

# LM63635EVM EVM User's Guide

The Texas Instruments LM63635EVM evaluation module (EVM) helps designers evaluate the operation and performance of the LM63635-Q1 buck regulator. The LM63635-Q1 is a family of easy-to-use synchronous step-down DC/DC converters capable of driving up to 3.25 A of load current from an input voltage of 3.5 V to 32 V. The LM63635EVM features a selectable output voltage of 3.3 V or 5 V and a switching frequency of 400 kHz. See the *LM636x5-Q1 3.5-V to 36-V, 1.5-A, and 2.5-A Automotive Step-down Voltage Converter Data Sheet* for additional features, detailed description, and available options.

The EVM options are found in Table 1.

| EVM        | DEVICE          | FREQUENCY/OUTPUT<br>CURRENT |  |
|------------|-----------------|-----------------------------|--|
| LM63635EVM | LM63635DQPWPRQ1 | 400 kHz / 3.25 A            |  |

**Table 1. Device and Package Configurations** 



#### Contents

| 1 | Setup              | 3  |
|---|--------------------|----|
| 2 | Operation          | 6  |
| 3 | Performance Curves | 6  |
| 4 | Schematic          | 7  |
| 5 | Board Layout       | 8  |
| 6 | Bill of Materials  | 12 |

#### List of Figures

| 1 | EVM Board Connections                                                           | 3 |
|---|---------------------------------------------------------------------------------|---|
| 2 | EVM Card Edge Connections                                                       | 4 |
| 3 | Jumper Locations                                                                | 4 |
| 4 | FRA Setup                                                                       | 5 |
| 5 | Efficiency Without Input Filter AUTO Mode, $V_{OUT}$ = 3.3V, $f_{SW}$ = 400 KHz | 6 |
| 6 | Efficiency Without Input Filter AUTO Mode, $V_{OUT}$ = 5 V, $f_{SW}$ = 400 KHz  | 6 |



| 7 | 7  | LM63635EVM Schematic    | 7  |
|---|----|-------------------------|----|
| 8 | 8  | Top View of EVM         | 8  |
| ę | 9  | Bottom View of EVM      | 9  |
|   | 10 | EVM Top Copper Layer    | 9  |
|   | 11 | EVM Mid Layer One       | 10 |
|   | 12 | EVM Mid Layer Two       | 10 |
|   | 13 | EVM Bottom Copper Layer | 11 |
|   |    |                         |    |

#### List of Tables

| 1 | Device and Package Configurations | . 1 |
|---|-----------------------------------|-----|
| 2 | BOM for LM63635EVM                | 12  |

## Trademarks

All trademarks are the property of their respective owners.



#### 1 Setup

This section describes the test points and connectors on the EVM and how to properly connect, set up, and use the LM63635EVM. Either the test points on the top of the board or the card edge connector can be used for connections. See Figure 1 for the top of board connections and Figure 2 for the card edge connections. The following lists the functions of the connections:

- VIN\_EMI— Input supply to EVM. Connect to a suitable input supply. See the *LM636x5-Q1 3.5-V to 36-V*, 1.5-A, and 2.5-A Automotive Step-down Voltage Converter Data Sheet for input supply requirements.
- GND— System ground
- VOUT— Output of EVM. Connect to desired load.

**VOUTS**— Output voltage sense connection (do not use for current; sense only)

- VINS— Input voltage sense connection (do not use for current; sense only)
- GNDS— Ground sense point for analog measurements (do not use for current; sense only)



Figure 1. EVM Board Connections





Figure 2. EVM Card Edge Connections

# 1.1 Jumpers

Setup

See Figure 3 for jumper locations.

- J1— This jumper allows the VOUT\_SEL pin input to be connected to either VCC or GND for a fixed output voltage selection of 3.3 V or 5 V, respectively. Alternatively, the jumper can be left open and a R<sub>VOUTSEL</sub> can be populated with 10 kΩ to have the part operate with an adjustable output voltage. See the LM636x5-Q1 3.5-V to 36-V, 1.5-A, and 2.5-A Automotive Step-down Voltage Converter Data Sheet for feedback resistor calculation.
- J2— This jumper allows SYNC to be connected in this mode to either VCC or GND. When connected to VCC, the part operates in forced pulse width modulation (FPWM) mode and when the SYNC pin is connected to GND, the part operates in auto mode where pulse frequency modulation (PFM) is engaged.





TEXAS INSTRUMENTS

#### www.ti.com

#### 1.2 Test Points

- VIN\_EMI Input supply to EVM. Connect to a suitable input supply. See the *LM636x5-Q1 3.5-V to 36-V, 1.5-A, and 2.5-A Automotive Step-down Voltage Converter Data Sheet* for input supply requirements.
- GND System power ground
- **VOUT -** Power output of EVM. Connect to desired load.
- **VOUTS** Output voltage sense connection. Connect to DMM. It is also used for frequency response analyzer connection (do not use for current; sense only).
- VINS Input voltage sense connection. Connect to DMM (do not use for current; sense only).
- **GNDS** Ground sense point for analog measurements. Connect to DMM (do not use for current; sense only).
- **EN** Connection for external EN logic input. Connect controlling logic to EN test point for external enable control.
- RESET Connected to the RESET pin of the IC. It is used as a flag output. The reset function can be monitored at this test point. Pullup resistor, R<sub>PULLUP</sub>, must be populated. A typical value for pullup resistor is 100 kΩ.
- **SYNC** Connected to the SYNC pin of the IC. Connection to an external clock or synchronization signal enables the IC switching frequency to follow the synchronization signal.
- TPGND1, TPGND2 System power ground



Figure 4. FRA Setup



#### 2 Operation

Once the above connections are made and the appropriate jumpers are set, the EVM is ready to use. The EN pin is pulled up to VIN with a 100-k $\Omega$  resistor.

The output voltage of the EVM can be selected by the VOUT jumper to either 3.3 V or 5 V. Other values of output voltage can be programmed by removing the jumper on J1 before powering on the device and changing the value of  $R_{FBT}$  and  $R_{FBB}$  on the EVM. In addition, it is possible that the values of the inductor and the output capacitance need to be changed. See the *LM636x5-Q1 3.5-V to 36-V, 1.5-A, and 2.5-A Automotive Step-down Voltage Converter Data Sheet* for more information.

To us the RESET function, a pullup resistor is required. A place for this resistor is provided on the bottom of the PCB. Values of 10 k $\Omega$  to 100 k $\Omega$  are appropriate. Be sure to limit the voltage on this pullup to less than the specified Abs max for this pin.

The EVM is equipped with several EMI filter options. These are accessed through the edge connector as shown in Figure 2. Refer to Figure 2, Figure 7, and Table 2 for details.

Loop gain measurements can be made using the setup shown in Figure 4.

The EVM has been designed for maximum flexibility regarding component selection. This allows the user to place preferred components such as the inductor, the capacitors, or both, on the board and test the performance of the regulator. This way the power supply system can be tested before committing the design to production.

## 3 Performance Curves





Schematic

# 4 Schematic







#### 5 **Board Layout**

# **CAUTION**





Figure 8. Top View of EVM





Figure 9. Bottom View of EVM



Figure 10. EVM Top Copper Layer





Figure 11. EVM Mid Layer One



Figure 12. EVM Mid Layer Two





Figure 13. EVM Bottom Copper Layer



Bill of Materials

#### 6 Bill of Materials

Table 2. BOM for LM63635EVM

| DESIGNATOR                                                            | COMMENT                                                                              | DESCRIPTION                                                                                                         | MANUFACTURER                 | PART NUMBER          | QUANTITY |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|----------|
| C1                                                                    | CBOOT                                                                                | CAP, CERM, 0.22 µF, 16 V,<br>±10%, X7R, AEC-Q200 Grade 1,<br>0603                                                   | Samsung                      | CL10B224KO8VPNC      | 1        |
| C2                                                                    | Cd                                                                                   | CAP, CERM, 10 μF, 50 V,<br>±10%, X5R, AEC-Q200 Grade 1,<br>1206                                                     | MuRata                       | GRT31CR61H106KE01L   | 1        |
| C3, C9, C11                                                           | CIN2, CIN1, Cf2                                                                      | CAP, CERM, 4.7 μF, 50 V,<br>±10%, X7R, AEC-Q200 Grade 1,<br>1206                                                    | TDK                          | CGA5L3X7R1H475K160AE | 3        |
| C4                                                                    | CINHF                                                                                | CAP, CERM, 0.22 uF, 50 V,<br>±10%, X7R, AEC-Q200 Grade 1,<br>0603                                                   | TDK                          | CGA3E3X7R1H224K080AB | 1        |
| C5, C6, C13                                                           | CO1, CO2, CO3                                                                        | CAP, CERM, 22 µF, 16 V,<br>±20%, X7R, AEC-Q200 Grade 1,<br>1210                                                     | Taiyo Yuden                  | EMK325B7226MMHT      | 3        |
| C7                                                                    | CVCC                                                                                 | CAP, CERM, 1 µF, 16 V, ±10%,<br>X7R, AEC-Q200 Grade 1, 0603                                                         | Taiyo Yuden                  | EMK107B7105KAHT      | 1        |
| C8                                                                    | Cf1                                                                                  | CAP, CERM, 1 µF, 50 V, ±10%,<br>X7R, AEC-Q200 Grade 1, 1206                                                         | Taiyo Yuden                  | UMK316B7105KLHT      | 1        |
| J1, J2                                                                | VOUTSEL, MODE                                                                        | Header, 100 mil, 3x1, Gold, TH                                                                                      | Samtec                       | HTSW-103-07-G-S      | 2        |
| L1                                                                    | XAL5050-682MEB                                                                       | Inductor, Shielded, Composite,<br>6.8 μH, 6 A, 0.03 Ω, SMD                                                          | Coilcraft                    | XAL5050-682MEB       | 1        |
| L2                                                                    | 74438356047                                                                          | Inductor, Shielded, Metal<br>Composite, 4.7 μH, 2.9 A, 0.076<br>Ω, SMD                                              | Wurth Elektronik             | 74438356047          | 1        |
| L3                                                                    | Lf1                                                                                  | Ferrite Bead, 600 $\Omega$ at 100 MHz, 3 A, 1210                                                                    | Taiyo Yuden                  | FBMH3225HM601NT      | 1        |
| R1                                                                    | RENT                                                                                 | RES, 100 k, 1%, 0.1 W, AEC-<br>Q200 Grade 0, 0603                                                                   | Vishay-Dale                  | CRCW0603100KFKEA     | 1        |
| R3, R7, R10                                                           | RVINS, RFBT,<br>RT1                                                                  | RES, 0, 1%, 0.1 W, AEC-Q200<br>Grade 0, 0603                                                                        | Stackpole Electronics<br>Inc | RMCF0603ZT0R00       | 3        |
| R5                                                                    | RINJ                                                                                 | RES, 49.9, 1%, 0.1 W, AEC-<br>Q200 Grade 0, 0603                                                                    | Vishay-Dale                  | CRCW060349R9FKEA     | 1        |
| R9                                                                    | Rd                                                                                   | RES, 0.51, 1%, 0.1 W, AEC-<br>Q200 Grade 1, 0603                                                                    | Panasonic                    | ERJ-3RQFR51V         | 1        |
| SH-J1, SH-J2                                                          | SNT-100-BK-G                                                                         | Shunt, 100 mil, Gold plated,<br>Black                                                                               | Samtec                       | SNT-100-BK-G         | 2        |
| TP1, TP2, TP3,<br>TP4, TP5, TP6,<br>TP7, TP8, TP8,<br>TP9, TP10, TP11 | VINS, VOUTS,<br>VIN_EMI, EN,<br>VOUT, GND,<br>GND, GND, GND,<br>GNDS, RESET,<br>SYNC | Terminal, Turret, TH, Double                                                                                        | Keystone                     | 1593-2               | 12       |
| U1                                                                    | LM63635DQPWPT<br>Q1                                                                  | 3.5-V to 36-V, 3.5-A<br>Synchronous Step-Down<br>Voltage Regulator with Spread<br>Spectrum, PWP0016D (TSSOP-<br>16) | Texas Instruments            | LM63635DQPWPTQ1      | 1        |
| C10                                                                   | CFF                                                                                  | CAP, CERM, 10 pF, 50 V, ±5%,<br>C0G/NP0, 0603                                                                       | MuRata                       | GRM1885C1H100JA01D   | 0        |
| C12                                                                   | CBULK1                                                                               | CAP, AL, 47 μF, 63 V, ±20%, 1<br>Ω, AEC-Q200 Grade 1, SMD                                                           | Panasonic                    | EEETG1J470UP         | 1        |
| FID1, FID2, FID3,<br>FID4, FID5, FID6                                 | Fiducial                                                                             | Fiducial mark. There is nothing to buy or mount.                                                                    | N/A                          | N/A                  | 0        |
| R2, R4                                                                | RENB, RPULLUP                                                                        | RES, 100 k, 1%, 0.1 W, AEC-<br>Q200 Grade 0, 0603                                                                   | Vishay-Dale                  | CRCW0603100KFKEA     | 0        |
| R6, R8                                                                | RVOUTSEL,<br>RFBB                                                                    | RES, 10.0 k, 1%, 0.1 W, AEC-<br>Q200 Grade 0, 0603                                                                  | Vishay-Dale                  | CRCW060310K0FKEA     | 0        |
| R11                                                                   | RT2                                                                                  | RES, 0, 1%, 0.1 W, AEC-Q200<br>Grade 0, 0603                                                                        | Stackpole Electronics<br>Inc | RMCF0603ZT0R00       | 0        |
| L4                                                                    | Common Mode<br>Choke                                                                 | Coupled inductor, 0.015 Ω, AEC-<br>Q200 Grade 1, SMD                                                                | TDK                          | ACM70V-701-2PL-TL00  | 0        |

| DESIGNATOR | COMMENT         | DESCRIPTION                                                 | MANUFACTURER     | PART NUMBER        | QUANTITY |
|------------|-----------------|-------------------------------------------------------------|------------------|--------------------|----------|
| C16        | Cf3             | CAP, CERM, 1 µF, 50 V, ±10%,<br>X7R, AEC-Q200 Grade 1, 1206 | Taiyo Yuden      | UMK316B7105KLHT    | 0        |
| C14        | CS              | CAP, CERM, 470 pF, 50 V,<br>±10%, X7R, 0402                 | MuRata           | GRM155R71H471KA01D | 0        |
| R13        | RS              | RES, 10.0, 1%, 0.063 W, 0402                                | KOA Speer        | RK73H1ETTP10R0F    | 0        |
| L5         | Output filter L | Ferrite Bead, 880 Ω at 100 MHz,<br>4 A, 1812                | Wurth Elektronik | 74279252           | 0        |
| C15        | Output filter C | CAP, CERM, 470 pF, 100 V,<br>±10%, X7R, 0603                | MuRata           | GRM188R72A471KA01D | 0        |

# Table 2. BOM for LM63635EVM (continued)

# IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated