provided for

1. Multiplication

2. Division

3. Decimal (Packed BCD) to binary conversion

4. Binary to decimal (Packed BCD) conversion

One class of subroutines is optimized for minimal COP800

program code, while the second class is optimized for mini-

mal execution time in order to optimize throughput time.

This application note is organized in four different sections.

The first section outlines various addition and subtraction

routines, including both binary and BCD (Binary Coded Deci-

mal). The second section outlines the multiplication algo-

rithm and provides several optimal multiply subroutines for

1, 2, 3, and 4 byte operation. The third section outlines the

division algorithm and provides several optimal division sub-

routines for 1, 2, 3, and 4 byte operation. The fourth section

outlines both the decimal (Packed BCD) to binary and binary

to decimal (Packed BCD) conversion algorithms. This sec-

tion provides several optimal subroutines for these BCD

conversions.

The COP800 arithmetic instructions include the Add (ADD),

Add with Carry (ADC), Subtract with Carry (SUBC), Incre-

ment (INCR), Decrement (DECR), Decimal Correct (DCOR),

Clear Accumulator (ACC), Set Carry (SC), and Reset Carry

(RC). The shift and rotate instructions, which include the

Rotate Right through Carry (RRC) and the Swap Accumula-

tor Nibbles (SWAP), may also be considered as arithmetic

instruction variations. The RRC instruction is instrumental in

writing a fast multiply routine.

1.0 BINARY AND BCD ADDITION AND SUBTRACTION

In subtraction, a borrow is represented by the absence of a

carry and vice versa. Consequently, the carry flag needs to

be set (no borrow) before a subtraction, just as the carry

flag is reset before an addition. The ADD instruction does

not use the carry flag as an input, nor does it change the

carry flag. It should also be noted that both the carry and

half carry flags (bits 6 and 7, respectively, of the PSW con-

trol register) are cleared with reset, and remain unchanged

with the ADD, INC, DEC, DCOR, CLR and SWAP instruc-

tions. The DCOR instruction uses both the carry and half

carry flags. The SC instruction sets both the carry and half

carry flags, while the RC instruction resets both these flags.

The following program examples illustrate additions and

subtractions of 4-byte data fields in both binary and BCD

(Binary Coded Decimal). The four bytes from data memory

locations 24 through 27 are added to or subtracted from the

four bytes in data memory locations 16 through 19. The

results replace the data in memory locations 24 through 27.

These operations are performed both in Binary and BCD. It

should be noted that the BCD pre-conditioning of Adding

(ADD) the hex 66 is only necessary with the BCD addition,

not with the BCD subtraction. The (Binary Coded Decimal)

DCOR (Decimal Correct) instruction uses both the carry and

half carry flags as inputs, but does not change the carry and

half carry flags. Also note that the Ý12 with the IFBNE in-

struction represents 28 b 16, since the IFBNE operand is

modulo 16 (remainder when divided by 16).

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

BINARY ADDITION:

LD X,#16 ; NO LEADING ZERO

LD B,#24 ; INDICATES DECIMAL

RC ; RESET CARRY TO START

LOOP: LD A,[X0] ; [X] TO ACC

ADC A,[B] ; ADD [B] TO ACC

X A,[B0] ; RESULT TO [B]
IFBNE #12 ; IF STILL IN DATA FIELD

JP LOOP ; JUMP BACK TO REPEAT LOOP

IFC ; IF TERMINAL CARRY,

JP OVFLOW ; JUMP TO OVERFLOW

BINARY SUBTRACTION:

LD X,#010 ; LEADING ZERO

LD B,#018 ; INDICATES HEX

SC ; RESET BORROW TO START

LOOP: LD A,[X0] ; [X] TO ACC

SUBC A,[B] ; SUBTRACT [B] FROM ACC

X A,[B0] ; RESULT TO [B]
IFBNE #12 ; IF STILL IN DATA FIELD

JP LOOP ; JUMP BACK TO REPEAT LOOP

IFNC ; IF TERMINAL BORROW,

JP NEGRSLT ; JUMP TO NEGATIVE RESULT

BCD ADDITION:

LD X,#010 ; LEADING ZERO

LD B,#018 ; INDICATES HEX

RC ; RESET CARRY TO START

LOOP: LD A,[X0] ; [X] TO ACC

ADD A,#066 ; ADD HEX 66 TO ACC

ADC A,[B] ; ADD [B] TO ACC

DCOR A ; DECIMAL CORRECT RESULT

X A,[B0] ; RESULT TO [B]
IFBNE #12 ; IF STILL IN DATA FIELD

JP LOOP ; JUMP BACK TO REPEAT LOOP

IFC ; IF TERMINAL CARRY

JP OVFLOW ; JUMP TO OVERFLOW

BCD SUBTRACTION:

LD X,#16 ; NO LEADING ZERO

LD B,#24 ; INDICATES DECIMAL

C

LOOP: LD A,[X0] ; [X] TO ACC

SUBC A,[B] ; SUBTRACT [B] FROM ACC

DCOR A ; DECIMAL CORRECT RESULT

X A,[B0] ; RESULT TO [B]
IFBNE #12 ; IF STILL IN DATA FIELD

JP LOOP ; JUMP BACK TO REPEAT LOOP

IFNC ; IF TERMINAL BORROW

JP NEGRSLT ; JUMP TO NEGATIVE RESULT

2

The astute observer will notice that these previous additions

and subtractions are not ‘‘adding machine’’ type arithmetic

operations in that the result replaces the second operand

rather than the first. The following program examples illus-

trate ‘‘adding machine’’ type operation where the result re-

places the first operand. With subtraction, this entails the

result replacing the minuend rather than the subtrahend.

Note that the B and X pointers are now reversed.

BINARY ADDITION:

LD B,#16 ; B POINTER AT FIRST OPERAND

LD X,#24 ; X POINTER AT SECOND OPERAND

RC ; RESET CARRY TO START

LOOP: LD A,[X0] ; [X] TO ACC

ADC A,[B] ; ADD [B] TO ACC

X A,[B0] ; RESULT TO [B]
IFBNE #4 ; IF STILL IN DATA FIELD

JP LOOP ; JUMP BACK TO REPEAT LOOP

IFC ; IF TERMINAL CARRY

JP OVFLOW ; JUMP TO OVERFLOW

BINARY SUBTRACTION:

LD B,#010 ; B POINTER AT FIRST OPERAND

LD X,018 ; X POINTER AT SECOND OPERAND

SC ; RESET BORROW TO START

LOOP: LD A,[X0] ; [X] TO ACC

X A,[B] ; EXCHANGE [B] AND ACC

SUBC A,[B] ; SUBTRACT [B] FROM ACC

X A,[B0] ; RESULT TO [B]
IFBNE #4 ; IF STILL IN DATA FIELD

JP LOOP ; JUMP BACK TO REPEAT LOOP

IFNC ; IF TERMINAL BORROW

JP NEGRSLT ; JUMP TO NEGATIVE RESULT

BCD ADDITION:

LD B,#010 ; B POINTER AT FIRST OPERAND

LD X,#018 ; X POINTER AT SECOND OPERAND

RC ; RESET CARRY TO START

LOOP: LD A,[X0] ; [X] TO ACC

ADD A,#066 ; ADD HEX66 TO ACC

ADC A,[B] ; ADD [B] TO ACC

DCOR A ; DECIMAL CORRECT RESULT

X A,[B0] ; RESULT TO [B]
IFBNE #4 ; IF STILL IN DATA FIELD

JP LOOP ; JUMP BACK TO REPEAT LOOP

IFC ; ; IF TERMINAL CARRY

JP OVFLOW ; JUMP TO OVERFLOW

BCD SUBTRACTION:

LD B,#16 ; B POINTER AT FIRST OPERAND

LD X,#24 ; X POINTER AT SECOND OPERAND

SC ; RESET BORROW TO START

LOOP: LD A,[X0] ; [X] TO ACC

X A,[B] ; EXCHANGE [B] AND ACC

SUBC A,[B] ; SUBTRACT [B] FROM ACC

DCOR A ; DECIMAL CORRECT RESULT

X A,[B0] ; RESULT TO [B]
IFBNE #4 ; IF STILL IN DATA FIELD

JP LOOP ; JUMP BACK TO REPEAT LOOP

IFNC ; IF TERMINAL BORROW

JP NEGRSLT ; JUMP TO NEGATIVE RESULT

3

Let us now consider a hybrid arithmetic example, where we

wish to add five successive bytes of a data table in ROM

program memory to a two byte sum, and then subtract the

SUM result from a two byte total TOT. Let us further assume

that the ROM table is located starting at program memory

address 0401, while SUM and TOT are at RAM data memo-

ry locations [1, 0] and [3, 2] respectively, and that we wish

to encode the program as a subroutine.

ROM Table:

. e 0401

. Byte 102

. Byte 41

. Byte 31

. Byte 26

. Byte 5

ROM Table Accessed Top Down

SUMLO e 0

SUMHI e 1

TOTLO e 2

TOTHI e 3

ARITH1: LD X,#5 ; SET UP ROM TABLE POINTER

LD B,#0 ; SET UP SUM POINTER

LOOP: RC ; RESET CARRY TO START ADDITION

LD A,X ; ROM POINTER TO ACC

LAID ; TABLE VALUE FROM ROM TO ACC

ADC A,[B] ; ADD SUMLO TO ACC

X A,[B0] ; RESULT TO SUMLO

CLR A ; CLEAR ACC

ADC A,[B] ; ADD SUMHI TO ACC

X A,[B1] ; RESULT TO SUMHI

DRSZ X ; DECR AND TEST ROM PTR FOR ZERO

JP LOOP ; JUMP BACK TO REPEAT LOOP

; IF X PTR NOT ZERO

SC ; RESET BORROW TO START SUBTRACTION

LD B,#2 ; SET UP TOT POINTER

LUP: LD A,[X0] ; SUBTRAHEND (SUM) TO ACC

X A,[B] ; REVERSE OPERANDS

SUBC A,[B] ; FOR SUBTRACTION

X A,[B0] ; RESULT TO TOT

IFBNE #4 ; IF STILL IN TOT FIELD

JP LUP ; JUMP BACK TO REPEAT LUP

RET ; RETURN FROM SUBROUTINE

4

2.0 MULTIPLICATION

The COP800 multiplications are all based on starting the

multiplier in the low order end of the double length product

space. The high end of the double length product space is

initially cleared, and then the double length product is shift-

ed right one bit. The bit shifted out from the low order end

represents the low order bit of the multiplier. If this bit is a

‘‘1’’, the multiplicand is added to the high end of the double

length product space. The entire shifting process and the

conditional addition of the multiplicand to the upper end of

the double length product is then repeated. The number of

shift cycles is equal to the number of bit positions in the

multiplier plus one extra shift cycle. This extra terminal shift

cycle is necessary to correctly align the resultant product.

Note that an M byte multiplicand multiplied by an N byte

multiplier will result in an M a N byte double length product.

However, these multiplication subroutines will only use 2M
a N a 1 bytes of RAM memory space, since the multiplier

initially occupies the low order end of the double length

product. The one extra byte is necessary for the shift coun-

ter CNTR.

The minimal code (28 byte) general multiplication subrou-

tine is shown with two different examples, MY2448 and

MY4824. Both examples multiply 24 bits by 48 bits. The

MY2448 subroutine uses the 48-bit operand as the multipli-

er, and consequently uses minimal RAM as well as minimal

program code. The MY4824 subroutine uses the 24-bit op-

erand as the multiplier, and consequently executes consid-

erably faster than the minimal RAM MY2448 subroutine.

MPY88 Ð 8 by 8 Multiplication Subroutine

Ð 19 Bytes

Ð 180 Instruction Cycles

Ð Minimum Code

MLT88 Ð Fast 8 by 8 Multiplication Subroutine

Ð 42 Bytes

Ð 145 Instruction Cycles

VFM88 Ð Very Fast 8 by 8 Multiply Subroutine

Ð 96 Bytes

Ð 116 Instruction Cycles

MPY168 Ð Fast 16 by 8 Multiplication Subroutine

Ð 36 Bytes

Ð 230 Instruction Cycles Average

Ð 254 Instruction Cycles Maximum

MPY816 (or MPY824, MPY832)

Ð 8 by 16 (or 24, 32) Multiply Subroutine

Ð 22 Bytes

Ð 589 (or 1065, 1669) Instruction Cycles Av-

erage

Ð 597 (or 1077, 1685) Instruction Cycles

Maximum

Ð Minimum Code, Minimum RAM

Ð Extendable Routine for MPY8XX by

Changing Parameters, with Number of

Bytes (22) Remaining a Constant

MPY248 Ð Fast 24 by 8 Multiplication Subroutine

Ð 47 Bytes

Ð 289 Instruction Cycles Average

Ð 333 Instruction Cycles Maximum

MX1616 Ð Fast 16 by 16 Multiplication Subroutine

Ð 39 Bytes

Ð 498 Instruction Cycles Average

Ð 546 Instruction Cycles Maximum

MP1616 Ð 16 by 16 Multiplicand Subroutine

Ð 29 Bytes

Ð 759 Instruction Cycles Average

Ð 807 Instruction Cycles Maximum

Ð Almost Minimum Code

MY1616 (or MY1624, MY1632)

Ð 28 Bytes

Ð 16 by 16 (or 24, 32) Multiply Subroutine

Ð 861 (or 1473, 2213) Inst. Cycles Average

Ð 1029 (or 1725, 2549) Inst. Cycles Maxi-

mum

Ð Minimum Code, Minimum RAM

Ð Extendable Routne for MY16XX by

Changing Parameters, with Number of

Bytes (28) Remaining a Constant

Minimal general multiplication subroutine for any number of

bytes in multiplicand and multiplier

Ð 28 Bytes

Ð Minimum Code

Ð MY2448 Used as First Example,

with Minimum RAM and

4713 Instruction Cycles Average

5457 Instruction Cycles Maximum

Ð MY4824 Used as Second Example,

with Non Minimal RAM and

2751 Instruction Cycles Average

3483 Instruction Cycles Maximum

5

MPY88Ð8 BY 8 MULTIPLICATION SUBROUTINE

MINIMUM CODE

19 BYTES

180 INSTRUCTION CYCLES

MULTIPLICAND IN [0] (ICAND)

MULTIPLIER IN [1] (IER)

PRODUCT IN [2,1] (PROD)

MPY88: LD CNTR,#9 ; LD CNTR WITH LENGTH OF

RC ; MULTIPLIER FIELD 0 1

LD B,#2

CLR A ; CLEAR UPPER PRODUCT

M88LUP: RRC A ; RIGHT SHIFT

X A,[B1] ; UPPER PRODUCT

LD A,[B]
RRC A ; RIGHT SHIFT LOWER

X A,[B1] ; PRODUCT/MULTIPLIER

CLR A ; CLR ACC AND TEST LOW

IFC ; ORDER MULTIPLER BIT

LD A,[B] ; MULTIPLICAND TO ACC IF

RC ; LOW ORDER BIT 4 1

LD B,#2 ; ADD MULTIPLICAND TO

ADC A,[B] ; UPPER PRODUCT

DRSZ CNTR ; DECREMENT AND TEST

JP M88LUP ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

6

MLT88ÐFAST 8 BY 8 MULTIPLICATION SUBROUTINE

42 BYTES

145 INSTRUCTION CYCLES

MULTIPLICAND IN [0] (ICAND)

MULTIPLIER IN [1] (IER)

PRODUCT IN [2,1] (PROD)

MLT88: LD CNTR,#3 ; LOAD CNTR WITH

RC ; 1/3 OF LENGTH OF

LD B,#2 ; (MULTIPLIER FIELD 0 1)

CLR A ; CLEAR UPPER PRODUCT

;

ML88LP: RRC A ; RIGHT SHIFT ***

X A,[B1] ; UPPER PRODUCT

LD A,[B]
RRC A ; RIGHT SHIFT LOWER

X A,[B1] ; PRODUCT/MULTIPLIER

CLR A ; CLR ACC AND TEST LOW

IFC ; ORDER MULTIPLIER BIT

LD A,[B] ; MULTIPLICAND TO ACC IF

RC ; LOW ORDER BIT 4 1

LD B,#2 ; ADD MULTIPLICAND TO

ADC A,[B] ; UPPER PRODUCT ***

;

RRC A ; REPEAT THE ABOVE

X A,[B1] ; 11 BYTE

LD A,[B] ; 13 INSTRUCTION

RRC A ; CYCLE PROGRAM

X A,[B1] ; SECTION (WITH

CLR A ; THE *** DELIMITERS)

IFC ; TWICE MORE FOR A

LD A,[B] ; TOTAL OF THREE TIMES

RC

LD B,#2

ADC A,[B] ; END OF SECOND REPEAT

;

RRC A ; START OF THIRD REPEAT

X A,[B1]
LD A,[B]
RRC A

X A,[B1]
CLR A

IFC

LD A,[B]
RC

LD B,#2

ADC A,[B] ; END OF THIRD REPEAT

;

DRSZ CNTR ; DECREMENT AND TEST

JMP ML88LP ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

7

VFM88ÐVERY FAST 8 BY 8 MULTIPLY SUBROUTINE

96 BYTES

116 INSTRUCTION CYCLES

MULTIPLICAND IN [0] (ICAND)

MULTIPLIER IN [1] (IER)

PRODUCT IN [2,1] (PROD)

VFM88: RC

LD B,#2

LD [B1],#0 ; CLEAR UPPER PRODUCT

LD A,[B]
RRC A ; RIGHT SHIFT LOWER

X A,[B1] ; PRODUCT/MULTIPLIER

CLR A ; CLR ACC AND TEST LOW

IFC ; ORDER MULTIPLIER BIT

LD A,[B] ; MULTIPLICAND TO ACC IF

RC ; LOW ORDER BIT 4 1

LD B,#2 ; ADD MULTIPLICAND TO

ADC A,[B] ; UPPER PRODUCT

;

RRC A ; RIGHT SHIFT ***

X A,[B1] ; UPPER PRODUCT

LD A,[B]
RRC A ; RIGHT SHIFT LOWER

X A,[B1] ; PRODUCT/MULTIPLIER

CLR A ; CLR ACC AND TEST LOW

IFC ; ORDER MULTIPLIER BIT

LD A,[B] ; MULTIPLICAND TO ACC IF

RC ; LOW ORDER BIT 4 1

LD B,#2 ; ADD MULTIPLICAND TO

ADC A,[B] ; UPPER PRODUCT ***

;

; THE ABOVE 11 BYTE, 13 INSTRUCTION CYCLE SECTION WITH THE ***

; DELIMITERS REPRESENTS THE PROCESSING FOR ONE MULTIPLIER BIT.

;

;

; ––– ; REPEAT THE

; ; ABOVE SECTION

; ––– ; SIX MORE TIMES,

; ; FOR A TOTAL

; ––– ; OF SEVEN TIMES

;

RRC A ; RIGHT SHIFT

X A,[B1] ; UPPER PRODUCT

LD A,[B]
RRC A ; RIGHT SHIFT LOWER

X A,[B] ; PRODUCT/MULTIPLIER

RET ; RETURN FROM SUBROUTINE

;

;

;

8

MPY168ÐFAST 16 BY 8 MULTIPLICATION SUBROUTINE

36 BYTES

230 INSTRUCTION CYCLES AVERAGE

254 INSTRUCTION CYCLES MAXIMUM

MULTIPLICAND IN [1,0] (ICAND)

MULTIPLIER IN [2] (IER)

PRODUCT IN [4,3,2] (PROD)

MPY168: LD CNTR,#9 ; LD CNTR WITH LENGTH OF

RC ; MULTIPLIER FIELD 0 1

LD B,#4

LD [B1],#0 ; CLEAR

LD [B1],#0 ; UPPER PRODUCT

JP MP168S

M168LP: RRC A ; RIGHT SHIFT UPPER

X A,[B1] ; BYTE OF PRODUCT

LD A,[B]
RRC A ; RIGHT SHIFT MIDDLE

X A,[B1] ; BYTE OF PRODUCT

MP168S: LD A,[B]
RRC A ; RIGHT SHIFT LOWER

X A,[B] ; PRODUCT/MULTIPLIER

IFNC ; TEST LOWER BIT

JP MP168T ; OF MULTIPLIER

RC ; CLEAR CARRY

LD B,#0 ; LOWER BYTE OF

LD A,[B] ; MULTIPLICAND TO ACC

LD B,#3 ; ADD LOWER BYTE OF

ADC A,[B] ; MULTIPLICAND TO

X A,[B] ; MIDDLE BYTE OF PROD

LD B,#1 ; UPPER BYTE OF

LD A,[B] ; MULTIPLICAND TO ACC

LD B,#4 ; ADD UPPER BYTE OF ICAND

ADC A,[B] ; TO UPPER BYTE OF PROD

DRSZ CNTR ; DECREMENT CNTR AND JUMP

JP M168LP ; BACK TO LOOP; CNTR

; CANNOT EQUAL ZERO

MP168T: LD B,#4 ; HIGH ORDER PRODUCT

LD A,[B] ; BYTE TO ACC

DRSZ CNTR ; DECREMENT AND TEST IF

JP M168LP ; CNTR EQUAL TO ZERO

RET ; RETURN FROM SUBROUTINE

9

MPY816Ð(OR MPY824, MPY832) 8 BY 16 (OR 24, 32) MULTIPLY SUBROUTINE

MINIMUM CODE, MINIMUM RAM

22 BYTES

589 (OR 1065, 1669) INSTR. CYCLES AVERAGE

597 (OR 1077, 1685) INSTR. CYCLES MAXIMUM

EXTENDABLE ROUTINE FOR MPY8XX BY CHANGING

PARAMETERS, WITH NUMBER OF BYTES (22)

REMAINING A CONSTANT.

MULTIPLICAND IN [0] (ICAND)

MULTIPLIER IN [2,1] FOR 16 BIT (IER)

OR [3,2,1] for 24 BIT

OR [4,3,2,1] for 32 BIT

PRODUCT IN [3,2,1] FOR 16 BIT (PROD)

OR [4,3,2,1] FOR 24 BIT

OR [5,4,3,2,1] FOR 32 BIT

MPY816: LD CNTR,#17 ; LD CNTR WITH LENGTH OF

; MULTIPLIER FIELD 0 1

; #17 FOR MPY816 16 BIT

; (#25 FOR MPY824 24 BIT)

; (#33 FOR MPY832 32 BIT)

RC

LD B,#3 ; #3 FOR MPY816

; (#4 FOR MPY824)

; (#5 FOR MPY832)

LD [B1],#0 ; CLEAR UPPER PRODUCT

M8XXLP: LD A,[B] ; FIVE INSTRUCTION

M8XXL: RRC A ; PROGRAM LOOP TO

X A,[B1] ; RIGHT SHIFT

IFBNE #0 ; PRODUCT/MULTIPLIER

JP M8XXLP ; LOOP JUMP BACK

CLR A ; CLR ACC AND TEST LOW

IFNC ; ORDER MULTIPLIER BIT

JP M8XXT ; JP IF LOW ORDER BIT 4 0

RC

LD B,#0

LD A,[B] ; MULTIPLICAND TO ACC

M8XXT: LD B,#3 ; #3 FOR MPY816

; (#4 FOR MPY824)

; (#5 FOR MPY832)

ADC A,[B] ; ADD MULTIPLICAND TO

; UPPER BYTE OF PRODUCT

DRSZ CNTR ; DECREMENT AND TEST

JP M8XXL ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

10

MPY248ÐFAST 24 BY 8 MULTIPLICATION SUBROUTINE

47 BYTES

289 INSTRUCTION CYCLES AVERAGE

333 INSTRUCTION CYCLES MAXIMUM

MULTIPLICAND IN [2,1,0] (ICAND)

MULTIPLIER IN [3] (IER)

PRODUCT IN [6,5,4,3] (PROD)

MPY248: LD CNTR,#9 ; LD CNTR WITH LENGTH OF

RC ; MULTIPLIER FIELD 0 1

LD B,#6

LD [B1],#0 ; CLEAR THREE

LD [B1],#0 ; UPPER BYTES

LD [B1],#0 ; OF PRODUCT

JP MP248S ; JUMP TO START

M248LP: RRC A ; RIGHT SHIFT HIGH

X A,[B1] ; ORDER PRODUCT BYTE

LD A,[B]
RRC A ; RIGHT SHIFT NEXT LOWER

X A,[B1] ; ORDER PRODUCT BYTE

LD A,[B]
RRC A ; RIGHT SHIFT NEXT LOWER

X A,[B1] ; ORDER PRODUCT BYTE

MP248S: LD A,[B]
RRC A ; RIGHT SHIFT LOW ORDER

X A,[B] ; PRODUCT/MULTIPLIER

IFNC ; TEST LOW ORDER

JP MP248T ; MULTIPLIER BIT

RC

LD B,#0 ; LOAD ACC WITH LOW ORDER

LD A,[B] ; MULTIPLICAND BYTE

LD B,#4 ; ADD LOW ORDER ICAND

ADC A,[B] ; BYTE TO NEXT TO LOW

X A,[B] ; ORDER PRODUCT BYTE

LD B,#1 ; LOAD ACC WTIH MIDDLE

LD A,[B] ; MULTIPLICAND BYTE

LD B,#5 ; ADD MIDDLE ICAND BYTE

ADC A,[B] ; TO NEXT TO HIGH ORDER

X A,[B] ; MULTIPLICAND BYTE

LD B,#2 ; LOAD ACC WITH HIGH ORDER

LD A,[B] ; MULTIPLICAND BYTE

LD B,#6 ; ADD HIGH ORDER ICAND BYTE

ADC A,[B] ; TO HIGH ORDER PROD BYTE

DRSZ CNTR ; DECREMENT CNTR AND JUMP

JP M248LP ; BACK TO LOOP; CNTR

; CANNOT EQUAL ZERO

MP248T: LD B,#6 ; HIGH ORDER PRODUCT

LD A,[B] ; BYTE TO ACC

DRSZ CNTR ; DECREMENT AND TEST

JMP M248LP ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

11

MX1616ÐFAST 16 BY 16 MULTIPLICATION SUBROUTINE

39 BYTES

498 INSTRUCTION CYCLES AVERAGE

546 INSTRUCTION CYCLES AVERAGE

MULTIPLICAND IN [1,0] (ICAND)

MULTIPLIER IN [3,2] (IER)

PRODUCT IN [5,4,3,2] (PROD)

MX1616: LD CNTR,#17 ; LD CNTR WITH LENGTH OF

RC ; MULTIPLIER FIELD 0 1

LD B,#5

LD [B1],#0 ; CLEAR UPPER TWO

LD [B1],#0 ; PRODUCT BYTES

JP MXSTRT ; JUMP TO START

MX1616L: RRC A ; RIGHT SHIFT

X A,[B1] ; UPPER PRODUCT BYTE

LD A,[B]
RRC A ; RIGHT SHIFT NEXT LOWER

X A,[B1] ; PRODUCT BYTE

MXSTRT: LD A,[B]
RRC A ; RIGHT SHIFT PRODUCT

X A,[B1] ; UPPER MULTIPLIER BYTE

LD A,[B]
RRC A ; RIGHT SHIFT PRODUCT

X A,[B] ; LOWER MULTIPLIER BYTE

IFNC ; TEST LOW ORDER

JP MX1616T ; MULTIPLIER BIT

RC

LD B,#0 ; LOAD ACC WITH LOWER

LD A,[B] ; MULTIPLICAND BYTE

LD B,#4 ; ADD LOWER ICAND BYTE

ADC A,[B] ; TO NEXT TO HIGH

X A,[B] ; ORDER PRODUCT BYTE

LD B,#1 ; LOAD ACC WITH UPPER

LD A,[B] ; MULTIPLICAND BYTE

LD B,#5 ; ADD UPPER ICAND BYTE TO

ADC A,[B] ; HIGH ORDER PRODUCT

DRSZ CNTR ; DECREMENT CNTR AND JUMP

JP MX1616L ; BACK TO LOOP; CNTR

; CANNOT EQUAL ZERO

MX1616T: LD B,#5 ; HIGH ORDER PRODUCT

LD A,[B] ; BYTE TO ACC

DRSZ CNTR ; DECREMENT AND TEST

JP MX1616L ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

12

MP1616Ð16 BY 16 MULTIPLICATION SUBROUTINE

MINIMUM CODE

29 BYTES

759 INSTRUCTION CYCLES AVERAGE

807 INSTRUCTION CYCLES MAXIMUM]

MULTIPLICAND IN [1,0] (ICAND)

MULTIPLIER IN [3,2] (IER)

PRODUCT IN [5,4,3,2] (PROD)

MP1616: LD CNTR,#17 ; LD CNTR WITH LENGTH OF

RC ; MULTIPLIER FIELD 0 1

LD B,#5

LD [B1],#0 ; CLEAR UPPER TWO

LD [B1],#0 ; PRODUCT BYTES

M1616X: LD A,[B] ; FIVE INSTRUCTION

M1616L: RRC A ; PROGRAM LOOP TO

X A,[B1] ; RIGHT SHIFT

IFBNE #1 ; PRODUCT/MULTIPLIER.

JP M1616X ; LOOP JUMP BACK

CLR A ; CLEAR ACC

IFNC ; TEST LOW ORDER

JP M1616T ; MULTIPLIER BIT

RC

LD B,#0 ; LOAD ACC WITH LOWER

LD A,[B] ; MULTIPLICAND BYTE

LD B,#4 ; ADD LOWER ICAND BYTE

ADC A,[B] ; TO NEXT TO LOW

X A,[B] ; ORDER PRODUCT BYTE

LD B,#1 ; LOAD ACC WITH UPPER

LD A,[B] ; MULTIPLICAND BYTE

M1616T: LD B,#5 ; ADD UPPER ICAND BYTE TO

ADC A,[B] ; HIGH ORDER PRODUCT

DRSZ CNTR ; DECREMENT AND TEST

JP M1616L ; CNTR EQUAL TO ZERO

RET ; RETURN FROM SUBROUTINE

13

MY1616 (OR MY1624, MY1632)Ð16 BY 16 (OR 24, 32) MULTIPLY SUBROUTINE

MINIMUM CODE, MINIMUM RAM

28 BYTES

861 (OR 1473, 2213) INST. CYCLES AVERAGE

1029 (OR 1725,1473) INST. CYCLES MAXIMUM

EXTENDABLE ROUTINE FOR MY16XX BY CHANGING

PARAMETERS, WITH NUMBER OF BYTES (28)

REMAINING A CONSTANT

MULTIPLICAND IN [1,0] (ICAND)

MULTIPLIER IN [3,2] FOR 16 BIT (IER)

OR [4,3,2] FOR 24 BIT

OR [5,4,3,2] FOR 32 BIT

PRODUCT IN [5,4,3,2] FOR 16 BIT (PROD)

OR [6,5,4,3,2] FOR 24 BIT

OR [7,6,5,4,3,2] FOR 32 BIT

MY1616: LD CNTR,#17 ; LD CNTR WITH LENGTH OF

; MULTIPLIER FIELD 0 1

; #17 FOR MY1616

; (#25 FOR MY1624)

; (#33 FOR MY1632)

LD B,#5 ; #5 FOR MY1616

; (#6 FOR MY1624)

; (#7 FOR MY1632)

LD [B1],#0 ; CLEAR UPPER TWO

LD [B1],#0 ; PRODUCT BYTES

RC

MY16XS: LD A,[B] ; FIVE INSTRUCTION

RRC A ; PROGRAM LOOP TO

X A,[B1] ; RIGHT SHIFT

IFBNE #1 ; PRODUCT/MULTIPLIER

JP M16XS ; LOOP JUMP BACK

IFNC ; TEST LOW ORDER

JP MY16XT ; MULTIPLIER BIT

RC

LD B,#4 ; #4 FOR MY1616

; (#5 FOR MY1624)

; (#6 FOR MY1632)

LD X,#0 ; LOAD ACC WITH

MY16XL: LD A,[X0] ; MULTIPLICAND BYTES

ADC A,[B] ; ADD MULTIPLICAND TO

X A,[B0] ; HI TWO PROD. BYTES

IFBNE #2 ; LOOP BACK FOR SECOND

JP MY16XL ; MULTIPLICAND BYTE

MY16XT: LD B,#5 ; #5 FOR MY1616

; (#6 FOR MY1624)

; (#7 FOR MY1632)

DRSZ CNTR ; DECREMENT AND TEST

JP MY16XS ; CNTR EQUAL TO ZERO

RET ; RETURN FROM INTERRUPT

;

14

MY2448ÐMINIMAL GENERAL MULTIPLICATION SUBROUTINE (28 BYTES)

ANY NUMBER OF BYTES IN MULTIPLICAND

AND MULTIPLIER

FIRST EXAMPLE: (MY2448)

24 BY 48 MULTIPLICATION SUBROUTINE

Ð28 BYTES

ÐMINIMAL CODE, MINIMAL RAM

Ð4713 INSTRUCTION CYCLES AVERAGE

Ð5457 INSTRUCTION CYCLES MAXIMUM

MULTIPLICAND IN [2,1,0] (ICAND)

MULTIPLIER IN [8,7,6,5,4,3] (IER)

PRODUCT IN [11,10,9,8,7,6,5,4,3] (PROD)

SECOND EXAMPLE: (MY4824)

48 BY 24 MULTIPLICATION SUBROUTINE

Ð28 BYTES

ÐMINIMAL CODE, NON MINIMAL RAM

Ð2751 INSTRUCTION CYCLES AVERAGE

Ð3483 INSTRUCTION CYCLES MAXIMUM

MULTIPLICAND IN [5,4,3,2,1,0] (ICAND)

MULTIPLIER IN [8,7,6] (IER)

PRODUCT IN [14,13,12,11,10,9,8,7,6] (PROD)

MY2448: ; (OR MY4824)

LD CNTR, #49 ; LD CNTR WITH LENGTH OF

; MULTIPLIER FIELD 0 1

; #49 FOR MY2448

; (#25 FOR MY4824)

LD B,#11 ; TOP OF PROD TO B PTR

; #11 FOR MY2448

; (#14 FOR MY4824)

CLRLUP: LD [B1],#0 ; CLR UNTIL TOP OF IER

IFBNE #8 ; #8 FOR BOTH MY2448

JP CLRLUP ; AND MY4824

RC ; INITIALIZE CARRY

SHFTLP: LD A,[B] ; RIGHT SHIFT PRODUCT

ADC A,[B] ; AND MULTIPLIER

X A,[B1] ; UNTIL TOP OF ICAND

IFBNE #2 ; #2 FOR MY2448

JP SHFTLP ; (#5 FOR MY4824)

IFNC ; TEST LOW ORDER

JP MYTEST ; MULTIPLIER BIT

LD B,#9 ; TOP OF IER 0 1 TO B PTR

LD X,#0 ; START OF ICAND TO X PTR

RC

ADDLUP: LD A,[X0] ; ADD MULTIPLICAND TO TOP

ADC A,[B] ; OF PRODUCT ABOVE

X A,[B0] ; MULTIPLIER UNTIL TOP

IFBNE #12 ; OF PRODUCT 0 1

JP ADDLUP ; #12 FOR MY2448

; (#15 FOR MY4824)

MYTEST: LD B,#11 ; TOP OF PROD TO B PTR

; #11 FOR MY2448

; (#14 FOR MY4824)

DRSZ CNTR ; DECREMENT AND TEST

JP SHFTLP ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

15

3.0 DIVISION

The COP 800 divisions are all based on shifting the dividend

left up into a test field equal in length to the number of bytes

in the divisor. The divisor is resident immediately above this

test field. After each shift cycle of the dividend into the test

field, a trial subtraction is made of the test field minus the

divisor. If the divisor is found equal to or less than the con-

tents of the test field, then the divisor is subtracted from the

test field and a 1’s quotient digit is recorded by setting the

low order bit of the dividend field. The dividend and test field

left shift cycle is then repeated. The number of left shift

cycles is equal to the number of bit positions in the dividend.

The quotient from the division is formed in the dividend field,

while the remainder from the division is resident in the test

field.

Note that an M byte dividend divided by an N byte divisor

will result in an M byte quotient and an N byte remainder.

These division algorithms will use M a 2N a 1 bytes of

RAM memory space, since the test field is equal to the

length of the divisor. The one extra byte is necessary for the

shift counter CNTR.

In special cases where the dividend has an upper bound

and the divisor has a lower bound, the upper bytes of the

dividend may be used as the test field. One example is

shown (DV2815), where a 28 bit dividend is divided by a

15-bit divisor. The dividend is less than 2**28 (upper nibble

of high order byte is zero), while the divisor is greater than

2**12 (4096) and less than 2**15 (32768). In this case, the

upper limit for the quotient is 2**28/2**12, which indicates

a 16-bit quotient (2**16) and a 15-bit remainder. Conse-

quently, the upper two bytes of the dividend may be used as

the test field for the remainder, since the divisor is greater

than the test field (upper two bytes of the 28-bit dividend)

initially.

The minimal code (40 byte) general division subroutine is

shown with the example DV3224, which divides a 32 bit

dividend by a 24 bit divisor.

DIV88 Ð 8 by 8 Division Subroutine

Ð 24 Bytes

Ð 201 Instruction Cycles Average

Ð 209 Instruction Cycles Maximum

Minimum code

DV88 Ð Fast 8 by 8 Division Subroutine

Ð 28 Bytes

Ð 194 Instruction Cycles Average

Ð 202 Instruction Cycles Maximum

FDV88 Ð Very Fast 8 by 8 Division Subroutine

Ð 131 Bytes

Ð 146 Instruction Cycles Average

Ð 159 Instruction Cycles Maximum

DIV168 (or DIV248, DIV328)

Ð 16 (or 24, 32) by 8 Division Subroutine

Ð 26 Bytes

Ð 649 (or 1161, 1801) Instruction

Cycles Average

Ð 681 (or 1209,1865) Instruction

Cycles Maximum

Ð Minimum Code

Ð Extendable Routine for DIVXX8 by

Changing Parameters, with Number

of Bytes (26) Remaining a Constant

FDV168 Ð Fast 16 by 8 Division Subroutine

Ð 35 Bytes

Ð 481 Instruction Cycles Average

Ð 490 Instruction Cycles Maximum

FDV248 Ð Fast 24 by 8 Division Subroutine

Ð 38 Bytes

Ð 813 Instruction Cycles Average

Ð 826 Instruction Cycles Maximum

FDV328 Ð Fast 32 by 8 Division Subroutine

Ð 42 Bytes

Ð 1209 Instruction Cycles Average

Ð 1226 Instructions Maximum

Divide by 16 Subroutines:

DV1616 Ð 16 by 16 Division Subroutine

Ð 34 Bytes

Ð 979 Instruction Cycles Average

Ð 1067 Instruction Cycles Maximum

Ð Minimum Code

DV2416 (or DV3216)

Ð 24 (or 32) by 16 Division Subroutine

Ð 39 Bytes

Ð 1694 (or 2410) Inst. Cycles Average

Ð 1886 (or 2766) Inst. Cycles Maximum

Ð Minimum code

Ð Extendable Routine for DVXX16 by

Changing Parameters, with Number of

Bytes (39) Remaining a Constant

DX1616 Ð Fast 16 by 16 Division Subroutine

Ð 53 Bytes

Ð 638 Instruction Cycles Average

Ð 678 Instruction Cycles Maximum

DV2815 Ð Fast 28 by 15 Division Subroutine,

Where the Dividend is Less Than 2**28

and the Divisor

is Greater than 2**12 (4096)

and Less than 2**15 (32768)

Ð 43 Bytes

Ð 640 Instruction Cycles Average

Ð 696 Instruction Cycles Maximum

DX3216 Ð Fast 32 by 16 Division Subroutine

Ð 70 Bytes

Ð 1511 Instruction Cycles Average

Ð 1591 Instruction Cycles Maximum

Minimal General Division Subroutine for any Number of

Bytes in Dividend and Divisor

Ð 40 Bytes

Ð Minimal Code

Ð DV3224 Used as Example, with

3879 Instruction Cycles Average

4535 Instruction Cycles Maximum

16

DIV88Ð8 BY 8 DIVISION SUBROUTINE

MINIMUM CODE

24 BYTES

201 INSTRUCTION CYCLES AVERAGE

209 INSTRUCTION CYCLES MAXIMUM

DIVIDEND IN [0] (DD)

DIVISOR IN [2] (DR)

QUOTIENT IN [0] (QUOT)

REMAINDER IN [1] (TEST FIELD)

DIV88: LD CNTR,#8 ; LOAD CNTR WITH LENGTH

LD B,#1 ; OF DIVIDEND FIELD

LD [B],#0 ; CLEAR TEST FIELD

DIV88S RC

LD B,#0

LD A,[B]
ADC A,[B] ; LEFT SHIFT DIVIDEND

X A,[B0]
LD A,[B]
ADC A,[B] ; LEFT SHIFT TEST FIELD

X A,[B]
LD A,[B0] ; TEST FIELD TO ACC

SC ; TEST SUBTRACT DIVISOR

SUBC A,[B] ; FROM TEST FIELD

IFNC ; TEST IF BORROW

JP DIV88B ; FROM SUBTRACTION

LD B,#1 ; SUBTRACTION RESULT

X A,[B1] ; TO TEST FIELD

SBIT 0,[B] ; SET QUOTIENT BIT

DIV88B: DRSZ CNTR ; DECREMENT AND TEST

JP DIV88S ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

17

DV88ÐFAST 8 BY 8 DIVISION SUBROUTINE

28 BYTES

194 INSTRUCTION CYCLES AVERAGE

202 INSTRUCTION CYCLES MAXIMUM

DIVIDEND IN [0] (DD)

DIVISOR IN [2] (DR)

QUOTIENT IN [0] (QUOT)

REMAINDER IN [1] (TEST FIELD)

DV88: LD CNTR,#8 ; LOAD CNTR WITH LENGTH

LD B,#1 ; OF DIVIDEND FIELD

LD [B1],#0 ; CLEAR TEST FIELD

RC

DV88S: LD A,[B]
ADC A,[B] ; LEFT SHIFT DIVIDEND

X A,[B0]
LD A,[B]
ADC A,[B] ; LEFT SHIFT TEST FIELD

X A,[B]
LD A,[B0] ; TEST FIELD TO ACC

SC ; TEST SUBTRACT DIVISOR

SUBC A,[B] ; FROM TEST FIELD

IFNC ; TEST IF BORROW

JP DV88B ; FROM SUBTRACTION

LD B,#1 ; SUBTRACTION RESULT

X A,[B1] ; TO TEST FIELD

SBIT 0,[B] ; SET QUOTIENT BIT

RC

DRSZ CNTR ; DECREMENT AND TEST

JP DV88S ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

DV88B: LD B,#0

DRSZ CNTR ; DECREMENT AND TEST

JP DV88S ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

18

FDV88ÐVERY FAST 8 BY 8 DIVISION SUBROUTINE

131 BYTES

146 INSTRUCTION CYCLES AVERAGE

159 INSTRUCTION CYCLES MAXIMUM

DIVIDEND IN [0] (DD)

DIVISOR IN [2] (DR)

QUOTIENT IN [0] (QUOT)

REMAINDER IN [1] (TEST FIELD)

FDV88: LD B,#1

LD [B1],#0 ; CLEAR TEST FIELD

RC

LD A,[B]
ADC A,[B] ; LEFT SHIFT DIVIDEND

X A,[B0]
LD A,[B]
ADC A,[B] ; LEFT SHIFT TEST FIELD

X A,[B]
LD A,[B0] ; TEST FIELD TO ACC

SC ; TEST SUBTRACT DIVISOR

SUBC A,[B] ; FROM TEST FIELD

IFNC ; TEST IF BORROW

JP DVBP1 ; FROM SUBTRACTION

LD B,#1 ; SUBTRACTION RESULT

X A,[B1] ; TO TEST FIELD

SBIT 0,[B] ; SET QUOTIENT BIT

RC

DVBP1: LD B,#0 ; THIS 16 BYTE SECTION

LD A,[B] ; OF PROGRAM CODE

ADC A,[B] ; CONTAINS

X A,[B0] ; 16 INSTRUCTIONS,

LD A,[B] ; AND REPRESENTS THE

ADC A,[B] ; PROCESSING FOR THE

X A,[B] ; GENERATION OF

LD A,[B0] ; 1 QUOTIENT BIT.

SC ;

SUBC A,[B] ; THE PROGRAM CODE

IFNC ; EXECUTION TIMES IS 16

JP DVBP2 ; INSTRUCTION CYCLES

LD B,#1 ; FOR A 0’S QUOTIENT BIT

X A,[B1] ; AND 19 INSTRUCTION

SBIT 0,[B] ; CYCLES FOR A 1’S

RC ; QUOTIENT BIT.

; ––- ;

DVBP2: LD B,#0 ; REPEAT THE ABOVE

; ––- ;

;DVBP3:

; ––- ;SECTION OF CODE FIVE

;DVBP4:

; ––- ;MORE TIMES FOR A

;DVBP5:

; ––- ;TOTAL OF SIX TIMES

;DVBP6:

; ––- ;

;

DVBP7: LD B,#0

LD A,[B]
ADC A,[B] ; LEFT SHIFT DIVIDEND

X A,[B0]
LD A,[B]
ADC A,[B] ; LEFT SHIFT TEST FIELD

X A,[B]
LD A,[B0] ; TEST FIELD TO ACC

SC ; TEST SUBTRACT DIVISOR

SUBC A,[B] ; FROM TEST FIELD

IFNC ; TEST BORROW FROM SUBC

RET ; RETURN FROM SUBROUTINE

LD B,#1 ; SUBTRACTION RESULT

X A,[B1] ; TO TEST FIELD

SBIT 0,[B] ; SET QUOTIENT BIT

RET ; RETURN FROM SUBROUTINE

19

DIV168Ð16 (OR 24, 32) BY 8 DIVISION SUBROUTINE

MINIMUM CODE

26 BYTES

649 (or 1161,1801) INST. CYCLES AVERAGE

681 (or 1209,1865) INST. CYCLES MAXIMUM

EXTENDABLE ROUTINE FOR DIVXX8 BY CHANGING

PARAMETERS, WITH NUMBER OF BYTES (26)

REMAINING A CONSTANT

DIVIDEND IN [1,0] FOR 16 BIT (DD)

OR [2,1,0] FOR 24 BIT

OR [3,2,1,0] FOR 32 BIT

DIVISOR IN [3] FOR 16 BIT (DR)

OR [4] FOR 24 BIT

OR [5] FOR 32 BIT

QUOTIENT IN [1,0] FOR 16 BIT (QUOT)

OR [2,1,0] FOR 24 BIT

OR [3,2,1,0] FOR 32 BIT

REMAINDER IN [2] FOR 16 BIT (TEST FIELD)

OR [3] FOR 24 BIT

OR [4] FOR 32 BIT

DIV168: LD CNTR,#16 ; LOAD CNTR WITH LENGTH

; OF DIVIDEND FIELD

; #16 FOR DIV168

; (#24 FOR DIV248)

; (#32 FOR DIV328)

LD B,#2 ; (#3 FOR DIV168)

; (#3 FOR DIV248)

; (#4 FOR DIV328)

LD [B],#0 ; CLEAR TEST FIELD

DVXX8L: RC

LD B,#0

DXX8LP: LD A,[B] ; LEFT SHIFT DIVIDEND

ADC A,[B] ; AND TEST FIELD

X A,[B0]
IFBNE #3 ; #3 FOR DIV168

JP DXX8LP ; (#4 FOR DIV248)

; (#5 FOR DIV328)

LD A,[B1] ; DIVISOR TO ACCUMULATOR

IFC ; TEST IF BIT SHIFTED OUT

JP DVXX8S ; OF TEST FIELD***

IFGT A,[B] ; TEST DIVISOR GREATER

JP DVXX8T ; THAN REMAINDER

SC ;

DVXX8S: X A,[B] ; REMAINDER TO ACC

SUBC A,[B] ; SUBTRACT DIVISOR

X A,[B] ; FROM REMAINDER

LD B,#0

SBIT 0,[B] ; SET QUOTIENT BIT

DVXX8T: DRSZ CNTR ; DECREMENT AND TEST

JP DVXX8L ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

;

;

; *** SPECIAL CASE FOR DIVISION WHERE NUMBER OF BYTES

; IN DIVIDEND IS GREATER THAN NUMBER OF BYTES IN DIVISOR, AND

; DIVISOR CONTAINS A HIGH ORDER 1’S BIT. THE SHIFTED DIVIDEND

; MAY CONTAIN A HIGH ORDER 1’S BIT IN THE TEST FIELD AND

; YET BE SMALLER THAN THE DIVISOR SO THAT NO SUBTRACTION

; OCCURS. iN THIS CASE A 1’S BIT WILL BE SHIFTED OUT OF

; THE TEST FIELD AND AN OVERRIDE SUBTRACTION MUST BE PERFORMED

20

FDV168ÐFAST 16 BY 8 DIVISION SUBROUTINE

35 BYTES

481 INSTRUCTION CYCLES AVERAGE

490 INSTRUCTION CYCLES MAXIMUM

DIVIDEND IN [1,0] (DD)

DIVISOR IN [3] (DR)

QUOTIENT IN [1,0] (QUOT)

REMAINDER IN [2] (TEST FIELD)

FDV168: LD CNTR,#16 ; LOAD CNTR WITH LENGTH

LD B,#3 ; OF DIVIDEND FIELD

LD [B],#0 ; CLEAR TEST FIELD

FD168S: LD B,#0

FD168L: RC

LD A,[B]
ADC A,[B] ; LEFT SHIFT DIVIDEND LO

X A,[B0]
LD A,[B]
ADC A,[B] ; LEFT SHIFT DIVIDEND HI

X A,[B0]
LD A,[B]
ADC A,[B] ; LEFT SHIFT TEST FIELD

X A,[B]
LD A,[B0] ; TEST FIELD TO ACC

IFC ; TEST IF BIT SHIFTED OUT

JP FD168B ; OF TEST FIELD***

SC ; TEST SUBTRACT DIVISOR

SUBC A,[B] ; FROM TEST FIELD

IFNC ; TEST IF BORROW

JP FD168T ; FROM SUBTRACTION

FD168R: LD B,#2 ; SUBTRACTION RESULT

X A,[B] ; TO TEST FIELD

LD B,#0

SBIT 0,[B] ; SET QUOTIENT BIT

DRSZ CNTR ; DECREMENT AND TEST

JP FD168L ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

FD168T: DRSZ CNTR ; DECREMENT AND TEST

JP FD168S ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

FD168B: SUBC A,[B] ; SUBTRACT DIVISOR FROM

JP FD168R ; TEST FIELD***

21

FDV248ÐFAST 24 BY 8 DIVISION SUBROUTINE

38 BYTES

813 INSTRUCTION CYCLES AVERAGE

826 INSTRUCTION CYCLES MAXIMUM

DIVIDEND IN [2,1,0] (DD)

DIVISOR IN [4] (DR)

QUOTIENT IN [2,1,0] (QUOT)

REMAINDER IN [3] (TEST FIELD)

FDV248: LD CNTR,#24 ; LOAD CNTR WITH LENGTH

LD B,#4 ; OF DIVIDEND FIELD

LD [B],#0 ; CLEAR TEST FIELD

FD248S: LD B,#0

FD248L: RC

LD A,[B]
ADC A,[B] ; LEFT SHIFT DIVIDEND LO

X A,[B0]
LD A,[B]
ADC A,[B] ; LEFT SHIFT DIVIDEND MID

X A,[B0]
LD A,[B]
ADC A,[B] ; LEFT SHIFT DIVIDEND HI

X A,[B0]
LD A,[B]
ADC A,[B] ; LEFT SHIFT TEST FIELD

X A,[B]
LD A,[B0]
IFC ; TEST IF BIT SHIFTED OUT

JP FD248B ; OF TEST FIELD ***

SC ; TEST SUBTRACT DIVISOR

SUBC A,[B] ; FROM TEST FIELD

IFNC ; TEST IF BORROW

JP FD248T ; FROM SUBTRACTION

FD248R: LD B,#3 ; SUBTRACTION RESULT

X A,[B] ; TO TEST FIELD

LD B,#0

SBIT 0,[B] ; SET QUOTIENT BIT

DRSZ CNTR ; DECREMENT AND TEST

JP FD248L ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

FD248T: DRSZ CNTR ; DECREMENT AND TEST

JP FD248S ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

FD248B: SUBC A,[B] ; SUBTRACT DIVISOR FROM

JP FD248R ; TEST FIELD ***

22

DV1616Ð16 (OR 24, 32) BY 16 DIVISION SUBROUTINE

MINIMUM CODE

34 BYTES

979 (OR 1655,2459) INSTRUCTION CYCLES AVERAGE

1067 (OR 1787,2635) INSTRUCTION CYCLES MAXIMUM

DIVIDEND IN [1,0] (DD)

DIVISOR IN [5,4] (DR)

QUOTIENT IN [1,0] (QUOT)

REMAINDER IN [3,2] (TEST FIELD)

DV1616: LD CNTR,#16 ; LOAD CNTR WITH LENGTH

; OF DIVIDEND FIELD

LD B,#3

LD [B1],#0 ; CLEAR

LD [B],#0 ; TEST FIELD

DV616S: RC

LD X,#2 ; INITIALIZE X POINTER

LD B,#0 ; INITIALIZE B POINTER

DV616L: LD A,[B] ; LEFT SHIFT DIVIDEND

ADC A,[B] ; AND TEST FIELD

X A,[B0]
IFBNE #4

JP DV616L

SC ; RESET BORROW

LD A,[X0] ; TEST FIELD LO TO ACC

SUBC A,[B] ; SUBT DR LO FROM REM LO

LD A,[X] ; TEST FIELD HI TO ACC

LD B,#5

SUBC A,[B] ; SUBT DR HI FROM REM HI

IFNC ; TEST IF BORROW

JP DV616T ; FROM SUBTRACTION

X A,[X1] ; SUBT RESULT HI TO REM HI

LD A,[X] ; TEST FIELD LO TO ACC

LD B,#4

SUBC A,[B] ; SUBT DR LO FROM REM LO

X A,[X] ; RESULT LO TO REM LO

LD B,#0

SBIT 0,[B] ; SET QUOTIENT BIT

DV616T: DRSZ CNTR ; DECREMENT AND TEST

JP DV616S ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

23

DX1616ÐFAST 16 BY 16 DIVISION SUBROUTINE

53 BYTES

638 INSTRUCTION CYCLES AVERAGE

678 INSTRUCTION CYCLES MAXIMUM

DIVIDEND IN [1,0] (DD)

DIVISOR IN [5,4] (DR)

QUOTIENT IN [1,0] (QUOT)

REMAINDER IN [3,2] (TEST FIELD)

DX1616: LD CNTR,#16 ; LOAD CNTR WITH LENGTH

LD B,#5 ; OF DIVIDEND FIELD

LD A,[B] ; REPLACE DIVISOR WITH

XOR A,#OFF ; 1’S COMPLEMENT OF

X A,[B1] ; DIVISOR TO ALLOW

LD A,[B] ; OPTIONAL ADDITION OF

XOR A,#OFF ; DIVISOR’S COMPLEMENT

X A,[B1] ; IN MAIN PROG. LOOP

LD [B1],#0 ; CLEAR

LD [B],#0 ; TEST FIELD

DX616S: LD B,#0

DX616L: RC

LD A,[B]
ADC A,[B] ; LEFT SHIFT DIVIDEND LO

X A,[B0]
LD A,[B]
ADC A,[B] ; LEFT SHIFT DIVIDEND HI

X A,[B0]
LD A,[B]
ADC A,[B] ; LEFT SHIFT TEST FIELD LO

X A,[B0]
LD A,[B]
ADC A,[B] ; LEFT SHIFT TEST FIELD HI

X A,[B0]
SC

LD A,[B] ; DIVISORX (DRX) LO TO ACC

LD B,#2 ; (1’S COMPLEMENT)

ADC A,[B] ; ADD REM LO TO DRX LO

LD B,#5

LD A,[B] ; DIVISORX (DRX) HI TO ACC

LD B,#3 ; (1’S COMPLEMENT)

ADC A,[B] ; ADD REM HI TO DRX HI

IFNC ; TEST IF NO CARRY FROM

JP DX616T ; 1’S COMPL.ADDITION

X A,[B0] ; RESULT TO REM HI

LD A,[B] ; DRX LO TO ACCUMULATOR

LD B,#2

ADC A,[B] ; ADD REM LO TO DRX LO

X A,[B] ; RESULT TO REM LO

LD B,#0

SBIT 0,[B] ; SET QUOTIENT BIT

DRSZ CNTR ; DECREMENT AND TEST

JP DX616L ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

DX616T: DRSZ CNTR ; DECREMENT AND TEST

JMP DX616S ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

24

DV2815ÐFAST 28 BY 15 DIVISION SUBROUTINE

WHERE THE DIVIDEND IS LESS THAN 2**28

AND THE DIVISOR IS GREATER THAN 2**12 (4096) AND LESS THAN 2**15 (32768)

43 BYTES

640 INSTRUCTION CYCLES AVERAGE

696 INSTRUCTION CYCLES MAXIMUM

DIVIDEND IN [3,2,1,0] (DD)

DIVISOR IN [5,4] (DR)

QUOTIENT IN [1,0] (QUOT)

REMAINDER IN [3,2] (TEST FIELD)

DV2815: LD CNTR,#16 ; LOAD CNTR WITH LENGTH OF QUOTIENT FIELD

D2815S: LD B,#0

D2815L: RC

LD A,[B]
ADC A,[B] ; LEFT SHIFT LOWER

X A,[B0] ; BYTE OF DIVIDEND

LD A,[B]
ADC A,[B] ; LEFT SHIFT NEXT HIGHER

X A,[B0] ; BYTE OF DIVIDEND

LD A,[B]
ADC A,[B] ; LEFT SHIFT NEXT HIGHER

X A,[B0] ; BYTE OF DIVIDEND

LD A,[B]
ADC A,[B] ; LEFT SHIFT UPPER

X A,[B1] ; BYTE OF DIVIDEND

NOTE THAT WITH A 16 BIT DIVISOR (DIV 2816) SUBROUTINE, A TEST FOR A HIGH

ORDER BIT SHIFTED OUT OF THE TEST FIELD WOULD BE NECESSARY AT THIS POINT.

IFC

JP SUBTRMD ; SUBTRACT REM MINUS DR

THE PRESENCE OF THIS CARRY WOULD REQUIRE THAT THE DIVISOR BE SUBTRACTED

FROM THE REMAINDER AS SHOWN WITH THE DIV168*** SUBROUTINE.

LD A,[B] ; REM LOWER BYTE TO ACC

SC ; TEST SUBTRACT LOWER

LD B,#4 ; BYTE OF DR FROM

SUBC A,[B] ; LOWER BYTE OF REM

LD B,#3 ; TEST SUBTRACT UPPER

LD A,[B] ; BYTE OF DIVISOR

LD B,#5 ; FROM UPPER BYTE

SUBC A,[B] ; OF REMAINDER

IFNC ; TEST IF BORROW

JP D2815T ; FROM SUBTRACTION

LD B,#3 ; UPPER BYTE OF RESULT

X A,[B0] ; TO UPPER BYTE OF REM

LD A,[B] ; DR LOWER BYTE TO ACC

LD B,#2 ; SUBTRACT LOWER BYTE

X A,[B] ; OF DIVISOR FROM

SUBC A,[B] ; LOWER BYTE OF

X A,[B] ; REMAINDER

LD B,#0

SBIT 0,[B] ; SET QUOTIENT BIT

DRSZ CNTR ; DECREMENT AND TEST

JMP D2815L ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

D2815T: DRSZ CNTR ; DECREMENT AND TEST

JMP D2815S ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

25

DX3216ÐFAST 32 BY 16 DIVISION SUBROUTINE

70 BYTES
1510 INSTRUCTION CYCLES AVERAGE
1590 INSTRUCTION CYCLES MAXIMUM

DIVIDEND IN [3,2,1,0] (DD)
DIVISOR IN [7,6] (DR)
QUOTIENT IN [3,2,1,0] (QUOT)
REMAINDER IN [5,4] (TEST FIELD)

DX3216: LD CNTR,#32 ; LOAD CNTR WITH LENGTH
LD B,#7 ; OF DIVIDEND FIELD
LD A,[B] ; REPLACE DIVISOR WITH
XOR A,#0FF ; 1’S COMPLEMENT OF
X A,[B1] ; DIVISOR TO ALLOW
LD A,[B] ; OPTIONAL ADDITION OF
XOR A,#OFF ; DIVISOR’S COMPLEMENT
X A,[B1] ; IN MAIN PROG. LOOP
LD [B1],#0 ; CLEAR
LD [B],#0 ; TEST FIELD

DX326S: LD B,#0
DX326L: RC

LD A,[B]
ADC A,[B] ; LEFT SHIFT DIVIDEND LO
X A,[B0]
LD A,[B]
ADC A,[B] ; LEFT SHIFT NEXT HIGHER
X A,[B0] ; DIVIDEND BYTE
LD A,[B]
ADC A,[B0] ; LEFT SHIFT NEXT HIGHER
X A,[B0] ; DIVIDEND BYTE
LD A,[B]
ADC A,[B] ; LEFT SHIFT DIVIDEND HI
X A,[B0]
LD A,[B]
ADC A,[B] ; LEFT SHIFT TST FIELD LO
X A,[B0]
LD A,[B]
ADC A,[B] ; LEFT SHIFT TST FIELD HI
X A,[B0]
IFC ; **TEST IF BIT SHIFTED
JP DX326B ; ** OUT OF TEST FIELD
SC
LD A,[B] ; DVSORX (DRX) LO TO ACC
LD B,#4 ; (1’S COMPLEMENT)
ADC A,[B] ; ADD REM LO TO DRX LO
LD B,#7
LD A,[B] ; DVSORX (DRX) HI TO ACC
LD B,#5 ; (1’S COMPLEMENT)
ADC A,[B] ; ADD REM HI TO DRX HI
IFNC ; TEST IF NO CARRY FROM
JP DX326T ; 1’S COMPL. ADDITION
X A,[B0] ; RESULT TO REM NI
LD A,[B] ; DRX LO TO ACCUMULATOR
LD B,#4

DX326R: ADC A,[B] ; ADD REM LO TO DRX LO
; ** ADD REM HI TO DRX HI

X A,[B] ; RESULT TO REM LO
; ** RESULT TO REM HI

LD B,#0
SBIT 0,[B] ; SET QUOTIENT BIT
DRSZ CNTR ; DECREMENT AND TEST
JMP DX326L ; CNTR FOR ZERO
RET ; RETURN FROM SUBROUTINE

DX326T: DRSZ CNTR ; DECREMENT AND TEST
JMP DX326S ; CNTR FOR ZERO
RET ; RETURN FROM SUBROUTINE

DX326B: LD A,[B] ; ** REM LO TO ACC
LD B,#6 ; ** B PTR TO DRX LO
ADC A,[B] ; ** ADD DRX LO TO REM LO
X A,[B] ; ** RESULT TO REM LO
LD B,#7 ; **
LD A,[B] ; ** DRX HI TO ACC
LD B,#5 ; ** B PTR TO REM HI
JP DX36R ; **

** THESE INSTRUCTIONS UNNECESSARY IF DIVISOR
LESS THAN 2**15 (DX3215 SUBROUTINE)

26

MINIMAL GENERAL DIVISION SUBROUTINE (40 BYTES)

ANY NUMBER OF BYTES IN DIVIDEND AND DIVISOR

DV3224 SERVES AS EXAMPLE

32 BY 24 DIVISION SUBROUTINE

Ð40 BYTES

ÐMINIMAL CODE

Ð3879 INSTRUCTION CYCLES AVERAGE

Ð4535 INSTRUCTION CYCLES MAXIMUM

DIVIDEND IN [3,2,1,0] (DD)

DIVISOR IN [9,8,7] (DR)

QUOTIENT IN [3,2,1,0] (QUOT)

REMAINDER IN [6,5,4] (TEST FIELD)

DV3224: LD CNTR,#32 ; LOAD CNTR WITH LENGTH

LD B,#6 ; OF DIVIDEND FIELD

CLRLUP: LD [B1],#0 ; CLEAR TEST FIELD

IFBNE #3 ; TOP OF DIVIDEND FIELD

JP CLRLUP

DVSHFT: RC

LD B,#0

SHFTLP: LD A,[B]
ADC A,[B] ; LEFT SHIFT DIVIDEND

X A,[B0] ; AND TEST FIELD

IFBNE #7 ; BOTTOM OF DR FIELD

JP SHFTLP

IFC ; TEST IF BIT SHIFTED

JP DVSUBT ; *** OUT OF TEST FIELD

SC ; RESET BORROW

LD X,#4

TSTLUP: LD A,[X0] ; TEST SUBTRACT DIVISOR

SUBC A,[B] ; FROM TEST FIELD

LD A,[B0] ; INCREMENT B POINTER

IFBNE #10 ; TOP OF DIVISOR 0 1

JP TSTLUP

IFNC ; TEST IF BORROW

JP DVTEST ; FROM SUBTRACTION

LD B,#7

DVSUBT: LD X,#4

SUBTLP: LD A,[X] ; SUBTRACT DIVISOR

SUBC A,[B] ; FROM REMAINDER

X A,[X0] ; IN TEST FIELD

LD A,[B0] ; INCREMENT B POINTER

IFBNE #10 ; TOP OF DIVISOR 0 1

JP SUBTLP

LD B,#0

SBIT 0,[B] ; SET QUOTIENT BIT

DVTEST: DRSZ CNTR ; DECREMENT AND TEST

JP DVSHFT ; CNTR FOR ZERO

RET ; RETURN FROM SUBROUTINE

27

4.0 DECIMAL (PACKED BCD)/BINARY CONVERSION

Subroutines For Two Byte Conversion:

DECBIN Ð Decimal (Packed BCD) to Binary

Ð 24 Bytes ***
Ð 1030 Instruction Cycles

FDTOB Ð Fast Decimal (Packaged BCD) to Binary

Ð 76 Bytes

Ð 92 Instruction Cycles

BINDEC Ð Binary to Decimal (Packed BCD)

Ð 25 Bytes ***
Ð 856 Instruction Cycles

FBTOD Ð Fast Binary to Decimal (Packed BCD)

Ð 59 Bytes

Ð 334 Instruction Cycles

VFBTOD Ð Very Fast Binary to Decimal (Packed BCD)

Ð 189 Bytes

Ð 144 Instruction Cycles Average

Ð 208 Instruction Cycles Maximum

***These subroutines extendable to multiple byte conver-

sion by simply changing parameters within subroutine as

shown, with number of bytes in subroutine remaining con-

stant.

28

DECBINÐDecimal (Packed BCD) to Binary

This 24 byte subroutine represents very minimal code for

translating a packed BCD decimal number of any length to

binary.

ALGORITHM:

The binary result is resident just below the packed BCD

decimal number. During each cycle of the algorithm, the

decimal operand and the binary result are shifted right one

bit position, with the low order bit of the decimal operand

shifting down into the high order bit position of the binary

field. The residual decimal operand is then tested for a high

order bit in each of its nibbles. A three is subtracted from

each nibble in the BCD operand space that is found to con-

tain a high order bit equal to one. (This process effectively

right shifts the BCD operand one bit position, and then cor-

rects the result to BCD format.) The entire cycle is then

repeated, with the total number of cycles being equal to the

number of bit positions in the decimal field.

16 Bit: Binary IN [1,0]
Packed BCD in [3, 2]

24 Bit: Binary in [2, 1, 0]
Packed BCD in [5, 4, 3]

32 Bit: Binary in [3, 2, 1, 0]
Packed BCD in [7, 6, 5, 4]

24 Bytes

1030 Instruction Cycles (16 Bit)

DECBIN: LD CNTR,#16 ; LOAD CNTR WITH NUMBER

; OF BIT POSITIONS

; IN BCD FIELD

; #16 FOR 16 BIT (2 BYTE)

; #’S 24/32 FOR 24/32 BIT

DB1: LD B,#3 ; #’S 5/7 FOR 24/32 BIT

RC

DB2: LD A,[B] ; PROGRAM LOOP TO

RRC A ; RIGHT SHIFT

X A,[B1] ; DECIMAL (BCD) AND

IFBNE #0F ; BINARY FIELDS.

JP DB2 ; LOOP JUMP BACK

LD B,#3 ; #’S 5/7 FOR 24/32 BIT

SC ; SET CARRY FOR SUBTRACT

DB3: LD A,[B] ; TEST HIGH ORDER BITS

IFBIT 7,[B] ; OF BCD NIBBLES, AND

SUBC A,#030 ; SUBTRACT A THREE

IFBIT 3,[B] ; FROM EACH NIBBLE IF

SUBC A,#3 ; HIGH ORDER BIT OF

X A,[B1] ; NIBBLE IS A ONE

IFBNE #1 ; #’S 2/3 FOR 24/32 BIT

JP DB3 ; LOOP BACK FOR MORE BCD BYTES

DRSZ CNTR ; DECREMENT AND TEST IF

JP DB1 ; CNTR EQUAL TO ZERO

RET ; RETURN FROM SUBROUTINE

29

FDTOBÐFAST DECIMAL (PACKED BCD) TO BINARY

BCD Format: Four Nibbles b W, X, Y, Z, with W e Hi Order Nibble

*** [1] e 16W a X

*** [0] e 16Y a Z

Algorithm: Binary Result is equal to 100(10W a X) a (10Y a Z)

BCD IN [1, 0]***
Temp in [2]
Binary in [4, 3]

76 Bytes

92 Instruction Cycles

FDTOB: RC

LD B,#1

LD A,[B0] ; 16W 0 X

AND A,#0F0 ; EXTRACT 16W

RRC A ; 8W

X A,[B] ; 8W TO TEMP

RRC A ; 4W

RRC A ; 2W

ADD A,[B] ; 2W 0 8W 4 10W

X A,[B1] ; 10W TO TEMP

LD A,[B0] ; 16W 0 X

AND A,#0F ; EXTRACT X

ADC A,[B] ; 10W 0 X

X A,[B] ; 10W 0 X TO TEMP

LD A,[B]
ADC A,[B] ; 2.(10W 0 X)

X A,[B] ; 2.(10W 0 X) TO TEMP

ADC A,[B] ; 3.(10W 0 X)

LD B,#3 ; 4 16P 0 Q

X A,[B0] ; 16P 0 Q TO [3]
CLR A

IFC

LD A,#010 ; 16C TO A (C 4 CARRY)

X A,[B1] ; 16C TO [4]
LD A,[B] ; 16P 0 Q

SWAP A ; 16Q 0 P

X A,[B] ; 16Q 0 P TO [3]
LD A,[B0] ; 16Q 0 P

AND A,#0F ; EXTRACT P

ADD A,[B] ; 16C 0 P

X A,[B1] ; 16C 0 P TO [4]**
LD A,[B] ; 16Q 0 P

AND A,#0F0 ; EXTRACT 16Q

X A,[B1] ; 16Q TO [3]**
LD A,[B0] ; 2.(10W 0 X)

ADC A,[B] ; 2.(10W 0 X) 0 16Q

30

X A,[B0] ; 2 BYTE 2.(10W 0 X)

CLR A,[B1] ; ADD: 0 48.**(10W 0 X)

ADC A,[B] ; 16C 0 P 0 NU C

X A,[B1] ; 50.(10W 0 X)

LD A,[B]
ADC A,[B] ; DOUBLE

X A,[B0] ; 50.(10W 0 X)

LD A,[B] ; TO FORM

ADC A,[B] ; 100.(10W 0 X)

X A,[B] ; IN [3,4]
LD B,#0

LD A,[B] ; 16Y 0 Z

AND A,#0F0 ; EXTRACT 16Y

LD B,#2

RRC A ; 8Y

X A,[B] ; 8Y TO TEMP

LD A,[B]
RRC A ; 4Y

RRC A ; 2Y

ADC A,[B] ; 2Y 0 8Y e 10Y

X A,[B] ; 10Y TO TEMP

LD B,#0

LD A,[B] ; 16Y 0 Z

AND A,#0F ; EXTRACT Z

LD B,#2

ADD A,[B] ; 10Y 0 Z

LD B, #3

ADC A,[B] ; TWO BYTE ADD

X A,[B0] ; 100.(10W 0 X)

CLR A ; 0 (10Y 0 Z)

ADC A,[B] ; WITH BINARY

X A,[B] ; RESULT TO [3,4]
RET

31

BINDECÐBinary to Decimal (Packed BCD)

This 25 byte subroutine represents very minimal code for

translating a binary number of any length to packed BCD

decimal.

ALGORITHM:

The packed BCD decimal result is resident just above the

binary number. A sufficient number of bytes must be al-

lowed for the BCD result. During each cycle of the algorithm

the binary number is shifted left one bit position. The packed

BCD decimal result is also shifted left one bit position, with

the high order bit of the binary field being shifted up into the

low order bit position of the BCD field. The shifted result in

the BCD field is decimal corrected by using the DCOR in-

struction. Note that for addition an ‘‘ADD A, Ý066’’ instruc-

tion must be used in conjunction with the DCOR (Decimal

Correct) instruction. The entire cycle is then repeated, with

the total number of cycles being equal to the number of bit

positions in the binary field.

16 Bit: Binary in [1, 0]
Packed BCD in [4, 3, 2]

24 Bit: Binary in [2, 1, 0]
Packed BCD in [6, 5, 4, 3]

32 Bit: Binary in [3, 2, 1, 0]
Packed BCD in [8, 7, 6, 5, 4]

25 Bytes

856 Instructions Cycles (16 Bit)

BINDEC: LD CNTR,#16 ; LOAD CNTR WITH NUMBER OF BIT POSITIONS

; IN BINARY FIELD

; #16 FOR 16 BIT (2 BYTE)

; #’S 24/32 FOR 24/32 BIT

RC

LD B,#2 ; #’S 3/4 FOR 24/32 BIT

BD1: LD [B0],#0 ; CLEAR BCD FIELD

IFBNE #5 ; #’S 7/9 FOR 24/32 BIT

JP BD1 ; JUMP BACK FOR CLR LOOP

BD2: LD B,#0

BD3: LD A,[B] ; PROGRAM LOOP TO

ADC A,[B] ; LEFT SHIFT

X A,[B0] ; BINARY FIELD

IFBNE #2 ; #’S 3/4 FOR 24/32 BIT

JP BD3 ; JUMP BACK FOR SHIFT LOOP1

BD4: LD A,[B] ; PROGRAM LOOP TO

ADD A,#066 ; LEFT SHIFT AND

ADC A,[B] ; DECIMAL CORRECT

DCOR A ; RESULT OF SHIFT

X A,[B0] ; IN BCD FIELD

IFBNE #5 ; #’S 7/9 FOR 24/32 BIT

JP BD4 ; JUMP BACK FOR SHIFT LOOP2

DRSZ CNTR ; DECREMENT AND TEST IF

JP BD2 ; CNTR EQUAL TO ZERO

RET ; RETURN FROM SUBROUTINE

32

FBTODÐFAST BINARY TO DECIMAL (PACKED BCD)

Algorithm: This algorithm is based on the BINDEC

algorithm, except that it is optimized for

speed of execution.

Binary in [1, 0]
Packed BCD in [4, 3, 2]

59 Bytes

334 Instruction Cycles

FBTOD: RC

LD B,#1

LD A,[B]
SWAP A ; REVERSE NIBBLES IN

X A,[B] ; UPPER BINARY BYTE

LD A,[B0] ; EXTRACT ORIGINAL UPPER

AND A,#0F ; NIBBLE OF HI BYTE

IFGT A,#9 ; IF NIBBLE GREATER THAN

ADD A,#06 ; NINE, THEN ADD SIX TO CORRECT BCD NIBBLE

X A,[B0] ; NIBBLE TO LOWER BCD BYTE

LD [B0],#0 ; CLEAR UPPER BCD BYTES

LD [B],#0 ; INITIALIZE CNTR TO COVER

LD CNTR,#4 ; REMAINING HI NIBBLE (ORIGINALLY LO NIBBLE)

; IN UPPER BINARY BYTE

FBD1: LD B,#1 ; PROGRAM LOOP TO

LD A,[B] ; LEFT SHIFT A BIT

ADC A,[B] ; OUT OF UPPER BINARY

X A,[B0] ; BYTE INTO LOW ORDER

LD A,[B] ; BIT POSITION OF BCD

ADD A,#066 ; FIELD, AS LOWER TWO

ADC A,[B] ; BYTES OF BCD FIELD

DCOR A ; ARE LEFT SHIFTED WITH

X A,[B0] ; THE LOWER BYTE BEING

LD A,[B] ; DECIMAL CORRECTED

ADC A,[B] ; MIDDLE BYTE OF BCD FIELD

X A,[B] ; NEED NOT BE DECIMAL CORRECTED, SINCE

; MAX VALUE IS 2 (256)

DRSZ CNTR ; DECREMENT AND TEST IF

JP FBD1 ; CNTR EQUAL TO ZERO

LD CNTR,#8 ; INITIALIZE CNTR TO COVER

FBD2: LD B,#0 ; LOWER BINARY BYTE

LD A,[B] ; PROGRAM LOOP TO

ADC A,[B] ; LEFT SHIFT A BIT

X A,[B] ; OUT OF LOWER BINARY

LD B,#2 ; BYTE INTO LOW ORDER

LD A,[B] ; BIT POSITION OF BCD

ADD A,#066 ; FIELD, AS BCD FIELD

ADC A,[B] ; IS LEFT SHIFTED WITH

DCOR A ; THE LOWER TWO BYTES

X A,[B0] ; OF THE FIELD BEING

LD A,[B] ; DECIMAL CORRECTED

ADD A,#066 ; ADD (NOT ADC) HEX 66

ADC A,[B] ; TO SET UP ‘ADD‘ DCOR

DCOR A ; DECIMAL CORRECT MIDDLE

X A,[B0] ; BYTE OF BCD FIELD

LD A,[B] ; UPPER BYTE OF BCD FIELD

ADC A,[B] ; NEED NOT BE DECIMAL

X A,[B] ; CORRECTED, SINCE MAX

; VALUE IS 6 (65535)

DRSZ CNTR ; DECREMENT AND TEST IF

JP FBD2 ; CNTR EQUAL TO ZERO

RET ; RETURN FROM SUBROUTINE

33

VFBTODÐVERY FAST BINARY TO DECIMAL (PACKED

BCD)

Algorithm: Decimal (Packed BCD) result is equal to

summation in BCD of powers of two

corresponding to 1’s bits present in bi-

nary number.

Note that binary field (2 bytes) is initially

one’s complemented by program, in or-

der to facilitate bypass branching when

a tested bit in the binary field is found

equal to zero.

Binary in [1, 0]
BCD in [4, 3, 2]

189 Bytes

144 Instruction Cycles Average

208 Instruction Cycles Maximum

VFBTOD: RC

LD B,#0

LD A,[B]
AND A,#0F ; EXTRACT LO NIBBLE

IFGT A,#9 ; TEST NIBBLE 9

ADD A,#6 ; ADD 6 FOR CORRECTION

LD B,#2

X A,[B0] ; STORE IN LO BCD NIBBLE

LD [B0],#0 ; CLEAR UPPER

LD [B],#0 ; BCD NIBBLES

LD B,#1

LD A,[B]
XOR A,#0FF ; COMPLEMENT HI BYTE

X A,[B1] ; FOR REVERSE TESTING

LD A,[B] ; OF BINARY NUMBER

XOR A,#0FF ; COMPLEMENT LO BYTE

X A,[B] ; FOR REVERSE TESTING

IFBIT 4,[B] ; TEST BINARY BIT 4

JP VFB1 ; TO CONDITIONALLY

LD B,#2 ; ADD BCD 16

LD A,#07C ; 16 0 66

ADC A,[B] ; ADD BCD 16

DCOR A

X A,[B]
LD B,#0

VFB1: IFBIT 5,[B] ; TEST BINARY BIT 5

JP VFB2 ; TO CONDITIONALLY

LD B,#2 ; ADD BCD 32

LD A,#098 ; 32 0 66

ADC A,[B] ; ADD BCD 32

DCOR A

X A,[B]
LD B,#0

VFB2: IFBIT 6,[B] ; TEST BINARY BIT 6

JP VFB3 ; TO CONDITIONALLY

LD B,#2 ; ADD BCD 64

LD A,#0CA ; 64 0 66

ADC A,[B] ; ADD BCD 64

DCOR A

X A,[B0]
CLR A

ADC A,[B] ; ADD CARRY

X A,[B]
LD B,#0

34

VFB3: IFBIT 7,[B] ; TEST BINARY BIT 7

JP VFB4 ; TO CONDITIONALLY

LD B,#2 ; ADD BCD 128

LD A,#08E ; 28 0 66

ADC A,[B] ; ADD BCD 28

DCOR A

X A,[B0]
LD A,#1

ADC A,[B] ; ADD BCD 1

X A,[B]
VFB4: LD B,#1 ; HI BINARY BYTE

IFBIT 0,[B] ; TEST BINARY BIT 8

JP VFB5 ; TO CONDITIONALLY

LD B,#2 ; ADD BCD 256

LD A,#0BC ; 56 0 66

ADC A,[B] ; ADD BCD 56

DCOR A

X A,[B0]
LD A,#2

ADC A,[B] ; ADD BCD 2

X A,[B]
LD B,#1

VFB5: IFBIT 1,[B] ; TEST BINARY BIT 9

JP VFB6 ; TO CONDITIONALLY

LD B,#2 ; ADD BCD 512

LD A,#078 ; 12 0 66

ADC A,[B] ; ADD BCD 12

DCOR A

X A,[B0]
LD A,#06B ; 5 0 66

ADC A,[B] ; ADD BCD 5

DCOR A

X A,[B]
LD B,#1

VFB6: IFBIT 2,[B] ; TEST BINARY BIT 10

JP VFB7 ; TO CONDITIONALLY

LD B,#2 ; ADD BCD 1024

LD A,#08A ; 24 0 66

ADC A,[B] ; ADD BCD 24

DCOR A

X A,[B0]
LD A,#076 ; 10 0 66

ADC A,[B] ; ADD BCD 10

DCOR A

X A,[B]
LD B,#1

VFB7: IFBIT 3,[B] ; TEST BINARY BIT 11

JP VFB8 ; TO CONDITIONALLY

LD B,#2 ; ADD BCD 2048

LD A,#0AE ; 48 0 66

ADC A,[B] ; ADD BCD 48

DCOR A

X A,[B0]
LD A,#086 ; 20 0 66

ADC A,[B] ; ADD BCD 20

DCOR A

X A,[B]
LD B,#1

35

VFB8: IFBIT 4,[B] ; TEST BINARY BIT 12

JP VFB9 ; TO CONDITIONALLY

LD B,#2 ; ADD BCD 4096

LD A,#0FC ; 96 0 66

ADC A,[B] ; ADD BCD 96

DCOR A

X A,[B0]
LD A,#0A6 ; 40 0 66

ADC A,[B] ; ADD BCD 40

DCOR A

X A,[B]
LD B,#1

VFB9: IFBIT 5,[B] ; TEST BINARY BIT 13

JP VFB10 ; TO CONDITIONALLY

LD B,#2 ; ADD BCD 8192

LD A,#0F8 ; 92 0 66

ADC A,[B] ; ADD BCD 92

DCOR A

X A,[B0]
LD A,#0E7 ; 81 0 66

ADC A,[B] ; ADD BCD 81

DCOR A

X A,[B]
CLR A

ADC A,[B] ; ADD CARRY

X A,[B]
LD B,#1

VFB10: IFBIT 6,[B] ; TEST BINARY BIT 14

JP VFB11 ; TO CONDITIONALLY

LD B,#2 ; ADD BCD 16384

LD A,#0EA ; 84 0 66

ADC A,[B] ; ADD BCD 84

DCOR A

X A,[B0]
LD A,#0C9 ; 63 0 66

ADC A,[B] ; ADD BCD 63

DCOR A

X A,[B0]
LD A,#1

ADC A,[B] ; ADD BCD 1

X A,[B]
LD B,#1

VFB11: IFBIT 7,[B] ; TEST BINARY BIT 15

RET ; TO CONDITIONALLY

LD B,#2 ; ADD BCD 32768

LD A,#0CE ; 68 0 66

ADC A,[B] ; ADD BCD 68

DCOR A

X A,[B0]
LD A,#08D ; 27 0 66

ADC A,[B] ; ADD BCD 27

DCOR A

X A,[B0]
LD A,#3

ADC A,[B] ; ADD BCD 3

X A,[B]
RET

36

37

A
N

-5
9
6

C
O

P
8
0
0

M
a
th

P
a
k

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com

