

LP8733-Q1 and LP8732-Q1 User's Guide to Power DRA71x, DRA79x, and TDA2E-17

This user's guide can be used as a guide for powering DRA71x, DRA79x, and TDA2E-17 with the LP8733-Q1 and LP8732-Q1 power devices.

Contents

1	Introduction	2
2	Device Versions	2
3	Platform Connection	3
4	BOOT OTP Configuration	4
5	OTP Memory Configuration, Static Platform Settings	
6	OTP Memory Configuration, Power-Up and Power-Down Sequence Settings	7
	List of Figures	
1	Processor Connection With LP87332D-Q1 and LP873220-Q1	3
2	Power-Up and Power-Down Sequence	7
	List of Tables	
1	OTP Settings Differentiation	2
2	BUCK0 and BUCK1 OTP Settings	4
3	LDO0 and LDO1 OTP Settings	4
4	EN, CLKIN and GPIO Pin Settings	5
5	PGOOD OTP Settings	5
6	Protections OTP Settings	6
7	Device Identification and I ² C Settings	6
8	Interrupt Mask Settings	6

Trademarks

All trademarks are the property of their respective owners.

Introduction www.ti.com

1 Introduction

This user's guide can be used as a guide for powering DRA71x, DRA79x, and TDA2E-17 with LP8733-Q1 and LP8732-Q1 power devices.

This user's guide describes the platform connections as well as the power-up and power-down sequences along with the OTP configurations. This user's guide does not provide details about the power resources, external components, or the functionality of the device. For such information, refer to *LP87332D-Q1 Dual High-Current Buck Converters And Dual Linear Regulator* and *LP873220-Q1 Dual High-Current Buck Converters And Dual Linear Regulator*.

In the event of any inconsistency between the official specification and any user's guide, application report, or other referenced material, the datasheet specification will be the definitive source.

2 Device Versions

Two OTP settings for LP8733-Q1 and LP8732-Q1 are described in this document. The OTP version can be read from the OTP_REV register as shown in Table 1.

In addition, power solutions are available using TPS65919-Q1 or TPS65917-Q1 as described in the TPS65919-Q1 and TPS65917-Q1 User's guide to Power DRA71x, DRA79x, and TDA2E-17. See Table 1 to determine the recommended part number based on the DDR memory type and the V_{DD} current requirement of the processor.

Texas Instruments recommends having 15% margin in the load current. Therefore the current requirements listed in Table 1 are 15% lower than the maximum capability of the regulator. If the V_{DD} current in the application is unknown, select the TPS65917-Q1 configurations because they support the maximum performance of the processors. For systems requiring functional safety, the TPS65919-Q1 and TPS65917-Q1 devices comply with applicable ISO 26262 ASIL-B requirements.

V_{DD} Current **DDR Memory Type Orderable Device** Content Of OTP REV Register Requirement LP87332DRHDRQ1 + DDR3L (1.35 V) $V_{DD} < 2.55 A$ 0x2D. 0x20 LP873220RHDRQ1 DDR3L (1.35 V) $V_{DD} < 3 A$ O919A14CTRGZRQ1 $V_{DD} > 3 A$ DDR3L (1.35 V) O917A14DTRGZRQ1 See User's Guide DDR3 (1.5. V) $V_{DD} < 3 A$ O919A14ETRGZRQ1 DDR3 (1.5 V) $V_{DD} > 3 A$ O917A14FTRGZRQ1

Table 1. OTP Settings Differentiation

www.ti.com Platform Connection

3 Platform Connection

Figure 1 shows the detailed connections between the processor and LP8733-Q1 and LP8732-Q1.

- When high speed SD card requiring 1.8V support is used, the external LDO TPS74801 is needed instead of LDO0 of LP87332D-Q1
- When system has only 3.3V rail available, VDDA_USB3V3 should be connected to 3.3V rail via load switch. LDO1 of LP87332D-Q1 can be used as enable for the load switch.
- PGOOD outputs of LP8733-Q1 and LP8732-Q1 are combined together with GPO2 of LP8733-Q1 to create PWR_PORz signal.
- GPO of LP8732-Q1 is available for system control, see Figure 2.

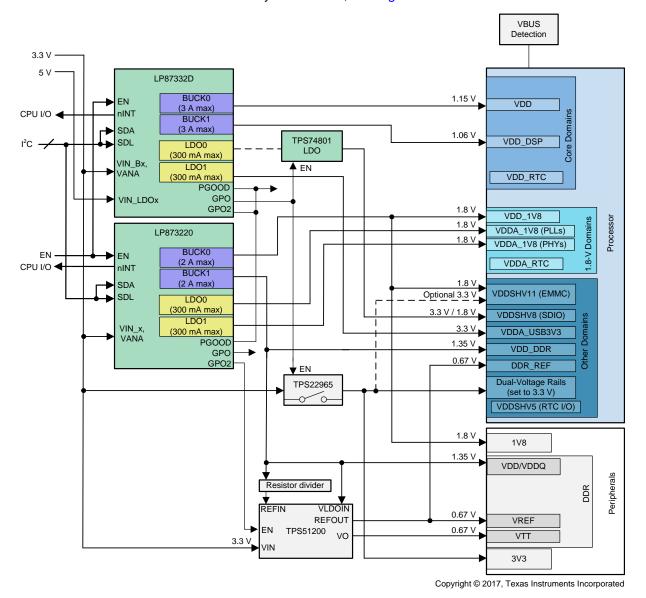


Figure 1. Processor Connection With LP87332D-Q1 and LP873220-Q1

BOOT OTP Configuration www.ti.com

4 BOOT OTP Configuration

All LP8733-Q1 and LP8732-Q1 resource settings are stored in the form of registers. Therefore, all platform-related settings are linked to an action altering these registers. This action can be a static update (register initialization value) or a dynamic update of the register (either from the user or from a power sequence).

Resources and platform settings are stored in nonvolatile memory (OTP). These settings are defined as follows:

Static platform settings — These settings define, for example, BUCK or LDO default voltages, and GPIO functionality. Most static platform settings can be overwritten by a power sequence or by the user.

Sequence platform settings — These settings define the LP8733-Q1 and LP8732-Q1 power -up and power-down sequences. The power sequence is composed of several register accesses that define which resources (and the corresponding registers) must be updated during the respective state transition. The state of these resources can be overwritten by the user when the power sequence completes execution.

5 OTP Memory Configuration, Static Platform Settings

Each device has predefined values stored in OTP which control the default configuration of the device. The tables in this section list the OTP-programmed values for each device, distinguished by the OTP_REV. Power-up and power-down sequences are described in the next chapter.

Table 2 shows device settings for BUCK0 and BUCK1. Maximum allowed slew-rate for BUCKx depends on the output capacitance. BUCK1 of LP8732-Q1 is supply for memory where larger capacitance is expected to be used and because of ths slew-rate is set to lower value. Refer to the device data sheets for output capacitance boundary conditions.

	Description	Bit Name	LP87332D	LP873220	Notes
	Buck configuration		1 + 1	1 + 1	2-phase or 1 + 1
	Switching frequency		2 MHz	2 MHz	
	Buck force sink		Yes	Yes	Yes / No
	Spread spectrum	EN_SPREAD_SPEC	No	No	Yes / No
	Output voltage	BUCK0_VSET	1.15 V	1.8 V	
	Enable, EN-pin or I ² C register	BUCK0_EN_PIN_CTRL, BUCK0_EN	EN	EN	EN or I ² C
BUCK0	Force PWM	BUCK0_FPWM	No	No	Yes / No
	Peak current limit	BUCK0_ILIM	4 A	3 A	
	Slew rate	BUCK0_SLEW_RATE	10 mV/μs	10 mV/μs	
	Output voltage	BUCK1_VSET	1.06 V	1.35 V	
	Enable, EN-pin or I ² C register	BUCK1_EN_PIN_CTRL, BUCK1_EN	EN	EN	EN or I ² C
BUCK1	Force PWM	BUCK1_FPWM	No	No	Yes / No
	Peak current limit	BUCK1_ILIM	4 A	3 A	
	Slew rate	BUCK1_SLEW_RATE	10 mV/μs	7.5 mV/µs	

Table 2. BUCK0 and BUCK1 OTP Settings

Table 3 lists the device settings for LDO0 and LDO1.

Table 3. LDO0 and LDO1 OTP Settings

	Description	Bit Name	LP87332D	LP873220	Notes
	Output voltage	LDO0_VSET	3.3 V	1.8 V	
LDO0	Enable, EN-pin or I ² C register	LDO0_EN_PIN_CTRL, LDO0_EN	EN	EN	EN or I ² C

Table 3. LDO0 and LDO1 OTP Settings (continued)

	Description	Bit Name	LP87332D	LP873220	Notes
	Output voltage	LDO1 _VSET	3.3 V	1.8 V	
LDO1	Enable, EN-pin or I ² C register	LDO1_EN_PIN_CTRL, LDO1_EN	EN	EN	EN or I ² C

Table 4 lists the device settings for GPIOs.

Table 4. EN, CLKIN and GPIO Pin Settings

	Description	Bit Name	LP87332D	LP873220	Notes
EN pin	EN pin pulldown resistor enable or disable	EN_PD	Enabled	Enabled	Enabled / disabled
	CLKIN or GPO2 mode selection	CLKIN_PIN_SEL	GPO2	GPO2	
CI KINI nin	CLKIN pin pulldown resistor enable or disable (applicable for both CLKIN and GPO2 modes)	CLKIN_PD	Disabled	Disabled	Enabled / disabled
CLKIN pin	Frequency of external clock when connected to CLKIN	EXT_CLK_FREQ	2 MHz	2 MHz	
	Enable for the internal PLL. When PLL disabled, internal RC OSC is used	EN_PLL	Disabled	Disabled	Enabled / disabled
	GPO output type	GPO_OD	OD	OD	PP / OD
GPO	Enable, EN-pin or I ² C register	GPO_EN_PIN_CTRL, GPO_EN	EN	EN	
	Control for GPO	GPO_EN	High	High	Low / High
	GPO2 output type	GPO2_OD	OD	OD	PP / OD
GPO2	Enable, EN-pin or I ² C register	GPO2_EN_PIN_CTRL	EN	EN	EN or I ² C
	Control for GPO2	GPO2_EN	High	High	Low / High

Table 5 shows device settings for PGOOD.

Table 5. PGOOD OTP Settings

	Description	Bit Name	LP87332D	LP873220	Notes
	BUCK0 output voltage	EN_PGOOD_BUCK0	Yes	Yes	Yes / No
Signals	BUCK1 output voltage	EN_PGOOD_BUCK1	Yes	Yes	Yes / No
monitored	LDO0 output voltage	EN_PGOOD_LDO0	No	Yes	Yes / No
by PGOOD	LDO1 output voltage	EN_PGOOD_LDO1	No	Yes	Yes / No
	Thermal warning	EN_PGOOD_TWARN	Yes	Yes	Yes / No
	PGOOD thresholds for BUCK0, BUCK1	PGOOD_WINDOW_BUCK	Window	Window	Undervoltage / Window (undervoltage and overvoltage)
	PGOOD thresholds for LDO0, LDO1	PGOOD_WINDOW_LDO	Window	Window	Undervoltage / Window (undervoltage and overvoltage)
PGOOD mode selections	PGOOD operating mode	PGOOD_MODE	Detecting UNUSUAL situations	Detecting UNUSUAL situations	Detecting UNUSUAL situations / Detecting UNVALID situations
	PGOOD signal mode	PG_FAULT_GATES_PGOOD	Status	Status	Status / Latched until fault source read
	PGOOD output mode	PGOOD_OD	OD	OD	OD / PP
	PGOOD polarity	PGOOD_POL	Active high	Active high	Active (power valid) high / low

Table 6 lists the device settings for thermal warning. Also refer to Table 5 for PGOOD and Table 8 for interrupts.

Table 6. Protections OTP Settings

	Description	Bit Name	LP87332D	LP873220	Notes
Protections	Thermal warning level	TDIE_WARN_LEVEL	137°C	137°C	125°C or 137°C
	Input overvoltage protection	(Hidden from customer, always enabled)	Enabled	Enabled	Enabled / disabled

Table 7 shows device settings for I²C and OTP revision ID values.

Table 7. Device Identification and I²C Settings

	Description	Bit Name	LP87332D	LP873220	Notes
I ² C address			0x60	0x61	
I2C speed default	Set Hs-mode I ² C by default		No	No	Yes / No
DEVICE_ID	Device specific ID code	DEVICE_ID	0x0	0x1	
OTP_ID	Identification code for OTP version	OTP_ID	0x2D	0x20	

Table 8 lists device settings for interrupts. When interrupt from an event is unmasked, an interrupt is generated to nINT pin.

Table 8. Interrupt Mask Settings

	Interrupt event	Bit Name	LP87332D	LP873220	Notes
	PGOOD pin changing active to inactive	PGOOD_INT_MASK	Masked	Masked	Masked / Unmasked
	Sync clock appears or disappears	SYNC_CLK_MASK	Masked	Masked	Masked / Unmasked
General	Thermal warning	TDIE_WRN_MASK	Unmasked	Unmasked	Masked / Unmasked
	Load measurement ready	I_MEAS_MASK	Unmasked	Unmasked	Masked / Unmasked
	Register reset	RESET_REG_MASK	Masked	Masked	Masked / Unmasked
	Buck0 PGood active	BUCK0_PGR_MASK	Masked	Masked	Masked / Unmasked
BUCK0	Buck0 PGood inactive	BUCK0_PGF_MASK	Masked	Masked	Masked / Unmasked
	Buck0 current limit	BUCK0_ILIM_MASK	Unmasked	Unmasked	Masked / Unmasked
	Buck1 PGood active	BUCK1_PGR_MASK	Masked	Masked	Masked / Unmasked
BUCK1	Buck1 PGood inactive	BUCK1_PGF_MASK	Masked	Masked	Masked / Unmasked
	Buck1 current limit	BUCK1_ILIM_MASK	Unmasked	Unmasked	Masked / Unmasked
	LDO0 PGood active	LDO0_PGR_MASK	Masked	Masked	Masked / Unmasked
LDO0	LDO0 PGood inactive	LDO0_PGF_MASK	Masked	Masked	Masked / Unmasked
	LDO0 current limit	LDO0_ILIM_MASK	Unmasked	Unmasked	Masked / Unmasked
	LDO1 PGood active	LDO1_PGR_MASK	Masked	Masked	Masked / Unmasked
LDO1	LDO1 PGood inactive	LDO1_PGF_MASK	Masked	Masked	Masked / Unmasked
	LDO1 current limit	LDO1_ILIM_MASK	Unmasked	Unmasked	Masked / Unmasked

6 OTP Memory Configuration, Power-Up and Power-Down Sequence Settings

A power sequence is an automatic preprogrammed sequence handled by the LP8733-Q1 and LP8732-Q1 devices to configure the device resources: BUCKs, LDOs and GPOs into ON or OFF state.

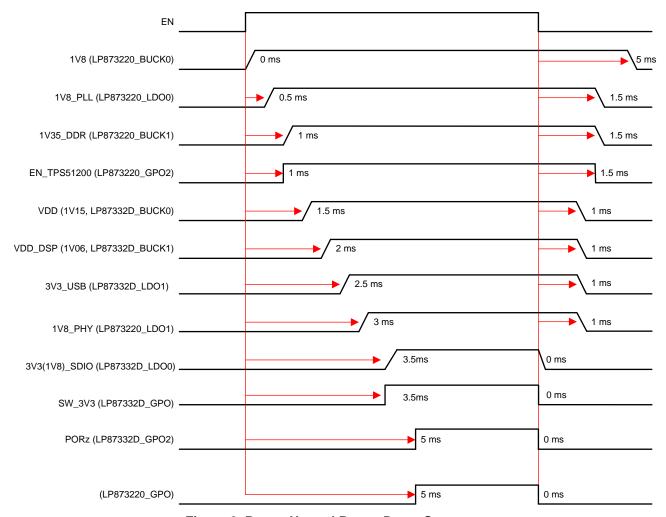


Figure 2. Power-Up and Power-Down Sequence

Revision History www.ti.com

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	hanges from Original (September 2017) to A Revision	Page
•	Added TPS65917-Q1 and TPS65919-Q1 solution information and link to user's guide	2

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated