

TMS320 DSP
DESIGNER’S NOTEBOOK

How Can Comb Filters be
Used to Synthesize
Musical Instruments on a
TMS320 DSP?
APPLICATION BRIEF: SPRA252

 Leor Brenman
 Digital Signal Processing Products
 Semiconductor Group

 Texas Instruments
 February 1995

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract... 7
Design Problem.. 8
Solution... 8

Figures
Figure 1. Karplus Strong String-Synthesizer Model.. 8

Examples
Example 1. Code Listing ... 9
Example 2. C-callable Version of String Synthesizer Function.............................. 10
Example 3. C-calling shell... 12

How Can Comb Filters be Used to Synthesize Musical Instruments on a TMS320 DSP? 7

How Can Comb Filters be Used to
Synthesize Musical Instruments on a

TMS320 DSP?

Abstract

Music synthesis is the ability to create musical scores by
synthesizing different musical instruments. Different methods of
music synthesis include sampled sound synthesis (wavetable
synthesis), FM synthesis, and instrument modeling. Sampled sound
synthesis inherently requires significant amounts of memory to store
instrument samples but results in extremely natural-sounding music.
FM synthesizers are algorithmic and typically require little memory
but result in unnatural-sounding music. Instrument models, based on
analysis of the instrument being synthesized, often yield efficient
implementations producing highly-natural sounds.

This document presents a DSP implementation of a model for
synthesizing plucked strings, based on the Karplus Strong Plucked-
String Synthesizer.

A system block diagram and several code listings are provided.

8 SPRA252

Design Problem

Music synthesis is the ability to create musical scores by
synthesizing different musical instruments. Different methods of
music synthesis include sampled sound synthesis (wavetable
synthesis), FM synthesis, and instrument modeling. Sampled sound
synthesis inherently requires significant amounts of memory to store
instrument samples but results in extremely natural-sounding music.
FM synthesizers are algorithmic and typically require little memory
but result in unnatural-sounding music. Instrument models, based on
analysis of the instrument being synthesized, often yield efficient
implementations producing highly-natural sounds.

This document presents a DSP implementation of a model for
synthesizing plucked strings, based on the Karplus Strong Plucked-
String Synthesizer.

Solution

String-Synthesis Model

The Karplus Strong string-synthesizer model produces extremely
natural sounding plucked strings. The model is based on a IIR comb
filter, shown in Figure 1.

Figure 1. Karplus Strong String-Synthesizer Model

How Can Comb Filters be Used to Synthesize Musical Instruments on a TMS320 DSP? 9

The input, x(n), is a burst of Guassian White Noise lasting N
samples and is zero elsewhere. The pitch period of the synthesized
plucked string is N times the sample period. The output, y(n), is the
synthesized plucked string sound and is valid after the Nth input
sample. The multipliers, f, must be less than or equal to 0.5 for IIR
stability, and determine the sustain of the synthesized string sound.
A value of 0.5 represents the longest sustain. The timbre of the
sound is similar to that of a plucked steel-string guitar.

An alternate view of the model is to load the tap delay line with white
noise and let the filter ring as long as desired with no input[x(n) = 0].
In this case, the output is valid as soon as the filter is started.

The synthesized string sound has a frequency of fs/N, where fs is
the system sampling frequency. This inverse dependence on N
results in poor granularity for small N. That is, a unit change in N
when N is small results in a large change in the frequency of the
synthesized string.

This model, while simple, is suprisingly realistic; the burst of noise
represents the plucking of the string and the comb filter, which acts
as a resonator, represents the resonating body of an string
instrument such as an acoustic guitar or bass. This model is well
suited for implementation on DSPs which are designed for
implementing digital filters.

DSP Implementation

This type of filter is easily implemented on Texas Instruments DSPs.
Many TI DSPs support circular buffering which facilitates
implementing the tap-delay line of the comb filter efficiently. Also,
they provide the necessary numerical processing speed to support
44.1-kHz sampling-rate processing required for CD-quality audio.
On-chip peripheral support for analog-to-digital and digital-to-analog
converters reduces chip count and system cost.

For example, the TMS320C31 DSP, with a 33-75 ns instruction
cycle time, circular buffer support, and on-chip serial port, is well-
suited for implementing these types of algorithms. The following
code segment implements one iteration (sample) of the string
synthesizer model on the ’C31.

Example 1. Code Listing

;AR0 points to tap delay sample y[n-N]
;BK = pitch period value, N+1
;R1 = sustain (0.5=long,0.48=med,0.45=short)

LDF *AR0++(1)%,R0 ;Load y[n-N]
;AR0 points to [n-(N-1)]

ADDF *AR0—(2)%,R0 ;Add y[n-(N-1)]
;AR0 points to y[n]

MPYF R1,R0 ;f*[y(n-N) + y(n-(N+1))]
STF R0,*AR0++(2)% ;Store R0 = y(n)

10 SPRA252

;AR0 points to y[n-(N-1)]
;= (next) y[n-N]

* R0 contains the return value, y(n)

When a new plucked string is desired, a circular buffer of the
appropriate size is setup and filled with white noise. The appropriate
parameters, such as the pitch period and sustain factor, are set and
remain fixed between calls to the string-synthesizer routine.
Samples should be produced at 44.1 kHz for CD-quality music
synthesis.

As shown in the preceding code segment, the core of the algorithm
can be executed in four ’C31 insruction cycles per output sample.
The overhead that is required is for setting up the parameters and
loading of the buffer with white noise upon creation of a new string
and the interrupt service routine associated with writing the output to
the ’C31 serial port for delivery to the D/A converter for listening.

A C-callable version of the string synthesizer function is shown in
Figure 3. A C-calling shell is shown in Figure 4.

The TMS320DSP BBS file KPSTRONG.EXE contains the necessary
files to create a library of C-callable functions for implementing a
string synthesizer using the algorithm described in this paper. It is
written primarily in C and C-callable assembly language. A
TMS320C30 EVM demo is also included. This code serves as an
example of an instrument modeling music synthesis algorithm as
well as an example of implementing circular addressing in C and C-
callable assembly language.

Example 2. C-callable Version of String Synthesizer Function
* Strfunc.asm - Karplus Strong Base Model Plucked String Synthesizer
* implementation in TMS320C3x/’C4x assembly language.
*
* KPSTRING data structure:
*
*typedef struct kpString {
* DTYPE *tapDelay; /* Tap delay buffer data pointer */
* DTYPE sustainFactor; /* Sustain factor, f 0.5 */
* int pitchPeriod; /*Pitch period in samples = fs/fdesired*/
* DTYPE *tapDelayBase; /* Tap delay buffer base pointer */
* int currLoc; /* Index points to delay[N+1] */
* DTYPE *noise; /*Noise buffer used to initialize string*/
*} KPSTRING;
*
* Function prototype:
*
* float string(KPSTRING *st, float *out, int nsamples);
*

How Can Comb Filters be Used to Synthesize Musical Instruments on a TMS320 DSP? 11

*
FP .set AR3

.global _string
_string
*
* Stack manipulation
*
 PUSH FP
 LDI SP,FP
 LDI *-FP(2),AR2 ;AR2 points to a KPSTRING data structure
 LDI *-FP(3),AR1 ;AR1 points to output[0]
 LDI *-FP(4),RC ;RC = nsamples
*
* Setup for circular buffer fetches and loop
*
 LDI *+AR2(0),AR0 ;AR0 points to y[n-N]
 LDF *+AR2(1),R1 ;R1 = decay (0.5=long,0.48=med,0.45=short)
 LDI *+AR2(2),BK ;BK = pitch = N = BufferSize-2

 ADDI 2,BK ;BK = BufferSize
 SUBI 1,RC ;RC = 1 less than # iterations for RPT
*
* Implement Comb buffer
*
 RPTB STLOOP ;loop over n
 LDF *AR0++(1)%,R0 ;R0 = y(n-N)

;AR0 points to y[n-(N-1)]
 ADDF *AR0—(2)%,R0 ;R0 = y(n-N) + y[n-(N-1)]

;AR0 points y(n)
 MPYF R1,R0 ;R0 = f*[y(n-N) + y(n-(N-1))]
 STF R0,*AR0++(2)% ;R0 = y(n), store result in delay line

;AR0 points to y[n-(N-1)]
; = (next) y(n-N)

* Uncomment out these two lines if this routine should ADD it’s
* calculated output to the output stream, otherwise the output is
* overwritten

* LDF *AR1,R2 ;Get output buffer data value
* ADDF R2,R0 ;Add calculated value

STLOOP:
 STF R0,*AR1++(1) ;Store y(n) to output buffer

*
* Restore circular buffer pointer
*
*** STI AR0,*+AR2(0) ;restore circular buffer pointer, done in

;delayed branch below
*
* Return
*
 LDI *-FP(1),R1 ;load return address

12 SPRA252

 BD R1 ;branch back
 LDI *FP,FP ;restore Frame Pointer
*** NOP
 STI AR0,*+AR2(0) ;restore circular buffer pointer
 SUBI 2,SP ;Restore Stack Pointer
*** B R1 ;Branch occurs here

Example 3. C-calling shell
.
.
.
#include <kpstring.h>
.
.
.
/***/
/* MAIN() */
/***/
void main(void)
{
 float *noise;
 KPSTRING cs;
.
.
 makeNoise(&noise, 100, 2);
 createString(&cs, 50, noise);
 cs.sustainFactor = 0.49;
.
.
for(;;)
 {
.
.
. if(NoteOn) initString(&cs, currPitchPer);
 string(&cs,output,blockSize);
 for(i=0;i<blockSize;i++) output[i] = amplitude*output[i];
.
.
.
 }
}

