
TMS370 Family
Simulator

Getting Started Guide

Printed on Recycled Paper

Running Title—Attribute Reference

ii

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1996, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

This manual tells you how to install the simulator version of the C source de-
bugger on a PC running Windows . This manual also tells you how to invoke
the simulator version of the debugger and introduces the simulator’s basic fea-
tures.

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is an example of a system prompt and a command that you might
enter:

C: MD C:\370HLL

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a command syntax:

pinc pinname, filename

pinc is the command. This command has two parameters, indicated by
pinname and filename.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of a command
that has an optional parameter:

sim370w [filename] [options]

The sim370w command has two parameters. The both parameters are
optional.

Notational Conventions / Related Documentation From Texas Instruments

iv

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a command including a list:

mc portaddress, length, filename, {READ | WRITE}

This provides two choices: READ or WRITE.

Unless the list is enclosed in square brackets, you must choose one item
from the list.

Related Documentation From Texas Instruments

The following books describe the TMS370 and related support tools. To obtain
a copy of any of these TI documents, call the Texas Instruments Literature Re-
sponse Center at (800) 477–8924. When ordering, please identify the book by
its title and literature number.

TMS370 and TMS370C8 8-Bit Microcontroller Family Assembly Lan-
guage Tools User’s Guide (literature number SPNU010) describes the
assembly language tools (assembler, linker, and other tools used to de-
velop assembly code), assembler directives, macros, common object file
format, and symbolic debugging directives for the TMS370/C8 8-bit fami-
ly of devices.

TMS370 and TMS370C8 8-Bit Microcontroller Family Optimizing C Com-
piler User’s Guide (literature number SPNU022) describes the
TMS370/C8 8-bit C compiler. This C compiler accepts ANSI standard C
source code and produces assembly language source code for the
TMS370/C8 8-bit family of devices.

TMS370 Family C Source Debugger User’s Guide (literature number
SPNU028) tells you how to invoke the ’370 XDS/22 emulator and ap-
plication board versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints, and includes a tutorial that introduces basic debugger func-
tionality. It also includes an advanced tutorial that introduces the break-
point, trace, and timing features.

TMS370 Microcontroller Family User’s Guide (literature number
SPNU127) discusses hardware aspects of the TMS370 family members,
such as pin functions, architecture, module options, stack operation, and
interfaces. The manual also contains the TMS370 assembly language
instruction set.

 Trademarks / If You Need Assistance

v Read This First

Trademarks

Microsoft and Windows are registered trademarks of Microsoft Corporation.

PC is a trademark of International Business Machines Corporation.

Pentium is a trademark of Intel Corporation.

XDS/22 is a trademark of Texas Instruments Incorporated.

If You Need Assistance . . .

If you want to . . . Contact Texas Instruments at . . .

Visit TI online World Wide Web: http://www.ti.com

Receive general information World Wide Web: http://www.ti.com/sc/docs/pic/home.htm
or assistance North America, South America: (214) 644–5580

Europe, Middle East, Africa
Dutch:

English:
French:
Italian:

German:

33–1–3070–1166
33–1–3070–1165
33–1–3070–1164
33–1–3070–1167
33–1–3070–1168

Japan (Japanese or English)
Domestic toll-free:

International:
0120–81–0026
81–3–3457–0972 or
81–3–3457–0976

Korea (Korean or English): 82–2–551–2804

Taiwan (Chinese or English): 886–2–3771450

Ask questions about micro-
controller product operation
or report suspected prob-
lems

Hotline:
Fax:

Email:
World Wide Web:

BBS:

(713) 274–2370
(713) 274–4203
*H370@msg.ti.com
http://www.ti.com/sc/micro
(713) 274–3700 8–N–1

Request tool updates Software:
Software fax:

Hardware:

(214) 638–0333
(214) 638–7742
(713) 274–2285

Order Texas Instruments
documentation (see Note 1)

Literature Response Center: (800) 477–8924

Make suggestions about or Email: comments@books.sc.ti.com
report errors in documenta-
tion (see Note 2)

Mail: Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251–1443

Notes: 1) The literature number for the book is required; see the lower-right corner on the back cover.

2) Please mention the full title of the book, the literature number from the lower-right corner of the back cover, and the
publication date from the spine or front cover.

vi

 Contents

vii

Contents

1 Installing the Simulator With Windows 1-1.
Lists the hardware and software you’ll need to install the simulator version of the C source
debugger; provides installation instructions for PC systems running Windows.

1.1 System Requirements 1-2.
Hardware checklist 1-2.
Software checklist 1-3.

1.2 Step 1: Installing the Debugger Software 1-4.
Creating a program group 1-4.
Using a program-item icon 1-5.

1.3 Step 2: Setting Up the Debugger Environment 1-6.
Modifying the PATH statement 1-7.
Setting up the environment variables 1-7.
Invoking the new or modified batch file 1-8.

1.4 Step 3: Verifying the Installation 1-9.

2 Simulator Features 2-1.
Describes the simulator-specific features of the C source debugger.

2.1 Invoking the Debugger 2-2.
Selecting the screen size (–b and –bb options) 2-3.
Identifying additional directories (–i option) 2-3.
Selecting the minimal debugging mode (–min option) 2-3.
Entering the profiling environment (–profile option) 2-4.
Loading the symbol table only (–s option) 2-4.
Identifying a new initialization file (–t option) 2-4.
Loading without the symbol table (–v option) 2-4.
Ignoring D_OPTIONS (–x option) 2-4.

2.2 A Sample Memory Map for the Simulator 2-5.

Contents

viii

2.3 Identifying Usable Memory Ranges 2-6.
Restrictions on usable memory ranges 2-8.

2.4 Simulating I/O Space 2-9.
Connecting a peripheral I/O port 2-9.
Disconnecting a peripheral I/O port 2-10.

2.5 Simulating Interrupts 2-11.
Setting up your input file 2-11.
Programming the simulator 2-12.

2.6 Using Predefined Constants With Conditional Commands 2-14.
2.7 Benchmarking 2-15.
2.8 Profiling Code Execution 2-15.
2.9 Debugger Messages 2-16.

1-1

Installing the Simulator With Windows

This chapter helps you install the simulator version of the C source debugger
on a PC running Windows. The debugger is the programmer’s interface to the
TMS370 family simulator. When you complete the installation, turn to Chap-
ter 2, Simulator Features, for more information about using the simulator ver-
sion of the ’370 debugger.

Topic Page

1.1 System Requirements 1-2.

1.2 Step 1: Installing the Debugger Software 1-4.

1.3 Step 2: Setting Up the Debugger Environment 1-6.

1.4 Step 3: Verifying the Installation 1-9.

Chapter 1

System Requirements

 1-2

1.1 System Requirements

To install and use the ’370 family C source debugger, you need the items in
the following hardware and software checklists.

Hardware checklist

Host 32-bit x86-based or Pentium PC with a hard-disk system and a
1.44-Mbyte floppy-disk drive

Memory Minimum of 4 Mbytes of RAM

Display Monochrome or color monitor (color recommended)

Optional hardware Microsoft -compatible mouse

EGA- or VGA-compatible graphics display card and a large (17” or
19”) monitor. The debugger has two options that allow you to en-
large the overall size of the debugger display. To use a larger screen
size, you must invoke the debugger with an appropriate option. For
more information, see the Selecting the screen size (–b and –bb op-
tions) discussion on page 2-3.

Miscellaneous
materials

Blank, formatted disks

System Requirements

1-3Installing the Simulator With Windows

Software checklist

Operating system Windows version 3.1 or later

Software tools TMS370 8-bit microcontroller family assembler and linker

Optional: TMS370 8-bit microcontroller family C compiler

Optional files
included with the
debugger package

init.cmd is a general-purpose batch file that contains debugger
commands. This batch file, shipped with the debugger, defines a
’370 memory map. When you start using the debugger, this memory
map should be sufficient for your needs. Later, you may want to de-
fine your own memory map. For information about setting up your
own memory map, see the TMS370 Family C Source Debugger
User’s Guide.

init.clr is a general-purpose screen configuration file. If init.clr isn’t
present when you invoke the debugger, the debugger uses the
default screen configuration.

Several .clr (for color monitors) and .mon (for monochrome
monitors) screen configuration files are included in the screens
directory. When you first invoke the debugger, the default screen
configuration should be sufficient for your needs. Later, you may
want to define your own custom configuration.

For information about these files and about setting up your own
screen configuration, see the TMS370 Family C Source Debugger
User’s Guide.

Step 1: Installing the Debugger Software

 1-4

1.2 Step 1: Installing the Debugger Software

This section explains the process of installing the simulator version of the
debugger on a hard-disk system.

1) Make a backup copy of the debugger product disk.

2) On your hard disk or system disk, create a directory named 370hll. This
directory will contain the ’370 C source debugger software. To create this
directory, enter:

MD C:\370HLL

3) Insert the debugger product disk into drive A. Copy the contents of the
disk:

XCOPY /V /S A:*.* C:\370HLL

You may want to create a Windows program group and use a program-item
icon to make it easier to invoke the debugger from within the Windows environ-
ment.

Creating a program group

A program group contains program-item icons. You can use program groups
to help you organize your icons. To create a program group, follow these steps:

1) From the Windows Program Manager, select File → New. This displays
the New Program Object dialog box.

2) Make sure Program Group is selected.

3) Click on OK. This displays the Program Group Properties dialog box.

4) Enter a name for the program group in the Description field.

5) Click on OK. This displays an empty program group with the name you en-
tered.

Step 1: Installing the Debugger Software

1-5Installing the Simulator With Windows

Using a program-item icon

A program-item icon represents an application that you can run from Windows.
Program-item icons are contained inside program groups. The debugger al-
ready has a standard icon that you can use. To use the standard debugger
icon, follow these steps:

1) If the program group in which you want to place the icon is not already
open, double-click on it to open it.

2) Open the Windows File Manager.

3) Arrange the windows so you can see the program group and the File Man-
ager at the same time.

4) In the 370hll directory of the Windows File Manager, click once on
sim370w.exe to select the executable file.

5) Drag and drop the sim370w.exe into the program group. An icon that looks
like this displays:

You can now close the File Manager.

6) Click once on the program icon to select it.

7) In the Program Manager, select File → Properties. This displays the Pro-
gram Item Properties dialog box.

8) Modify the information in the Command Line field to include the options
you normally use at start-up. For a summary of the options that you can
use, see Table 2–1, Summary of Debugger Options, on page 2-2.

Step 2: Setting Up the Debugger Environment

 1-6

1.3 Step 2: Setting Up the Debugger Environment

To ensure that your debugger works correctly, you must perform some tasks
before you invoke the debugger for the first time or anytime you power up or
reboot your PC. You can perform these tasks by entering individual DOS com-
mands, but it is simpler to put the commands in a batch file. You can edit your
system’s autoexec.bat file, but in some cases, modifying that file can interfere
with other applications running on your PC. You can create a separate batch
file to perform these tasks instead. No matter which way you choose to do
them, these are the tasks you must perform:

� Modify the PATH statement to identify the 370hll directory.

� Define environment variables so that the debugger can find the files it
needs.

Figure 1–1 (a) shows an example of an autoexec.bat file that contains the
suggested modifications. Figure 1–1 (b) shows a sample batch file that you
could create instead of editing the autoexec.bat file. The subsections following
the figure explain these modifications.

Figure 1–1. DOS-Command Setup for the Debugger

(a) Sample autoexec.bat file to use with the debugger

DATE

TIME

ECHO OFF

PATH=C:\WINDOWS;C:\370TOOLS;C:\370HLL

SET D_DIR=C:\370HLL

SET D_SRC=C:\CSOURCE

SET D_OPTIONS= –b

SET C_DIR=C:\370TOOLS

CLS

PATH statement

Environment
variables

(b) Sample batch file that you create to use with the debugger

PATH=%PATH%;C:\370HLL

SET D_DIR=C:\370HLL

SET D_SRC=C:\CSOURCE

SET D_OPTIONS= –b

PATH statement

Environment
variables

Step 2: Setting Up the Debugger Environment

1-7Installing the Simulator With Windows

Modifying the PATH statement

Define a path to the debugger directory. The general format for doing this is:

PATH=C:\370HLL

This allows you to invoke the debugger without specifying the name of the
directory that contains the debugger executable file.

� If you are modifying an autoexec.bat file that already contains a PATH
statement, simply include ;C:\370hll at the end of the statement, as shown
in Figure 1–1 (a).

� If you are creating your own batch file, use a different format for the PATH
statement:

PATH=%PATH%;C:\370HLL

The addition of %path%; ensures that this PATH statement won’t undo
PATH statements in any other batch files (including the autoexec.bat file).

Setting up the environment variables

An environment variable is a special system symbol that the debugger uses
for finding or obtaining certain types of information. The debugger uses three
environment variables, D_DIR, D_SRC, and D_OPTIONS. Use the following
instructions to set up these environment variables:

� Identify the 370hll directory with D_DIR. Enter:

SET D_DIR=C:\370HLL

(Be careful not to precede the equal sign with a space.)

This directory contains auxiliary files (such as init.cmd) that the debugger
needs.

� Identify any directories that contain program source files that you’ll want
to look at while you’re debugging code with D_SRC. Use this format:

SET D_SRC=pathname1;pathname2...

For example, if your ’370 programs were in a directory named csource on
drive C, the D_SRC setup would be:

SET D_SRC=C:\CSOURCE

Step 2: Setting Up the Debugger Environment

 1-8

� Identify the invocation options that you want to use regularly with
D_OPTIONS. Use this format:

SET D_OPTIONS= [filename] [options]

The filename identifies the optional object file for the debugger to load, and
the options list the options you want to use at invocation. These are the
options that you can identify with D_OPTIONS:

Option Brief Description Page

–b Select a screen size of 80 characters by 43 lines 2-3

–bb Select a screen size of 80 characters by 50 lines 2-3

–i pathname Identify additional directories 2-3

–min Select the minimal debugging mode 2-3

–profile Enter the profiling environment 2-4

–s Load the symbol table only 2-4

–t filename Identify a new initialization file 2-4

–v Load without the symbol table 2-4

You can override D_OPTIONS by invoking the debugger with the –x op-
tion.

For more information about options, see Section 2.1, Invoking the Debug-
ger, page 2-2.

Invoking the new or modified batch file

� If you modify the autoexec.bat file, be sure to invoke it before invoking the
debugger for the first time. To invoke this file, enter:

AUTOEXEC

� If you create your own batch file, you must invoke it before entering
Windows. You’ll need to invoke your batch file any time that you power up
or reboot your PC. For the purpose of this discussion, assume that this
sample batch file is named initdb.bat. To invoke this file, enter:

INITDB

Step 3: Verifying the Installation

1-9Installing the Simulator With Windows

1.4 Step 3: Verifying the Installation

To ensure that you have correctly installed the debugger software, invoke the
debugger and load the sample program:

� If you set up an icon for the debugger, follow these steps:

1) Start Windows.

2) Open the program group that contains the debugger icon.

3) Double-click on the debugger icon.

4) When the debugger window appears, enter the following from the
command line:

load sample

� If you did not set up an icon for the debugger, follow these steps:

1) Start Windows.

2) In the Program Manager or File Manager, select Run... from the File
menu.

3) In the Command Line field of the Run dialog box, enter:

c:\370hll\sim370w sample

You should see a display similar to this one:

Load Break Watch Memory

DISASSEMBLY

MEMORYCOMMAND

>>>

Loading sample.out
 73 Symbols loaded
Done

MoDe Run=F5 Step=F8 Next=F10Color

CPU

PC 7189
A 00 B 00
ST 00 SP 00

7189 88 c_int00: MOVW #05dFFh,R021
718d 98 MOVW R021,R01F
7190 52 MOV #022h,B
7192 fd LDSP
7193 8e CALL 719Dh
7196 8e CALL main
7199 8e CALL exit
719c fa RTI
719d 88 MOVW #0723Dh,R0F
71a1 00 JMP 071C3h
71a3 f4 MOV 3[R0F],A
71a7 d0 MOV A,R0D
71a9 f4 MOV 2[R0F],A
71ad d0 MOV A,R0C
71af 70 INCW #4,R0F

0000 00 00 00 00 00 00 00 00 00 00 00 00

000c 00 00 00 00 00 00 00 00 00 00 00 00

0018 00 00 00 00 00 00 00 00 00 00 00 00

0024 00 00 00 00 00 00 00 00 00 00 00 00

0030 00 00 00 00 00 00 00 00 00 00 00 00

003c 00 00 00 00 00 00 00 00 00 00 00 00

Pin

Step 3: Verifying the Installation

 1-10

If you see a similar display, you have correctly installed your debugger.

If you don’t see a display, your debugger may not be installed properly. Go back
through the installation instructions and be sure that you have followed each
step correctly; then reenter the command above.

Notes:

1) Using Windows, you can freely move or resize the debugger display on
the screen. If the resized display is bigger than the debugger requires,
the extra space is not used. If the resized display is smaller than re-
quired, the display is clipped. Note that when the display is clipped, it
can’t be scrolled.

2) You should run Windows in either the standard mode or the 386
enhanced mode to get the best results.

2-1

Simulator Features

This chapter tells you how to invoke the simulator version of the debugger and
introduces the simulator’s basic features. When you finish reading this chap-
ter, refer to the TMS370 Family C Source Debugger User’s Guide. The
TMS370 Family C Source Debugger User’s Guide discusses various aspects
of the debugger interface, including window management, command entry,
code execution, data management, and breakpoints. The book also includes
a tutorial that introduces basic features of the debugger.

Topic Page

2.1 Invoking the Debugger 2-2.

2.2 A Sample Memory Map for the Simulator 2-5.

2.3 Identifying Usable Memory Ranges 2-6.

2.4 Simulating I/O Space 2-9.

2.5 Simulating Interrupts 2-11.

2.6 Using Predefined Constants With Conditional Commands 2-14.

2.7 Benchmarking 2-15.

2.8 Profiling Code Execution 2-15.

2.9 Debugger Messages 2-16.

Chapter 2

Invoking the Debugger

 2-2

2.1 Invoking the Debugger

Here’s the basic format for the command that invokes the debugger:

sim370w [filename] [options]

sim370w is the command that invokes the debugger.

filename is an optional parameter naming an object file that the debug-
ger loads into memory during invocation. The debugger looks
for the file in the current directory; if the file isn’t in the current
directory, you must supply the entire pathname. If you don’t
supply an extension for the filename, the debugger assumes
that the extension is .out.

options supply the debugger with additional information. Table 2–1
summarizes the available options.

You can use the D_OPTION environment variable to specify files and options
that you use often. (See the Setting up the environment variables subsection
starting on page 1-7.) You can also specify options that you use often on your
debugger command line. (See the Using a program-item icon subsection on
page 1-5 for information about modifying your command line.)

Table 2–1. Summary of Debugger Options

Option Brief Description Page

–b Select a screen size of 80 characters by 43 lines 2-3

–bb Select a screen size of 80 characters by 50 lines 2-3

–i pathname Identify additional directories 2-3

–min Select the minimal debugging mode 2-3

–profile Enter the profiling environment 2-4

–s Load the symbol table only 2-4

–t filename Identify a new initialization file 2-4

–v Load without the symbol table 2-4

–x Ignore D_OPTIONS 2-4

Invoking the Debugger

2-3Simulator Features

Selecting the screen size (–b and –bb options)

By default, the debugger uses an 80-character-by-25-line screen. You can use
one of the options in Table 2–2 to specify a different screen size.

Table 2–2. Screen Size Options

Option Description Display

–b 80 characters by 43 lines Any EGA or VGA display

–bb 80 characters by 50 lines VGA only

The –b and –bb options override the screen size specified in the init.clr file.

Identifying additional directories (–i option)

The –i option identifies additional directories that contain your source files. Re-
place pathname with an appropriate directory name. You can specify several
pathnames; use the –i option as many times as necessary. For example:

sim370w –i path1 –i path2 –i path3 . . .

Using –i is similar to using the D_SRC environment variable (see the Setting
up the environment variables subsection starting on page 1-7). If you name
directories with both –i and D_SRC, the debugger first searches through direc-
tories named with –i. The debugger can track a cumulative total of 20 paths
(including paths specified with –i, D_SRC, and the debugger USE command).

Selecting the minimal debugging mode (–min option)

The debugger automatically displays whatever code is currently running: as-
sembly language or C. Depending on the code that is currently running, the
debugger displays various windows, such as the DISASSEMBLY,
COMMAND, CPU, MEMORY, or CALLS window.

The debugger has a minimal debugging mode that displays the COMMAND,
WATCH, and DISP windows only. The WATCH and DISP windows are dis-
played only if you cause them to display (by entering the WA or DISP com-
mands). Minimal mode may be useful when you need to debug a memory
problem.

To invoke the debugger and enter minimal mode, use the –min option.

For more information about debugger windows, see the TMS370 Family C
Source Debugger User’s Guide.

Invoking the Debugger

 2-4

Entering the profiling environment (–profile option)

The –profile option allows you to bring up the debugger in a profiling environ-
ment so that you can collect statistics about code execution. Only a subset of
the basic debugger features is available in the profiling environment.

For more information about using the profiler, see the TMS370 Family C
Source Debugger User’s Guide.

Loading the symbol table only (–s option)

If you supply a filename when you invoke the debugger, you can use the –s
option to tell the debugger to load only the file’s symbol table (without the file’s
object code). This option is useful in a debugging environment in which the de-
bugger cannot, or need not, load the object code (for example, if the code is
in ROM). Using this option is similar to loading a file by using the debugger’s
SLOAD command (described in the TMS370 Family C Source Debugger
User’s Guide).

Identifying a new initialization file (–t option)

The –t option allows you to specify an initialization command file to use instead
of init.cmd. The format for the –t option is:

–t filename

Loading without the symbol table (–v option)

The –v option prevents the debugger from loading the entire symbol table
when you load an object file. The debugger loads only the global symbols and
later loads local symbols as it needs them. This speeds up the loading time and
consumes less memory.

The –v option affects all loads, including those performed when you invoke the
debugger and those performed with the LOAD command within the debugger
environment.

Ignoring D_OPTIONS (–x option)

The –x option tells the debugger to ignore any information supplied with
D_OPTIONS. For more information about D_OPTIONS, refer to the Setting
up the environment variables subsection, starting on page 1-7.

A Sample Memory Map for the Simulator

2-5Simulator Features

2.2 A Sample Memory Map for the Simulator

Because you must define a memory map before you can run any programs,
it’s convenient to define the memory map in an initialization batch file.
Figure 2–1 (a) shows a sample of memory map commands that you could in-
clude in an initialization batch file for the simulator.

The MA commands (described on page 2-6) define valid memory ranges and
identify the read/write characteristics of the memory ranges. The MAP com-
mand enables mapping. (Note that by default, mapping is enabled when you
invoke the debugger.) Figure 2–1 (b) illustrates the memory map defined by
the MA commands in Figure 2–1 (a).

For more information about memory mapping and the initialization batch file,
see the TMS370 Family C Source Debugger User’s Guide.

Figure 2–1. Sample Memory Map for Use With a ’370 Simulator

(a) Memory map commands (b) Memory map for ’370 local memory

0x0000
to 0x00FF

0x0100
to 0x01FF

Internal RAM

0x1020
to 0x102F

MA 0x0,0x100,iram
MA 0x100,0x100,xram
MA 0x1010,0x10,iram
MA 0x1020,0x10,iram
MA 0x1030,0x10,siper
MA 0x1040,0x10,tiper
MA 0x1050,0x10,siper
MA 0x1060,0x10,tiper
MA 0x1070,0x10,iram
MA 0x2000,0x1000,xram
MA 0x4000,0x4000,xrom

0x1040
to 0x104F

0x1010
to 0x101F

Internal RAM

Timer internal peripheral frame

Serial internal peripheral frame0x1030
to 0x103F

External RAM

Internal RAM

0x1050
to 0x105F

Serial internal peripheral frame

0x1060
to 0x106F

0x1070
to 0x107F

Timer internal peripheral frame

0x4000
to 0x7FFF

0x2000
to 0x2FFF

External RAM

Internal RAM

External ROM

0x3000
to 0x3FFF

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

Reserved

0x1080
to 0x1FFF

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

Reserved

0x0200
to 0x100F

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

Reserved

Identifying Usable Memory Ranges

 2-6

2.3 Identifying Usable Memory Ranges

The debugger’s MA (memory map add) command identifies valid ranges of
target memory. With the MA command, you can define two basic kinds of
memory:

� Internal memory simulates access to memory locations that are internal
to the simulated TMS370 device.

� External memory simulates access to a memory expansion system.

The syntax of the MA command is:

ma address, length, type

� The address parameter defines the starting address of a range. This
parameter can be an absolute address, any C expression, the name of a
C function, or an assembly language label.

A new memory map must not overlap an existing entry. If you define a
range that overlaps an existing range, the debugger ignores the new
range and displays this error message in the display area of the
COMMAND window:

Conflicting map range

� The length parameter defines the length of the range in bytes. This
parameter can be any C expression.

� The type parameter identifies the read/write characteristics and locations
of the memory range. The type must be one of the keywords shown in
Table 2–3.

Table 2–3. Keywords for Use With the Type Parameter

To identify this kind of memory
Use this keyword as
the type parameter

Read-only memory R, ROM, EROM

Read-only external (expansion) memory XROM

Read-only internal memory IROM

Read/write memory RW, RAM, ERAM

Read/write external memory XRAM

Read/write internal memory IRAM

Note: You cannot use the simulator to simulate EPROM/EEPROM memory or memory that
uses wait states.

Identifying Usable Memory Ranges

2-7Simulator Features

Table 2–3. Keywords for Use With the Type Parameter (Continued)

To identify this kind of memory
Use this keyword as
the type parameter

Read/write serial peripheral frame in memory SERW, SEPER

Read/write serial peripheral frame in internal memory SIRW, SIPER

Read/write timer peripheral frame in memory TERW, TEPER

Read/write timer peripheral frame in internal memory TIRW, TIPER

Inaccessible memory PROTECT

Note: You cannot use the simulator to simulate EPROM/EEPROM memory or memory that
uses wait states.

Be sure that the map ranges that you specify in a common object file format
(COFF) file match those that you define with the MA command. Moreover, a
command sequence such as:

ma x,y,ram; ma x+y,z,ram

does not equal

ma x,y+z,ram

If you were planning to load two COFF blocks, where the first block spanned
the length of y and the second block spanned the length of z, you would use
the first MA command example. However, if you were planning to load a COFF
block that spanned the length of y + z, you would use the second MA com-
mand example.

Alternatively, you could turn memory mapping off during a load by using the
MAP OFF command. Although the MAP OFF command can be useful, you
need to be sure that you use it correctly. See the Defining a Memory Map chap-
ter of the TMS370 Family C Source Debugger User’s Guide for more informa-
tion about using the MAP OFF command.

Identifying Usable Memory Ranges

 2-8

Restrictions on usable memory ranges

The following restrictions apply to identifying usable memory ranges:

� Both the starting address and the length of a memory range that you define
with the MA command must be a multiple of 16 bytes. If you define a range
that is not a multiple of 16 bytes, the debugger ignores the new range and
displays this error message in the display area of the COMMAND window:

Illegal mapping granularity

If you’re defining a peripheral frame, this restriction does not apply.

� You cannot specify more than 20 memory ranges.

� Memory locations within the address range 0x1000 to 0x10FF are
dedicated to peripheral frames. This range can be simulated, except for
addresses 0x1000 and 0x1010, which are used by the simulated device.

Simulating I/O Space

2-9Simulator Features

2.4 Simulating I/O Space

The ’370 simulator allows you to simulate peripheral I/O port accesses. To do
so, use the MC command to connect a peripheral port to an input or output file.
This simulates reads and writes of peripheral data by allowing you to read data
in from a file and/or write data out to a file.

Connecting a peripheral I/O port

The MC (memory connect) command connects a peripheral port address to
an input or output file. The syntax for this command is:

mc portaddress, length, filename, {READ | WRITE}

� The portaddress parameter defines the address of the peripheral port.
This parameter can be an absolute address, any C expression, the name
of a C function, or an assembly language label.

The portaddress must be previously defined with the MA command as the
beginning address of a range of memory, and that range must have a type
of SEPER, SIPER, SERW, or SIRW. The address range defined for the
peripheral frame must be between 0x1000 to 0x10FF.

� The length parameter is the length (in bytes) of the file that you are con-
necting to the peripheral port address.

� The filename parameter can be any filename. If you connect a port to read
from a file, the file must exist, or the MC command will fail.

� The final required parameter is specified as READ or WRITE and defines
how the file will be used (for input or output, respectively).

The file is accessed (in read or write mode) during the execution of any instruc-
tion that reads from or writes to the address of the associated memory-
mapped peripheral frame.

Example 2–1 shows how an input peripheral port can be connected to an input
file named in.dat.

Simulating I/O Space

 2-10

Example 2–1. Connecting an Input Peripheral Port to an Input File

Assume that the file in.dat contains words of data in hexadecimal format,
one per line, like this:

0A
10
20
.
.
.

Notice that each line starts with a two-digit hex value; anything other than
that on the line is ignored and assumed to be a comment.

These two debugger commands set up and connect a peripheral port:

MA 0x1020,0x10,SEPER Configure address 0x1020
as a read-only peripheral frame

MC 0x1020,1,in.dat,READ Open file in.dat and
connect to port address 0x1020

Assume that this ’370 instruction is part of your ’370 program. The instruc-
tion reads from the in.dat file:

MOV P022,A MOV instruction reads from file
and loads the read data in register A

Disconnecting a peripheral I/O port

Before you can use the MD command to delete a peripheral frame from the
memory map, you must use the MI command to disconnect the peripheral port.
The MI (memory disconnect) command disconnects a file from a peripheral I/O
port. The syntax for this command is:

mi portaddress, {READ | WRITE}

� The portaddress identifies the port that will be closed.

� The second parameter, READ or WRITE, must match the parameter that
was used when the port was connected with the MC command.

Simulating Interrupts

2-11Simulator Features

2.5 Simulating Interrupts

The ’370 simulator allows you to simulate and monitor internal and external
interrupt signals and to specify at what clock cycle you want an interrupt to oc-
cur. To do this, you create a data file and connect it to one of two interrupt levels
(or pins), LEV1 or LEV2.

Setting up your input file

In order to simulate interrupts, you must first set up an input file that lists inter-
rupt intervals. Your file must contain a clock cycle and an offset value in the
following format:

[clock cycle, offset] [([clock cycle, offset]...)] [rpt {n | EOS}]

Note that the parentheses are optional and are used for grouping interrupt val-
ues, while repeating a particular pattern.

� The clock cycle parameter represents the CPU clock cycle where you
want an interrupt to occur. Note that the square brackets around clock
cycle and offset are part of the syntax and must be included.

You can have two types of CPU clock cycles:

� Absolute. To use an absolute clock cycle, your cycle value must rep-
resent the actual CPU clock cycle where you want to simulate an inter-
rupt. For example:

[12,0xfa] [34,0xfc] [56,0xfa] [78,0xfc]

An interrupt signal is simulated at the 12th, 34th, 56th, and 78th CPU
clock cycles. Notice that no operation is done to the clock cycle value;
the interrupt occurs exactly as the clock cycle value is written.

� Relative. You can also select a clock cycle that is relative to the time at
which the last event occurred. For example:

[12,0xfa] [+34,0xfc] [55,0xfa] [+20,0xfc]

An interrupt signal is simulated at the 12th, 46th (12+34), 55th, and
75th (55+20) CPU clock cycles. A plus sign (+) before a clock cycle
adds that value to the clock cycle preceding it. As shown in this exam-
ple, you can mix both relative and absolute cycle values in your input
file.

You can choose to use a relative clock cycle value as your first clock
cycle parameter. In this case, the clock cycle value is relative to 0.

Simulating Interrupts

 2-12

� The offset parameter, when added to the interrupt table base address,
represents the interrupt vector location. The debugger reads this interrupt
vector and loads it into the PC. The offset value must be an 8-bit even num-
ber.

For example, the debugger reads your input file and is instructed to gener-
ate an interrupt on LEV1. Assume that the base address in the interrupt
table is 0x7F00 and that your offset value is 0x00FA. The debugger reads
the interrupt vector table at locations 0x7FFA and 0x7FFB to retrieve the
starting value of the PC.

� The rpt {n | EOS} parameter is optional and represents a repetition value.

You can have two forms of repetition to simulate interrupts:

� Repeat a fixed number of times. You can format your input file to re-
peat a particular pattern for a fixed number of times. For example:

[20,0x3e] ([+5,0x24] [+10,0x10]) rpt 4

The values inside of the parentheses represent the portion that is re-
peated. Therefore, an interrupt signal is simulated at the 20th, 25th
(20+5), 35th (25+10), 40th (35+5), 50th (40+10), 55th (50+5), 65th
(55+10), 70th (65+5), and 80th (70+10) clock cycles.

Make sure that n is a positive integer value.

� Repeat to the end of simulation. To repeat the same pattern
throughout the simulation, add the string EOS to the line. For example:

([+100,0xf0]) rpt EOS

An interrupt is generated every 100 clock cycles.

Programming the simulator

After you have created your input file, you can use debugger commands to:

� Connect the interrupt pin to your input file
� List the interrupt pins
� Disconnect the interrupt pin from your input file

Use these commands as described below, or use them from the PIN pulldown
menu at the top of the debugger display.

To attach your input file to the interrupt pin, use the PINC command:

pinc pinname, filename

� The pinname parameter identifies the interrupt pin and must be either
LEV1 or LEV2.

� The filename parameter is the name of your input file. Make sure you have
set up your input file as described in the previous subsection.

Simulating Interrupts

2-13Simulator Features

For example, to connect the input file myfile to the LEV1 interrupt pin, you
would enter:

pinc lev1, myfile

Note: Do Not Connect a Pin to an Empty File

Do not try to connect a pin to an empty file. Make sure you set up the file as
described in the Setting up your input file subsection, starting on page 2-11.

To verify that your input file is connected to the correct pin, use the PINL com-
mand. The syntax for this command is:

pinl

The PINL command displays all of the unconnected pins first, followed by the
connected pins. For a connected pin, the simulator displays the name of the
pin and the absolute pathname of the file in the COMMAND window.

COMMAND

>>>

LEV1 NULL

LEV2 /370hll/myfile

PIN FILENAME
~~~~~~~~~~~~~~~~~~~~~~~~~~~

When you want to connect another file to an interrupt pin, the PINL command
is useful for looking up an unconnected pin.

To end the interrupt simulation, you must disconnect the pin. You can do this
with the PIND command:

pind pinname

The pinname parameter identifies the interrupt pin and must be either LEV1
or LEV2. The PIND command detaches the file from the interrupt pin. After
executing this command, you can connect another file to the same pin.



Using Predefined Constants With Conditional Commands

 2-14

2.6 Using Predefined Constants With Conditional Commands

In batch files, you can control the flow of debugger commands by choosing to
conditionally execute debugger commands or set up a looping situation by us-
ing the IF/ELSE/ENDIF or LOOP/ENDLOOP commands, respectively. The
TMS370 Family C Source Debugger User’s Guide describes these com-
mands.

When you use the IF/ELSE/ENDIF command sequence, you can use some
predefined constants. These constants evaluate to 0 (false) or 1 (true).
Table 2–4 shows the constants and their corresponding tools.

Table 2–4. Predefined Constants for Use With Conditional Commands

Constant Debugging Tool

$$XDS22$$ Emulator

$$SIM$$ Simulator

$$ABD$$ Application board

$$CDT370$$ Compact development tool

One way you can use these predefined constants is to create an initialization
batch file that works for any debugger tool. This is useful if you are using, for
example, both an XDS/22  emulator and the simulator. To do this, you can set
up the following batch file:

if $$XDS22$$
echo Invoking initialization batch file for XDS.
use \370tools
take init.cmd
.
.
endif

if $$SIM$$
echo Invoking initialization batch file for simulator.
use \370hll
take init.cmd
.
.
endif
.
.

In this example, the debugger executes only the initialization commands that
apply to the debugging tool that you invoke.



Benchmarking

2-15Simulator Features

2.7 Benchmarking

The simulator version of the debugger allows you to keep track of the number
of CPU clock cycles consumed by a particular section of code. The debugger
maintains the count in a pseudoregister named CLK. This process is referred
to as benchmarking.

Benchmarking code is a multiple-step process:

Step 1: Set the program counter (PC) value at the statement that marks the
beginning of the section of code that you’d like to benchmark. (You
can do this either by editing the PC value at the command line or by
setting a software breakpoint at the statement you’d like to bench-
mark.)

Step 2: Set a software breakpoint at the statement that marks the end of the
section of code you’d like to benchmark.

Step 3: Now enter the RUNB command:

runb 

When the processor halts at the second breakpoint, the value of CLK is valid.
To display it, use the ? command or enter it into the WATCH window with the
WA command. This value is valid until you enter another RUN command.

Notes:

1) The value in CLK is valid only after using a RUNB command that is termi-
nated by a software breakpoint. (The maximum value for CLK is 65535.)

2) When programming in C, do not use a variable named CLK.

For more information about benchmarking and using software breakpoints,
see the TMS370 Family C Source Debugger User’s Guide.

2.8 Profiling Code Execution

The simulator version of the debugger includes a second debugger environ-
ment: a profiling environment. The profiling environment provides a method
for collecting execution statistics about specific areas in your code. This gives
you immediate feedback on your application’s performance.

The profiling environment is described in the TMS370 Family C Source De-
bugger User’s Guide.

Benchmarking / Profiling Code Execution



Debugger Messages

 2-16

2.9 Debugger Messages
Appendix C, Debugger Messages, in the TMS370 Family C Source Debugger
User’s Guide contains an alphabetical listing of the progress and error mes-
sages that the debugger might display in the display area of the COMMAND
window. In addition to the messages listed in that appendix, you may encoun-
ter the following messages.

A

Area restricted to peripherals
Description You attempted to add a nonperipheral frame range within the

dedicated peripheral area (0x1000 to 0x10FF).

Action Reenter the MA command, specifying a range that is not with-
in 0x1000 to 0x10FF.

C

Cannot connect pin
Description You attempted to connect a pin to a file that the debugger can-

not open.

Action Be sure that the filename was typed correctly. If it was, then:

1) Check the access rights of the file and/or the directory
that contains the file.

2) Reenter the command and specify full path information
with the filename.

Cannot disconnect pin
Description You tried to disconnect the input file from a pin that was not

previously connected to that pin.

Action Use the PINL command to list all of the pins and the files con-
nected to them. Use the PIND command to reenter the correct
pin name and filename.

Cannot map external peripheral into area
Description You attempted to add an external peripheral frame range that

is outside of the dedicated external peripheral area (0x1000
to 0x10FF).

Action Reenter the MA command, specifying a range that is within
0x1000 to 0x10FF.



Debugger Messages

2-17Simulator Features

Cannot map internal peripheral into area
Description You attempted to add an internal peripheral frame range that

is outside of the dedicated internal peripheral area (0x1000 to
0x10FF).

Action Reenter the MA command, specifying a range that is within
0x1000 to 0x10FF.

Cannot map memory into peripheral area
Description One of the following occurred:

� The debugger tried to access the memory range dedi-
cated to peripheral frames (0x1000 to 0x10FF).

� You attempted to define emulator, internal, external, or
read-only memory in the memory range dedicated to pe-
ripheral frames (0x1000 to 0x10FF).

Action Remap the reserved memory accesses.

Cannot map port address
Description You attempted to do a connect/disconnect on an illegal port

address.

Action Verify that the address you specified is a valid port address.

Cannot open port file
Description You attempted to connect a port to a file that the debugger

cannot open.

Action Be sure that the filename was typed correctly. If it was, then:

1) Check the access rights of the file and/or the directory
that contains the file.

2) Reenter the command and specify full path information
with the filename.

F

File already tied to port
Description You attempted to connect to an address that already has a file

connected to it.

Action Connect the file to a mapped port that is not already con-
nected to another file.



Debugger Messages

 2-18

File already tied to this pin
Description You attempted to connect an input file to an interrupt pin that

already has a file connected to it.

Action Use the PINC command to connect the file to another inter-
rupt pin that is not connected to a file.

File does not exist
Description The port file could not be opened for reading.

Action Be sure that the file exists as named. If it does, enter the USE
command to identify the file’s directory.

Files must be disconnected from ports
Description You attempted to delete a memory map that has files con-

nected to it.

Action You must disconnect a port with the MI command before you
can delete it from the memory map.

I

Illegal mapping granularity
Description You attempted to do one of the following:

� Add a memory range that does not start on an address
that is a multiple of 16 bytes or does not have a length that
is a multiple of 16 bytes. This restriction does not apply
when you’re defining a peripheral range or an expansion
memory range

� Add an expansion memory range that does not start on
an address that is a multiple of 4K bytes or does not have
a length that is a multiple of 4K bytes

Action Choose the appropriate action for the type of memory range
that you are trying to add:

� For a nonperipheral and nonexpansion memory range,
reenter the MA command and specify a range that starts
on an address that is a multiple of 16 bytes and has a
length that is a multiple of 16 bytes.

� For an expansion memory range, reenter the MA com-
mand and specify a range that starts on an address that
is a multiple of 4K bytes and has a length that is a multiple
of 4K bytes.



Debugger Messages

2-19Simulator Features

Illegal memory access

Description The CPU attempted a read access to an inaccessible or un-
defined memory range or a write access to an inaccessible,
undefined, or read-only memory range.

Action Check your memory map to be sure that you access valid
memory.

Illegal syntax for this type of pin

Description You attempted to connect a pin to a file that doesn’t have a
valid syntax.

Action Correct the input file. Refer to Section 2.5, Simulating Inter-
rupts, for more information about creating an input file. After
you’ve modified the file, use the PINC command to reconnect
the file.

Illegal write access

Description Your program attempted to write to an unmapped address or
to an address that does not have write permission.

Action Check your memory map and modify it as necessary.

Input number too big at line number

Description You attempted to connect a pin to a file that has an input value
greater than 0x00FF FFFF. The input value can be 0 through
0x00FF FFFF only.

Action Correct the input file and use the PINC command to recon-
nect the file.

Interrupt vector offsets must be even

Description In the file that you connected to a pin, there is an incorrect off-
set value (an odd value) associated with a clock cycle. This
error is detected during program execution.

Action Disconnect the file that contains the error, modify the file to
correct the offset value, then use the PINC command to re-
connect the file. Next, enter the RESET command to reset the
value of the CLK pseudoregister, enter the RESTART com-
mand, and rerun you program.



Debugger Messages

 2-20

Invalid memory attribute

Description The third parameter of the MA command specifies the type, or
attribute, of the block of memory that MA adds to the memory
map. The parameter entered did not match one of the valid
attributes.

Action Reenter the MA command. Use one of the following valid
parameters to identify the memory type:

Parameter Type of Memory

R, ROM, EROM Read-only memory

XROM Read-only external (expansion)
memory

IROM Read-only internal memory

RW, RAM, ERAM Read/write memory

XRAM Read/write external memory

IRAM Read/write internal memory

SERW, SEPER Read/write serial peripheral frame

SIRW, SIPER Read/write serial peripheral frame

TERW, TEPER Read/write timer peripheral frame

TIRW, TIPER Read/write timer memory

PROTECT Inaccessible memory

Invalid memory attributes combination

Description While attempting to add a memory range, you used an invalid
memory-type keyword.

Action Refer to Section 2.3, Identifying Usable Memory Ranges, on
page 2-6 for a complete list of valid memory-type keywords.
Reenter the MA command with a valid keyword.



Debugger Messages

2-21Simulator Features

N

Nesting of pending interrupts cannot exceed 4

Description The debugger cannot handle more than four nested levels of
pending interrupts (interrupt requests that occur during the
execution of an interrupt routine).

Action Ensure that the value of the ST register enables this interrupt
pin during program execution. If it does, disconnect the file
that contains the error, modify the file, then use the PINC com-
mand to reconnect the file. Next, enter the RESET command
to reset the value of the CLK pseudoregister, enter the
RESTART command, and rerun you program.

Nesting of repeats cannot exceed 100
Number of pending interrupts cannot exceed 100

Description The debugger cannot handle more than 100 pending inter-
rupts.

Action Ensure that the value of the ST register enables this interrupt
pin during program execution. If it does, disconnect the file
that contains the error, modify the file, then use the PINC com-
mand to reconnect the file. Next, enter the RESET command
to reset the value of the CLK pseudoregister, enter the
RESTART command, and rerun you program.

No file tied to this pin

Description You tried to disconnect the input file from a pin that was not
previously connected to that pin.

Action Use the PINL command to list all of the pins and the files tied
to them. Use the PIND command to reenter the correct pin-
name and filename.

P
Pinname not valid for this chip

Description You attempted to connect or disconnect an input file to an
invalid interrupt pin.

Action Reconnect or disconnect the input file to an unused interrupt
pin (LEV1 or LEV2).



Debugger Messages

 2-22

R

Read not allowed for port

Description You attempted to connect a file for input operation to an ad-
dress that is not configured for read.

Action Remap the port or correct the access in your source code.

S

Syntax error at line number: ?

Description You attempted to connect a pin to a file that doesn’t have a
valid syntax.

Action Correct the input file. Refer to Section 2.5, Simulating Inter-
rupts, on page 2-11 for more information about creating an in-
put file. After you’ve modified the file, use the PINC command
to reconnect the file.

W

Write not allowed for port

Description You attempted to connect a file for output operation to an ad-
dress that is not configured for write.

Action Either change the ’370 software to write to a port that is confi-
gured for write, or change the attributes of the port.


