LM5020 Reference Design - Dual Output Flyback Converter with isolated outputs of 5V@0.2A and 12V@2.1A. Two LM2736Y's provide an additional output of 3.3V@0.5A and 5V@0.5A.

National Semiconductor LM5020 Power Applications Design Center, Americas May 2007

1.0 Design Specifications

Inputs	Output #1	Output #2	Output #3	Output #4
VinMin=9V	Vout1=5V	Vout2=12V	Vout3=3.3V	Vout4=5V
VinMax=42V	lout1=0.2A	lout2=2.1A	lout3=0.5A	lout4=0.5A

2.0 Design Description

This design utilizes the LM5020 Current Mode PWM Controller configured in a dual output Flyback converter. This isolated design operates at 300kHz and uses a custom transformer to convert the input voltage, via flyback action, to an output voltage level of 12V at 2.1A, as well as produce an isolated 5V@0.2A rail. The relative low output power of this design, and the fact that V $_{\rm cc}$ is not required to power additional IC's, allows the primary bias winding to be connected to V $_{\rm in}$. The LM5020 has a minimum input voltage of 13V so a start-up bias circuit was added to apply an external voltage to V $_{\rm cc}$ until the input voltage reached the proper threshold level

With total potential output power less than 30W, a custom EFD20 core was chosen for this design. Because of the input

voltage range, a CCM to DCM transition tradeoff was made to minimize losses associated with DCM operation. Radiated EMI requirements necessitated the use of snubbers and other filtering elements to minimize high energy signals from interfering with adjacent circuitry.

The 12V rail also fed a 5V@0.5A rail, as well as an optional 3.3V@0.5A rail. The secondary side feedback components are selected appropriately to ensure the voltage regulation remains solid and that proper gain and phase margins are maintained for stable operation and quick transient response.

3.0 Schematic

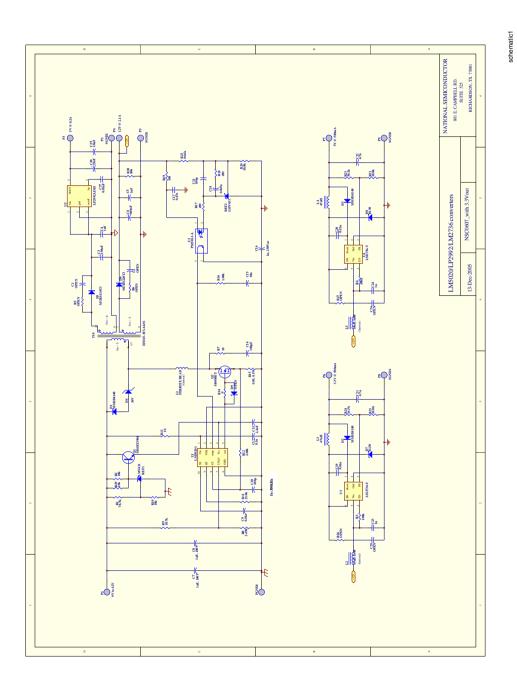


FIGURE 1. Schematic

NSC0607 LM5020/LP2992/LM2736 - Vin=9-42V,

Flyback Converter: Vout =5V(I)@0.2A, 12V@2.1A w/ 5V@0.5A; and optional 3.3V@0.5A Buck Converter 12-13-2005

Designator C1	Part Type OPEN	Footprint	Description	Manufacturer
C10	100pF	805	Capacitor Ceramic X7R	Vitramon/VJ0805
C11	100pF	805	Capacitor Ceramic X7R	Vitramon/VJ0805
C12	0.1uF	805	Capacitor Ceramic X7R	Vitramon/VJ0805
C13	2.2uF	805	Capacitor Ceramic X7R	Vitramon/VJ0805
C14	100pF	805	Capacitor Ceramic X7R	Vitramon/VJ0805
C15	10nF	805	Capacitor Ceramic X7R	Vitramon/VJ0805
C16	1nF, 250Vac	1808	Capacitor Ceramic X7R	Syfer/1808JA250102KXBSY2
C17	0.47uF	805	Capacitor Ceramic X7R	Vitramon/VJ0805
C18	0.047uF	805	Capacitor Ceramic X7R	Vitramon/VJ0805
C2	OPEN		·	
C20	0.01uF	805	Capacitor Ceramic X7R	Vitramon/VJ0805
C22	4.7uF	805	Capacitor Ceramic X7R	Vitramon/VJ0805
C24	1uF	805	Capacitor Ceramic X7R	Vitramon/VJ0805
C26	OPEN		·	
C27	0.01uF	805	Capacitor Ceramic X7R	Vitramon/VJ0805
C28	22uF	Sanyo CV-FS	Capacitor Electrolytic	Sanyo/6CV22FS
C29	10uF	1210	Capacitor Ceramic X7R	TDK/C3225X7R1C106
C3	150uF	SANYO MV-WX	Capacitor Electrolytic	Sanyo/6MV150WX
C4	1uF	805	Capacitor Ceramic X7R	Vitramon/VJ0805
C5	1uF	805	Capacitor Ceramic X7R	Vitramon/VJ0805
C6	680uF	SANYO MV-WG	Capacitor Electrolytic	Sanyo/16MV680WG
C7	1uF, 100V	1210	Capacitor Ceramic X7R	TDK/C3225X7R2A105
C8	1uF, 100V	1210	Capacitor Ceramic X7R	TDK/C3225X7R2A105
C9	0.01uF	805	Capacitor Ceramic X7R	Vitramon/VJ0805
D1	MMSD4148	SOD-123	Small Signal Diode	Vishay/MMSD4148
D3	MMSD4148	SOD-123	Small Signal Diode	Vishay/MMSD4148
D4	SMAJ_36V	SMA	Transient Suppressor Diode	Diodes/SMAJ36
D5	MURS110T3	SMB	Surface mount schottky diode	OnSemi/MURS110
D6	MURS220T3	SMB	Surface mount schottky diode	OnSemi/MURS220
D8	B130	SMA	Surface mount schottky diode	Diodes/B130-13
D9	OPEN			
L1	FERRITE BEAD	Bead Core	Ferrite Bead Core	Panasonic/EXC-ML45A910H
L4	47uH	DO3316	Surface Mount Power Inductor	Coilcraft/DO3316P-473ML
L5	10uH	1812PS	Surface Mount Power Inductor	Coilcraft/1812PS-103KL
Q1	MMBT3904	SOT23	N-NPN Bipolar Transistor	Fairchild/MMBT3904
Q2	SI4486EY	SO-8	N-Channel Power MOSFET	Vishay/SI4486EY
R1	78.7k	805	1% Thick Film	DALE CRCW0805
R10	10k	805	1% Thick Film	DALE CRCW0805
R11	21.0k	805	1% Thick Film	DALE CRCW0805
R12	2.00k	805	1% Thick Film	DALE CRCW0805
R13	10	805	1% Thick Film	DALE CRCW0805
R14	0	805	1% Thick Film	DALE CRCW0805
R15	0.05, 0.1W	0805	1% Thick Film	DALE CRCW0805
R16	1.00k	805	1% Thick Film	DALE CRCW0805
R17	499	805	1% Thick Film	DALE CRCW0805
R18	499	805	1% Thick Film	DALE CRCW0805
R19	100	805	1% Thick Film	DALE CRCW0805
R2	10k	805	1% Thick Film	DALE CRCW0805
R20	10.0k	805	1% Thick Film	DALE CRCW0805
R22	10.0k	805	1% Thick Film	DALE CRCW0805
R23	86.6k	805	1% Thick Film	DALE CRCW0805
R25	30.1k	805	1% Thick Film	DALE CRCW0805
R27	OPEN	805	Page 1	

bom2

FIGURE 2. Bill of materials, page 1

NSC0607 LM5020/LP2992/LM2736 - Vin=9-42V,

Flyback Converter: Vout =5V(I)@0.2A, 12V@2.1A w/ 5V@0.5A; and optional 3.3V@0.5A Buck Converter 12-13-2005

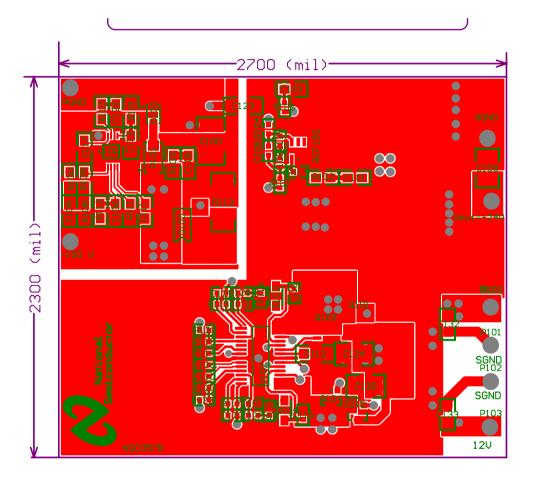
Designator	Part Type	Footprint	Description	Manufacturer
R28	806	1206	1% Thick Film	DALE CRCW1206
R29	10k	805	1% Thick Film	DALE CRCW0805
R4	100k	805	1% Thick Film	DALE CRCW0805
R5	OPEN	805		
R6	OPEN	805		
R7	10	805	1% Thick Film	DALE CRCW0805
R8	2.49k	805	1% Thick Film	DALE CRCW0805
R9	10.7k	805	1% Thick Film	DALE CRCW0805
REF1	LMV431	SOT25	Low voltage precision shunt regulator	National/LMV431
REF2	LMV431	SOT25	Low voltage precision shunt regulator	National/LMV431
T10	EFD15-3F3-A63S	EFD15	Power Transformer	Coilcraft Custom/EFD15
U1	LM5020-1	MSOP-10	100V Current Mode PWM Controller	National/LM5020
U2	PS2501-1-L	PS2501	Surface Mount Opto-coupler	NEC/PS2501L-1-H
U4	LM2736-Y	SOT23-6	Step-Down DC-DC Regulator	National/LM2736
U5	LP2992AIM5	SOT23-5	Micropower Low Noise LDO	National/LP2992AIM5

BOM Total Considering Additional 3.3V Output					
C19	0.01uF	805	Capacitor Ceramic X7R	Vitramon/VJ0805	
C21	4.7uF	805	Capacitor Ceramic X7R	Vitramon/VJ0805	
C23	1uF	805	Capacitor Ceramic X7R	Vitramon/VJ0805	
C25	OPEN	805			
R21	10.0k	805	1% Thick Film	DALE CRCW0805	
R24	16.5k	805	1% Thick Film	DALE CRCW0805	
R26	OPEN	805			
R3	100k	805	1% Thick Film	DALE CRCW0805	
D2	MMSD4148	SOD-123	Small Signal Diode	Vishay/MMSD4148	
D7	B130	SMA	Surface mount schottky diode	Diodes/B130-13	
L3	47uH	DO3316	Surface Mount Power Inductor	Coilcraft/DO3316P-473ML	
L2	10uH	1812PS	Surface Mount Power Inductor	Coilcraft/1812PS-103KL	
U3	LM2736-Y	SOT23-6	Step-Down DC-DC Regulator	National/LM2736	

Page 2

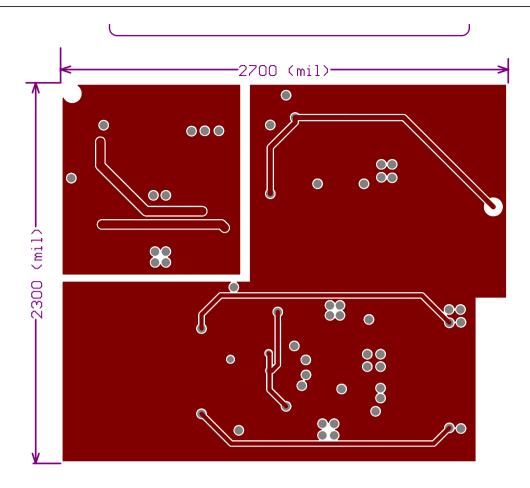
bom3

FIGURE 3. Bill of materials, page 2


5

5.0 Other Operating Values

Operating Values


Description	Parameter	Value	Unit
Modulation Frequency	Frequency	300	KHz
Total output power	Pout	30	W
Peak to peak ripple voltage, 9Vin with full load	Vout p-p	250	mV
Peak to peak ripple voltage, 42Vin with full load	Vout p-p	200	mV
Dynamic Load Regulation, Vin = 9V, half load on 3.3V, 5V, Outputs, full load step	Dynamic Load	400	mV
Dynamic Load Regulation, Vin = 42V, half load on 3.3V, 5V, Outputs, full load step	Dynamic Load	300	mV

6.0 Layouts

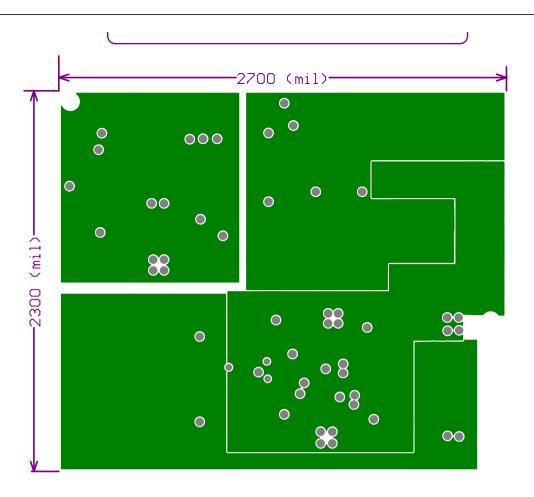

layouts

FIGURE 4. Top Layer

layout10

FIGURE 5. Middle Layer 1

layout11

FIGURE 6. Middle Layer 2

layout12

FIGURE 7. Bottom Layer

7.0 Waveforms

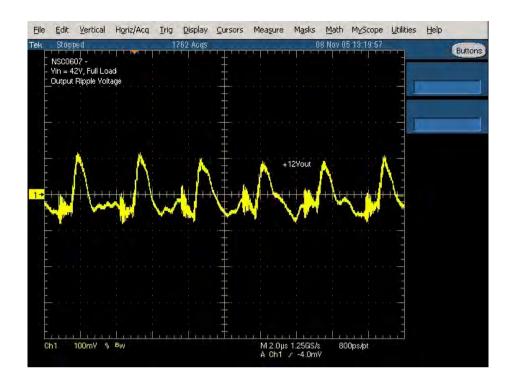


FIGURE 8. Output Ripple, Vin=42V

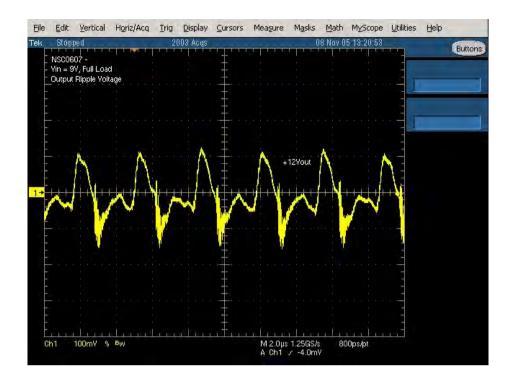


FIGURE 9. Output Ripple, Vin=9V

FIGURE 10. Load Transient, Vin=42V

FIGURE 11. Load Transient, Vin=9V

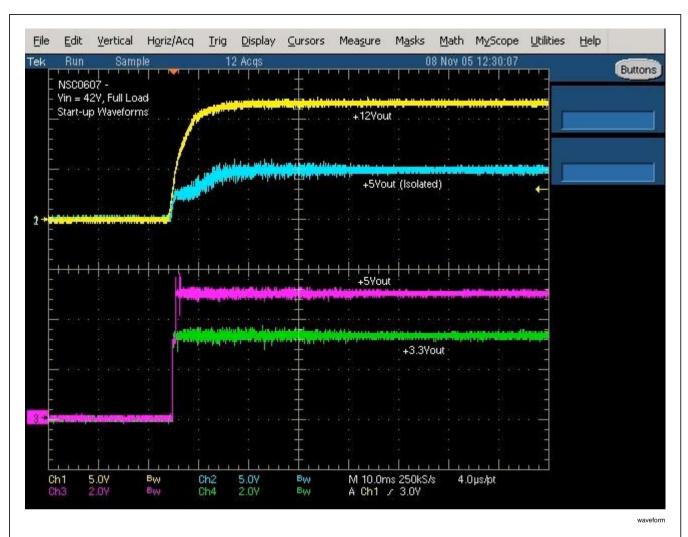


FIGURE 12. Start up waveforms, Vin=42V

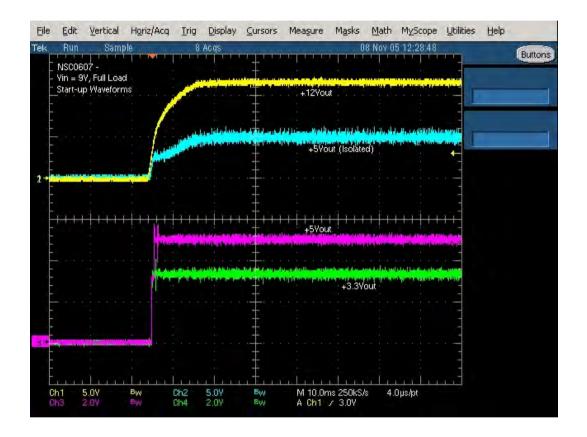


FIGURE 13. Start up waveforms, Vin=9V

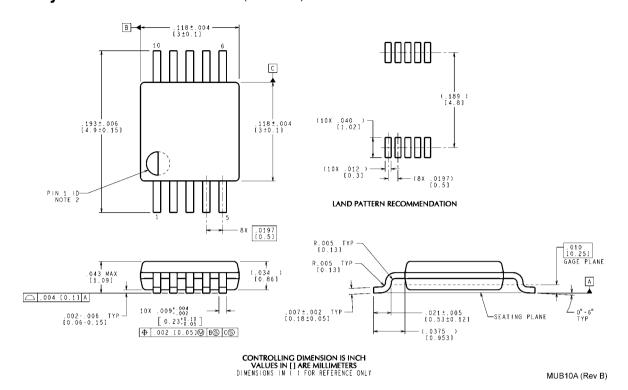

FIGURE 14. Switching waveforms, Vin=42V

FIGURE 15. Switching waveforms, Vin=9V

17

8.0 Physical Dimensions inches (millimeters) unless otherwise noted

Notes

National Semiconductor's design tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Reference designs are created using National's published specifications as well as the published specifications of other device manufacturers. While National does update this information periodically, this information may not be current at the time the reference design is built. National and/or its licensors do not warrant the accuracy or completeness of the specifications or any information contained therein. National and/or its licensors do not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. National and/or its licensors do not warrant that the designs are production worthy. You should completely validate and test your design implementation to confirm the system functionality for your application.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, 2.

 (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com

National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

Automotive and Transportation www.ti.com/automotive

e2e.ti.com

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

		•	
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Products

Audio

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti.com/audio

TI E2E Community Home Page

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated