

AN-1658 LM2735 BOOST and SEPIC DC-DC Regulator

ABSTRACT

This report discusses the features and use of the LM2735 Boost and SEPIC DC-DC Regulator.

	Contents	
1	Introduction	3
2	Typical Boost Application Circuit	
3	Connection Diagrams	4
4	Design Guide	4
	4.1 Enable Pin / Shutdown Mode	4
	4.2 Thermal Shutdown	4
	4.3 Soft-Start	5
	4.4 Inductor Selection	5
	4.5 Input Capacitor	6
	4.6 Output Capacitor	6
	4.7 Setting the Output Voltage	7
	4.8 Compensation	7
5	PCB Layout Considerations	7
6	Thermal Design	8
7	SEPIC Converter	8
8	SEPIC Converter PCB Layout	
9	LM2735X SOT23-5 Design Example 1:	
10	LM2735Y SOT23-5 Design Example 2:	10
11	LM2735X LLP-6 Design Example 3:	11
12	LM2735Y LLP-6 Design Example 4:	
13	LM2735Y eMSOP-8 Design Example 5:	
14	LM2735X SOT23-5 Design Example 6:	13
15	LM2735Y SOT23-5 Design Example 7:	
16	LM2735X SOT23-5 Design Example 8:	
17	LM2735Y SOT23-5 Design Example 9:	
18	LM2735X LLP-6 Design Example 10:	
19	LM2735Y LLP-6 Design Example 11:	
20	LM2735X LLP-6 SEPIC Design Example 12:	
21	LM2735Y eMSOP-8 SEPIC Design Example 13:	
22	LM2735X SOT23-5 LED Design Example 14:	
23	LM2735Y LLP-6 FlyBack Design Example 15:	19

List of Figures

1	Efficiency vs Load Current V _o = 12V	3
2	5-Pin SOT23 (Top View)	4
3	6-Pin LLP (Top View)	4
4	8-Pin eMSOP (Top View)	4
5	Inductor Current	5
6	Example of Proper PCB Layout - Boost PCB Layout Guidelines	8

All trademarks are the property of their respective owners.

7	SEPIC PCB Layout	. 9
8	LM2735X (1.6MHz): Vin = 5V, Vout = 12V @ 350mA	
9	LM2735Y (520kHz): Vin = 5V, Vout = 12V @ 350mA	10
10	LM2735X (1.6MHz): Vin = 3.3V, Vout = 12V @ 350mA	11
11	LM2735Y (520kHz): Vin = 3.3V, Vout = 12V @ 350mA	12
12	LM2735Y (520kHz): Vin = 3.3V, Vout = 12V @ 350mA	
13	LM2735X (1.6MHz): Vin = 3V, Vout = 5V @ 500mA	13
14	LM2735Y (520kHz): Vin = 3V, Vout = 5V @ 750mA	14
15	LM2735X (1.6MHz): Vin = 3.3V, Vout = 20V @ 100mA	14
16	LM2735Y (520kHz): Vin = 3.3V, Vout = 20V @ 100mA	15
17	LM2735X (1.6MHz): Vin = 3.3V, Vout = 20V @ 150mA	16
18	LM2735Y (520kHz): Vin = 3.3V, Vout = 20V @ 150mA	16
19	LM2735X (1.6MHz): Vin = 2.7V - 5V, Vout = 3.3V @ 500mA	17
20	LM2735Y (520kHz): Vin = 2.7V - 5V, Vout = 3.3V @ 500mA	18
21	LM2735X (1.6MHz): Vin = 2.7V - 5V, Vout = 20V @ 80mA	19
22	LM2735Y (520kHz): Vin = 5V, Vout = ±12V 150mA	19

1 Introduction

The LM2735 is an easy-to-use, space-efficient 2.1A low-side switch regulator ideal for Boost and SEPIC DC-DC regulation. It provides all the active functions to provide local DC/DC conversion with fast-transient response and accurate regulation in the smallest PCB area. Switching frequency is internally set to either 520kHz or 1.6MHz, allowing the use of extremely small surface mount inductor and chip capacitors while providing efficiencies up to 90%. Current-mode control and internal compensation provide ease-of-use, minimal component count, and high-performance regulation over a wide range of operating conditions. External shutdown features an ultra-low standby current of 80 nA ideal for portable applications. Tiny SOT23-5, LLP-6, and eMSOP-8 packages provide space-savings. Additional features include internal softstart, circuitry to reduce inrush current, pulse-by-pulse current limit, and thermal shutdown.

2 **Typical Boost Application Circuit**

Introduction

Connection Diagrams

3 Connection Diagrams

Figure 3. 6-Pin LLP (Top View)

Figure 4. 8-Pin eMSOP (Top View)

4 Design Guide

4.1 Enable Pin / Shutdown Mode

The LM2735 has a shutdown mode that is controlled by the Enable pin (EN). When a logic low voltage is applied to EN, the part is in shutdown mode and its quiescent current drops to typically 80 nA. Switch leakage adds up to another 1 μ A from the input supply. The voltage at this pin should never exceed V_{IN} + 0.3V.

4.2 Thermal Shutdown

4

Thermal shutdown limits total power dissipation by turning off the output switch when the IC junction temperature exceeds 160°C. After thermal shutdown occurs, the output switch doesn't turn on until the junction temperature drops to approximately 150°C.

4.3 Soft-Start

(1)

(2)

This function forces V_{OUT} to increase at a controlled rate during start up. During soft-start, the error amplifier's reference voltage ramps to its nominal value of 1.255V in approximately 4.0ms. This forces the regulator output to ramp up in a more linear and controlled fashion, which helps reduce inrush current.

4.4 Inductor Selection

The Duty Cycle (D) can be approximated quickly using the ratio of output voltage (V_0) to input voltage (V_{IN}):

$$\frac{V_{OUT}}{V_{IN}} = \left(\frac{1}{1 - D}\right) = \frac{1}{D'}$$

Therefore:

D

$$=\frac{V_{OUT} - V_{IN}}{V_{OUT}}$$

Power losses due to the diode (D1) forward voltage drop, the voltage drop across the internal NMOS switch, the voltage drop across the inductor resistance (R_{DCR}) and switching losses must be included to calculate a more accurate duty cycle (See Calculating Efficiency and Junction Temperature for a detailed explanation). A more accurate formula for calculating the conversion ratio is:

$$\frac{V_{\text{OUT}}}{V_{\text{IN}}} = \frac{\eta}{D}$$
(3)

Where η equals the efficiency of the LM2735 application.

The inductor value determines the input ripple current. Lower inductor values decrease the size of the inductor, but increase the input ripple current. An increase in the inductor value will decrease the input ripple current.

$$\frac{2\Delta i_{L}}{DT_{S}} = \left(\frac{V_{IN}}{L}\right)$$
$$\Delta i_{L} = \left(\frac{V_{IN}}{2L}\right) \times DT_{S}$$
(4)

A good design practice is to design the inductor to produce 10% to 30% ripple of maximum load. From the previous equations, the inductor value is then obtained.

$$L = \left(\frac{V_{IN}}{2 \times \Delta i_L}\right) \times DT_S$$

(5)

Where: $1/T_s = F_{sw}$ = switching frequency

or

www.ti.com

One must also ensure that the minimum current limit (2.1A) is not exceeded, so the peak current in the inductor must be calculated. The peak current (I_{LPK}) in the inductor is calculated by:

$$IL_{pk} = I_{IN} + \Delta I_{L}$$

$$IL_{pk} = I_{OUT} / D' + \Delta I_{L}$$
(6)
(7)

When selecting an inductor, make sure that it is capable of supporting the peak input current without saturating. Inductor saturation will result in a sudden reduction in inductance and prevent the regulator from operating correctly. Because of the speed of the internal current limit, the peak current of the inductor need only be specified for the required maximum input current. For example, if the designed maximum input current is 1.5A and the peak current is 1.75A, then the inductor should be specified with a saturation current limit of >1.75A. There is no need to specify the saturation or peak current of the inductor at the 3A typical switch current limit.

Because of the operating frequency of the LM2735, ferrite based inductors are preferred to minimize core losses. This presents little restriction since the variety of ferrite-based inductors is huge. Lastly, inductors with lower series resistance (DCR) will provide better operating efficiency. For recommended inductors see Example Circuits.

4.5 Input Capacitor

An input capacitor is necessary to ensure that V_{IN} does not drop excessively during switching transients. The primary specifications of the input capacitor are capacitance, voltage, RMS current rating, and ESL (Equivalent Series Inductance). The recommended input capacitance is 10 µF to 44 µF depending on the application. The capacitor manufacturer specifically states the input voltage rating. Make sure to check any recommended deratings and also verify if there is any significant change in capacitance at the operating input voltage and the operating temperature. The ESL of an input capacitor is usually determined by the effective cross sectional area of the current path. At the operating frequencies of the LM2735, certain capacitors may have an ESL so large that the resulting impedance (2 π fL) will be higher than that required to provide stable operation. As a result, surface mount capacitors are strongly recommended. Multilayer ceramic capacitors (MLCC) are good choices for both input and output capacitors and have very low ESL. For MLCCs it is recommended to use X7R or X5R dielectrics. Consult capacitor manufacturer datasheet to see how rated capacitance varies over operating conditions.

4.6 Output Capacitor

6

The LM2735 operates at frequencies allowing the use of ceramic output capacitors without compromising transient response. Ceramic capacitors allow higher inductor ripple without significantly increasing output ripple. The output capacitor is selected based upon the desired output ripple and transient response. The initial current of a load transient is provided mainly by the output capacitor. The output impedance will therefore determine the maximum voltage perturbation. The output ripple of the converter is a function of the capacitor's reactance and its equivalent series resistance (ESR):

$$\Delta V_{OUT} = \Delta i_{L} \times R_{ESR} + \left(\frac{V_{OUT} \times D}{2 \times F_{SW} \times R_{Load} \times C_{OUT}}\right)$$

(8)

When using MLCCs, the ESR is typically so low that the capacitive ripple may dominate. When this occurs, the outputripple will be approximately sinusoidal and 90° phase shifted from the switching action.

Given the availability and quality of MLCCs and the expected output voltage of designs using the LM2735, there is really no need to review any other capacitor technologies. Another benefit of ceramic capacitors is their ability to bypass high frequency noise. A certain amount of switching edge noise will couple through parasitic capacitances in the inductor to the output. A ceramic capacitor will bypass this noise while a tantalum will not. Since the output capacitor is one of the two external components that control the stability of the regulator control loop, most applications will require a minimum at 4.7 μ F of output capacitance. Like the input capacitor, recommended multilayer ceramic capacitors are X7R or X5R. Again, verify actual capacitance at the desired operating voltage and temperature.

4.7 Setting the Output Voltage

The output voltage is set using the following equation where R1 is connected between the FB pin and GND, and R2 is connected between V_{OUT} and the FB pin.

A good value for R1 is $10k\Omega$.

$$R_2 = \left(\frac{V_{OUT}}{V_{REF}} - 1\right) x R_1$$

(9)

PCB Layout Considerations

4.8 Compensation

The LM2735 uses constant frequency peak current mode control. This mode of control allows for a simple external compensation scheme that can be optimized for each application. Lower output voltages should have a zero set close to 10 kHz, and higher output voltages will usually have the zero set closer to 5 kHz.

(10)

7

5 PCB Layout Considerations

When planning layout there are a few things to consider when trying to achieve a clean, regulated output. The most important consideration when completing a Boost Converter layout is the close coupling of the GND connections of the C_{OUT} capacitor and the LM2735 PGND pin. The GND ends should be close to one another and be connected to the GND plane with at least two through-holes. There should be a continuous ground plane on the bottom layer of a two-layer board except under the switching node island. The FB pin is a high impedance node and care should be taken to make the FB trace short to avoid noise pickup and inaccurate regulation. The feedback resistors should be placed as close as possible to the IC, with the AGND of R1 placed as close as possible to the GND (pin 5 for the LLP) of the IC. The V_{OUT} trace to R2 should be routed away from the inductor and any other traces that are switching. High AC currents

flow through the V_{IN} , SW and V_{OUT} traces, so they should be as short and wide as possible. However, making the traces wide increases radiated noise, so the designer must make this trade-off. Radiated noise can be decreased by choosing a shielded inductor. The remaining components should also be placed as close as possible to the IC. Please see *AN-1229 SIMPLE SWITCHER PCB Layout Guidelines* (SNVA054) for further considerations and the LM2735 demo board as an example of a four-layer layout.

Below is an example of a good thermal and electrical PCB design. This is very similar to our LM2735 demonstration boards that are obtainable via the <u>www.ti.com</u> website. The demonstration board consists of a two layer PCB with a common input and output voltage application. Most of the routing is on the top layer, with the bottom layer consisting of a large ground plane. The placement of the external components satisfies the electrical considerations, and the thermal performance has been improved by adding thermal vias and a top layer "Dog-Bone".

Figure 6. Example of Proper PCB Layout - Boost PCB Layout Guidelines

6 Thermal Design

PCB design with thermal performance in mind:

The PCB design is a very important step in the thermal design procedure. The LM2735 is available in three package options (5 pin SOT23, 8 pin eMSOP and 6 pin LLP). The options are electrically the same, but difference between the packages is size and thermal performance. The LLP and eMSOP have thermal Die Attach Pads (DAP) attached to the bottom of the packages, and are therefore capable of dissipating more heat than the SOT23 package. It is important that the customer choose the correct package for the application. A detailed thermal design procedure has been included in this data sheet. This procedure will help determine which package is correct, and common applications will be analyzed.

7 SEPIC Converter

8

The LM2735 can easily be converted into a SEPIC converter. A SEPIC converter has the ability to regulate an output voltage that is either larger or smaller in magnitude than the input voltage. Other converters have this ability as well (CUK and Buck-Boost), but usually create an output voltage that is opposite in polarity to the input voltage. This topology is a perfect fit for Lithium Ion battery applications where the input voltage for a single cell Li-Ion battery will vary between 3V & 4.5V and the output voltage is somewhere in between. Most of the analysis of the LM2735 Boost Converter is applicable to the LM2735 SEPIC Converter.

SEPIC Converter PCB Layout

SEPIC Design Guide:

SEPIC Conversion ratio without loss elements:

$$\frac{V_O}{V_{IN}} = \frac{D}{D'}$$
(11)

Therefore:

$$D = \frac{V_0}{V_0 + V_{IN}}$$
(12)

$$\frac{V_{O}}{V_{IN}} = \left(\frac{D}{1 - D}\right) x \eta$$
(13)

$$D = \left(\frac{V_{O}}{(V_{IN} \times \eta) + V_{O}}\right)$$
(14)

It is important to remember that the internal switch current is equal to I_{L1} and I_{L2} . During the D interval design the converter so that the minimum ensured peak switch current limit (2.25A) is not exceeded.

$$I_{L2} = \left(\frac{D}{D'}\right) \times I_{L1}$$

and
$$I_{L1} = \left(\frac{D}{D'}\right) \times \left(\frac{V_0}{R}\right)$$
(15)

Substituting I_{L1} into I_{L2}

$$I_{L2} = \frac{V_0}{R}$$
(16)

8 SEPIC Converter PCB Layout

The layout guidelines described for the LM2735 Boost-Converter are applicable to the SEPIC Converter. Below is a proper PCB layout for a SEPIC Converter.

Figure 7. SEPIC PCB Layout

LM2735X SOT23-5 Design Example 1:

9 LM2735X SOT23-5 Design Example 1:

Figure 8. LM2735X (1.6MHz): Vin = 5V, Vout = 12V @ 350mA

Part ID	Part Value	Manufacturer	Part Number
U1	2.1A Boost Regulator	TI	LM2735XMF
C1, Input Cap	22µF, 6.3V, X5R	TDK	C2012X5R0J226M
C2 Output Cap	10µF, 25V, X5R	TDK	C3216X5R1E106M
C3 Comp Cap	330pF	TDK	C1608X5R1H331K
D1, Catch Diode	0.4V _f Schottky 1A, 20V _R	ST	STPS120M
L1	15µH 1.5A	Coilcraft	MSS5131-153ML
R1	10.2kΩ, 1%	Vishay	CRCW06031022F
R2	86.6kΩ, 1%	Vishay	CRCW06038662F
R3	100kΩ, 1%	Vishay	CRCW06031003F

10 LM2735Y SOT23-5 Design Example 2:

Figure 9. LM2735Y (520kHz): Vin = 5V, Vout = 12V @ 350mA

LM2735X LLP-6 Design Example 3:

Part ID	Part Value	Manufacturer	Part Number
U1	2.1A Boost Regulator	ТІ	LM2735YMF
C1, Input Cap	22µF, 6.3V, X5R	TDK	C2012X5R0J226M
C2 Output Cap	10µF, 25V, X5R	TDK	C3216X5R1E106M
C3 Comp Cap	330pF	TDK	C1608X5R1H331K
D1, Catch Diode	0.4V _f Schottky 1A, 20V _R	ST	STPS120M
L1	33µH 1.5A	Coilcraft	DS3316P-333ML
R1	10.2kΩ, 1%	Vishay	CRCW06031022F
R2	86.6kΩ, 1%	Vishay	CRCW06038662F
R3	100kΩ, 1%	Vishay	CRCW06031003F

11 LM2735X LLP-6 Design Example 3:

Figure 10. LM2735X (1.6MHz): Vin = 3.3V, Vout = 12V @ 350mA

Part ID	Part Value	Manufacturer	Part Number
U1	2.1A Boost Regulator	ТІ	LM2735XSD
C1 Input Cap	22µF, 6.3V, X5R	TDK	C2012X5R0J226M
C2 Input Cap	No Load		
C3 Output Cap	10µF, 25V, X5R	TDK	C3216X5R1E106M
C4 Output Cap	No Load		
C5 Comp Cap	330pF	TDK	C1608X5R1H331K
D1, Catch Diode	0.4V _f Schottky 1A, 20V _R	ST	STPS120M
L1	6.8µH 2A	Coilcraft	DO1813H-682ML
R1	10.2kΩ, 1%	Vishay	CRCW06031022F
R2	86.6kΩ, 1%	Vishay	CRCW06038662F
R3	100kΩ, 1%	Vishay	CRCW06031003F

12 LM2735Y LLP-6 Design Example 4:

Figure 11. LM2735Y (520kHz): Vin = 3.3V, Vout = 12V @ 350mA

Part ID	Part Value	Manufacturer	Part Number
U1	2.1A Boost Regulator	TI	LM2735YSD
C1 Input Cap	22µF, 6.3V, X5R	TDK	C2012X5R0J226M
C2 Input Cap	No Load		
C3 Output Cap	10µF, 25V, X5R	TDK	C3216X5R1E106M
C4 Output Cap	No Load		
C5 Comp Cap	330pF	TDK	C1608X5R1H331K
D1, Catch Diode	0.4V _f Schottky 1A, 20V _R	ST	STPS120M
L1	15µH 2A	Coilcraft	MSS5131-153ML
R1	10.2kΩ, 1%	Vishay	CRCW06031022F
R2	86.6kΩ, 1%	Vishay	CRCW06038662F
R3	100kΩ, 1%	Vishay	CRCW06031003F

13 LM2735Y eMSOP-8 Design Example 5:

Figure 12. LM2735Y (520kHz): Vin = 3.3V, Vout = 12V @ 350mA

LM2735X SOT23-5 Design Example 6:

Part ID	Part Value	Manufacturer	Part Number
U1	2.1A Boost Regulator	TI	LM2735YMY
C1 Input Cap	22µF, 6.3V, X5R	TDK	C2012X5R0J226M
C2 Input Cap	No Load		
C3 Output Cap	10µF, 25V, X5R	TDK	C3216X5R1E106M
C4 Output Cap	No Load		
C5 Comp Cap	330pF	TDK	C1608X5R1H331K
D1, Catch Diode	0.4V _f Schottky 1A, 20V _R	ST	STPS120M
L1	15µH 1.5A	Coilcraft	MSS5131-153ML
R1	10.2kΩ, 1%	Vishay	CRCW06031022F
R2	86.6kΩ, 1%	Vishay	CRCW06038662F
R3	100kΩ, 1%	Vishay	CRCW06031003F

14 LM2735X SOT23-5 Design Example 6:

Figure 13. LM2735X (1.6MHz): Vin = 3V, Vout = 5V @ 500mA

Part ID	Part Value	Manufacturer	Part Number
U1	2.1A Boost Regulator	TI	LM2735XMF
C1, Input Cap	10µF, 6.3V, X5R	TDK	C2012X5R0J106K
C2, Output Cap	10µF, 6.3V, X5R	TDK	C2012X5R0J106K
C3 Comp Cap	1000pF	TDK	C1608X5R1H102K
D1, Catch Diode	0.4V _f Schottky 1A, 20V _R	ST	STPS120M
L1	10µH 1.2A	Coilcraft	DO1608C-103ML
R1	10.0kΩ, 1%	Vishay	CRCW08051002F
R2	30.1kΩ, 1%	Vishay	CRCW08053012F
R3	100kΩ, 1%	Vishay	CRCW06031003F

LM2735Y SOT23-5 Design Example 7:

15 LM2735Y SOT23-5 Design Example 7:

Figure 14. LM2735Y (520kHz): Vin = 3V, Vout = 5V @ 750mA

Part ID	Part Value	Manufacturer	Part Number
U1	2.1A Boost Regulator	TI	LM2735YMF
C1 Input Cap	22µF, 6.3V, X5R	TDK	C2012X5R0J226M
C2 Output Cap	22µF, 6.3V, X5R	TDK	C2012X5R0J226M
C3 Comp Cap	1000pF	TDK	C1608X5R1H102K
D1, Catch Diode	0.4V _f Schottky 1A, 20V _R	ST	STPS120M
L1	22µH 1.2A	Coilcraft	MSS5131-223ML
R1	10.0kΩ, 1%	Vishay	CRCW08051002F
R2	30.1kΩ, 1%	Vishay	CRCW08053012F
R3	100kΩ, 1%	Vishay	CRCW06031003F

16 LM2735X SOT23-5 Design Example 8:

Figure 15. LM2735X (1.6MHz): Vin = 3.3V, Vout = 20V @ 100mA

LM2735Y SOT23-5 Design Example 9:

Part ID	Part Value	Manufacturer	Part Number
U1	2.1A Boost Regulator	TI	LM2735XMF
C1, Input Cap	22µF, 6.3V, X5R	TDK	C2012X5R0J226M
C2, Output Cap	4.7µF, 25V, X5R	TDK	C3216X5R1E475K
C3 Comp Cap	470pF	TDK	C1608X5R1H471K
D1, Catch Diode	0.4V _f Schottky 500mA, 30V _R	Vishay	MBR0530
L1	10µH 1.2A	Coilcraft	DO1608C-103ML
R1	10.0kΩ, 1%	Vishay	CRCW06031002F
R2	150kΩ, 1%	Vishay	CRCW06031503F
R3	100kΩ, 1%	Vishay	CRCW06031003F

17 LM2735Y SOT23-5 Design Example 9:

Figure 16. LM2735Y (520kHz): Vin = 3.3V, Vout = 20V @ 100mA

Part ID	Part Value	Manufacturer	Part Number
U1	2.1A Boost Regulator	TI	LM2735YMF
C1 Input Cap	22µF, 6.3V, X5R	TDK	C2012X5R0J226M
C2 Output Cap	10µF, 25V, X5R	TDK	C3216X5R1E106M
C3 Comp Cap	470pF	TDK	C1608X5R1H471K
D1, Catch Diode	0.4V _f Schottky 500mA, 30V _R	Vishay	MBR0530
L1	33µH 1.5A	Coilcraft	DS3316P-333ML
R1	10.0kΩ, 1%	Vishay	CRCW06031002F
R2	150.0kΩ, 1%	Vishay	CRCW06031503F
R3	100kΩ, 1%	Vishay	CRCW06031003F

LM2735X LLP-6 Design Example 10:

www.ti.com

18 LM2735X LLP-6 Design Example 10:

Figure 17. LM2735X (1.6MHz): Vin = 3.3V, Vout = 20V @ 150mA

Part ID	Part Value	Manufacturer	Part Number
U1	2.1A Boost Regulator	TI	LM2735XSD
C1 Input Cap	22µF, 6.3V, X5R	TDK	C2012X5R0J226M
C2 Input Cap	22µF, 6.3V, X5R	TDK	C2012X5R0J226M
C3 Output Cap	10µF, 25V, X5R	TDK	C3216X5R1E106M
C4 Output Cap	No Load		
C5 Comp Cap	470pF	TDK	C1608X5R1H471K
D1, Catch Diode	0.4V _f Schottky 500mA, 30V _R	Vishay	MBR0530
L1	8.2µH 2A	Coilcraft	DO1813H-822ML
R1	10.0kΩ, 1%	Vishay	CRCW06031002F
R2	150kΩ, 1%	Vishay	CRCW06031503F
R3	100kΩ, 1%	Vishay	CRCW06031003F

19 LM2735Y LLP-6 Design Example 11:

Figure 18. LM2735Y (520kHz): Vin = 3.3V, Vout = 20V @ 150mA

LM2735X LLP-6 SEPIC Design Example 12:

Part ID	Part Value	Manufacturer	Part Number
U1	2.1A Boost Regulator	TI	LM2735YSD
C1 Input Cap	10µF, 6.3V, X5R	TDK	C2012X5R0J106K
C2 Input Cap	10µF, 6.3V, X5R	TDK	C2012X5R0J106K
C3 Output Cap	10µF, 25V, X5R	TDK	C3216X5R1E106M
C4 Output Cap	No Load		
C5 Comp Cap	470pF	TDK	C1608X5R1H471K
D1, Catch Diode	0.4V _f Schottky 500mA, 30V _R	Vishay	MBR0530
L1	22µH 1.5A	Coilcraft	DS3316P-223ML
R1	10.0kΩ, 1%	Vishay	CRCW06031002F
R2	150kΩ, 1%	Vishay	CRCW06031503F
R3	100kΩ, 1%	Vishay	CRCW06031003F

20 LM2735X LLP-6 SEPIC Design Example 12:

Figure 19. LM2735X (1.6MHz): Vin = 2.7V - 5V, Vout = 3.3V @ 500mA

LM2735Y eMSOP-8 SEPIC Design Example 13:

Part ID	Part Value	Manufacturer	Part Number
U1	2.1A Boost Regulator	ТІ	LM2735XSD
C1 Input Cap	22µF, 6.3V, X5R	TDK	C2012X5R0J226M
C2 Input Cap	No Load		
C3 Output Cap	10µF, 25V, X5R	TDK	C3216X5R1E106M
C4 Output Cap	No Load		
C5 Comp Cap	2200pF	TDK	C1608X5R1H222K
C6	2.2µF 16V	TDK	C2012X5R1C225K
D1, Catch Diode	0.4V _f Schottky 1A, 20V _R	ST	STPS120M
L1	6.8µH	Coilcraft	DO1608C-682ML
L2	6.8µH	Coilcraft	DO1608C-682ML
R1	10.2kΩ, 1%	Vishay	CRCW06031002F
R2	16.5kΩ, 1%	Vishay	CRCW06031652F
R3	100kΩ, 1%	Vishay	CRCW06031003F

21 LM2735Y eMSOP-8 SEPIC Design Example 13:

Figure 20. LM2735Y (520kHz): Vin = 2.7V - 5V, Vout = 3.3V @ 500mA

Part ID	Part Value	Manufacturer	Part Number
U1	2.1A Boost Regulator	TI	LM2735YMY
C1 Input Cap	22µF, 6.3V, X5R	TDK	C2012X5R0J226M
C2 Input Cap	No Load		
C3 Output Cap	10µF, 25V, X5R	TDK	C3216X5R1E106M
C4 Output Cap	No Load		
C5 Comp Cap	2200pF	TDK	C1608X5R1H222K
C6	2.2µF 16V	TDK	C2012X5R1C225K
D1, Catch Diode	0.4V _f Schottky 1A, 20V _R	ST	STPS120M
L1	15µH 1.5A	Coilcraft	MSS5131-153ML
L2	15µH 1.5A	Coilcraft	MSS5131-153ML
R1	10.2kΩ, 1%	Vishay	CRCW06031002F
R2	16.5kΩ, 1%	Vishay	CRCW06031652F
R3	100kΩ, 1%	Vishay	CRCW06031003F

22 LM2735X SOT23-5 LED Design Example 14:

Figure 21. LM2735X (1.6MHz): Vin = 2.7V - 5V, Vout = 20V @ 80mA

Part ID	Part Value	Manufacturer	Part Number
U1	2.1A Boost Regulator	TI	LM2735XMF
C1 Input Cap	22µF, 6.3V, X5R	TDK	C2012X5R0J226M
C2 Output Cap	4.7µF, 25V, X5R	TDK	C3216JB1E475K
D1, Catch Diode	0.4V _f Schottky 500mA, 30V _R	Vishay	MBR0530
L1	15µH 1.5A	Coilcraft	MSS5131-153ML
R1	80.6Ω, 1%	Vishay	CRCW080580R6F
R2	402Ω, 1%	Vishay	CRCW08054020F
R3	100kΩ, 1%	Vishay	CRCW06031003F

23 LM2735Y LLP-6 FlyBack Design Example 15:

LM2735Y LLP-6 FlyBack Design Example 15:

Part ID	Part Value	Manufacturer	Part Number
U1	2.1A Boost Regulator	TI	LM2735YSD
C1 Input Cap	22µF, 6.3V, X5R	TDK	C2012X5R0J226M
C2 Output Cap	10µF, 25V, X5R	TDK	C3216X5R1E106M
C3 Output Cap	10µF, 25V, X5R	TDK	C3216X5R1E106M
Cf Comp Cap	330pF	TDK	C1608X5R1H331K
D1, D2 Catch Diode	0.4V _f Schottky 500mA, 30V _R	Vishay	MBR0530
T1			
R1	10.0kΩ, 1%	Vishay	CRCW06031002F
R2	86.6kΩ, 1%	Vishay	CRCW06038662F
R3	100kΩ, 1%	Vishay	CRCW06031003F

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated