
��������
������� ��������� ��
��	 ��������� ����� ���
��������

Application
Report

1996 Digital Signal Processing Solutions

Printed in U.S.A., June 1996 SPRA066

Modified Goertzel Algorithm in
DTMF Detection

Using the TMS320C80

Application Report

Chiouguey J. Chen
Digital Signal Processing Solutions—Semiconductor Group

SPRA066
June 1996

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1996, Texas Instruments Incorporated

iii

Contents
Title Page

INTRODUCTION 1.
MODIFIED GOERTZEL ALGORITHM 2.
IMPLEMENTATION 4.
PERFORMANCE 7.
SUMMARY 7.
REFERENCES 7.

Appendix
Title Page

MODIFIED GOERTZEL ALGORITHM SOURCE CODE 9.

iv

1

INTRODUCTION

Dual-tone multi-frequency (DTMF) signaling is a standard in telecommunication systems.(1, 3) It has been
gaining popularity for some years now because of its numerous advantages over the traditional telephone
signaling scheme. In the DTMF scheme, a telephone is equipped with a keypad as shown in Figure 1. The
A, B, C, and D keys are usually not present on a regular telephone keypad. Each key represents the sum
of a pair of tones. One tone is from the high-frequency group between 1 kHz and 2 kHz, and the other tone
is from the low-frequency group below 1 kHz. These frequencies are selected carefully so that the DTMF
signal, which is the sum of the two tones, can be distinguished clearly as the signaling tone even in the
presence of speech waveforms that might occur on the line.

Á

ÁÁÁ
ÁÁÁ

*

ÁÁÁ
ÁÁÁ

7

ÁÁÁ
ÁÁÁ
ÁÁÁ

4

ÁÁÁ
ÁÁÁ

1

ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ

8

ÁÁÁ
ÁÁÁ
ÁÁÁ

5

ÁÁÁ
ÁÁÁ

2

ÁÁÁ
ÁÁÁ

#

ÁÁÁ
ÁÁÁ

9

ÁÁÁ
ÁÁÁ
ÁÁÁ

6

ÁÁÁ
ÁÁÁ

3

ÁÁÁ
ÁÁÁ

D

ÁÁÁ
ÁÁÁ

C

ÁÁÁ
ÁÁÁ
ÁÁÁ

B

ÁÁÁ
ÁÁÁ

A

1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz

770 Hz

852 Hz

941 Hz

Low-
Frequency

 Group

High-Frequency Group

Normal Keypad

Figure 1. DTMF Keypad

DTMF detection is used to detect DTMF signals in the presence of speech and dialing tone pulses. Besides
being used to set up regular calls on a telephone line, DTMF detection is suitable for computer applications
such as voice mail and electronic mail, and telephone control features such as conference calling and call
forwarding.(3)

The intent of this application report is to demonstrate the C-callable Goertzel DTMF-detection algorithm
implementation on one of the TMS320C80’s parallel processors (PP)—an advanced 32-bit digital signal
processor (DSP) with a 64-bit instruction word. A PP is capable of performing a number of operations in
a single clock cycle because of its wide instruction word, three-operand arithmetic logic unit, and
single-cycle multiplier. Furthermore, the PP code is allocated with a PP register allocator and assembled
with a PP assembler.

2

This report describes the implementation with the assumption that the received DTMF signal has passed
a tone validation and correct timing intervals check, and has been filtered back to its original two tones.

The Goertzel algorithm implementation examines the energy of one of the two tones from an incoming
signal at eight different DTMF frequencies to determine which DTMF frequency is present. To do this
evaluation, the input signal is transformed to the DTMF frequencies, which are computed by the modified
Goertzel algorithm. The matched filter concept is used for each DTMF frequency to determine the
frequency at which the incoming signal has maximum energy. Since maximum energy corresponds to
DTMF frequency, this procedure enables us to detect the DTMF frequency.

MODIFIED GOERTZEL ALGORITHM

It is important to choose the right algorithm for detection to save memory and computation time. The
Goertzel algorithm is the optimal choice for this application because it does not use many constants, which
saves a great deal of memory space. Also, only eight DTMF frequencies need to be calculated for this
application, and the Goertzel algorithm can calculate selected frequencies. This saves computation time.

The DTMF frequency is transformed to a discrete fourier transform (DFT) coefficient. The relationship
between the DTMF frequency (fi) and the DFT coefficient (k) is given in equation (1): (4)

k � N� fi
fs (1)

where

fs = Sampling frequency

N = Filter length

Note that k is the nearest integer to equation (1). For each k, the state variable, vk(n), is obtained by using
the recursive difference equation shown in equation (2): (2)

vk(n) � 2� cos�2� �� k
N

� � vk(n – 1)–vk(n – 2)� x(n)
(2)

where

n = 0, 1, ..., N

Within the same k, equation (2) is iterated until the last state variable, vk(N), is obtained. Thereafter, the
output, yk(N), is given in equation (3):

yk(N) � vk(N)–Wk
N � vk(N–1) (3)

where

Wk
N � exp�–2� �� k�N�

3

This is the desired DFT value, that is, X(k) = yk(N). Equations (2) and (3) are described in the direct-form
realization shown in Figure 2. This figure gives an overview of the entire Goertzel algorithm, so that
equation (3) is computed once after equation (2) has been calculated N+1 times. Also, k is constant when
equations (2) and (3) are evaluated.

Á
Á

Á
Á

Á

Á
Á

x(n)

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Á

Á

Á
Á

Á 2 cos �2�k
N
�

Z–1

–W
k
N

vk(n)
yk(n)

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Z–1

-1

Á
Á

Figure 2. Direct-Form Realization of the Goertzel Algorithm

The Goertzel algorithm is modified further based on the matched filter concept to achieve DTMF detection.
The energy of the incoming signal is calculated at the eight DTMF frequencies. The DTMF frequency at
which the incoming signal has maximum energy is the detected frequency. This energy calculation is given
in equation (4):

mag_square� |X(k)|
2

(4)

max� maximum (max, mag_square) (5)

In equation (5), max is the maximum energy that initially was set to a zero value and stored in memory.
The energy from equation (4) is used for comparison with the stored maximum energy. As soon as the new
energy is greater than the stored maximum energy from the comparison, this new energy is stored as the
maximum energy for the next comparison. Also, the index that was initialized to a zero value is changed
to a number that represents the frequency of this new energy. The comparison is performed for a total of
eight times. After the final comparison, the index, a number between 0 and 7 from the result of the
comparisons, is returned to the calling program. This number represents the detected DTMF frequency.

4

IMPLEMENTATION

Since the telephone industry has preset the sampling frequency to 8 kHz and the DTMF frequencies to 697,
770, 852, 941, 1209, 1336, 1477, and 1633 Hz, the filter length must be large enough to find the desired
k value that corresponds to the DTMF frequencies. Therefore, there is a trade off to be considered between
the computation burden and better resolution. For this application report, the filter length, N, was chosen
as 105, which is the smallest value that can fulfill DTMF detection.(3) Table 1 shows the calculated k values
for N = 105.

Table 1. Calculated k Values for N = 105
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

FREQUENCY (Hz)
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

k
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

697
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

9
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

770 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

10
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

852 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

11

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

941 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

12

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1209 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

16

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1336 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

18

ÁÁÁÁÁÁÁÁ1477 ÁÁÁÁÁÁÁ19ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ1633

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ21

The C-callable modified Goertzel algorithm uses block processing. The algorithm arguments include a
filter order, a pointer to the input signal, and a pointer to a structure of filter coefficients. Before the
detection algorithm starts, an input signal (a Q8 fixed-point number) is generated for a total of 105 samples
and stored in a memory location containing 105 2-byte memory spaces. The values of the coefficients,
cos(2πk/N) and sin(2πk/N), are pre-stored in a memory location consisting of 16 2-byte memory spaces.
Also, there are two additional load operations in the recursive part of the filter function. Two memory
accesses are needed to perform these loads. The algorithm requires 264 bytes of program memory and
2N+64 bytes of on-chip data RAM. The array index range and fixed-point format of internal processing
variables used in the algorithm are shown in Table 2.

Table 2. Internal Processing Variables

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NAME
ÁÁÁÁÁ
ÁÁÁÁÁ

ARRAY INDEX
RANGE

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

FIXED-POINT
FORMAT

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

DESCRIPTION
ÁÁÁÁÁÁ
ÁÁÁÁÁÁN

ÁÁÁÁÁ
ÁÁÁÁÁ1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁQ0

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁFilter orderÁÁÁÁÁÁ

ÁÁÁÁÁÁM
ÁÁÁÁÁ
ÁÁÁÁÁ1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁQ0

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁNumber of DTMF frequenciesÁÁÁÁÁÁ

ÁÁÁÁÁÁ
x

ÁÁÁÁÁ
ÁÁÁÁÁ

0 to N-1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Q8
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Input signal
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

coefficients ÁÁÁÁÁ
ÁÁÁÁÁ

0 to M-1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Q8 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Filter coefficients
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

v1 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Q8 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

State variable v(n-1)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

v2 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Q8 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

State variable v(n-2)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

xfi ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Q8 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Detected frequency (imaginary part)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

xfr ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Q8 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Detected frequency (real part)

ÁÁÁÁÁÁmag_square ÁÁÁÁÁ1 ÁÁÁÁÁÁQ16 ÁÁÁÁÁÁÁÁÁÁÁEnergy of the complex frequencyÁÁÁÁÁÁ
ÁÁÁÁÁÁmax

ÁÁÁÁÁ
ÁÁÁÁÁ1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁQ16

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁMaximum energyÁÁÁÁÁÁ

ÁÁÁÁÁÁ
index_flag

ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Q0
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Detected index of the matched frequency

5

This program takes full advantage of the 64-bit-long instruction word in the TMS320C80’s PP to do many
parallel operations in one cycle. Therefore, the number of cycles has been reduced to a minimum number
of instructions.

To avoid an overflow problem, the input signal and the filter coefficients are limited to a fixed-point Q8
format. The size of the input signal is 16 bits long. The size of the coefficients is 32 bits long wherein the
first half is the cosine element and the second half is the sine element. The input signal is loaded during
the recursive operation.

One set of coefficients, cosine and sine, is used to compute one DTMF frequency. The software does the
memory shift while calculating the new v1 state variable for the memory location. The initial state
variables, v1 and v2, are set to zero. When each new v1 is computed, the old v1 is shifted to the v2 memory
location. The old v2 is then discarded. Since this is a recursive operation, each state variable is dependent
on the previous value. In other words, the number of instructions cannot be reduced. However, this doesn’t
require many memory spaces.

The recursive operation is repeated N times. The last recursive operation is combined with the
non-recursive part. The DFT value, X(k), is calculated separately as its real and imaginary parts. Its energy
is obtained by summing the squares of the real and imaginary parts (that is, |X(k)|2). This energy uses a Q16
format to save one instruction of PP code by not shifting back to Q8 format. The energy of the first DTMF
frequency is compared to the maximum energy, which was set initially to a zero value and stored in the
stack. The greater energy is stored back to the stack along with the index that indicates which frequency
has the greater energy.

Next, the state variables are cleared, the pointer is reset to the beginning of the input signal, and the second
cycle begins. The cycle is repeated until the last energy is computed. When the comparison process is over,
the greatest energy and its corresponding index reside in register d5, which returns an integer to the calling
function. The number of cycles for the C-callable Goertzel algorithm is 19+(8+2N)8+4. This number
excludes ICACHE misses, and assumes that the filter coefficients buffer and the input memory buffer are
stored in different on-chip data RAMs. Figure 3 shows a flow chart of this algorithm.

6

Á
Á

Á
Á

Á

Á

ÁÁClear v1, v2
Load filter
coefficient

Compute the non-
recursive part of the
Goertzel algorithm

Is the
new energy

> stored
energy?

Load next filter
coefficient, reset

input signal pointer

Yes

Á
Clear v1, v2

No

Set up C-callable
PP code registers

Á
Á

Á

Compute the
recursive part of the
Goertzel algorithm

Is recursive
loop=105?

NoYes

Á

Compute the
energy

Á
Return index to
calling program

Get one 8-kHz
input sample

Á

No

Yes

Á

Á

Store new energy
and

corresponding index

Á

Is
outer loop=8?

Figure 3. Flow Chart of the Modified Goertzel Algorithm

7

PERFORMANCE

For this application report, five sets of test cases were generated that were based on DTMF frequencies with
different percentage errors (that is, 0%, ±1.5%, and ±3.0%). The test results showed that the modified
Goertzel algorithm can detect all the frequencies within an offset range of ±1.5%; however, it does not
detect the frequency that has an offset range of ±3.0%.

SUMMARY

The modified Goertzel algorithm can detect the incoming frequency within a ±1.5% offset range. This
algorithm does not check for overflow problems, nor is it a complete detection algorithm. To ensure
complete detection, further evaluation of the detected tone in the form of many tests is required. These tests
could include twist tests, dynamic tests, guard time tests, signal-to-noise ratio tests, and talk off tests.

REFERENCES
1. C. Marven, “General-Purpose Tone Decoding and DTMF Detection,” in Theory, Algorithms,

and Implementations, Digital Signal Processing Applications with the TMS320 Family, Vol. 2,
literature number SPRA016, Texas Instruments (1990).

2. J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and
Applications, 2nd ed., Macmillan, New York, NY (1992).

3. G. L. Smith, Dual-Tone Multifrequency Receiver Using the WE DSP16 Digital Signal
Processor, AT&T Application Note.

4. P. Mock, “Add DTMF Generation and Decoding to DSP-µP Designs,” in Theory, Algorithms,
and Implementations, Digital Signal Processing Applications with the TMS320 Family, Vol. 1,
literature number SPRA012A, Texas Instruments (1989).

5. Y. C. Huang, “DSP Techniques for Telecommunication Systems,” Master’s thesis, Northern
Illinois University (August 1995).

8

9

APPENDIX/MODIFIED GOERTZEL ALGORITHM SOURCE CODE

*–––

* Copyright (C) 1995 Texas Instruments Incorporated. All Rights Reserved

*–––

*

* dftgl_mod.s –– This C-callable modified Goertzel algorithm is implemented

* on one of the C80’s Parallel Processors (PP). It computes 8

* frequencies and returns the index of the frequency which has

* maximum energy. The Goertzel algorithm does not require much

* memory and is optimal when used to compute a small number of

* frequencies.

*

* Environment:

* –– execute on a PP (TMS320C80 devices).

* –– Allocate with versions 1.00 and above of TI’s PP register allocator

* –– Assemble with versions 1.10 and above of TI’s PP assembler.

*

**

; type description

;

arg1 .set d1; argument number of taps of filter

arg2 .set d2; argument pointer to input passed by calling

arg3 .set d3; argument pointer to coefficients passed by

 ; calling

index .set d5; output flag register

c .reg d ; input cosine register

count .reg d ; intermediate current count register

count1 .reg d ; intermediate next count register

mag_square .reg d ; intermediate energy register

max .reg d ; intermediate maximum energy register

s .reg d ; input sine register

sum .reg d ; intermediate sum register

two_c .reg d ; input cosine ×2 register

one .reg d ; intermediate one register

two .reg d ; intermediate two register

10

v1 .reg d ; intermediate recursive output –1 register

v2 .reg d ; intermediate recursive output –2 register

x .reg d ; input input signal register

xfi .reg d ; intermediate imag frequency register

xfr .reg d ; intermediate real frequency register

xfi_2 .reg d ; intermediate squared imag frequency register

xfr_2 .reg d ; intermediate squared real frequency register

zero_val .reg d ; intermediate zero register

Gx_MAX .reg gx; constant

Lx_INDEX .reg lx; constant

Lx_COUNT .reg lx; constant

Ga_struct_ptr .reg ga; input pointer to structure

Ga_x_start .reg ga; input pointer to start of input buffer

Ga_cos .reg ga; input pointer to cosine

La_sin .reg la; input pointer to sine

La_x .reg la; input pointer to input buffer

dum_val .dummy

 .system $dftgl_mod

 .system _dftgl_mod

 .ptext

 .entry arg1,arg2,arg3,a12,d6,d7,La_x

 .lock a4

$dftgl_mod:

_dftgl_mod:

 *––sp = d6 ; Push the save–on–entry register onto

 ; stack

 *––sp = d7

 *––sp = a12

11

loop_setup:

 Ga_x_start = arg2 ; Point to start of input signal

 Ga_struct_ptr = arg3 ; Point to start of coefficients mem

 le0 = OUT_LOOP_END ; Initialize loop registers, and

 lrs0 = 7 ; do outer loop 8 times

 ls0 = OUT_LOOP_START

 le1 = RECURSIVE_LOOP_END ; Initialize loop registers, and

 lrs1 = arg1–1 ; do recursive loop N times

 ls1 = RECURSIVE_LOOP_START ; N is the number of taps of the

 ; filter

 Lx_INDEX = 4 ; Set up constants for stack storage

 Lx_COUNT = 5

 Gx_MAX = 6

 d0 = SADD ; Define EALU operation

 v1 = 0 ; Initialize state variable to zero

 || La_x = Ga_x_start ; Set input signal pointer to first

 ; element

 two = &*(2) ; Set two register = 2

 || *(sp+[Lx_COUNT]) = v1 ; Save zero count on the stack

 v2 = v1 – v1 ; Initialize state variable

 || c =h *Ga_struct_ptr ; Load one cosine element

 || x =h *La_x++ ; Load first input element (16 bit)

 two_c = c * two ; two_c = 2 × c

 || *(sp+[Gx_MAX]) = v1 ; Save zero value for MAX on the stack

 || *(sp+[Lx_INDEX]) = v1 ; Save zero index on the stack

OUT_LOOP_START:

RECURSIVE_LOOP_START:

 v1 = v1 * two_c ; v1 = v1 × 2 × c, the result is a Q16

 ; number

 || sum = x – v2 ; sum = x – v2

 || v2 = v1 ; Update the state variable

12

 || x =h *La_x++ ; Load one input element, and then

 ; increment the input pointer

RECURSIVE_LOOP_END:

 v1 =ealu(SADD: v1>>8 + sum) ; Shift v1 back to a Q8 number, and

 ; then add the sum

 ; i.e. v1 = 2 × c × v1 – v2 + x

 || c =h *Ga_struct_ptr ; Reload current cosine element

 || zero_val = &*(0) ; Initialize zero_val register

 .cjump RECURSIVE_LOOP_START

 xfr = v1 * c ; xfr = v1 × c, the result is a Q16

 ; number

 || v2 = zero_val – v2 ; Set v2 = – v2

 || one = &*(1) ; one = 1

 || s =h *++Ga_struct_ptr ; Increment the struct pointer, and

 ; then load one sine element

 xfi = v1 * s ; Imag frequency xfi = v1 × s

 || xfr =ealu(SADD: xfr>>8 + v2) ; Shift xfr back to a Q8 number, and

 ; then add v2 i.e. xfr = v1 × c – v2

 || La_x = Ga_x_start ; Set input signal pointer to first

 ; element

 || count = *(sp+[Lx_COUNT]) ; Load count from stack

 xfr_2 = xfr * xfr ; Square real frequency, keep it as

 ; Q16 number

 || xfi =ealu(SADD: xfi>>8 + zero_val)

 ; Shift xfr back to a Q8 number, and

 ; then add a zero value in order to

 ; use the same d0

 || two = &*(2) ; Set two register = 2

 xfi_2 = xfi * xfi ; Square imag frequency

 || count1 = count + one ; Increment next count register

 || c =h *++Ga_struct_ptr ; Increment the struct pointer, and

 ; then load one cosine element

 || x =h *La_x++ ; Reload first input element (16 bit)

13

 mag_square = xfr_2 + xfi_2 ; Energy of the frequency

 || max = *(sp+[Gx_MAX]) ; Load max energy from stack

 || *(sp+[Lx_COUNT]) = count1 ; Store the incremented count back to

 ; stack

 two_c = c * two ; two_c = 2 × c

 || dum_val = max – mag_square ; Compare the max energy to the

 ; current energy

 || index = *(sp+[Lx_INDEX]) ; Load index value which corresponds

 ; to the max energy

 || v2 = &*(0) ; Reinitialize the state variable

 index = [lt] count ; If the max energy is less than the

 || max = [lt] mag_square ; current energy, then replace index

 ; to the current count and change max

 ; to the current energy

OUT_LOOP_END:

 v1 = v2 – v2 ; Reinitialize the state variable

 || *(sp+[Gx_MAX]) = max ; Store the max energy and the index

 || *(sp+[Lx_INDEX]) = index ; back to the stack

 .cjump OUT_LOOP_START

return:

 a12 = *sp++ ; Pop the save–on–entry register from

 ; the stack

 br = iprs

 d7 = *sp++

 d6 = *sp++

 .uexit

