

TMS320C54x DSP
Programming
Environment

APPLICATION BRIEF: SPRA182

 M. Tim Grady
Senior Member, Technical Staff
Texas Instruments
April 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

Contents

Abstract ...1

1. Introduction ...2

2. Basic Architecture...3

3. Advantages of Multiple Buses ..4

4. Special Instructions ..5

5. Addressing Modes ..6
5.1 Immediate Addressing ..6
5.2 Direct Addressing ...6
5.3 Indirect Addressing ...7
5.4 Accessing Memory-Mapped Registers..7

6. Pipeline ..8
6.1 Pipeline Conflicts ..8

6.1.1 Resolved Conflict ..9

7. Loops and Control Structures..11

8. Interrupts – Special Features ...13

9. More on Special Instructions..14

10. Summary..15

Figures

Figure 1. TMS320C54x block diagram..3
Figure 2. Symmetric filter ..5
Figure 3. The TMS320C54x pipeline...8
Figure 4. Auxiliary register updates...8
Figure 5. Multiple buses avoid pipeline conflicts ...9
Figure 6. Potential pipeline conflict ...9

Examples

Example 1. Direct addressing example:...6
Example 2. Indirect addressing example (with indexing):...7

TMS320C54x DSP Programming Environment 1

TMS320C54x DSP Programming
Environment

Abstract

This document describes some of the programming techniques that
may be used in different applications to take advantage of the full
feature set of the TMS320C54x high-performance fixed-point DSP
family.

2 SPRA182

1. Introduction

The TMS320C54x DSP family began as the Low-Power Enhanced
Architecture DSP (LEAD) project. The project goal was a fixed-point
DSP with power-saving characteristics well suited for the cellular
telephone market. The result is a multi-bus design with special CPU
features such as two accumulators and dual addressing modes that
support the design goals.

The TMS320C54x architecture is a departure from the C2x/C5x
family, but shares many peripherals and interface features with its
cousins. The TMS320C54x User’s Guide gives a detailed
description of the architecture. This application brief discusses
elements of the programming style used with this processor.

TMS320C54x DSP Programming Environment 3

2. Basic Architecture

Many DSPs are based around a Harvard architecture with separate
data and program memories and associated buses. The
TMS320C54x devices share this feature, but additional data buses
embellish the architecture and improve throughput. See Figure 1.

Figure 1. TMS320C54x block diagram

Internally, there are several buses:

� The P-Bus, used to fetch instructions from program memory, is also connected to the
multiplier to provide an input from program memory.

� A dual data-bus scheme, the C-Bus and D-Bus, permits fetching two operands in the
same cycle or a double word in one cycle.

� A separate output data bus, the E-Bus, allows simultaneous reads and writes in one
parallel instruction.

RO M
16 KW

[28 KW]

P ro gram B u s

C Bu s

D Bu s

E B us

T

B
U
S

D , E to T B us
E xchan ger

R EA DY
M STRB
IOS TR B

R /W
IS /D S/PS

H OLD
H OLDA

IA Q
A 0-A 15
D 0-D 15

Timer0

Serial Port0

Serial Port1

C
o

n
tr

o
lle

r

Program Address
Generator (PAGE N)

Program F low
Control

R epeat S ingle/Block
Control

Interrupt
Control

JT AG
T est Port

Programmable
Clock Mode (8)

A ddress
D ata

A ddress
D ata

A ddress
D ata

A ddress
D ata

Central Arithmetic L ogic Unit
(CAL U)

Accumulator
A

(40-bits)

Accumulator
B

(40-bits)

B arrel S hifter (-16,+31)

MAC B lock
17x17 Multiplier, 40-bit Adder

E xponent Unit
Compare/S elect/

S tore Unit

Data Address Generator
(DAGE N)

AR AU0 AR AU1

8 Auxil iary R egis ters
AR 0-AR 7

E xternal Wait-S tate
Generator (0-7)

2 Power Down Modes
IDL E 1, IDLE 2

R ESET
IN T0-3
IA C K

M C /MP
X2/CLKIN

C LKM D1-3
C LKOU T

XF
B IO

RAM
4 KW

[5 KW]
16 16

16 16 16 16 16

16

1616 161616

16

[] Specific to the T MS 320C541 device

4 SPRA182

3. Advantages of Multiple Buses

The dual data buses provide two address generators for fetching
operands. These accesses are via the eight auxiliary registers (AR0
to AR7) by indirect addressing. For example, if AR2 points to a
table of coefficients and AR3 points to a data array, the multiply
can look like:

MPY *AR2,*AR3,A

This is a single-cycle instruction. Two buses, two address
generators, and straightforward use of the auxiliary registers, result
in a clean instruction set. With the TMS320C54x, there is no need
to manage the auxiliary register pointer. One simply loads an
address into the register and proceeds.

Using the P-bus to read one operand enables coefficients to be
stored in program memory. For example, if the coefficients are in
ROM in PROGRAM space and the programmer wants to loop
through a simple vector multiply, filter-type problem, the coefficient
array can be in program space as:

.text

coef .word 1,2,3,4,... ; data in program space

In the following example, the data are in data memory with an
auxiliary register (AR2) pointing to the array. The multiply and adds
can then be performed in a single-instruction repeat loop:

RPTZ A,15

MACP *AR2+,coef,A

The plus (+) sign following the data pointer is a post-increment of
the address to access the next value in the data array.

The plus sign for the coefficient is implied. The pointer to the
address in the coefficient array is stored in a register in the program
counter (PC) controller. Accessing the coefficient array
automatically increments the pointer, so no symbol is used. The
RPTZ instruction zeroes accumulator A and repeats the next
instruction 15 + 1 = 16 times.

TMS320C54x DSP Programming Environment 5

4. Special Instructions

Several instructions specific to the TMS320C54x improve device
performance. For example, the FIRS, or symmetric FIR filter
instruction uses the P-bus, both data buses and both accumulators.
Figure 2 illustrates the filter with a set of symmetric coefficients.

Figure 2. Symmetric filter

c 0
x 0

c 2
x 2

c 1
x 1

c 3
x 3

c 4
x 4

c 5
x 5

c 6
x 6

c 7
x 7

In a typical FIR filter, the y values are the sum of the products:

y = (c0 * x0) + (c1 * x1) + (c2 * x2) + (c3 * x3) +
(c4 * x4) + ...+ (c7 * x7)

Since this is a symmetric filter (c0=c7, c1=c6, etc.) the equation can
be simplified to:

y = c0*(x0 + x7) + c1*(x1 + x6) + c2*(x2 + x5) +
c3*(x3 + x4)

The simplification results in half the number of multiplies.

The FIRS instruction uses the P-bus to point to the coefficients and
the two data buses to point to the data pairs:

FIRS *AR2+,*AR3+,coef

The FIRS instruction multiplies accumulator A by the value in the
coefficient matrix and adds the result to accumulator B. At the
same time, it adds the memory operands pointed to by auxiliary
registers AR2 and AR3 and places the sum in accumulator A.
Accumulator A must be pre-loaded with the first sum.

The TMS320C54x performs an N-tap symmetric FIR filter in N/2 + x
cycles, where x is the overhead for setting up the loop. This is a big
improvement over most DSPs, which require N + x cycles for the
same operation. The TMS320C54x multiple buses, two
accumulators, and special instruction hardware make this possible.

Later examples illustrate some of the other special instructions.

6 SPRA182

5. Addressing Modes

The TMS320C54x has immediate, direct (page + offset), and
indirect addressing.

5.1 Immediate Addressing

Immediate is very simple; for example, to place 15h in accumulator
A:

LD #15h,A

There are many options, such as load with shifts. Other instructions
allow immediate addressing with an ALU operation, for example:

ANDM 00ffh,*AR1

This particular example also uses a non-accumulator destination;
that is, ANDing a constant with a value in memory and placing the
result in memory. This makes a PLU unnecessary for bit
manipulation, and the TMS320C54x does not have one.

5.2 Direct Addressing

Direct addressing requires the use of a data page pointer (DP) and
an offset into the 128-word page. While direct addressing has its
uses, most algorithms use indirect addressing and the auxiliary
registers.

Example 1. Direct addressing example:

.mmregs
.global x,y,Entry
.bss x,128,1 ; put "x" on single page

.sect "program"
LD #0,A ; zero accumulator A
LD #x,DP ; set DP to page with "x"
ADD #1,A,A ; add 1 to accumulator
STL A,@x ; store accumulator A at "x"
ADD #1,A,A
STL A,@x+128 ; Wrap back to start of same

; page
; (modulo 128)

TMS320C54x DSP Programming Environment 7

5.3 Indirect Addressing

The indirect addressing modes of the TMS320C54x allow many
options. For example, *ARn simply accesses the value ARn points
to. On the other hand, *ARn+, *ARn+0, and *ARn+0% respectively,
provide post-increment, post-increment with variable step size, and
circular buffering. The TMS320C54x offers post-increment for reads
and either pre- or post-increment for writes.

Example 2. Indirect addressing example (with indexing):

.mmregs
.global x,y,Entry
.bss x,128,1 ;put "x" on single page

.sect "program"
STM #2,AR0 ;set index value to 2.

; AR0 == index register
STM #x+126,AR1 ;start near end of page

; "x"
ADD #1,A,B
STL B,*AR1+ ;store at x+126
ADD #1,B,A
STL A,*AR1+0 ;store at AR1+2*(AR1+2)=A
ADD #1,A,B
STL B,*(#x+140) ;store at x+140

;(absolute address plus index)

5.4 Accessing Memory-Mapped Registers

The TMS320C54x has a Memory-Mapped Register file (MMR). All
the peripheral control registers are memory mapped. Since the
MMRs are all on Data Page Zero, special rules allow register
access without first modifying the DP pointer. Typically, there is a
one-cycle penalty for using an MMR as an operand; however, the
one-cycle penalty is less than the overhead of managing the DP
and the associated lines of code:

ADD DRR,0,A ;two-cycle instruction (DRR ==
; Serial Port data register)

ADD A,-8,B ;one-cycle instruction
ORM 0f0fh,SPC ;three-cycle instruction (SPC ==

;Serial Port Control register)
ORM 0f0fh,*AR4+ ;two-cycle instruction

8 SPRA182

6. Pipeline

The TMS320C54x has a six-level pipeline as shown in Figure 3.
The pipeline provides very fast throughput, but requires some
attention to detail in programming.

Figure 3. The TMS320C54x pipeline

PF F D A R X

 Pre-Fetch Fetch Decode Access Read Execute

Most values change at the execution phase. Some changes occur
at other times, such as auxiliary register (AR) updates during the
access phase. This allows a sequence of instructions such as:

ADD *AR1+,A
MPY *AR1,#07h,B

The second instruction requires AR1 to have the updated value
before its access phase. If AR1 were only updated at the execution
phase of the first instruction, the second instruction would have to
wait two cycles before its access phase could start. Two NOPs or
other valid instructions would be required between the two
instructions. However, since AR1 is updated during the access
phase of the first instruction, the second instruction executes
without difficulty or additional code (see below).

Figure 4. Auxiliary register updates

ADD D A R X

AR1 modified
here

MPY D A R X

New AR1 used
here

6.1 Pipeline Conflicts

The pipeline can be an issue in some operations. If both the C- and
D-buses are in use on a dual operand instruction, which overlaps a
previous instruction that accesses the E-bus at the same time,
conflict may occur.

TMS320C54x DSP Programming Environment 9

For the most part, however, conflicts are unlikely. The access
phase for read occurs in the access phase of the pipeline, while the
access phase for write occurs during the read phase of the
pipeline. Further, the access for the D-bus occurs during only the
first half of the cycle, while the access for the E-bus occurs during
the second half of the cycle. So, even if two instructions overlap for
the same cycle, conflict is minimized by the two address generators
occurring in the same cycle.

The following example shows two instructions that avoid a pipeline
conflict:

STL A,*AR3+ ; instruction 1
ADD *AR4,*AR5,A ; instruction 2

Figure 5. Multiple buses avoid pipeline conflicts

Instruction 1 A R X

E-bus
used

Instruction 2 A R X

C-bus
used

D-bus
used

In the pipeline, the write to the E-bus occurs during the second half
of the execute phase. The C-bus and the D-bus load during the
second half of the access phase and the first half of the read
phase, respectively.

6.1.1 Resolved Conflict

A conflict may occur if a write is followed by two dual-access reads,
the second of which is from the same memory block as the write.

STL A,*AR3+
ADD AR4+,*AR5+,A
MPY AR2+,AR3,B

Figure 6. Potential pipeline conflict

STL A R X

E
Addr

E
Data

ADD D A R X

C
Addr

D
Addr

C
Data

D
Data

MPY D A R X

C
Addr

D
Addr

C
Data

D
Data

10 SPRA182

The conflict only occurs between the store instruction (STL) and the
multiply instruction (MPY) if the accesses via the E-bus and C-bus
are to the same block of memory. Otherwise, no conflict occurs.

If a conflict does occur, it is automatically resolved by the CPU
delaying the write operation of the STL instruction to the execute
phase of the ADD instruction. No extra cycles are inserted. If the
data from the write operation is required before it is written to
memory, it is read directly from an internal bus.

TMS320C54x DSP Programming Environment 11

7. Loops and Control Structures

The TMS320C54x has several loop-control mechanisms, including
a repeat single and a repeat block. Both may be asserted at the
same time, allowing nested loops. A single instruction may be
repeated N times, as:

MVPD #table,*AR2+ ; copy value from data list
;pointed to by table

Figure 7 – Moving values from program space to data space

This example also illustrates the move from program space to data
space command. The pointer to Table is managed and
automatically incremented by the program address generation
(PAGEN) unit, so must be inside a repeat single. No instructions
are fetched during a repeat single, which makes it a great
candidate for use when fetching data from program space. In
addition, the repeat single may not be interrupted.

A second version of the repeat single is the RPTZ, which first writes
a zero to one of the accumulators. For example, to accumulate a
sum of products into accumulator A, with N iterations:

RPTZ A,#N-1
MACP *AR2-%,Table,A

The repeat block command allows including a series of instructions
in an automatic loop structure. The block repeat counter (BRC)
must be loaded before beginning the loop. This may also be a
delayed instruction with two delay slots:

RPT #16–1 ;load repeat counter with 15
; for 16 iterations

9
1 4
2 2
1 9

.

9
1 4

.

.

.

P r o g r a m
S p a c e

D a t a
S p a c e

.

. .
.

I n c r e m e n t p o i n t e r

M o v e p r o g r a m
t o d a t a

T a b l e * A R 2

I n c r e m e n t p o i n t e r

12 SPRA182

STM #N-2, BRC ;initialize the Block
; repeat counter with Store MMR

LD ERROR,T ;initialize a variable
; called ERROR to 0

RPTBD END_LOOP-1 ;establish last line of
; loop

MPY *AR4,A ;delay slot instruction
; that initializes accumulator A

LMS *AR3,*AR4+0% ;2nd delay slot instruction
;loop starts here

ST A,*AR3+ ;save filter coefficient
|| MPY *AR4,A ;new term calculated

LMS *AR3, *AR4+0% ;LMS instruction for
; adaptive filter

 ;A = A + *AR3<<16 + 2^15
 ;B = B + *AR3 x *AR4
END_LOOP:

This example also illustrates two other ideas: the parallel instruction
and the delayed instruction.

The ST || MPY is a parallel instruction made possible by the
separate and parallel units within the TMS320C54x.

The RPTBD instruction is a delayed version of a block repeat,
which has two delay slots. The delay slots are available for tasks
such as initializing parts of the loop operation.

The LMS instruction is one of the special instructions used in
adaptive filtering algorithms. It makes use of both accumulators and
the parallel bus structure.

TMS320C54x DSP Programming Environment 13

8. Interrupts – Special Features

The TMS320C54x device uses interrupts much like other DSPs and
processors, but there are additional features. The TMS320C54x
has four external interrupts and the usual assortment of internal
interrupts including serial port, timer and traps. There are two
interesting features of TMS320C54x interrupts: the way the vector
table is built and a special fast interrupt feature.

The vector table occupies four words. Thus, when an interrupt is
taken and the PC switches to the vector table, it is possible to have
a traditional branch instruction such as:

BR ;1st entry
isr-1 ;2nd entry
not used ;3rd entry
not used ;4th entry

This results in two unused instructions. If, however, the first entry is
a delayed return statement, the two delay slots could be used:

RETED ;1st entry
LDM DRR,A ;2nd entry, first delay slot

;3rd entry, 2nd delay slot.
;Note: MMRs take 2 cycles

not used ;4th entry not used because
; transfer has occurred

The RETE instruction requires five cycles, while the RETED takes
three cycles and automatically re-enables the global interrupts.
Using the four vector table slots is faster than the typical overhead
of branching to an ISR and returning. An even faster method is to
use the RETF instruction:

RETFD ; 1st entry
ADD 1, *AR4 ; 2nd delay slot
LD #5, ASM ; 3rd delay slot
not used ; 4th entry

The RETFD instruction takes only one cycle and speeds short
interrupt routine handling. The interrupt latency for a fast interrupt is
very low. Its speed is made possible by a special register in the
PAGEN unit in which the return address is stored.

14 SPRA182

9. More on Special Instructions

Examples of the FIRS instruction and the LMS instruction are
shown earlier in this article. Several other special instructions are
supported by hardware, including a series of double add and
double subtract instructions which, combined with the Compare,
Select and Store instruction (CMPS), provide excellent throughput
on algorithms such as the Viterbi decoder.

A concept in Viterbi decoding is to compare two metrics to
determine and store the larger distance. In addition, a record of
which metric was stored is required. The TMS320C54x CMPS unit
performs this function.

With either accumulator as an input, the CMPS compares the two
halves and writes one to memory. It also updates the transition
(TRN) register by shifting the contents to the left one place and
ORing in a new value (either 1 or 0, depending on which half is
updated).

The accumulator used as input to the CMPS has two 16-bit values
calculated by two parallel adds or subtracts. A value is placed in the
T register, and the AR register points to a double word. Half the
double word is either ADDed or SUBtracted from the T register and
the two results are stored in the 32-bit accumulator.

For example:

STM #2-1, BRC ;initialize repeat counter
RPTBD end-1 ;begin repeat block
LD *AR7,T ;initialize T in delay slot
NOP ;second delay slot
DADST *AR5, A ;A(h) = OLDValue[i] + T

;A(l) = OLDValue[j] – T
;DADST means double add and subtract

DSADT *AR5+,B ;B(h) = OLDValue[i] – T
;B(l) = OLDValue[j] + T

;DSADT means double subtract and add
CMPS A,*AR4+% ;Write one-half of A to

; memory and update TRN
CMPS B,*AR3+% ;Write one-half of B to

; memory and update TRN

While not a complete algorithm, this segment illustrates the use of
some of the special instructions. All the instructions shown are
single-cycle instructions.

TMS320C54x DSP Programming Environment 15

10. Summary

The TMS320C54x device is a fast, low-power fixed-point machine
with performance enhancements. It features dual data buses and
dual address generators to fetch dual operands or double words in
one cycle. Two accumulators and hardware support double adds
and/or subtracts. The P-bus is used to fetch instruction words, but
may also be an input to the multiplier. This simplifies several
instructions that use data buses for operands and the program bus
for a third operand.

The TMS320C54x includes a compare, select and store unit, which
improves the performance of GSM and Viterbi algorithms.
Hardware support for special instructions such as the LMS
instruction used in adaptive filter algorithms, further enhance the
device.

The TMS320C54x may also be used as a DSP in non-telecom
applications. The loop control structures, addressing modes, and
fast interrupt features enable fast, compact code.

