

LP877020-Q1 Configuration Guide

This configuration guide is designed to help one understand how to use a micro-controller unit (MCU) to configure an LP877020-Q1 PMIC. Instead of requiring a new one-time programmable (OTP) configuration for each design, LP877020-Q1 can be configured at startup through I²C bus to meet design requirements.

Contents

1	Introduction	2
2	Setup	2
3	Configuration	4

List of Figures

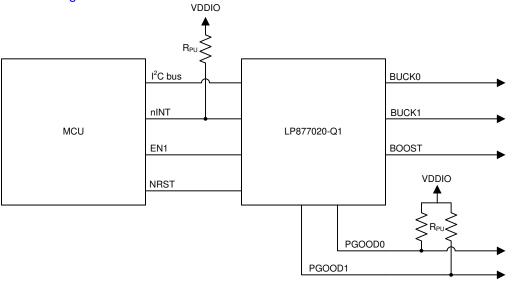
1	Typical MCU Connection to LP877020-Q1 for Start-Up Configuration	2
2	Configuration Sequence During Startup	5
3	Configuration Sequence During Reset	5
4	Startup and Shutdown Sequence Timing Diagram	1

List of Tables

1	BUCK0, BUCK1, and BOOST OTP Settings	6
	EN1, CLKIN, and GPO0 Pin Settings	
3	PGOOD OTP Settings	7
4	Protections OTP Settings	7
5	Device Identification and I ² C Settings	8
6	Watchdog OTP settings	8
7	Interrupt Mask Settings	8
8	Regulator Control Settings Registers	9

Trademarks

All trademarks are the property of their respective owners.


1 Introduction

The LP877020-Q1 contains one step-up DC/DC converter and two step-down DC/DC converter cores, which are configured as single phase outputs. The device is controlled by an I²C-compatible serial interface and by an enable signal. Typically the settings for the LP877020-Q1 PMIC, such as output voltages, startup and shutdown sequences, and so fourth, are programmed during IC manufacturing by a one time programmable memory (OTP); however, with an MCU this device can also be configured after each start up to fit different design requirements. Default values for the configuration registers (volatile memory) are loaded from the OTP during device power-up, and through I²C bus the registers can be updated to desired values.

This guide explains how to set up an LP877020-Q1 PMIC to be configured at start up so that it can be used in different designs, without the need for a new OTP. For device specifications and detailed functionality, please refer to the device datasheet. *LP87702-Q1 Dual Buck Converter and 5-V Boost With Diagnostic Functions*

2 Setup

There are a few important connections to ensure the LP877020-Q1 is configured correctly, each of which are described in this section. A good example of how to connect an MCU to the LP877020-Q1 PMIC is shown in Figure 1.

Copyright © 2020, Texas Instruments Incorporated

Figure 1. Typical MCU Connection to LP877020-Q1 for Start-Up Configuration

2.1 SCL/SDA Pins

Setup

interface provides access to the programmable functions and registers on the device. This protocol uses a two-wire interface for bidirectional communications between the IC's connected to the bus. The two interface lines are the serial data line (SDA), and the serial clock line (SCL). Every device on the bus is assigned a unique address and acts as either a master or a slave depending on whether it generates or receives the serial clock SCL. The SCL and SDA lines must each have a pullup resistor placed on the line and remain HIGH even when the bus is idle. The LP877020-Q1 supports standard mode (100 kHz), fast mode plus (1 MHz), and high-speed mode (3.4 MHz). For all I²C protocol details refer to the device datasheet.

2.2 NRST Pin

The NRST pin (pin 11) is used to reset the device logic/enable device internal logic and IO interface. When the NRST voltage is below threshold level all power switches, references, controls, and bias circuitry of the LP877020-Q1 device are turned off. When NRST is set to high level (and VANA is above UVLO level) this initiates power-on-reset (POR), OTP reading and enables the system I/O interface. The I²C host must allow at least 1.2 ms before writing or reading data to the LP877020-Q1. Device enters STANDBY-mode after internal startup sequence. The host can change the default register setting by I²C if needed. One or more of the regulators can be enabled or disabled by EN1 pin or by I²C interface.

2.3 EN1 Pin

The EN1 pin (pin 19) is used to start the buck and boost converters startup sequence based on programmed timing. Shutdown times can be programmed as well. It is recommended that the EN1 pin be driven low to until the device is configured to the desired settings. Drive EN1 pin low to disable and high to enable when programmed as enable signal.

2.4 nINT

The nINT pin (pin 1) is an open-drain, active low output from the LP877020-Q1 PMIC, and should be connected to a pullup resistor. In the default OTP an interrupt is generated on this pin whenever the RESET_REG_INT bit is set high. The RESET_REG_INT bit is set high when either the VANA supply voltage has decreased below the undervoltage threshold level or the host has requested a reset using the SW_RESET bit in the RESET register or device is reset by NRST or watchdog expiration (depending on watchdog settings). By monitoring the nINT pin, the MCU will know when the PMIC registers are reset to the values determined by the OTP, and can take the necessary actions to ensure that the PMIC is configured as needed.

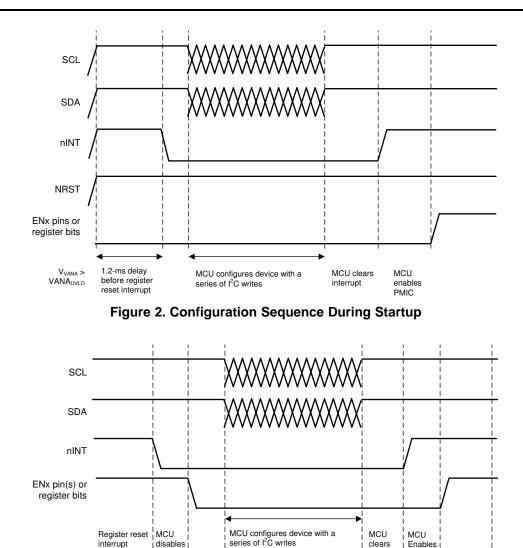
After a power-on reset the LP877020-Q1 PMIC requires a delay of 1.2 ms before there can be any communication through the I²C interface. This required delay can be ensured by monitoring the nINT pin. After a power-on reset the nINT pin is high while the registers are reset and the OTP is read to set the registers to their initial values. After 1.2 ms the nINT pin is driven low this signal, that the registers have been reset and can be configured to fit the design requirements.

NOTE: To allow monitor the nINT pin correctly, the MCU must clear all interrupts before enabling all of the outputs on the LP877020-Q1 PMIC. Write a 1 to the RESET_REG_INT bit in the INT_TOP2 register to clear this interrupt. If all interrupts are not cleared before enabling the LP877020-Q1 PMIC outputs, then there will be no change on the nINT pin state when an interrupt is generated and the MCU will not be able to detect a register reset.

Texas Instruments

3 Configuration

This section describes the default OTP settings, and how to configure these settings to meet design requirements.


3.1 Configuration Sequence

Using the setup described in Section 2 allows the MCU to easily configure the LP877020-Q1 PMIC after a power-on reset, or after any event causing a register reset. To ensure this is done correctly follow the sequence described in this section. The following list shows the actions to take in order to ensure the LP877020-Q1 PMIC is configured correctly. These actions should be taken after a power-on reset or a register reset.

- 1. Power on PMIC. ($V_{VANA} > VANA_{UVLO}$)
- 2. Set the NRST high.
- 3. Wait for nINT line to be set low. (Check RESET_REG_INT bit, and set EN1 pin low if necessary.)
- 4. Set the new configuration using I²C communication in recommended order. See Section 3.3
 - 1. Voltage settings
 - 2. Current limit and Regulator settings
 - 3. GPO0 settings
 - 4. Clock sync functions
 - 5. PGOOD settings
 - 6. Interrupt settings
 - 7. Startup and shutdown settings
 - 8. Set EN1 pin control bits
 - 9. Set BUCKx_EN bits
 - 10. Set BOOST_EN bits
- 5. Clear Interrupts.
- 6. Set EN1 pin high to startup sequence.

Upon a power-on reset, waiting for the nINT line to be set low ensures that the PMIC is ready for I²C communication. Waiting for the nINT line to be set low at any other time allows the PMIC to know when a register reset has occurred. The timing diagrams in Figure 2 and Figure 3 show how to configure the LP877020-Q1 PMIC after a power-on reset or register reset has occurred. Once all of the I²C writes are finished the interrupts should be cleared and the PMIC enabled by the MCU. The MCU can do this by writing a 1 to the RESET_REG_INT bit to clear the interrupt and by pulling the EN1 pin high to turn on the PMIC outputs.

3.2 **Default OTP Configurations**

interrupt

disables

PMIC

All LP877020-Q1 PMIC resource settings are stored in the form of volatile registers. These settings define, for example, buck output voltages, boost output voltages, GPO functionality, and power-up and powerdown sequences. The OTP by default has no sequencing so that the user can configure the desired sequence. Refer to the datasheet for a full list of the setting registers.

clears

interrupt

Enables

PMIC

Each device has predefined values stored in OTP which control the default configuration of the device. The tables in this section list the OTP-programmed values for each device.

Table 1 shows device settings for BUCK0, BUCK1, and BOOST. Maximum allowed slew-rate for BUCKx depends on the output capacitance. Refer to the device datasheets for output capacitance boundary conditions.

	Description	Bit Name	LP877020-Q1	Configurable
	Buck phase configuration		1 + 1	No
	Switching frequency		4 MHz	No
General settings	Spread spectrum	EN_SPREAD_SPEC	No	Yes
	Startup and shutdown delay range, 0 – 7.5ms / 0 – 15ms	STARTUP_DELAY_SEL, SHUTDOWN_DELAY_SEL	0 – 15 ms	Yes
	Output voltage	BUCK0_VSET	700 mV	Yes
	Enable, EN1 pin or I ² C register	BUCK0_EN_PIN_CTRL	l ² C	Yes
	Control for BUCK0	BUCK0_EN	Disabled	Yes
	Force PWM mode or auto mode	BUCK0_FPWM	Auto	Yes
BUCK0	Peak current limit	BUCK0_ILIM	4.5 A	Yes
	Maximum load current	-	3.5 A	
	Slew rate	SLEW_RATE0	3.8 mV/µs	Yes
	Startup Delay	BUCK0_STARTUP_DELAY	0 ms	Yes
	Shutdown Delay	BUCK0_SHUTDOWN_DELAY	0 ms	Yes
	Output voltage	BUCK1_VSET	700 mV	Yes
	Enable, EN1 pin or I ² C register	BUCK1_EN_PIN_CTRL	I ² C	Yes
	Control for BUCK1	BUCK1_EN	Disabled	Yes
	Force PWM mode or auto mode	BUCK1_FPWM	Auto	Yes
BUCK1	Peak current limit	BUCK1_ILIM	4.5 A	Yes
	Maximum load current	-	3.5 A	
	Slew rate	SLEW_RATE1	3.8 mV/µs	Yes
	Startup Delay	BUCK1_STARTUP_DELAY	0 ms	Yes
	Shutdown Delay	BUCK1_SHUTDOWN_DELAY	0 ms	Yes
	Boost Bypass		Enabled	No
	Enable, EN1 pin or I ² C register	BOOST_EN_PIN_CTRL	l ² C	Yes
	Control for BOOST	BOOST_EN	Disabled	Yes
BOOST	Peak current limit	BOOST_ILIM	2.8 A	Yes
	Maximum load current	-	600 mA	
	Startup Delay	BOOST_STARTUP_DELAY	0 ms	Yes
	Shutdown Delay	BOOST_SHUTDOWN_DELAY	0 ms	Yes

Table 1. BUCK0, BUCK1, and BOOST OTP Settings

Table 2 lists the device settings for EN1, CLKIN, and GPO0.

	Description	Bit Name	LP877020-Q1	Configurable
EN1 pin	EN1 pin pulldown resistor enable or disable	EN1_PD	Enabled	Yes
	CLKIN pin pull-down resistor enable or disable	CLKIN_PD	Enabled	Yes
CLKIN pin	Frequency of external clock when connected to CLKIN	EXT_CLK_FREQ	2 MHz	Yes
	Mode for the internal PLL. When PLL disabled, internal RC OSC is used	EN_PLL	Disabled	Yes
	Output type open drain or push-pull	GPO0_OD	Open drain	Yes
	Default state of GPO0 output	GPO0_OUT	Low	Yes
GPO0 pin	Pin control of GPO0, EN1 pin or I ² C register	GPO0_EN_PIN_CTRL	l ² C	Yes
	Startup Delay	GPO0_ STARTUP_DELAY	0 ms	Yes
	Shutdown Delay	GPO0_ SHUTDOWN_DELAY	0 ms	Yes

6

Texas Instruments

www.ti.com

Table 3 shows device settings for PGOOD.

	Description	Bit Name	LP877020-Q1	Configurable
	Thermal warning	SEL_PG0_TWARN	No	Yes
	Input voltage monitor of VMON1	SEL_PG0_VMON1	No	Yes
Signals	Input voltage monitor of VMON2	SEL_PG0_VMON2	No	Yes
monitored by	Input voltage monitor of VANA	SEL_PG0_VANA	No	Yes
PG0	Output voltage monitor of BUCK0	SEL_PG0_BUCK0	No	Yes
	Output voltage monitor of BUCK1	SEL_PG0_BUCK1	No	Yes
	Output voltage monitor of BOOST	SEL_PG0_BOOST	No	Yes
	PG0 polarity (active high or active low)	PG0_POL	Active high	Yes
	PG0 valid debounce time	PG0_RISE_DELAY	11 ms	Yes
	PG0 signal mode (status or latched until fault source read)	PGOOD_FAULT_GATES_PG0	Status	Yes
PG0 mode selections	PG0 output mode (push-pull or open drain)	PG0_OD	Open drain	Yes
	PG0 operating mode (detecting unusual situations UNUSUAL or showing when requested outputs are not valid UNVALID)	PG0_MODE	Unvalid	Yes
	Thermal warning	SEL_PG1_TWARN	No	Yes
	Input voltage monitor of VMON1	SEL_PG1_VMON1	No	Yes
Signals	Input voltage monitor of VMON2	SEL_PG1_VMON2	No	Yes
monitored by	Input voltage monitor of VANA	SEL_PG1_VANA	No	Yes
PG1	Output voltage monitor of BUCK0	SEL_PG1_BUCK0	No	Yes
	Output voltage monitor of BUCK1	SEL_PG1_BUCK1	No	Yes
	Output voltage monitor of BOOST	SEL_PG1_BOOST	No	Yes
	PG1 polarity (active high or active low)	PG1_POL	Active high	Yes
	PG1 valid debounce time	PG1_RISE_DELAY	11 ms	Yes
	PG1 signal mode (status or latched until fault source read)	PGOOD_FAULT_GATES_PG1	Status	Yes
PG1 mode selections	PG1 output mode (push-pull or open drain)	GPO1_PG1_OD	Open drain	Yes
	PG1 operating mode (detecting unusual situations UNUSUAL or showing when requested outputs are not valid UNVALID)	PG1_MODE	Unvalid	Yes
	PGOOD thresholds (Undervoltage or Window (undervoltage and overvoltage))	PGOOD_WINDOW	Window	Yes
	PGOOD VMON1 enable or disable	EN_PGOOD_VMON1	Disabled	Yes
	PGOOD VMON2 enable or disable	EN_PGOOD_VMON2	Disabled	Yes
PGOOD settings	PGOOD VANA enable or disable	EN_PGOOD_VANA	Disabled	Yes
	PGOOD BUCK0 enable or disable	EN_PGOOD_BUCK0	Disabled	Yes
	PGOOD BUCK1 enable or disable	EN_PGOOD_BUCK1	Disabled	Yes
	PGOOD BOOST enable or disable	EN_PGOOD_BOOST	Disabled	Yes

Table 3. PGOOD OTP Settings

Table 4 lists the device settings for thermal warning. Also refer to Table 7 for interrupt settings.

Table 4. Protections OTP Settings

	Description	Bit Name	LP877020-Q1	Configurable
Brotactiona	Thermal warning level (125°C or 140°C)	TDIE_WARN_LEVEL	125 °C	Yes
Protections	Input over-voltage protection		Enabled	No

Configuration

Table 5 shows device settings for I²C and OTP revision ID values.

Table 5. Device	Identification	and I ² C Settings
-----------------	----------------	-------------------------------

	Description	Bit Name	LP877020-Q1	Configurable
I ² C and OTP	I ² C slave ID (7-bit)		0x60	No
values	OTP ID		0x28	No

Table 6 lists device settings for watchdog.

Table 6. Watchdog OTP settings

	Description	Bit Name	LP877020-Q1	Configurable
	Long open time	WD_LONG_OPEN_TIME	5 s	Yes
	Open time	WD_OPEN_TIME	100 ms	Yes
	Close time	WD_CLOSE_TIME	100 ms	Yes
	Counter for restart	WD_RESET_CNTR_SEL	Disabled	Yes
	Read OTP during restart	WD_EN_OTP_READ	Disabled	Yes
Watchdog	Stop at restart if restart flag is active	WD_SYS_RESTART_FLAG_MODE	Status	Yes
settings	Watchdog reset output mode open drain or push pull	WDR_OD	Open drain	Yes
	Watchdog reset output polarity	WDR_POL	Active low	Yes
	Watchdog disable pin control	WD_DIS_CTRL	Enabled	Yes
	Watchdog pull down resistor enable or disable	WDI_PD	Enabled	Yes

Table 7 lists device settings for interrupts. When interrupt from an event is unmasked, an interrupt is generated to nINT pin.

Table 7. Interrupt Mask Settings

	Interrupt event	Bit Name	LP877020-Q1	Configurable
	Thermal warning	TDIE_WARN_MASK	Unmasked	Yes
General	Sync clock appears or disappears	SYNC_CLK_MASK	Masked	Yes
General	Load measurement ready	I_MEAS_MASK	Masked	Yes
	Register reset	RESET_REG_MASK	Unmasked	Yes
	PGOOD valid detection	BUCK0_PGR_MASK	Masked	Yes
BUCK0	PGOOD invalid detection	BUCK0_PGF_MASK	Masked	Yes
	Current limit triggered	BUCK0_ILIM_MASK	Masked	Yes
	PGOOD valid detection	BUCK1_PGR_MASK	Masked	Yes
BUCK1	PGOOD invalid detection	BUCK1_PGF_MASK	Masked	Yes
	Current limit triggered	BUCK1_ILIM_MASK	Masked	Yes
	PGOOD valid detection	BOOST_PGR_MASK	Masked	Yes
BOOST	PGOOD invalid detection	BOOST_PGF_MASK	Masked	Yes
	Current limit triggered	BOOST_ILIM_MASK	Masked	Yes
	PGOOD valid detection	VANA_PGR_MASK	Masked	Yes
VANA	PGOOD invalid detection	VANA_PGF_MASK	Masked	Yes
	PGOOD valid detection	VMON1_PGR_MASK	Masked	Yes
VMON1	PGOOD invalid detection	VMON1_PGF_MASK	Masked	Yes
	PGOOD valid detection	VMON2_PGR_MASK	Masked	Yes
VMON2	PGOOD invalid detection	VMON2_PGF_MASK	Masked	Yes

3.3 Recommended Order of Configuring Registers Through ^PC

This section goes through the main settings that can be changed to fit a specific design, in the recommended order. Refer to the datasheet and Section 3.2 for all of these settings and their corresponding bits or registers.

3.3.1 Voltage Settings

By default all of the voltage settings for the converters and monitorings are set to their smallest values. These settings can be changed by writing to the fields listed below. Refer to the datasheet to see how the values of these registers correspond to different voltages.

- BUCK0_VSET field in BUCK0_VOUT register
- BUCK1_VSET field in BUCK1_VOUT register
- BOOST_VSET field in BOOST_CTRL register
- VMON1_THRESHOLD field in PGOOD_LEVEL_1 register
- VMON2_THRESHOLD field in PGOOD_LEVEL_2 register

3.3.2 Current Limit and Other Regulator Settings

Each regulator has 2 CTRL registers that can be used to set their current limits, slew rates as well as enable their output discharge resistors or set auto or forced PWM mode. Included in these registers is an BUCKx_EN_PIN_CTRL, BUCKx_EN, BUCKX_RDIS, BUCKx_FPWM, BUCKx_ILIM,

BUCKx_SLEW_RATE, BOOST_EN, BOOST_EN_PIN_CTRL, BOOST_RDIS_EN and BOOST_ILIM bits for the regulators. It is recommended to set the BUCKx_EN_PIN_CTRL, BUCKx_EN, BOOST_EN_PIN_CTRL and BOOST_EN bits last to avoid any regulators turning on before configuration

BOOST_EN_PIN_CTRL and BOOST_EN bits last to avoid any regulators turning on before configuration is complete. These regulator setting fields are summarized in Table 8. Refer to the datasheet for a full description of all registers and their settings.

Regulator	Register	Fields that should be configured	Fields that should not be configured until the PMIC is ready to be powered up (Section 3.3.2.6)
BUCK0	BUCK0_CTRL_1	BUCK0_RDIS_EN, BUCK0_FPWM	BUCK0_EN, BUCK0_EN_PIN_CTRL
	BUCK0_CTRL_2	BUCK0_ILIM[2:0], BUCK0_SLEW_RATE[2:0]	
BUCK1	BUCK1_CTRL_1	BUCK1_RDIS_EN, BUCK1_FPWM	BUCK1_EN, BUCK1_EN_PIN_CTRL
	BUCK1_CTRL_2	BUCK1_ILIM[2:0], BUCK1_SLEW_RATE[2:0]	
BOOST	BOOST_CTRL	BOOST_RDIS_EN	BOOST_EN, BOOST_EN_PIN_CTRL
	BOOST_ILIM_CTRL	BOOST_ILIM[1:0]	

Table 8. Regulator Control Settings Registers

3.3.2.1 GPO Settings

The LP877020-Q1 device supports one GPO signal (pin 20). Following settings can be adjusted in GPO_CONTROL_1 register

- GPO0_EN_PIN_CTRL defines the control for GPO0 output. Default setting 0x0 => l²C controlled (GPO_CONTROL_1 register)
- GPO0_OUT defines the polarity of the GPO0, logic low and logic high level. Default setting 0x0 => Logic low level (GPO_CONTROL_1 register)
- GPO0_OD defines the type of the output, either push-pull with VANA level or open-drain. Default setting 0x1 => Open drain output (GPO_CONTROL_1 register)

The GPO0 is defined as output, the logic level of the pin is set by GPO0_OUT bit (in GPO_CONTROL_1 register). The GPO0 output can be configured to include start-up and shutdown sequences. The GPO0 control for a sequence with EN1 signal is selected by GPO0_EN_PIN_CTRL (GPO_CONTROL_1 register). The delays during start-up and shutdown are set by GPO0_STARTUP_DELAY[3:0] and GPO0_SHUTDOWN_DELAY[3:0] bits (in GPO0_DELAY register) in the same way as control of the regulators. Refer to the datasheet for more information on each of the fields in the GPO registers.

Configuration

3.3.2.2 Clock Sync Functions

The LP877020-Q1 device contains a CLKIN input to synchronize switching clock of the buck and boost regulators with the external clock. Depending on the EN_PLL[1:0] bits (in PLL_CTRL register) and the external clock availability, the external clock is selected and interrupt is generated. The interrupt can be masked with SYNC_CLK_MASK bit in TOP_MASK1 register. The nominal frequency of the external input clock is set by EXT_CLK_FREQ[4:0] bits (in PLL_CTRL register) and it can be from 1 MHz to 24 MHz with 1 MHz steps. The external clock must be inside accuracy limits (-30% / +10%) for valid clock detection. CLKIN pin has been multiplexed with function of watchdog disable (WD_DIS). When CLKIN pin is low level, watchdog is enabled. When CLKIN pin is high level, watchdog is disabled. Refer to the datasheet for more information on this function.

3.3.2.3 PGOOD Settings

The PGOOD output can be used to monitor several signals and has multiple settings to configure as listed below.

- Monitoring of regulator output voltage (individual regulators can be selected)
- Undervoltage only or undervoltage and overvoltage monitoring (window)
- Monitoring output current
- Debounce time setting
- Push-pull or open drain output
- Detecting unusual situations or invalid situations (showing when requested outputs are not valid)
- Gated or continuous operating mode
- Adjustable polarity

Refer to the datasheet for more information on the PGOOD signal functionality.

3.3.2.4 Interrupt Settings

The LP877020-Q1 PMIC has many interrupt signals that can be used to indicate different events including regulator overcurrent events, regulator PGOOD events, regulator short-circuit events, and clock events. The registers containing all of these interrupts are listed as follows:


- INT_TOP_1 register
- INT_TOP_2 register
- INT_BUCK register
- INT_BOOST register
- INT_DIAG register

These interrupts can all be masked or unmasked using the registers below. By default the OTPs defined specifically for I²C configuration has only RESET_REG_INT unmasked to allow the MCU to know when the PMIC registers are reset to the values determined by the OTP, so the MCU can take the necessary actions to ensure that the PMIC is configured as needed. Other interrupts can be unmasked as is needed. However, unmasking other interrupts will mean that when an interrupt is generated on the nINT line, the interrupt registers must be read to determine what caused the interrupt.

- TOP_MASK_1 register
- TOP_MASK_2 register
- BUCK_MASK register
- BOOST_MASK register
- DIAG_MASK register

3.3.2.5 Startup and Shutdown Sequence

Each of the bucks, boost and GPO0 on the LP877020-Q1 can be set to startup and shutdown in a specific sequence. To configure the desired sequence the STARTUP_DELAY and SHUTDOWN_DELAY fields for each output need to be set to a value between 0x0 and 0xF. The delay time that this value corresponds to depends on the STARTUP_DELAY_SEL bit and SHUTDOWN_DELAY_SEL bit located in the CONFIG register. A value of 0x1 on both of these bits will allow a delay ranging from 0 ms to 15 ms with 1 ms steps. A value of 0x0 on both of these bits will allow a delay ranging from 0 ms to 7.5 ms with 0.5 ms steps. Figure 4 shows an example of how these delays can be used to configure a startup and shutdown sequence, in this case with EN1 signal. Refer to the datasheet for a full description of all registers and their settings.

STARTUP_DELAY_SEL = 0x1 SHUTDOWN_DELAY_SEL = 0x1

3.3.2.6 Set EN1 Pin Control Bits

Each output can be controlled by either I²C communication, or a combination of I²C communication and an EN1 pin, as determined by each output's BUCKx_EN_PIN_CTRL and BOOST_EN_PIN_CTRL bits. When controlled via I²C (BUCKx_EN_PIN_CTRL = 0 and BOOST_EN_PIN_CTRL = 0) the selected output is turned on using the corresponding BUCKx_EN and BOOST_EN bits. Note that the sequencing delay settings will not be effective in this case. When controlled using a combination of I²C and the EN1 pin (BUCKx_EN_PIN_CTRL = 1 and BOOST_EN_PIN_CTRL = 1), the corresponding BUCKx_EN and BOOST_EN bits must be set high in order to turn on an output. By default the OTP has the BUCKx_EN and BOOST_EN bits and BUCKx_EN_PIN_CTRL and BOOST_EN_PIN_CTRL bits set 0x0 for each output. This prevents the EN1 pin from accidentally setting an output high, and allows the user to choose which outputs to turn on with the EN1 pin.

Once all of the other device settings have been set, the BUCKx_EN_PIN_CTRL and BOOST_EN_PIN_CTRL bits should be set 0x1 for output that needs to be turned on for the design, allowing the EN1 pin to control each desired output.

3.3.2.7 Set BUCKx_EN and BOOST_EN Bits

Once the BUCKx_EN_PIN_CTRL and BOOST_EN_PIN_CTRL bits are set high for each output that needs to be turned on for the design, the BUCKx_EN and BOOST_EN bits for each corresponding output can also be set high. It is important that the BUCKx_EN_PIN_CTRL and BOOST_EN_PIN_CTRL bits are set before the BUCKx_EN and BOOST_EN bits so that no outputs are turned on accidentally. Once the BUCKx_EN and BOOST_EN bits are set high the MCU must be finished with the required I²C commands and can move on to clearing interrupts and setting the EN1 pin high to start startup sequence as described in Section 3.1.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated