{? TeEXAS Application Report
INSTRUMENTS SPRA291 - August 2001

Implementing Fast Fourier Transform Algorithms of
Real-Valued Sequences With the TMS320 DSP Platform

Robert Matusiak Digital Signal Processing Solutions

~N O O A

ABSTRACT

The Fast Fourier Transform (FFT) is an efficient computation of the Discrete Fourier
Transform (DFT) and one of the most important tools used in digital signal processing
applications. Because of its well-structured form, the FFT is a benchmark in assessing digital
signal processor (DSP) performance.

The development of FFT algorithms has assumed an input sequence consisting of complex
numbers. This is because complex phase factors, or twiddle factors, result in complex
variables. Thus, FFT algorithms are designed to perform complex multiplications and
additions. However, the input sequence consists of real numbers in a large number of real
applications.

This application report discusses the theory and usage of two algorithms used to efficiently
compute the DFT of real-valued sequences as implemented on the Texas Instruments
TMS320C60000.

The first algorithm performs the DFT of two N-point real-valued sequences using one N-point
complex DFT and additional computations.

The second algorithm performs the DFT of a 2N-point real-valued sequence using one
N-point complex DFT and additional computations. Implementations of these additional
computations, referred to as the split operation, are presented both in C and C60000
assembly language. Forimplementation on the C6000, optimization techniquesin both C and
assembly are covered.

Contents
INtrOdUCTION ... 3
Basics of the DFT and FFT e e et et 3
Efficient Computation of the DFT of Real Sequencesciiiiiiiiiiinnenn.. 5
3.1 Efficient Computation of the DFT of Two Real Sequences, 5
3.2 Efficient Computation of the DFT of a 2N-Point Real Sequence 7
TMS320C62XE Architecture and ToolsS OVEIrVIiEW ...ttt 11
Implementation and Optimization of Real-Valued DFTS, 14
SUMIMI Y . .ot e e e e e e e e e e e e e e 17
R I BN C S . . 17

TMS320C6000 and C6000 are trademarks of Texas Instruments.
Trademarks are the property of their respective owners.

{'f TEXAS
SPRA291 INSTRUMENTS

Appendix A Derivation of Equation Used to Compute the DFT/IDFT of Two Real Sequences 18

Al Forward Transiorm 18

A2 InVerse TranS OrmM 20

Appendix B Derivation of Equations Used to Compute the DFT/IDFT of a Real Sequence ...21

B.1 Forward Transform e 21

B.2 Inverse Transiorm 23

Appendix C C Implementations of the DFT of Real Sequences 27

C.1 Implementation NOtESt e e e e e e 27

Appendix D Optimized C Implementation of the DFT of Real Sequences 42

D.1 Implementation NOteS it e e e e e 42

D.2 DESCHIPIION ..ttt 42
Appendix E Optimized C-Callable 'C62xx Assembly Language Functions Used to

Implement the DFT of Real SeqUeENCES ...t e 54

E.1 Implementation NOtES e e 54

List of Figures
Figure 1. TMS320C6201 DSP Block Diagram i e e 11
Figure 2. Code Development Flow Chart e 13
List of Tables

Table 1. Comparison of Computational Complexity for Direct Computationof the DFT Versus
the Radix-2 FFT Algorithm o e 4

List of Examples

Example 1. Efficient Computation of the DFT of a 2N-Point Real Sequence 15
Example 2. Efficient Computation of the DFT of Two Real Sequences 15
Example 3. Efficient Computation of the DFT of a 2N-Point Real Sequence 16
Example 4. Efficient Computation of the DFT of Two Real Sequences 16
Example 5. Efficient Computation of the DFT of a 2N-Point Real Sequence 16
Example 6. Efficient Computation of the DFT of Two Real Sequences 16
Example C-1. realdftl.c File 27
Example C-2. splitl.C File 31
Example C-3. datal.C File o 32
Example C—4. paramsLl.h File 32
Example C-5. realdft2.c File e e 33
Example C—6. Split2.C File 36
Example C=7. data2.C File i e e 37
Example C—8. params2.h File 37
Example C—=9. dft.C File 37
Example C-10. params.h File 39
Example C—11. VECIOIS.@SIMttt ittt e ettt e e e e e e e 40
Example C—12. INK.CMd o e e e 40

2 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

{f’ TEXAS

INSTRUMENTS SPRA291
Example D=1. realdft3.C File i e 42
Example D-2. realdftd.c File i e 47
Example D=3. radiX4.C File 50
Example D—4. digit.C File 51
Example D-5. digitgen.C File i e e 52
Example D—6. splitgen.c File 53
Example E=1. splitl.asm File e 54
Example E=2. split2.asm File e e 61
Example E-3. radix4.asm File 67
Example E-4. digit.asm File 72

1

Introduction

TI's C6000 platform of high-performance, fixed-point DSPs provides architectural and speed
improvements that makes the FFT computation faster and easier to program than other
fixed-point DSPs.

The C6000 platform devices are based on an advanced Very Long Instruction Word (VLIW)
central processing unit (CPU) with eight functional units that include two multipliers and six
arithmetic logic units (ALUS). The CPU can execute up to eight instructions per cycle.
Complementing the architecture is a very efficient C compiler that increases performance and
reduces code development time. The C6000 architecture and development tools featured are
discussed in this application report along with the following topics:

* Theory of DFTs of real-valued sequences
* Algorithm implementation

* (6000 CPU features

* C6000 development tools

* Optimizing C code for the C6000

* C-callable assembly language functions for the C6000

Basics of the DFT and FFT

Methods of performing the DFT of real sequences involve complex-valued DFTs. This section
reviews the basics of the DFT and FFT.

The DFT is viewed as a frequency domain representation of the discrete-time sequence x(n).
The N-point DFT of finite-duration sequence x(n) is defined as

N-1

XM = > xmw - 0,1,...,N-1
n=0

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

@)

3

{'f TEXAS
SPRA291 INSTRUMENTS

and the inverse DFT (IDFT) is defined as

N—-1
X = & 3 xtow " n = 0,1,..,N-1 @
k=0
where
W &k — e—jZnnk/N 3)

The Wy KN factor is also referred to as the twiddle factor. Observation of the above equations
shows that the computational requirements of the DFT increase rapidly as the number of
samples in the sequence N increases. Because of the large computational requirements, direct
implementation of the DFT of large sequences has not been practical for real-time applications.
However, the development of fast algorithms, known as FFTs, has made implementation of DFT
practical in real-time applications.

The definition of FFT is the same as DFT, but the method of computation differs. The basics of
FFT algorithms involve a divide-and-conquer approach in which an N-point DFT is divided into
successively smaller DFTs. Many FFT algorithms have been developed, such as radix-2,
radix-4, and mixed radix; in-place and not-in-place; and decimation-in-time and
decimation-in-frequency.

In most FFT algorithms, restrictions may apply. For example, a radix-2 FFT restricts the number
of samples in the sequence to a power of two.

In addition, some FFT algorithms require the input or output to be re-ordered. For example, the
radix-2 decimation-in-frequency algorithm requires the output to be bit-reversed. It is up to
implementers to choose the FFT algorithm that best fits their application.

Table 1 compares the number of math computations involved in direct computation of the DFT
versus the radix-2 FFT algorithm. As you can see, the speed improvement of the FFT increases
as N increases. Detailed descriptions of the DFT and FFT can be found in the references.123
The following sections describe methods of efficiently computing the DFT of real-valued
sequences using complex-valued DFTs/IDFTSs.

Table 1. Comparison of Computational Complexity for Direct Computation
of the DFT Versus the Radix-2 FFT Algorithm

Direct Computation of the DFT Radix-2 FFT
Number Complex Complex Complex Complex
of Points Multiplies Additions Multiplies Additions
N N2 NZ2-N (N/2)logoN NlogyN
4 16 12 4 8
16 256 240 32 64
64 4096 4032 192 384
256 65536 65280 1024 2048
1024 1048576 1047552 5120 10240

4 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

{9 TEXAS
INSTRUMENTS SPRA291

3

3.1

Efficient Computation of the DFT of Real Sequences

In many real applications, the data sequences to be processed are real-valued. Even though the
data is real, complex-valued DFT algorithms can still be used. One simple approach creates a
complex sequence from the real sequence; that is, real data for the real components and zeros
for the imaginary components. The complex DFT can then be applied directly. However, this
method is not efficient. This section shows you how to use the complex-valued DFT algorithms
to efficiently process real-valued sequences.

Efficient Computation of the DFT of Two Real Sequences

Suppose x1(n) and xo(n) are real-valued sequences of length N, and x(n) is a complex-valued
sequence defined as

x(n) = x4 (n) + jx, (n) 0Os<snsN-1 @)

The DFT of the two N-length sequences x1(n) and xo(n) can be found by performing a single
N-length DFT on the complex-valued sequence and some additional computation. These
additional computations are referred to as the split operation, and are shown below.

Xy () = ZIX () + X*(N = k)]

k=0,1,....N—-1 (5)
X () = 2 X (K) = X*(N =)]

As you can see from the above equations, the transforms of x1(n) and xo(n), X1(k) and Xo(k),
respectively, are solved by computing one complex-valued DFT, X(k), and some additional
computations.

Now assume we want to get back x1(n) and xo(n) from X1 (k) and Xo(k), respectively. As with the
forward DFT, the IDFT of X1(k) and Xo(k) is found using a single complex-valued DFT. Because
the DFT operation is linear, the DFT of equation (4) can be expressed as

X(k) = X, (k) + X, (K) ©

This shows that X(k) can be expressed in terms of X1 (k) and X»(k); thus, taking the inverse DFT
of X(k), we get x(n), which gives us x1(n) and xo(n).

The above equations require complex arithmetic not directly supported by DSPs; thus, to
implement these complex-valued equations, it is helpful to express the real and imaginary terms
in real arithmetic. The forward DFT of the equations shown in (5) can be written as follows:
Xy (k) = ZIXr (k) + Xr(N =)] and X, i(k) = Z[Xi (k) = Xi(N = k)]
k=01,...,.N-1 @

Xo1(k) = IXi () + Xi(N = k)] and X, i(k) = L [Xr (k) = Xr(N = k)]

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform 5

{'f TEXAS
SPRA291 INSTRUMENTS

In addition, because the DFT of real-valued sequences has the properties of complex conjugate
symmetry and periodicity, the number of computations in (7) can be reduced. Using the
properties, the equations in (7) can be rewritten as follows:

X,r(0) = Xr(0) X,i(0) = 0
X,r(0) = Xi(0) X,i(0) = 0
X,r(N/2) = Xr(N/2) X,i(N/2) = 0
X,f(N/2) = Xi(N/2) X,i(N/2) = 0

®)

Xy 1) = ZIXr (k) + XN = 1)) Xgi(k) = ZIXi (k) = Xi(N = K]
Xp1(k) = ZIXi (k) + XN = K] X,i(k) = S5E[Xr (k) = Xr(N = k)]
X, f(N = k) = X,r(k) XN — k) = — X,i(k)

X,r(N — k) = X,r(k) X,i(N — k) = — X,i(k)

Similarly, the additional computation involved in computing the IDFT can be written as follows:

Xr(k) = X;r(k) — X,i(k)
k=01,..N—-1 9)

Xi(k) = Xji(k) + X,r(k)
See Appendix A for a detailed derivation of these equations.

Now that we have the equations for the split operation used in computing the DFT of two
real-valued sequences, we turn to the following steps, which outline how to use the equations.

The forward DFT is outlined as follows.

Step 1: Form the N-point complex-valued sequence x(n) from the two N-length sequences x4(n)
and xo(n).

for n=0, ..., N-1
xr(n) = x1(n)
xi(n) = xo(n)
Step 2: Compute the N-length complex DFT of x(n).
X(k) = DFT[x(n)]

NOTE: The DFT can be any efficient DFT algorithm (such as one of the various FFT
algorithms), but the output must be in normal order.

6 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

{9 TEXAS
INSTRUMENTS SPRA291

Step 3: Compute the split operation equations.

X11(0) = Xr(0) X1i(0) =0
X5r(0) = Xi(0) X5i(0) = 0
X1r(N/2) = Xi(N/2) X1i(N/2) = 0
Xor(N/2) = Xi(N/2) X5i(N/2) = 0

for k=1, ..., N/2-1
Xqr(k) = 0.5 * [Xr(k) + Xr(N = k)] X1i(k) = 0.5 * [Xi(k) — Xi(N — K)]
Xor(k) = 0.5 * [Xi(k) + Xi(N — k)] Xoi(k) = 0.5 * [Xr(k) — Xr(N — k)]
X1r(N = Kk) = Xqr(k) X1i(N = k) = = Xqi(k)
Xor(N = k) = Xor(k) X2i(N = k) = — Xoi(k)

For two frequency domain sequences, X1(k) and X»(k), derived from real-valued sequences,
perform the following steps to take the IDFT of X4 (k) and X5 (K).

Step 1: Form a single complex-valued sequence X(k) from X4(k) and X»(k) using the IDFT split
equations.

for k=0, ..., N-1
Xr(k) = X1r(k) — X2i(k)
Xi(k) = X1i(k) + Xor(K)

Step 2: Compute the N-length IDFT of X(K).
x(n) = IDFT[X(K)]

As with the forward DFT, the IDFT can be any efficient IDFT algorithm. The IDFT can be
computed using the forward DFT and some conjugate operations.

x(n) = [DFT{X*(K)}]*

where:

* is the complex conjugate operator
Step 3: From x(n), form x1(n) and xo(n).

forn=0,1,....N-1
x1(n) = xr(n)
xo(n) = xi(n)

Appendix C contains C implementation of the outlined DFT and IDFT algorithms.

3.2 Efficient Computation of the DFT of a 2N-Point Real Sequence

Assume g(n) is a real-valued sequence of 2N points. We outline the equations involved in
obtaining the 2N-point DFT of g(n) from the computation of one N-point complex-valued DFT.
First, we subdivide the 2N-point real sequence into two N-point sequences as follows:

And define x(n) to be the N-point complex-valued sequence:
x,(n) = g(2n)

0O<n<=N-1 (10)

X,(n) = g(2n + 1)

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform 7

{'f TEXAS
SPRA291 INSTRUMENTS

The DFT of g(n), G(k), can be computed using

x(n) = x;3(n) + jx,(n) 0O<n=<N-1 (1)

where

G(k) = X(k)A(k) + X*(N — k)B(k) k =01,...,.N-1)
12

with X(N) = X(0)
Ak) = %(1—]W§N) and B(k) = %(1+jw;N> (13)

As you can see, we have computed the DFT of a 2N-point sequence from one N-point DFT and
additional computations, which we call the split operation.

Similarly, if we have a frequency domain 2N-point sequence, which was derived from a
real-valued sequence, we can use an N-point IDFT to obtain the time domain 2N-point
real-valued sequence using the following equation:

X(k) = G(k)A*(k) + G*(N — k)B* (k) k =01,....N-1 ”

with G(N) = G(0)

The equations shown in (12) and (14) are of the same form. Equation (14) can be obtained from
equation (12) if G(k) is swapped with X(k), and A(k) and B(k) are complex conjugated. Thus,
equations (12) and (14) can be implemented with one common split function.

NOTE: Inimplementing these equations, A(k), A*(k), B(k), and B*(k) can be pre-computed and
stored in a table. Their values can thus be obtained by table look-up as opposed to arithmetic
computation. The result is a large computational savings because the sine and cosine functions
required by twiddle factors do not need to be computed when performing the split. (A detailed
derivation of these equations is provided in Appendix B.)

As in the previous section, Efficient Computation of the DFT of Two Real Sequences, when
implementing the above equations, it is useful to express them in their real and imaginary terms.

Only N points of G(k) are computed in equation (12) because other N points can be found using
the complex conjugate property. This is applied to the following equation.

Gr(k) = Xr(k) Ar(k) — Xi(k) Ai(k) + Xr(N=K) Br(k) + Xi(N—K) Bi(k)
Gi(k) = Xi(Kk) Ar(k) + Xr(k) Ai(k) + Xr(N=k) Bi(k) — Xi(N—K) Br(k)

Gr(2N-k) = Gr(k) k =0,1,....N—-1

Gi(2N-k) = =Gi(K) with X(N) = X(0) (15)
Gr(N) = Gr(0) — Gi(0)

Gi(N) = 0

8 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

{9 TEXAS
INSTRUMENTS SPRA291

As with the forward DFT, the equations for the IDFT can be expressed in their real and
imaginary terms as follows.
Xr(k) = Gr(k) Ar(k) — Gi(k) (—Ai(k)) + Gr(N-k) Br(k) + Gi(N—K) Bi(k)
Xi(k) = Gi(k) Ar(k) + GXr(Kk) (Ai(k)) + Gr(N—k) (-Bi(k)) — Gi(n—k) Br(k)
k =0,1,...,N—-1
with G(N) = G(0)

(16)

Now that we have the equations for the split operation to compute the DFT of a real-valued
seguence, the steps for using these equations are outlined. The forward DFT is outlined first.

Step 1: Initialize A(k)s and B(k)s.

Real applications usually perform this only once during a power-up or initialization
sequence. These values can be pre-stored in a boot ROM or computed. In either case,
once they are generated, this step is no longer needed when performing the DFT. The
pseudo code for generating them is given below.

fork=0,1,, N-
Ai(k) = — cos(tk/N)
Ar(k) = — sin(Tk/N)
Bi(k) = cos(Tk/N)
Br(k) = sin(Tk/N)

Step 2: Let g(n) be a 2N-point real sequence. From g(n), form the N-point complex-valued
sequence.

x(n) = xq(n) + jx2(n)

where

x1(n) = g(2n)
xa(n) = g(2n + 1)

forn=0,1,, N-1
xr(n) = g(2n)
xi(n) =g(2n + 1)
Step 3: Perform an N-point complex FFT on the complex-valued sequence x(n).
X(k) = DFT[x(n)]

NOTE: The FFT can be any DFT method, such as radix-2, radix-4, mixed radix, direct
implementation of the DFT, etc. However, the DFT output must be in normal order.

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform 9

{'? TEXAS

SPRA291 INSTRUMENTS
Step 4: Implement the split operation equations.
X(N) = X(0)
Gr(N) = Gr(0) — Gr(0)
Gi(N)=0
for k=0,1,...,N-1
Gr(k) = Xr(k) Ar(k) — Xi(k) Ai(k) + Xr(N-k) Br(k) + Xi(N-k) Bi(k)
Gi(k) = Xi(k) Ar(k) + Xr(k) Ai(k) + Xr(N-k) Bi(k) — Xi(N—k) Br(k)
Gr(2N—Kk) = Gr(k)
Gi(2N-k) = -Gi(k)
For a 2N-point frequency domain sequences G(k) derived from a 2N-point real-valued
sequences, perform the following steps for the IDFT of G(k).
Step 1: Initialize A*(k)s and B*(k)s.
As with the forward DFT, this step is usually performed only once during a power-up or
initialization sequence. The values can be pre-stored in a boot ROM or computed. In either
case, once the values are generated, this step is no longer needed when performing the
DFT.
Because A*(k) and B*(k) are the complex conjugates of A(k) and B(k), respectively, each
can be derived from the A(k)s and B(k)s. The following pseudo code is used to generate
them.
fork=0,1,, N-1
A*i(K) = cos(Tk/N)
A*r(K) = 1 — sin(Tk/N)
B*i(k) = — cos(Tk/N)
B*r(k) = 1 + sin(Tk/N)
or, if A(k) and B(k) are already generated, you can use the following pseudo code:
fork=0,1,, N-1
A*i(k) = —Ai(k)
A*r(k) = Ar(k)
B*i(k) = — Bi(k)
B*r(k) = Br(k)
Step 2: Let G(k) be a 2N-point complex-valued sequence derived from a real-valued sequence

g(n).

We want to get back g(n) from G(k) - g(n) = IDFT[G(k)]. However, we want to apply the
same techniques we applied with the forward DFT, that is, use an N-point IFFT. This can
be accomplished using the following equations.

G(N) = G(0)

fork=0,1,...,N-1
Xr(k) = Gr(k) Ar(k) — Gi(k)(-Ai(k)) + Gr(N-k) Br(k) + Gi(N—k) (—Bi(k))
Xi(k) = Gi(k) Ar(k) + Gr(k) (-Ai(k)) + Gr(N-k) (—Bi(k)) — Gi(N-K)Br(K)

10 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

{9 TEXAS
INSTRUMENTS SPRA291

Step 3: Perform the N-point inverse DFT of X(k).
x(n) = x1(n) + jx2(n) = IDFT{X(K)]
NOTE: The IDFT can be any method but must have an output in normal order.

Step 4: g(n) can then be found from x(n).

forn=0,1,,N

g(2n) = x1(n)
9(2n+1) = x2(n)

Appendix C contains C implementations of the outlined DFT and IDFT algorithms.

4 TMS320C62x Architecture and Tools Overview

Before we discuss how to efficiently implement the real-valued FFT algorithms on the C62x0, it
is helpful to take a brief look at the C62x architecture and code development tools. The
TMS320C62x fixed-point processors are based on a 256-bit advanced VLIW CPU with eight
functional units, including two multipliers and six arithmetic and logic units (ALUs). The CPU can
execute up to eight 32-bit instructions per cycle. With an instruction clock frequency of 200 MHz
and greater, C62x peak performance starts at 1600 million instructions per second (MIPs).

The C62x processor consists of three main parts:

 CPU

* Peripherals

* Memory

Figure 1 shows a block diagram of the first device in this generation, the TMS320C6201 DSP.

32-bit address 32-bit address
256-bit data 8-, 16—, 32-bit data
EMIF program RAM/cache Data RAM Host port
24 18
A I } A

Internal Buses

D32 I I I 16D

C6201 CPU core DMA Enhanced
Program fetch Control Cx0 [« (-?f;fEe {)
Instruction dispatch registers serial port
Instruction decode Control Cx1
Data path 1 Data path 2 logic Enhanced
| Aregisterfile ||| B register file | Test > (-?T;fs{)
I I T;_Tﬁ_f I I Emulation serial port
L1]S1|M1|D1 L1]S1|M1|D1 Interrupts
Timer

Timer

Figure 1. TMS320C6201 DSP Block Diagram

TMS320C62x and C62x are trademarks of Texas Instruments.

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform 11

{'? TEXAS

SPRA291 INSTRUMENTS

12

This discussion focuses on the CPU, or core, of the device. The C62x CPU is the central
building block of all TMS320C62x devices and features two data paths where processing
occurs. Each data path has four functional units (.L, .S, .M, .D), along with a register file
containing 16 32-bit general-purpose registers.

The C62x is a load-store architecture in which all functional units obtain operands from a register
file, rather than directly from memory.

The .D units load/store data from and to memory from the register file with an address reach of
32 bits. The C62x architecture is also byte addressable: the .D units can load or store data in
either 8 bits (byte), 16 bits (half-word), or 32 bits (word). In addition, the .D units can perform
32-bit addition and subtraction and address calculations.

The .M units perform multiplication, featuring a 16-bit by 16-bit multiplier that produces a 32-bit
result. Additional multiplier features include the ability to select either the 16 most significant bits
(MSBs) or 16 least significant bits (LSBs) of a register operand, and optionally left-shift the
multiplier output by one with saturation.

The .S units perform branches and shifting primarily, but also perform bit field operations such
as extract, set and clear bit fields, as well as 32-bit logical operations and 32-bit addition and
subtraction. Another advanced feature of each .S unit is the ability to split its ALU to perform two
16-bit adds or subtracts in a single cycle.

Although the .S and .D units perform ALU functions, the .L unit is the main ALU for the CPU,
performing both 32-bit and 40-bit integer arithmetic. The .L unit also features saturation logic,
comparison instructions, and bit counting and can perform 32-bit logical operations. In support of
the eight functional units, the CPU has a program fetch unit; instruction dispatch unit; instruction
decode unit; control registers; control logic; and test, emulation and interrupt logic.

The C62x features a state of the art software development environment. A very efficient

C compiler, along with a linear assembly optimizer, allows fast time to market through ease of
use. Its orthogonal reduced instruction set computing (RISC)-like CPU architecture makes the
C62x CPU a very good C-compiler target. Combined with TI's compiler expertise, these features
make the C62x compiler the most efficient DSP compiler on the market today.

Because of its efficiency, most C62x coding can be done in C. However, as with many other
DSPs, some tasks or routines require assembly coding to achieve the highest performance
possible.

As a result, Tl has developed a new tool called the assembly optimizer that makes assembly
language coding easier and faster. The assembly optimizer allows you to write linear assembly
code (no parallel instructions) without assigning registers to operands.

The assembly optimizer accepts this input syntax and generates an assembly language output
that parallelizes the linear instructions and assigns registers to operands. This relieves the
assembly language programmer of the following responsibilities:

* Determining which instructions can be executed in parallel
* Knowing how to position code to avoid delay slot conflicts
e Keeping track of which registers are live or free

The C62x assembler is also included in the code development tool set.

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

{9 TEXAS
INSTRUMENTS SPRA291

Figure 2 shows the process flow to develop code for the C62x.

Phase 1

Complete

No

Refine C code

Phase 2

Complete

Yes More C

optimizations
?

Phase 3 Write linear
assembly

I Assembly optimize I

Figure 2. Code Development Flow Chart

In phase 1 of the code development process, TI recommends that the algorithm first be
implemented in C, which serves the following purposes:

* Provides an easy way to verify the functionality of an algorithm
* Provides a working model to verify results of optimized versions

* May meet your efficiency requirements, and thus completes your implementation

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform 13

{'? TEXAS

SPRA291 INSTRUMENTS

14

If phase 1 fails to meet your performance requirements, you may need to proceed to phase 2 to
refine and optimize your C code. The process includes modifying your C code for efficiency
using the C code optimization methods. This section offers a brief overview of the C-code
optimization methods. For a more detailed explanation, see the TMS320C6000 Programmers
Guide (SPRU198).

One of the easiest methods used to optimize your C code is the C compilers’ optimizer, evoked
using compiler options. Some of the most commonly used optimizer options are: —03, —pm, —mt,
and —x2. See the TMS320C6000 Optimizing C Compiler User’s Guide (SPRU187) for a list of
available compiler optimization options and usage.

Other methods to optimize C code for efficiency involve modifying your C code. One very
effective method uses compiler intrinsics — special functions that map directly to inlined C62x
instructions. Intrinsic functions typically allow you to use a C62x specific feature that is not
directly expressible in C, such as .L unit saturation.

Other effective optimization techniques include:
e Loop unrolling

* Software pipelining

* Trip count specification

* Using the const keyword to eliminate memory dependencies

All of these methods produce very efficient C code. Nevertheless, the compiler still may not
produce the efficiency required. In this case, phase 3 may be required. Phase 3 uses the
assembly optimizer and/or the assembler to generate C62x assembly code. By far, the easiest
and recommended route is the assembly optimizer. The assembly optimizer usage is outlined in
detail in the TMS320C6000 Optimizing C Compiler User’s Guide (SPRU187). In addition, the
TMS320C6000 Assembly Language Tools User’s Guide (SPRU186) outlines assembler usage.

A recommended approach for using either assembly method is to implement assembly routines
as C-callable assembly functions.

NOTE: Use caution when implementing C-callable assembly routines so that you do not disrupt
the C environment and cause a program to fail. The TI TMS320C6000 Optimizing C Compiler
User’s Guide (SPRU187) details the register, stack, calling, and return requirements of the C62x
run-time environment. Tl recommends that you read the material covering these requirements
before implementing a C-callable assembly language function.

Implementation and Optimization of Real-Valued DFTs

Appendix C contains the source code listings for C implementation of the two efficient methods
for performing the DFT of real-valued sequences outlined in this application report. Each
implementation fits into phase 1 of the code development flow chart shown in Figure 2.

The primary purpose of this particular implementation is to verify the functionality of split
operation algorithm implementations and provide a known good model to compare against
optimized versions. Another benefit is that this implementation is generic C code and thus can
be easily ported to other DSPs or CPUs featuring C compilers.

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

{9 TEXAS
INSTRUMENTS SPRA291

Because the primary focus of this application report is the split operations used in the efficient
computation of DFTs, the C implementation is not efficient with respect to the other operations
involved in the computation of real-valued DFTs. For example, the direct form of the DFT is
implemented rather than a more computationally efficient FFT. Optimizing the C code to yield
better performance is addressed in Appendix D.

Example 1 and Example 2 show the compiler usage for building the executable files for these
implementations.

Example 1. Efficient Computation of the DFT of a 2N-Point Real Sequence

cl 6x —g vectors.asmrealdftl.c splitl.c datal.c dft.c —z —o testl.out -l
rts6201.1ib | nk.cnd

Example 2. Efficient Computation of the DFT of Two Real Sequences

cl 6x —g vectors.asmrealdft2.c split2.c data2.c dft.c -z —-o test2.out -l
rts6201.lib I nk.cnd

The example compiler usage results in two executable files that can be loaded into the C62x
device simulator and run:

e testl.out
e test2.out

The —g option used in the above compiler usage tells the compiler to build the code with debug
information. This means that the compiler does not use the optimizer but allows the code to be
easily viewed by the debugger.

First-time users of the C62x are encouraged to try different compiler options and compare the
effects of each on code performance. For benchmarking code on the C62x debugger, see the
TMS320C6x C Source Debugger User’s Guide (SPRU188).

Appendix D contains the source code listings for optimized C implementations of the two
efficient methods for performing the DFT of real-valued sequences outlined in this application
report. These implementations apply to phase 2 of the code development flowchart shown in .

For this implementation, the C code is refined to yield better performance. Not all C optimization
techniques outlined in this application report have been implemented. This is so that the C code
remains generic and can be ported easily to other DSPs. However, you can easily apply other
C62x C optimization techniques to increase performance. The following optimizations are
implemented in Appendix D.

* The DFT is replaced with a radix-4 FFT, yielding a large computational savings as the
number of data samples to be transformed increases. The radix-4 FFT restricts the size
to a power of 4.

* Split operation tables and FFT twiddle factors are generated using pre-generated look-up
tables instead of the run-time support functions sin() and cos(). This reduces the number of
cycles required for the setup code.

* The code is organized as a series of functions to separate the independent tasks so they
could be easily and independently optimized.

Example 3 and Example 4 show the compiler usage for building executable files for these
implementations.

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform 15

{'f TEXAS
SPRA291 INSTRUMENTS

Example 3. Efficient Computation of the DFT of a 2N-Point Real Sequence

cl 6x —g vectors.asmdatal.c digitgen.c digit.c radix4.c realdft3.c splitl.c
splitgen.c -z -0 test3c.out -l rts6201.lib I nk.cnd

Example 4. Efficient Computation of the DFT of Two Real Sequences

cl 6x —g vectors.asmdata2.c realdftd4.c split2.c radix4.c digit.c digitgen.c -z
-0 test4c.out -l rts6201.lib Ink.cnd

The result of the above compiles is two executables:

e test3c.out
e testd4c.out

The executables can be loaded into the C62x device simulator and run. The same restrictions
that apply to the executables in Appendix C apply to these executables.

Appendix E contains C62x assembly language source code listings. These implementations fit
into phase 3 of the code development flowchart shown in Figure 2. Each assembly listing
contains a C62x C-callable assembly language function that replaces an equivalent C function
shown in Appendix D. The following list includes functions implemented in assembly.

splitl.asm The C-callable assembly language function that implements the split
routine for the efficient computation of the DFT of two real sequences
algorithm.

split2.asm The-callable assembly language function that implements the split routine
for the efficient computation of the DFT of 2N-point real sequence.

radix4.asm Replaces radix4.c. A C-callable assembly language function that
implements the radix-4 FFT.

digit.asm Replaces digit.c. A C-callable assembly language function that implements

the digit reversal for the radix-4 FFT

Because each of the above routines is functionally equivalent in C and assembly, no
modification of other functions in Appendix D is required to use them. All that must be changed
to use these functions is the way in which we build the executables. Example 5 and Example 6
show how to build the executables with the assembly versions.

Example 5. Efficient Computation of the DFT of a 2N-Point Real Sequence

cl 6x —g vectors.asmdatal.c digitgen.c digit.asmradix4.asmrealdft3.c
splitl.asmsplitgen.c —z —o test3a.out -l rts6201.lib | nk.cnd

Example 6. Efficient Computation of the DFT of Two Real Sequences

cl 6x —g vectors.asmdata2.c realdft4.c split2.asmradi x4.asmdigit.asmdigit-
gen.c -z -0 testd4a.out -l rts6201.lib Ink.cnd

The result of the compiles shown in Example 5 and Example 6 is two executables:

e test3a.out
e testd4a.out

These can be loaded into the C62x device simulator and run. The same restrictions that apply to
the executables in Appendix C apply to these executables.

16 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

{9 TEXAS
INSTRUMENTS SPRA291

6

Summary

This application report examined the theory and implementation of two efficient methods for
computing the DFT of real-valued sequences. The implementation was presented in both C and
C62x assembly language. As this application report reveals, a large computational savings can
be achieved using these methods on real-valued sequences rather using complex-valued DFTs
or FFTs. Moreover, the TMS320C62x CPU performs well when implementing these algorithms in
either C or assembly.

References

1.

© 0 N O

Burrus, C.S., and Parks, TW. DFT/FFT and Convolution Algorithms, John Wiley and Sons,
New York,1985.

Manolakis, D.G., and Proakis, J.G. Introduction to Digital Signal Processing, Macmillan
Publishing Company, 1988.

Digital Signal Processing Applications with the TMS320 Family, Theory, Algorithms and
Implementations, Volume 3 (SPRA017).

TMS320C6000 Technical Brief (SPRU197).

Burrus, C.S., Heideman, M.T., Jones, D.L., Sorensen, H.V. “Real-Valued Fast Fourier Transform
Algorithms”, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-35,
No. 6,pp. 849-863, June 1987.

TMS320C6000 Programmer’s Guide (SPRU198).

TMS320C6000 Optimizing C Compiler User’s Guide (SPRU187).
TMS320C6000 Assembly Language Tools User’s Guide (SPRU186).
TMS320C6x C Source Debugger User’s Guide (SPRU188).

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform 17

{'.f TEXAS

SPRA291 INSTRUMENTS

Appendix A Derivation of Equation Used to Compute the DFT/IDFT of Two

Al

18

Real Sequences

This appendix provides a detailed derivation of the equations used to compute the FFT/IDFT of
two real sequences using one complex DFT/IDFT.

Forward Transform

Assume x1(n) and x»(n) are real-valued sequences of length N, and let x(n) be a complex-valued
sequence defined as

x(n) = x;(n) + jx, (n) 0O<snsN-1 n
The DFT operation is linear, thus the DFT of x(n) may be expressed as:

X(k) = Xy(k) + jX,(k) O<sk=sN-1 (18)
We can express the sequences x1(n) and xo(n) in terms of x(n) as follows:
x(n) + x*(n)

x,(n) = 5
where * is the complex conjugate operator (19)
x(n) — x*(n)
Xz(n) = T

The following shows that these equalities are true:

x(n) +2x*(n) _ X(n) + jxp(n) ;— x1(n) = jx,(n) %, (n)

(20)

x(n) — x*(n) X;(n) + jx,(n) = x,(n) + jx,(n)
2j 2]

Therefore, we can express the DFT of x1(n) and x»(n) in terms of x(n) as shown below:

X5(n)

X,(k) = DFT[x,(n)] %{DFT[x(n)] + DFT[x* (n)]}

(21)

X,(k) = DFT[x,(n)] le{DFT[x(n)]— DFT[x * (n)]}

From the complex property of the DFT, we know the following is true:
Ifx(n) <= X(K), then x * (n) <= X*(N — K)
Thus, we can express X1(k) and Xo(k) as follows:

Xy(k) = Z0(K) + X* (N = K]
(22)
X (k) = zlj[X(k) — X*(N = K)]
From the above equations, we can see that by performing a single DFT on the complex-valued

sequence x(n), we have obtained the DFT of two real-valued sequences with only a small
amount of additional computation in calculating X1 (k) and X»(k) from X(k).

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Platform

{9 TEXAS
INSTRUMENTS SPRA291

In addition, because x41(n) and x»(n) are real-valued sequences, X1 (k) and X»(k) has complex
conjugate symmetry — X1(N-k) = X1*(k) and X2(N-k) = Xo*(k); thus, we only need to compute
X1(k) and Xo(k) for k =0,1,2, ..., N/2.

Xy () = ZIX(K) + X* (N — k)

XN =k) = X;*(k)
k = 0,1,...,N/2

(23)
with X(N) = X(0)
X, () = X0 = X* (N = k)
To implement these equations, it is helpful if we express them in terms of their real and
imaginary terms.
X, (k) = %{Xr (k) + jXi(k) + Xr(N — k) — jXi(N — k)}
= %{(Xr (k) + Xr(N — k)) + j(Xi(k) — Xi(N — k))}
or k = 0,1,...,N/2 @
ith X(N) = X
Xy k) = Lixe(k) + Xe(N — K} with X(N) = X(0)
X1 i) = 2{xi(k) - Xi(N - k)
Similarly, it can be shown that
Xo (k) = Z{Xi(k) + Xi(N ~ K)}
k = 0,1,...,N/2
(25)
with X(N) = X(0)
X i(k) = = {Xr(k) = Xr(N - K)}
There are two special cases with the above equations, k = 0 and k = N/2. For k = 0:
X, 1(0) = Z{Xr(0) + Xr(N)}
X1i(0) = Z{Xi(0) — Xi(N)}
(26)

X,1(0) = Z{Xi(0) + Xi(N)}

Xi(0) = 5L {xr(0) — xr(N)}

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Platform 19

{'.f TEXAS

SPRA291 INSTRUMENTS

A.2

20

Because of the periodicity property of the DFT, we know X(k + N) = X(k). Therefore, X,(0) =
X¢(N) and X;(0) = X;(N). Using this property, the above equations can be expressed as follows:

X, r(0) = Xr(0)

X,i(0) = 0 -
X,1(0) = Xi(0)
X, i(0)
For k = N/2:
Xy 1(N/2) = Z{XI(N/2) + X(N/2))
X1iN/2) = Z{Xi(N/2) = Xi(N/2)]
(28)
X2 1(N/2) = Z{Xi(N/2) + Xi(N/2)]
X,i(N/2) = =E[xr(N/2) = x(N/2))
or
X, r(N/2) = Xr(N/2)
X, i(N/2) = 0 "
X,1(N/2) = Xr(N/2)
X,i(N/2) = 0

Thus, (24) and (25) must be computed only for k = 1,2, ... N/2 — 1.

Inverse Transform

We can use a similar method to obtain the IDFT. We know X1 (k) and Xo(k). We want to express
X(k) in terms of X1(k) and Xo(k). Recall, the relationship between x1(n), xo(n) and x(n) is

x(n) = x1(n) + jxo(n). Since the DFT operator is linear, X(k) = X1(k) + jX2(k). Thus, X(k) can be
found by the following equations:

Xr(k) = X;r(k) — X,i(k)
Xi(k) = Xji(k) + X,r(k)
x(n) can then be found by taking the inverse transform of X(k).
x(n) = IDFT[X(K)]
From x(n), we can get x1(n) and x»(n).
X,(n) = xr(n)
X,(n) = xi(n)

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Platform

b TEXAS

INSTRUMENTS SPRA291

Appendix B Derivation of Equations Used to Compute the DFT/IDFT of a
Real Sequence

This appendix details the derivation of the equations used to compute the DFT/IDFT of a
2N-length real-valued sequence using an N-length complex DFT/IDFT.
B.1 Forward Transform

Assume g(n) is a real-valued sequence of 2N points. The following shows how to obtain the
2N-point DFT of g(n) using an N-point complex DFT.

Let
X,(n)
X,(n)

g(2n)
g(2n + 1)

(30)

We have subdivided a 2N-point real sequence into two N-point sequences. We now can apply
the same method shown in Appendix A.

Let x(n) be the N—point complex—valued sequence.
x(n) = x; (n) + jx, (n) 0Osn=s=N-1 (CEY
From the results shown in Appendix A, we have

X(k) = Z{X() + X* (N = K}
k =01....N—-1 (32)

Xo(k) = 20X = X* (N = K}

We now express the 2N-point DFT in terms of two N-point DFTSs.
G(k) = DFT[g(n)] = DFT[g(2n) + g(2n + 1)] = DFT[g(2n)] + DFT[g(2n + 1)]

2n + 1)k
= Z g(2n)w2N + z g(@n + 1)w(n+1)
n=0 n=0 k =01,....N-1 (33)
N—-1 nk
= > XMW + w2N z X,(MW | N
n=0
Thus,
G(k) = (k)+W2N 5(k) k =01,...N-1 34)
Using equation (32), we can express G(k) in terms of X(k).
_ 1 * (N — * (N —
G(k) = E{X(k) + X*(N k)}+W2N 2 ={X(k) = X*(N — k)}
k = 0,1,..., N-1 (35)

_ X(k)[%(l - jW;N)] +X*(N = k)[%(l + jW;N)]

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 21

{'f TEXAS
SPRA291 INSTRUMENTS

Let

AK) %(1 - jW;N)

(36)

B(K) %(1 + jW;N)

Thus, G(Kk) can be expressed as follows:
G(k) = X(k)A(k) + X*(N — k)B(k) k =01,.,N-1 @7

Because x(n) is a real-valued sequence, we know that the DFT transform results will have
complex conjugate symmetry. Also, because of the periodicity property of the DFT, we know
X(k+N) = X(k); therefore, X(N) = X(0). Using these properties, we can find the other half of the
DFT result.

Thus, we have computed the DFT of a 2N-point real sequence using one N-point complex DFT
and additional computations.

To implement these equations, it is helpful to express them in terms of their real and imaginary
terms.

G(k) = (Xr(k) + j Xi(k))(Ar(k) + jAi(k)) + (Xr(N — k) — j Xi(N — k))(Br(k) + j Bi(k))

(38)
k =0,1,....N—-1
Carrying out the multiplication, separating the real and imaginary terms, and applying the
periodicity and complex conjugate properties, we have the following:
Gr(k) = Xr(k)Ar(k) — Xi(k)Ai(k) + Xr(N — k)Br(k) + Xi(N — k)Bi(k)
k = 0,1,..., N-—-1
with X(N) = X(0)
Gi(k) = Xi(k)Ar(k) + Xr(k)Ai(k) + Xr(N — k)Bi(k) — Xi(N — k)Br(k)
(39)
Gr(k) = Xr(0) — Xi(0) k = N
Gilk) = 0

Gr(2N — k) = Gr(k)

Gi(2N — k) Gi(k)

22 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS

SPRA291

B.2

Inverse Transform

We will now derive the equations for the IDFT of a 2N-point complex sequence derived from a
real sequence using an N-point complex IDFT. We express the N-point complex sequence, X(k),
in terms of the 2N-point complex sequence G(k). Once X(k) is known, x(n) can be found by

taking the IDFT of X(k). Once x(n) is known, g(n) follows.

Equation (37) can be rewritten as follows:
G(k) = X(k)A(k) + X*(N — k)B(k) k

G(N — k) = X(N = Kk)A(N — k) + X*(k)B(N — k) K

where
_ _1 N =K] _ _1 o=k
o ooN=K\] el - K]

0,1,...

A* (k)

B* (k)

The above equalities can be shown to be true by recalling the following definition and

substituting appropriately for k.

K
Won

= e /2N = cos(27k/2N) — jsin(2zk/2N)

N -2
(40)
N/2 -1
(a1)
(42)

We would like to make the ranges of k for G(k) and G(N—k) the same. Look at G(N/2):

G(N/2) = X(N/2)A(N/2) + X*(N/2)B(N/2)

But from (42), we see that

N2

Won = 7

Therefore:

G(N/2) = X*(N/2)

1

= X(N/Z)[%(l - jw%z)] + X*(N/2)|:—

2

(1+jW

2N

N/Z)]
(@3

(44)

(45)

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 23

{'f TEXAS
SPRA291 INSTRUMENTS

Now we can express G(k) and G(N—k) with the same ranges of k, and along with (41) and (43)
we have

G(k) = X(k)AK) + X*(N — k)B(k) k =0,1,...,N/2 -1 (46)

G(N — k) = X(N — k)A*(k) + X*(k)B(k) k 0,1,...,N/2 -1

(7)
G(N/2) = X*(N/2)
From (46) and (47) you can see we have two equations and two unknowns, X(k) and X(N—k).
We can use some algebra tricks to come up with equations for X(k) and X(N-K). If we multiply

both sides of (46) with A(k), complex conjugate both sides of (47), then multiply both sides by
B(k), we have the following:

G(k)A(k) = X(k)A(k) + X*(N — k)B(k)A(k)
— G*(N — k)B(k) = X(k)B(k)B(k) + X*(N — k)B(k)A(k) (48)
G(K)A(k) — G*(N — k)B(k) = X(kX{A(k)A(k) — B(k)A(Kk)}

k = 0,1,...,N/2-1

Solving for X(k):

G(k)A(k) — G*(N — k)B(k)
A(k)A(k) — B(k)B(k)

X(k) = k = 0,1,...,N/2 -1 (49)

Equation (49) can be simplified as follows:

[Kk Kk i ok k]

AK)AK) = %(1 —jsz) %(1 —jWZN) = % 1-2{Woy — Woy
i L i i . (50)

[k[k)] [Kk k

B(k)B(k) = %(1+1W2N) %<1+1W2N) = % 1+2]Woy — Woy
| JL i L E (51)

K
AGOKA(K) - B(K)B(K) = — Wy,

G(K)AK) — G*(N — K)B(K) ©2

X(k) = > k = 0,1,....N/2 — 1

—Woyn

Similarly, if we multiply both sides of (47) with A*(k), conjugate both sides of (46), then multiply
both sides by B*(k), we have the following:

G*k)B*(k) = X*(k)A*(k)B*(k) + X(N — k)B*(k)B * (k)
—G*(N —KkA*(Kk) = X*(k)A*K)B*(k) + X(N — K)A* (kK)A* (k) (53)
G*(k)B*(k) — GIN — k)A*(k) = X(N — k){A*(k)A*(k) — B*(k)B*(k)}
k = 01,...,N/2-1

24 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

SPRA291

{f’ TEXAS
INSTRUMENTS
Solving for X(N-K):
G*(k)B*(k) — G(N — k)A* (k)
- = = — (54)
X(N = k) A B B K = 0L-N2-1
Equation (54) can be simplified as follows:
A*(k)A* (k) = [%(1 +jW2_Nk) [%(1 +jW2_Nk)] = %[1 + 2jW2_Nk - W, k]
i (55)
i =K\ -k -k —k
B*(k)B* (k) = [%(1 — Wan)] %(1 —Wan)] = %[1 —2jWon — W]
i (56)
A*(K)A*(K) = B*(OB*(K) = W<)
X(N — k) = G*(k)B (k)—G_(Nk— K)A * (k) k = 0,1,...,N/2-1)
—Woy
It can be shown that
& = A*(k) and ﬂ = B(k)
. K . K (59)
—Won ~Won
AT avgo ana B g
¢ k (60)
WaN WaN
Making these substitutions, we get:
X(k) = G(k)A*(k) + G*(N — k)B* (k)
k = 0,1,..,N/2 -1
(61)

X(N — k) = G*(k)B(k) + G(N — k)A(k)

X(N/2) = G*(N/2)

For equation (61), if we make the following substitutions, along with replacing k with N/2 — k,

AN — k) = A*(k) and B(N — k) = B*(k) 62)
we can see that X(k) can be expressed as a single equation.
X(k) = G(KA*(k) + G*(N — k)B* (k) k =01,...,.N—-1 .
G(N) = G(0)
25

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{'f TEXAS
SPRA291 INSTRUMENTS

Now, in terms of implementing these equations, it is helpful to express them in terms of their real
and imaginary terms.
X(k) = (Gr(k) + jGi(k))(Ar(k) — jAi(k)) + (Gr(N — k) — jGi(N — k))(Br(k) — jBi(k))
k = 0,1,....N—1 (64

with G(N) = G(0)

Carrying out the multiplication and separating the real and imaginary terms, we have the
following:

Xr(k) = Gr(k)Ar(k) + Gi(k)Ai(k) + Gr(N — k)Br(k) — Gi(N — k)Bi(k)
k =01,....N=-1
(65)
with G(N) = G(0)
Xi(k) = Gi(k)Ar(k) — Gr(k)Ai(k) — Gr(N — k)Bi(k) — Gi(N — k)Br(k)

Now we have formed the complex sequence with which we can use an N-point complex DFT to
obtain x(n), which we then can use to get g(n).

x(n) = xr(n) + jxi(n) = IDFT[X(k)]

g(2n) = xr(n) n=01..,N-—1 ©®

g(2n + 1) = xi(n)

26 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

Appendix C C Implementations of the DFT of Real Sequences

This appendix contains C implementations of the efficient methods for performing the DFT of
real-valued sequences.

C.1 Implementation Notes

The following lists usage, assumptions, and limitations of the code.

Data format All data and state variables are 16-bit signed integers (shorts). In this example, the
decimal point is assumed to be between bits 15 and 14, thus the Q15 data format.
For complex data and variables, the real and imaginary components are both Q15
numbers. From this data format, you can see that this code was developed for a
fixed-point processor.

Memory Complex data is stored in memory in imaginary/real pairs. The imaginary component
is stored in the most significant halfword (16 bits) and the real component is stored
in the least significant halfword, unless otherwise noted.

Endianess The code is presented and tested in little endian format. Some modification to the
code is necessary for big endian format.

Overflow No overflow protection or detection is performed.

File Description

realdftl.c DFT of a 2N-point real sequence main program

splitl.c Split function for the DFT of a 2N-point real sequence

datal.c Sample data

params1.h Header file, for example

realdft2.c DFT of a two N-point real sequence main program

split2.c Split function for the DFT of two N-point real sequence

data2.c Sample data

params2.h Header file, for example

dft.c Direct implementation of the DFT function

params.h Header file

vectors.asm Reset vector assembly source

Ink.cmd Example linker command file

Example C-1. realdftl.c File

/**

FI LE
realdftl.c — C source for an exanple inplenentation of the DFT/IDFT

of a 2N-point real sequences using one N-point conplex DFT/IDFT.

EE IR I S I R I I I R I S I R I I I S R R I I R I I R R I R I R S R R R I

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 27

SPRA291

{'f TEXAS
INSTRUMENTS

Description

This program is an example implementation of an efficient way of computing the DFT/IDFT of a
real-valued sequence.

In many applications, the input is a sequence of real numbers. If this condition is taken into
consideration, additional computational savings can be achieved because the FFT of a real
sequence has some symmetrical properties. The DFT of a 2N-point real sequence can be
efficiently computed using a N-point complex DFT and some additional computations.

The following steps are required in the computation of the FFT of a real-valued sequence using
the split function:

1. Letg(n) be a 2N-point real sequence. From g(n), form the the N-point complex valued

sequence, x(n) = x1(n) + jx2(n), where x1(n) = g(2n) and x2(n) = g(2n + 1).

Perform an N-point complex FFT on the complex valued sequence x(n) -> X(k) =
DFT{x(n)}. Note that the FFT can be any DFT method, such as radix-2, radix-4, mixed
radix, direct implementation of the DFT, etc. However, the DFT output must be in normal
order.

. The following additional computation are used to get G(k) from

X(K)Gr(k) = Xr(k)Ar(k) — Xi(k)Ai(k) + Xr(N-k)Br(k) + Xi(N-k)Bi(k)
k=0,1, .., N-1
and X(N) = X(0)

Gi(k) = Xi(k)Ar(k) + Xr(k)Ai(k) + Xr(N—-k)Bi(k) — Xi(N-k)Br(k)

Note that only N-points of the 2N-point sequence of G(k) are computed in the above
equations. Because the DFT of a real-sequence has symmetric properties, we can easily
compute the remaining N points of G(k) with the following equations.

Gr(N) = Xr(0) — Xi(0)

Gi(N) =0

Gr(2N—k) = Gr(k)

Gi(2N—k) = -Gi(k

As you can see, the above equations assume that A(k) and B(k), which are sine and cosine
coefficients, are pre-computed. The C-code can be used to initialize A(k) and B(k).

for(k=0; k<N, k++)

{

28

Al k].imag = (short)(16383. 0*(—cos(2*PI/ (doubl e) (2*N)*(doubl e)k)));
Al k].real = (short)(16383.0*(1.0 — sin(2*Pl/(double)(2*N)*(double)k)));
B[Kk].imag = (short) (16383. 0*(cos(2*PI/ (doubl e)(2*N)*(doubl e)k)));
B[k].real = (short)(16383.0*(1.0 + sin(2*PI/(double)(2*N)*(double)k)));

The following steps are required in the computation of the IFFT of a complex valued frequency
domain sequence that was derived from a real sequence:

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

1. Let G(k) be a 2N-point complex valued sequence derived from a real valued sequence

g(n). We want to get back g(n) from G(k) —> g(n) = IDFT{G(k)}. However, we want to apply
the same techniques as we did with the forward FFT. Use a N-point IFFT. This can be
accomplished by the following equations.
Xr(k) = Gr(k)IAr(k) — Gi(k)IAi(k) + Gr(N-K)IBr(k) + Gi(N-Kk)IBi(k)

k=0,1,.. N-1

and G(N) = G(0)
Xi(k) = Gi(k)IAr(k) + Gr(k)IAi(k) + Gr(N-k)IBi(k) — Gi(N—-K)IBr(k)

Perform the N-point inverse DFT of X(k) —> x(n) = x1(n) + jx2(n) = IDFT{X(k)}. Note that
the IDFT can be any method, but must have an output that is in normal order.

g(n) can then be found from x(n).
g(2n) = x1(n)

n=0,1,.. N-1
g(2n+1) = x2(n)

As you can see, the above equations can be used for both the forward and inverse FFTs,
however, the pre-computed coefficients are slightly different. The following C-code can be used
to initialize IA(k) and IB(k).

for(k=0; k<N k++)

{

}

Not e,
B(k) .

I Alk].imag = —(short) (16383. 0*(—cos(2*PI/ (doubl e) (2*N) *(doubl e)k)));
| Afk].real = (short)(16383.0*(1.0 — sin(2*Pl/(doubl e)(2*N)*(double)k)));
IB[k].img = —(short)(16383. 0*(cos(2*PI/ (doubl e) (2*N)*(doubl e)k)));
IB[k].real = (short)(16383.0*(1.0 + sin(2*Pl/(double)(2*N)*(double)k)));

I A(k) is the conplex conjugate of A(k) and IB(k) is the conplex conjugate of

***/

#i ncl ude <mat h. h>

#i ncl ude "paransl. h”

#i ncl ude ”parans. h”

extern short g[];

void dft(int, COWLEX *);

void split(int, COWPLEX *, COWLEX *, COWPLEX *, COWPLEX *);

mai n()

{
i nt n, k;
COVPLEX x[NUMPO NTS+1] ; [* array of conplex DFT data */
COVPLEX A NUMPOI NTS] ; /[* array of conplex A coefficients */
COVPLEX B[NUMPA NTS] ; [* array of conplex B coefficients */
COVPLEX | Al NUMPA NTS] ; [* array of conplex A* coefficients */
COVWPLEX | B[NUMPQOI NTS] ; /* array of conplex B* coefficients */
COVPLEX { 2* NUMPQO NTS] ; [* array of conplex DFT result */

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 29

SPRA291

{'f TEXAS
INSTRUMENTS

/*
/*

/*

/*

/*

/* Initialize A/B, IA and IB arrays */

for(k=0; k<NUMPQO NTS; k++)

{

A K] .img
Al k].real =
B[k].imag =
B[k].real =
| ALK].imag
| A K] . real
I B[K].imag
IB[k].real =
}

Forward DFT
From the 2N
for (n=0; n<

{

x[n].inag
X[n].real
}
Conput e the

(short) (16383. 0*(—cos(2*PI/ (doubl e) (2* NUMPA NTS) *(doubl e)k)));
(short) (16383.0*(1.0 — sin(2*Pl/(doubl e) (2* NUMPO NTS) * (doubl e) k)));
(short) (16383. 0*(cos(2*PI/ (doubl e) (2* NUMPA NTS) * (doubl e)k)));
(short) (16383.0*(1.0 + sin(2*Pl/(doubl e)(2*NUMPO NTS) * (doubl e)k)));

—A[K] . i mag;

Al K] .real;

—B[k] . i mag;

B[k] . real;

*/
poi nt real sequence, g(n), for the N-point conplex sequence, x(n) */
NUMPO NTS; n++)

gl2*n + 1]; /* x2(n)
= g[2*n]; [* x1(n)

g(2n + 1) */
g(2n) */

DFT of x(n) to get X(k) —> X(k) = DFT{x(n)} */

df t (NUVPOI NTS, x)

Because of t

he periodicity property of the DFT, we know that X(N+k)=X(k). */

X[NUMPO NTS] .real = x[0].real;
X[NUMPAO NTS] . i mag = x[0].inag;

The split fu
G k) from X(

nction perforns the additional conputations required to get
k). */

split(NUMPO NTS, x, A B, Q;
/* Use conplex conjugate symmetry properties to get the rest of QKk) */

G NUMPA NTS] . r eal
g NUMPO NTS] . i mag

x[0].real — x[O].img;
0;

for (k=1; k<NUMPO NTS; k++)
{
J 2*NUMPO NTS—k] .real = Kk].real;
d 2* NUMPO NTS—K].imag = - K] . i mag;
}

/* Inverse DFT — W now want to get back g(n). */

30

Implementing

Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

/* The split function perforns the additional conputations required to get
X(k) fromQk). */
split(NUMPAONTS, G 1A IB, x);
/* Take the inverse DFT of X(k) to get x(n). Note the inverse DFT could be any
| DFT i npl enentati on, such as an | FFT. */

/* The inverse DFT can be cal culated by using the forward DFT algorithmdirectly by
conpl ex conjugation — x(n) = (1/N)(DFT{X*(k)})*, where * is the conpl ex conjugate
operator. */

/* Conpute the conpl ex conjugate of X(k). */
for (k=0; k<NUMPO NTS; k++)
{
x[k].imag = —x[k].imag; /* conplex conjugate X(k) */

}
/* Conpute the DFT of X*(k). */
df t (NUMPO NTS, Xx);
/* Conpl ex conjugate the output of the DFT and divide by Nto get x(n). */
for (n=0; n<NUMPO NTS; n++)
{
x[n].real/16;
(=x[n].imag)/16;

x[n].real
x[n].inmag

}
/* g(2n) = xr(n) and g(2n + 1) = xi(n) */
for (n=0; n<NUMPO NTS; n++)

{
gl 2*n] = x[n].real;
g[2*n + 1] = x[n].inag;
}
return(0);

}
Example C-2. splitl.c File

/**

FI LE
splitl.c — This is the C source code for the inplenentation of the
split routine, which is the additional conputation in conputing the
DFT of an 2N-poi nt real -val ued sequences using a N point conplex DFT.

khhkkkhhkhhhkhkhkdhkhhdhhhkdhbhkhdhrhkdhhbdrhdbhrhkdhrkhdhrhkdhhorkdddrhkdhrkddrhkdhorddrhkdhrorkddrrkdkhrrddxrhdhxdx

Description

Computation of the DFT of 2N-point real-valued sequences can be efficiently computed using
one N-point complex DFT and some additional computations. This function implements these
additional computations, which are shown below.
Gr(k) = Xr(k)Ar(k) — Xi(k)Ai(k) + Xr(N—-k)Br(k) + Xi(N-Kk)Bi(k)

k=0,1, .., N-1

and X(N) = X(0)
Gi(k) = Xi(k)Ar(k) + Xr(k)Ai(k) + Xr(N-k)Bi(k) — Xi(N—k)Br(k)

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 31

{'f TEXAS
SPRA291 INSTRUMENTS

***/

#i ncl ude "paransl. h”
#i ncl ude " paramns. h”
void split(int N, COWLEX *X, COWPLEX *A, COWLEX *B, COVPLEX *Q

{

int k;

int Tr, Ti;

for (k=0; k<N, Kk++)

{
Tr = (int)Xk].real * (int)Alk].real — (int)Xk].imag * (int)A k].img +
(int) X N-k] .real * (int)B[k].real + (int)X[N-k].imag * (int)B[k].inag;
dJk].real = (short)(Tr>>15);
Ti = (int)X[Kk].imag * (int)Ak].real + (int)X k].real * (int)AK].img +
(int)XIN-k].real * (int)B[k].imag — (int)X[N-k].imag * (int)B[Kk].real;
dJk].imag = (short) (Ti >>15);

}

}

Example C-3. datal.c File
/**

FI LE
datal.c — Sanple data used in realdftl.c

EE R R I I I R I I R I R I I R R I R R I R R I R I R R I R R R I R I S R R I R R I I R R O

/* array of real-valued input sequence, g(n) */
short g[] = {255, -35, 255, —35, 255, 255, 255, 255,
255, 255, 255, 20, 255, 255, 255, 255,

o, o, 0, 0, 0, 0, O, O,
o, o, o, 0, 0, 0, O, 0};
Example C—4. paramsl.h File

/**

FI LE
paransl.h — This is the C header file for exanple real FFT
i mpl ement ati ons.
ko ko Kk kK ko Kok Kk kK ko ok ok Kk ko ko ko Kk ko ko ko Kk ko ko ok ok Rk ko ok ok Kk kK Kk Kk Kk kK Kk Kk k|
#def i ne NUVDATA 32 /* nunber of real data samples */
#def i ne NUMPO NTS NUNMDATA/ 2 /* nunber of point in the DFT */

32 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

Example C-5. realdft2.c File

/**

FI LE

realdft2.c — C source for an exanple inplenentation of the DFT/IDFT of two
N-poi nt real sequences using one N-point conplex DFT/IDFT.

EIE I R R R R I I R R R R R S R I R R R I I R R R R R R S R S R R R R I R S R R S I

Description

This program is an example implementation of an efficient way of computing the DFT/IDFT of
two real-valued sequences.

Assume we have two real-valued sequences of length N — x1[n] and x2[n]. The DFT of x1[n] and
x2[n] can be computed with one complex-valued DFT of length N, as shown above, by following
this algorithm.

1. Form the complex-valued sequence x[n] from x1[n] and x2[n]
xr[n] = x1[n] and xi[n] =x2[n], 0,1, ..., N-1

Note, if the sequences x1[n] and x2[n] are coming from another algorithm or a data
acquisition driver, this step may be eliminated if these put the data in the complex-valued
format correctly.

2. Compute X[K] = DFT{X[n]}

This can be the direct-form DFT algorithm or an FFT algorithm. If using an FFT algorithm, make
sure the output is in normal order — bit reversal is performed.

3. Compute the following equations to get the DFTs of x1[n] and x2[n].

X1r[0] = Xr[0]
X1i[0]=0

X2r[0] = Xi[0]
X2i[0] = 0

X1r[N/2] = Xr[N/2]
X1i[N/2] = 0

X2r[N/2] = Xi[N/2]

X2i[N/2] =0

fork=1,2,3,, N/2-1
X1r[k] = (Xr[K] + Xr[N-k])/2
X1i[K] = (Xi[K] — Xi[N-K])/2
X1r[N—K] = X1r[K]
X1Li[N-K] = X1Li[K]

X2r[K] = (Xi[k] + Xi[N—K])/2
X2i[K] = (Xr[N=K] — X[K])/2
X2r[N—k] = X2r[K]
X2i[N—k] = X2i[K]

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 33

{'f TEXAS
SPRA291 INSTRUMENTS

4. Form X[Kk] from X1[k] and X2[k]

fork=0,1, ..., N-1
Xr[K] = X1r[k] — X2i[K]
Xi[k] = X1Li[K] + X2r[K]
5. Compute x[n] = IDFT{X[K]}
This can be the direct form IDFT algorithm, or an IFFT algorithm. If using an IFFT algorithm,
make sure the output is in normal order — bit reversal is performed

**/

#i nclude <math.h> /* include the C RTS math library */
#include "paranms2.h” /* include file with paraneters */
#i nclude "parans.h” [/* include file with paranmeters */

extern short x1[];

extern short x2[];

void dft(int, COWLEX *);

extern void split2(int, COWLEX *, COWLEX *, COWPLEX *);

mai n()

{
i nt n, k;
COVPLEX X1[NUVDATA] ; /* array of real-valued DFT output sequence, X1(k) */
COVPLEX X2[NUVDATA] ; /* array of real-valued DFT output sequence, X2(k) */
COWPLEX x[NUMPO NTS+1]; /* array of conplex DFT data, X(k) */

/* Forward DFT */
/* Fromthe two N-point real sequences, x1(n) and x2(n), formthe N point conplex
sequence, x(n) = x1(n) + jx2(n) */
for (n=0; n<NUNVDATA; n++)
{

x[n].real x1[n] ;

x2[n];

x[n].imag

[* Conpute the DFT of x(n), X(k) = DFT{x(n)}. Note, the DFT can be any
DFT i npl ementati on such as FFTs. */
df t (NUMPO NTS, Xx);
/* Because of the periodicity property of the DFT, we know that X(N+k)=X(k). */
X[NUMPO NTS] . real = x[0].real;
X[NUMPOI NTS] . i mag = x[0].i nmag;

34 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

/*

/*

/*

/*

/*

/*

/*

/*

/*

The split function perfornms the additional conputations required to get
X1(k) and X2(k) from X(k). */
split2(NUMPO NTS, x, X1, X2);
I nverse DFT — W now want to get back x1(n) and x2(n) from X1(k) and X2(k) using
one conpl ex DFT */
Recal |l that x(n) = x1(n) + jx2(n). Since the DFT operator is linear,
X(k) = X1(k) + jX2(k). Thus we can express X(k) in terms of X1(k) and X2(k). */
for (k=0; k<NUMPO NTS; k++)
{

X[k] . real X1[K] .real — X2[K].i mag;

X1[K].imag + X2[K].real;

x[k] .imag
}
Take the inverse DFT of X(k) to get x(n). Note the inverse DFT could be any
| DFT i npl enentati on, such as an | FFT. */
The inverse DFT can be cal culated by using the forward DFT algorithmdirectly
by compl ex conjugation — x(n) = (1/N)(DFT{X*(k)})*, where * is the conpl ex
conjugate operator. */
Conpute the conpl ex conjugate of X(k). */
for (k=0; k<NUMPO NTS; Kk++)
{
x[k].imag = —x[K].i mag;

}
Comput e the DFT of X*(k). */

df t (NUMPO NTS, Xx);

Conpl ex conjugate the output of the DFT and divide by Nto get x(n). */
for (n=0; n<NUMPO NTS; n++)
{

x[n].real x[n].real/16;

(=x[n].imag)/ 16;

x[n].inmag
}
x1(n) is the real part of x(n), and x2(n) is the imaginary part of x(n). */
for (n=0; n<NUNVDATA; n++)

{
x1[n] = x[n].real;
x2[n] = x[n].imag;
}
return(0);

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 35

{'f TEXAS
SPRA291 INSTRUMENTS

Example C-6. split2.c File
/**

FI LE
split2.c — This is the C source code for the inplenmentation of the
split routine, which is the additional computations in conputing the
DFT of two N-point real-val ued sequences using one N point conplex DFT.

LR R R R EEEEREEEEEEEREEEEEEEREEEEEEEEEREEEEREEREEEEEEEREE SRR EREE SRR EREE TR EREEEREEREES

Description

Computation of the DFT of two N-point real-valued sequences can be efficiently computed using
one N-point complex DFT and some additional computations. This function implements these
additional computations, which are shown below.

X1r[0] = Xr[O]

X1i[0] =0

X2r[0] = Xi[0]

X2i[0] =0

XIr[N2] = Xr[N 2]

X1i[N2] =0

X2r[N2] = Xi[N2]

X2i [N 2] =

for k =1,2,3,, N2-1
XIr[K] = (Xr[k] + Xr[N-k])/2
X1i[K] = (Xi[k] — Xi[N-k])/2
X1r[N=k] = XIr[Kk]
X1i [N-k] = X1i[Kk]
X2r[k] = (Xi[k] + Xi[N-k])/2
X2i [K] = (Xr[N-k] = Xr[k])/2
X2r[N-k] = X2r[K]
X2i [N=k] = X2i [K]

***/

#i ncl ude ”parans. h”
void split2(int N, COVPLEX *X, COWPLEX *X1, COWPLEX *X2)

{
int k;
X1[0].real = X[O0].real;
X1[0].imag = O;
X2[0].real = X O0].inmag;
X2[0].imag = O;
X1[N2].real = X[N2].real;
X1 [N 2].imag = O;
X2[N/ 2] . real X[N 2].inmag;

X2[N 2] .i mag 0;
for (k=1; k<N 2; k++)
X1[k].real = (X[k].real + X[N-k].real)/2;

36 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{f’ TEXAS

INSTRUMENTS SPRA291

X1[k].imag = (X[Kk].imag — X[N-k].imag)/?2;

X2[Kk].real = (X[Kk].imag + X[N-k].inmag)/?2;

X2[K].imag = (X[N-Kk].real — X[k].real)/2;

X1[N-k].real = X1[K].real;

X[N-k] .imag = —X1[K] . i nag;

X2[N-k] .real = X2[k].real

X2[N-k] .imag = —X2[k] . i mag;

}
}

Example C-7. data2.c File

/**

FI LE
data2.c — Sanple data used in realdft2.c

R I O I O O S I R R O O O

/* array of real-valued i nput sequence, x1(n) */
short x1[] = {255, 255, 255, 255, 255, 255, 255, 255,
0, 0, 0, 0, 0, O, 0, 0};

/* array of real-valued i nput sequence, x2(n) */

short x2[] = {-35, -35, -35, -35, -35, —-35, —35, -35,
o, 0, 0, 0, 0, O, O, O};
Example C-8. params2.h File

/**

FI LE
parans2.h — This is the C header file for exanple real FFT
i mpl emrent ati ons.
ok ok ok ko ko Kok Rk ko Kok Rk Kok ok kK ko ko ok R ko k ok ok kK Kk Kok kR R ko Kok kR ko Kk kK kK
#def i ne NUNVDATA 16 /* nunber of real data sanples */
#def i ne NUVMPO NTS NUMDATA /* nunber of point in the DFT */
Example C-9. dft.c File

/**

FI LE
dft.c — This is the C source code for the direct inplenentation of the

Di screte Fourier Transform (DFT) al gorithm

R IR I R R S R I Rk I I I I I R R R R S I R R R R I I Rk O I R R R I R I I R I O O

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 37

{'f TEXAS
SPRA291 INSTRUMENTS

Description

This function computes the DFT of an N-length complex-valued sequence. Note, N cannot
exceed 1024 without modification to this code.

The N point DFT of a finite-duration sequence x(n) of length L<—N is defined as

N-1
X(k) = SUM x(n) * exp(-j2pi kn/ N) k =0,1,2, ..., N1
n=0
It is always helpful to express the above equation in its real and imaginary terms for
implementation.
exp(—j 2*pi *n*k/N) = cos(2*pi *n*k/N) — jsin(2*pi *n*k/N) —> several
identities used here
e(jb) = cos(b) + j sin(b)
e(—-jb) = cos(-b) + | sin(-b)
cos(—-b) = cos(b) and sin(-b) = —-sin(b)
e(—jb) = cos(b) — | sin(b)

N-1
X(k) = SUM{[xr(n) + j xi(n)]J[cos(2*pi*n*k/N) — jsin(2*pi*n*k/ N]}
n=0
k=0,1,2, ... ,N-1
oR
N-1
Xr(k) = SUM{[xr(n) * cos(2*pi*n*k/N)] + [xi(n) * sin(2*pi*n*k/N)]}
n=0
k=0,1,2, ... ,N-1
N-1
Xi(k) = SUM{[xi(n) * cos(2*pi*n*k/IN)] — [xr(n) * sin(2*pi*n*k/N)]}
n=0

**/

#i ncl ude <mat h. h>
#i ncl ude ”parans. h”

void dft(int N, COWLEX *X)
{

int n, k;

doubl e arg;

int Xr[1024];

int Xi[1024];

short W, W;

38 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

for(k=0; k<N k++)

{
Xr[k] = 0;
Xi[k] = 0;
for(n=0; n<N;, n++)
{
arg =(2*Pl*k*n)/N
W = (short)((doubl e)32767.0 * cos(arg));
W = (short) ((doubl e)32767.0 * sin(arg));
Xr[k] = Xr[K] + X[n].real * W + X[n].imag * W;
Xi[k] = Xi[K] + X[n].imag * W — X[n].real * W;
}
}
for (k=0; k<N, k++)
{
X[K].real = (short)(Xr[k]>>15);
X[K].imag = (short) (X [k]>>15);
}

}
Example C-10. params.h File

/**

FI LE
parans.h — This is the C header file for exanple real FFT
i mpl ement ati ons.

**/

#defi ne TRUE 1

#def i ne FALSE 0

#def i ne BE TRUE

#defi ne LE FALSE

#defi ne ENDI AN LE /* sel ects proper endianess. |If

bui l di ng code in Big Endian,
use BE, el se use LE */

#defi ne PI 3.141592653589793 /* definition of pi */

/* Sonme functions used in the exanple inplenentations use word | oads which nake
the code endi aness dependent. Thus, one of the bel ow definitions need to be
used dependi ng on the endi aness you are using to build your code */

/* BI G Endian */

#i f ENDI AN == TRUE
typedef struct {

short i mag;

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 39

SPRA291

{'f TEXAS
INSTRUMENTS

short real
} COWPLEX;
#el se
[* LITTLE Endi an */
typedef struct {
short real
short inag;
} COWPLEX;
#endi f

Example C-11. vectors.asm

/***/

/* vectors.asm - reset vector assenbly

*/

/***/

. def
.ref
. sect
RESET:
nvk .82
nmvkh .82
b .s2
nop
nop
nop
nop
nop

Example C-12.Ink.cmd

RESET
_c_int0o0
".vectors”
_c_int00, B2
_c_int00, B2
B2

/***/

[* 1Ink.cmd — exanple linker command file

*/

/***/

—C
—heap 0x2000
—stack 0x8000

MEMORY

{
VECS: = 00000000h
| PRAM o = 00000200h
|DRAM o = 80000000h

}

| =00200h /* reset & interrupt vectors*/
| =OFEOOh /*
| =10000h /*

program nmenory */
data nenory */

40 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{f’ TEXAS

INSTRUMENTS SPRA291

SECTI ONS

{
vectors > VECS
.text > | PRAM
.tabl es > | DRAM
.data > | DRAM
. stack > | DRAM
. bss > | DRAM
. sysnmem > | DRAM
.cinit > | DRAM
. const > | DRAM
.cio > | DRAM
.far > | DRAM

}

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 41

SPRA291

{'f TEXAS
INSTRUMENTS

Appendix D Optimized C Implementation of the DFT of Real Sequences

This appendix contains optimized C implementations of the efficient methods for performing the
DFT of real-valued sequences outlined in this application report.

D.1 Implementation Notes

The following lists usage, assumption, and limitations of the code.

Data format

Memory

Endianess

Overflow
File
realdft3.c
realdft4.c
radix4.c
digit.c
digitgen.c
splitgen.c

All data and state variables are 16-bit signed integers (shorts). In this example, the
decimal point is assumed to be between bits 15 and 14, thus the Q15 data format.
For complex data and variables, the real and imaginary components are both Q15
numbers. From this data format, you can see that this code was developed for a
fixed-point processor.

Complex data is stored in memory in imaginary/r,eal pairs. The imaginary
component is stored in the most significant halfword (16 bits) and the real
component is stored in the least significant halfword, unless otherwise noted.

The code is presented and tested in little endian format. Some modification to the
code is necessary for big endian format.

No overflow protection or detection is performed.

Description

DFT of a 2N-point real sequence main program

DFT of a two N-point real sequence main program

Radix-4 FFT C function

Radix-4 digit reversal C function

C function used to initialize digit reversal table used by the function in digit .c

C function used to initialize the split tables used by the splitl routines

Example D-1. realdft3.c File

/**

FI LE

realdft3.¢c — C source for an exanple inplenmentation of the DFT/IDFT

of a 2N point

sequence, using one N-point conplex DFT/IDFT.

EE R R R R I R I R R R R R I R I O R R R R R R S R R R S R R I R R R S R

D.2 Description

This program is an example implementation of an efficient way of computing the DFT/IDFT of a
real-valued sequence.

In many applications, the input is a sequence of real numbers. If this condition is taken into
consideration, additional computational savings can be achieved because the FFT of a real
sequence has some symmetrical properties. The DFT of a 2N-point real sequence can be
efficiently computed using a N-point complex DFT and some additional computations.

The following steps are required in the computation of the FFT of a real-valued sequence using

the split function:

42 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

1. Let g(n) be a 2N-point real sequence. From g(n), form the the N-point complex-valued
sequence, x(n) = x1(n) + jx2(n), where x1(n) = g(2n) and x2(n) = g(2n + 1).

2. Perform an N-point complex FFT on the complex valued sequence x(n) —> X(k) =
DFT{x(n)}. Note that the FFT can be any DFT method, such as radix-2, radix-4, mixed
radix, direct implementation of the DFT, etc. However, the DFT output must be in normal
order.

3. The following additional computation are used to get G(k) from X(k)
Gr(k) = Xr(k)Ar(k) — Xi(k)Ai(k) + Xr(N-k)Br(k) + Xi(N-Kk)Bi(k)
k=0,1, .., N-1
and X(N) = X(0)
Gi(k) = Xi(k)Ar(k) + Xr(k)Ai(k) + Xr(N-Kk)Bi(k) — Xi(N-k)Br(k)

Note that only N-points of the 2N-point sequence of G(k) are computed in the above equations.
Because the DFT of a real-sequence has symmetric properties, we can easily compute the
remaining N points of G(k) with the following equations.

Gr(N) = Xr(0) — Xi(0)

Gi(N)=0

Gr(2N—k) = Gr(k)

Gi(2N-k) = —Gi(k)

As you can see, the above equations assume that A(k) and B(k), which are sine and cosine
coefficients, are pre—computed. The C—code can be used to initialize A(k) and B(k).

for(k=0; k<N k++)

{
Al k].imag = (short)(16383. 0*(—cos(2*PI/ (doubl e) (2*N) *(doubl e)k)));
Al k].real = (short)(16383.0*(1.0 — sin(2*Pl/(doubl e)(2*N)*(double)k)));
B[k].imag = (short) (16383. 0*(cos(2*PI/ (doubl €) (2*N) *(doubl e)k)));
B[k].real = (short)(16383.0*(1.0 + sin(2*Pl/(double)(2*N)*(double)k)));
}

The following steps are required in the computation of the IFFT of a complex-valued frequency
domain sequence that was derived from a real sequence:

1. Let G(k) be a 2N-point complex valued sequence derived from a real-valued sequence
g(n). We want to get back g(n) from G(k) —> g(n) = IDFT{G(k)}. However, we want to apply
the same techniques as we did with the forward FFT, using an N-point IFFT. This can be
accomplished by the following equations.

Xr(k) = Gr(k)IAr(k) — Gi(k)IAi(k) + Gr(N—K)IBr(k) + Gi(N-K)IBi(k)
k=0,1, .., N-1
and G(N) = G(0)

Xi(k) = Gi(k)IAr(k) + Gr(k)IAi(k) + Gr(N-k)IBi(k) — Gi(N—K)IBr(k)

2. Perform the N-point inverse DFT of X(k) —> x(n) = x1(n) + jx2(n) = IDFT{X(k)}. Note that
the IDFT can be any method, but must have an output that is in normal order.

3. g(n) can then be found from x(n).
g(2n) = x1(n)
n=0,1,.., N-1
g(2n+1) = x2(n)

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 43

SPRA291

{'f TEXAS
INSTRUMENTS

As you can see, the above equations can be used for both the forward and inverse FFTs;
however, the pre-computed coefficients are slightly different. The following C code can be used
to initialize 1A(k) and IB(k).

for(k=0; k<N, k++)
{
| ALK]. i mag
| ALK].real
I B[K].imag
| B[K] . real

—(short) (16383. 0*(—cos(2*PI/ (doubl e) (2*N) *(doubl e)k)));
(short)(16383.0%*(1.0 — sin(2*PI/(doubl e) (2*N) *(doubl e)k)));
—(short) (16383. 0*(cos(2*PI/ (doubl) (2*N) *(doubl e)k)));
(short)(16383.0*(1.0 + sin(2*Pl/(doubl e)(2*N)*(double)k)));

Note that IA(k) is the complex conjugate of A(k), and IB(k) is the complex conjugate of B(k).

**/

typedef struct { /* define the data type for the radix-4 twiddle factors */

short i mag;

short real

} COEFF;
#i ncl ude "paransl. h”
#i ncl ude ”parans. h”
#include "splittbl.h”

#i ncl ude "sinestbl.h”
#pragma DATA_ALI GN\(x, 64);

COVPLEX x[NUMPOI NTS+1] ;
extern short g[];

/* header files with paraneters */

/* header file that contains tables used to generate

the split tables */
/* header file that contains the FFT twi ddle factors */
/* radix-4 routine requires x to be

aligned to a 4*NUMPO NTS boundry */

/* array of conplex DFT data */

/* real -val ued input sequence */

/* functions defined externally */

void FftSplitTabl eGen(int N, COWLEX *W COWLEX *A, COVPLEX *B)

voi d R4Di gi t Revl ndexTabl eGen(int, int
void splitl(int, COWLEX *, COWLEX *,
unsi gned short

void digit _reverse(int *,
void radix4(int, short[],
mai n()
{
i nt n, k;
COVPLEX Al NUMPO NTS] ;
COVPLEX B[NUMPOI NTS] ;
COWPLEX | Al NUMPO NTS] ;
COVPLEX | B[NUMPO NTS] ;
COVWPLEX (2* NUMPA NTS] ;

unsi gned short |1 ndex] NUMPO NTS],

short[]);

[* array
/* array
[* array
[* array
[* array

unsi gned short *,

COWPLEX *,

of
of
of
of
of

, unsigned short

conpl ex
conpl ex
conpl ex
conpl ex
conpl ex

COMPLEX *);

*

A coefficients */
B coefficients */
A* coefficients */
B* coefficients */

DFT result

JI ndex[NUMPQOI NTS] ;

int);

*/

unsi gned short *);

44 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

i nt count;
/* Initialize A/B, 1A and IB arrays */
Fft SplitTabl eGen(NUMPO NTS, W A, B);

/* Split tables for the IDFT are the conpl ex conjugate of the split
tables of the DFT */
for(k=0; k<NUMPO NTS; k++)

{
IAlKk].imag = Al k].img;
IAlk].real = AlK].real;
I B[Kk].imag = —B[Kk].imag;
IB[k].real = B[k].real;
}

/* Initialize tables for FFT digit reversal function */
R4AD gi t Revl ndexTabl eGen(NUMPO NTS, &count, |1 ndex, Jlndex);

/* Forward DFT */

/* Fromthe 2N point real sequence, g(n), for the N-point conplex sequence, x(n) */
for (n=0; n<NUMPO NTS; n++)
{

x[n].img g 2*n + 1]; /* x2(n)

gl 2*n]; [* x1(n)

g(2n + 1) */
g(2n) */

X[n].real

}
/* Conpute the DFT of x(n) to get X(k) —> X(k) = DFT{x(n)} */

radi x4(NUMPO NTS, (short *)x, (short *)W);
digit_reverse((int *)x, Ilndex, Jlndex, count);
/* Because of the periodicity property of the DFT, we know that X(N+k)=X(k). */
X[NUMPO NTS] .real = x[0].real;
X[NUMPO NTS] . i mag = x[0].i mag;
/* The split function perforns the additional conputations required to get
G k) from X(k). */
split1(NUMPO NTS, x, A B, O;
/* Use conpl ex conjugate symmetry properties to get the rest of k) */

d NUMPO NTS] . r eal
G NUMPA NTS] . i mag

x[0].real — x[O0].inag;
0;

for (k=1; k<NUMPO NTS; k++)
{

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 45

{'.f TEXAS

SPRA291 INSTRUMENTS
J 2*NUMPO NTS—K] .real = Jk].real;
g 2* NUMPO NTS—K] .i mag = —F k] . i mag;

/*
/*

/*

/*

/*

/*

}

I nverse DFT — W now want to get back g(n). */
The split function perforns the additional conputations required to get
X(k) fromddk). */
splitl(NUMPO NTS, G I|A 1B, X);
Take the inverse DFT of X(k) to get x(n). Note the inverse DFT could be any
| DFT i mpl enent ati on, such as an | FFT. */
The inverse DFT can be cal culated by using the forward DFT algorithmdirectly
by conpl ex conjugation — x(n) = (1/N)(DFT{X*(k)})*, where * is the conpl ex
conj ugat e operator. */
Conmput e the conpl ex conjugate of X(k). */
for (k=0; k<NUMPO NTS; Kk++)
{
x[k].imag = —x[K] .imag; /* conpl ex conjugate X(k) */

}
Conpute the DFT of X*(k). */

radi x4(NUMPO NTS, (short *)x, (short *)W);
digit_reverse((int *)x, IIndex, Jlndex, count);

/* Conpl ex conjugate the output of the DFT and divide by Nto get x(n). */

/*

46

for (n=0; n<NUMPO NTS; n++)

{

x[n].real/16;
(=x[n].inmag)/16;

x[n].real

x[n].img
}
g(2n) = xr(n) and g(2n + 1) = xi(n) */
for (n=0; n<NUMPO NTS; n++)

{
g[2*n] = x[n].real;
g[2*n + 1] = x[n].inag;
}
return(0);

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

Example D-2. realdft4.c File

/**

FI LE
realdft4.c — C source for an exanple inplenentation of the DFT/IDFT
of two N-point real sequences using one N-point conplex DFT/IDFT.

khhkkkhhkkhkhhkhkkhhhkkhkhhhkhhhkhkhhhkkhhhhkhhhkhhhhkdhhkhhrxhkhhhkdhdxhdhhhkhddxhkdhhkddrxrdhhhkkddxhkdkhrhkddxrkhxx*x*x

Description

This program is an example implementation of an efficient way of computing the DFT/IDFT of
two real-valued sequences.

Assume we have two real-valued sequences of length N — x1[n] and x2[n]. The DFT of x1[n] and
x2[n] can be computed with one complex—valued DFT of length N, as shown above, by following
this algorithm.

1. Form the complex—valued sequence x[n] from x1[n] and x2[n]
r[n] = x1[n] and xi[n] = x2[n], 0,1, ..., N-1

Note, if the sequences x1[n] and x2[n] are coming from another algorithm or a data
acquisition driver, this step may be eliminated if these put the data in the complex—valued
format correctly.

2. Compute X[k] = DFT{x[n]}

This can be the direct form DFT algorithm, or an FFT algorithm. If using an FFT algorithm,
make sure the output is in normal order — bit reversal is performed.

3. Compute the following equations to get the DFTs of x1[n] and x2[n].

X1r[0] = Xr[0]
X1i[0]=0

X2r[0] = Xi[0]
X2i[0] = 0

X1r[N/2] = Xr[N/2]
X1i[N/2] = 0

X2r[N/2] = Xi[N/2]
X2i[N/2] = 0

fork=1,2,3,, N/2-1
X2r[k] = (Xr[k] + Xr[N-K])/2
X1i[K] = (Xi[K] — Xi[N-K])/2
X1r[N—k] = X1r[K]
X1i[N—-K] = X1i[K]

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 47

{'f TEXAS
SPRA291 INSTRUMENTS

X2r[K] = (Xi[K] + Xi[N—K])/2
X2i[K] = (Xr[N—K] — Xr[K])/2
X2r[N—K] = X2r[K]
X2i[N—k] = X2i[K]

4. Form X[Kk] from X1[k] and X2[k]

fork=0,1, ..., N-1
Xr[k] = X1r[k] — X2i[K]
Xi[k] = X1Li[K] + X2r[K]
5. Compute x[n] = IDFT{X[K]}
This can be the direct form IDFT algorithm or an IFFT algorithm. If using an IFFT
algorithm, make sure the output is in normal order — bit reversal is performed.

**/
typedef struct { /* define the data type for the radix-4 twiddle factors */
short i mag;

short real;
} COEFF;
#i ncl ude ”"parans2. h” /* include file with parameters */
#i ncl ude " parans. h” /* include file with paraneters */
#i ncl ude "sinestbl.h” /* header file that contains the FFT twiddle factors */

#pragma DATA ALIGN(x,64); /* radix-4 routine requires x to be
aligned to a 4*NUMPO NTS boundary */
COVPLEX x[NUMPO NTS+1] ; /* array of complex DFT data, X(k) */
extern short x1[];
extern short x2[];
voi d R4Di gi t Revl ndexTabl eGen(int, int *, unsigned short *, unsigned short *);
extern void split2(int, COWLEX *, COWPLEX *, COWPLEX *);
void digit_reverse(int *, unsigned short *, unsigned short *, int);
voi d radi x4(int, short[], short[]);

mai n()

{
i nt n, k;
COVPLEX X1[NUVDATA] ; /* array of real-valued DFT output sequence, X1(k) */
COVPLEX X2[NUVDATA] ; /* array of real-valued DFT output sequence, X2(k) */
unsi gned short |1 ndex] NUMPO NTS], JI ndex[NUMPO NTS] ;
int count;

[* Initialize tables for FFT digit reversal function */
R4Di gi t Revl ndexTabl eGen(NUMPO NTS, &count, |1 ndex, Jlndex);

/* Forward DFT */
/* Fromthe two N-point real sequences, x1(n) and x2(n), formthe N point conplex
sequence, x(n) = x1(n) + jx2(n) */

48 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

for (n=0; n<NUNVDATA; n++)
{

x[n].real x1[n];

x2[n];

x[n].inmag

Compute the DFT of x(n), X(k) = DFT{x(n)}. Note, the DFT can be any

DFT i mpl ement ati on such as FFTs. */

radi x4(NUMPO NTS, (short *)x, (short *)W);

digit_reverse((int *)x, Ilndex, Jlndex, count);

Because of the periodicity property of the DFT, we know that X(N+k)=X(k). */

X[NUMPO NTS] .real = x[0].real;

X[NUMPO NTS] . i mag = x[0] .i mag;

The split function perforns the additional conputations required to get

X1(k) and X2(k) from X(k). */

split2(NUMPO NTS, x, X1, X2);

I nverse DFT — W now want to get back x1(n) and x2(n) from X1(k) and X2(k) using
one conpl ex DFT */

Recal | that x(n) = x1(n) + jx2(n). Since the DFT operator is linear,

X(k) = X1(k) + jX2(k). Thus we can express X(k) in terms of X1(k) and X2(k). */
for (k=0; k<NUMPO NTS; k++)

{

X[K] . real X1[k] .real — X2[Kk].i mag;

X1[k].imag + X2[K].real;

X[k] .imag
}
Take the inverse DFT of X(k) to get x(n). Note the inverse DFT could be any
| DFT i mpl enent ati on, such as an | FFT. */
The inverse DFT can be cal culated by using the forward DFT algorithmdirectly
by compl ex conjugation — x(n) = (1/N)(DFT{X*(k)})*, where * is the conpl ex
conj ugate operator. */
Conput e the conpl ex conjugate of X(k). */
for (k=0; k<NUMPO NTS; Kk++)
{
x[k].imag = —x[K].i mag;
}
Compute the DFT of X*(k). */
radi x4(NUMPO NTS, (short *)x, (short *)W);
digit _reverse((int *)x, Ilndex, Jlndex, count);
Conpl ex conj ugate the output of the DFT and divide by Nto get x(n). */
for (n=0; n<NUMPO NTS; n++)

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 49

{'f TEXAS
SPRA291 INSTRUMENTS

{

x[n].real
x[n].inmag

X[n].real/16;
(=x[n].imag)/ 16;

}
/* x1(n) is the real part of x(n), and x2(n) is the imaginary part of x(n). */
for (n=0; n<NUNVDATA; n++)

{
x1[n] = x[n].real;
x2[n] = x[n].imag;
}
return(0);

}
Example D-3. radix4.c File

/**

FI LE
radi x4.c — radi x-4 FFT function based on Burrus, Parks p .113

**/

voi d radi x4(int n, short x[], short wW])

{
i nt nl, n2, ie, ial, ia2, ia3, i0, i1, i2, i3, j, k;
short t, rl, r2, sl1, s2, col, co2, co3, sil, si2, si3;
n2 = n;
ie = 1;
for (k =n; k >1; k >>= 2) {
nl = n2;
n2 >>= 2,
ial = 0;
for (j =0; j <n2; j++) {
ia2 = ial + ial;
ia3 = ia2 + ial;

col =wial * 2 + 1];
sil=wial* 2];
co2 =wWia2 * 2 + 1];
si2z =wia2 * 2];
co3 =wia3 * 2 + 1];
si3 =wia3 * 2];

ial = ial + ie;

for (i0 =j; i0<n; i0 +=nl) {
il =10+ n2;
i2 =11+ n2;

50 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

i3 i2 + n2;

ril x[2 * i0] + x[2 * i2];

r2 x[2 *i0] —x[2 * i2];

t = x[2*i1] + x[2 * i3];

X[2 *i0] =r1 +t;

ri=r1-t,;

sl =x[2*i0+ 1] +x[2*i2 + 1];

s2 = x[2*i0 + 1] —x[2*i2 + 1];

t = x[2* i1+ 1] +x[2* i3+ 1];

x[2 * 10 + 1] = sl +t;

sl = sl —-t;

X[2 *i2] =(rl * co2 + s1 * si2) >> 15;
X[2 * i2 + 1] = (sl * co2-r1 * si2)>>15;
t =x[2* il + 1] - x[2* i3 + 1];

ri=r2+t,;
r2 =r2—-t;
t = x[2* i1 —x[2 * i3];
sl =s2 - t;
S2 =82 +t;

x[2 * i1] = (rl * col + sl * sil) >>15;
X[2 * i1 + 1] = (sl * col-rl * sil)>>15;
X[2 * i3] =(r2 * co3 + s2 * si3) >>15;
x[2 * i3 + 1] = (s2 * c0o3-r2 * si3)>>15;

ie <<= 2;

}
Example D-4. digit.c File

/**

FI LE
digit.c — This is the C source code for a digit reversal function for
a radi x-4 FFT.

**/

void digit_reverse(int *yx, unsigned short *JlIndex, unsigned short *IIndex, int
count)

{
int i;
unsi gned short 1, J;
int YXI, YXJ;

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 51

{'.f TEXAS

SPRA291 INSTRUMENTS
for (i = 0; i<count; i++)
{
I = lIndex[i];
J = Jindex[i];
YXI = yx[I];
YXJ = yx[J];
yx[J] = YXI;
yx[1] = YXJ;
}
}

Example D-5. digitgen.c File
/**

FI LE
digitgen.c — This is the C source code for a function used to generate
i ndex tables for a digit reversal function for a radi x-4 FFT.

**/

voi d R4Di gi t Revl ndexTabl eGen(int n, int *count, unsigned short *I|Index, unsigned
short *JI ndex)

{
int j, nl, k, i;
i =1
nt = n - 1;
*count = O;
for(i=1;, i<=nl; i++)
{
if(i <j)
{
Il ndex[*count] = (unsigned short) (i-1);
JI ndex[*count] = (unsigned short) (j-1);
*count = *count + 1,
}
k = n > 2;
while(k*3 < j)
{
j =] - k*3;
k = k > 2;
}
i =]tk
}
}

52 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

Example D-6. splitgen.c File

/**

FI LE
splitgen.c — This is the C source code for a function used to generate
tables for a split routine used to efficiently conpute the DFT of a 2N point
real -val ued sequence.

**/

#i ncl ude ”parans. h”
void FftSplitTabl eGen(int N, COWLEX *W COWPLEX *A, COWPLEX *B)
{

int k;

for(k=0; k<N 2; k++)

{
Al k].real = 16383 — WKk].inag;
A[k].imag = -WK].real;
Alk + NV2].real = 16383 — WKk].real;
Alk + NN2].imag = WK].inag;
B[k].real = 16383 + WKk].imag;
B[k].imag = WK].real;
B[k + V2] .real = 16383 + WKk].real;
B[k + N2].imag = -WKk].inmag;

}

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 53

SPRA291

{'f TEXAS
INSTRUMENTS

Appendix E Optimized C-Callable 'C62xx Assembly Language Functions

Used to Implement the DFT of Real Sequences

This appendix contains optimized C-callable ‘C62xx assembly language functions used to
implement the DFT of real sequences.

E.1 Implementation Notes

The following lists usage, assumption, and limitations of the code.

Data format

Memory

Endianess

Overflow

File
splitl.asm

split2.asm

radix4.asm

digit.asm

All data and state variables are 16-bit signed integers (shorts). In this example, the
decimal point is assumed to be between bits 15 and 14, thus the Q15 data format.
For complex data and variables, the real and imaginary components are both Q15
numbers. From this data format, you can see that this code was developed for a
fixed-point processor.

Complex data is stored in memory in imaginary/real pairs. The imaginary component
is stored in the most significant halfword (16 bits) and the real component is stored
in the least significant halfword, unless otherwise noted.

The code is presented and tested in little endian format. Some modification to the
code is necessary for big endian format.

No overflow protection or detection is performed.

Description

C-callable ‘C62xx assembly version of the split function for the DFT of a 2N-point
real sequence

C-callable ‘C62xx assembly version of the split function for the DFT of a 2N-point
real sequences.

Radix-4 FFT C-callable ‘C62xx assembly function.

Radix-4 digit reversal C-callable ‘C62xx assembly function.

Example E-1. splitl.asm File

*

*

* TEXAS | NSTRUMENTS,
*

*

*

* Revi si on Dat e:
*

*

*

*

*

* N =

* X = pointer
* A = pointer
* B = pointer
* G = pointer
*

I NC.

Real FFT/I1FFT split operation
5/ 15/ 97
USAGE This routine is Ccallable, and can be called as:
void splitl(int N, COWLEX *X, COWPLEX *A, COWLEX *B, COWPLEX *Q
1/2 the nunber of sanples of the real valued sequence
to conplex input array
to conplex coefficients

to conplex coefficients
to conpl ex output array

54 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{f’ TEXAS

INSTRUMENTS SPRA291
* If routine is not to be used as a C-callable function,

* then all instructions relating to stack should be renpved.

* Refer to comments of individual instructions. You will also

* need to initialize values for all of the val ues passed, as these

*

are assuned to be in registers as defined by the calling
convention of the conmpiler, (refer to the C conpiler reference
gui de) .

*

*

*

C Code This is the C equivalent of the assenbly code w t hout
restrictions. Note that the assenbly code is hand-optinm zed, and

*

* restrictions may apply.

*

* One small, but inportant note. The split functions uses word

* | oads to read i magi nary/real pairs fromnenory. Because of this,
* sonme C definitions nmay need to be endi aness-dependent. Bel ow are
* the type definitions for COWLEX for both big and little endian. Al so,
* the split function, as shown below, is witten for big endian. See
* comrents in the code to see howto nmodify, if little endian is desired.
*

* LI TTLE ENDI AN Bl G ENDI AN

* typedef struct { typedef struct {

* short real; short inag;

* short i mag; short real;

* } COWPLEX; } COWPLEX;

* void split(int N, COWLEX *X, COWPLEX *A, COWPLEX *B, COWLEX *Q

* {

*

* int k;

* int Tr, Ti;

* for (k=0; k<N, k++)

' {

* Tr = (int)Xk].real * (int)A[k].real -

* (int)X[K].imag * (int)A k].img +

* (int) XIN-k].real * (int)B[K].real +

* (int) XIN-k].imag * (int)B[K].inag;

*

* dKk].real = (short)(Tr>>15);

* Ti = (int)XKk].imag * (int)A[k].real +

* (int)X[K].real * (int)Ak].img +

* (int)XN-k].real * (int)B[k].inmg —

* (int)XIN-k].imag * (int)B[k].real;

* G K].img = (short) (Ti>>15);

*

')

)

*

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 55

{'.f TEXAS

SPRA291 INSTRUMENTS

{

L I R SR I B N B R B S S S A R N B N N N B R S S D . A T R R R B R R

56

DESCRI PTI ON

In many applications, the input is a sequence of real nunbers.

If this condition is taken into consideration, additional conputational
savi ngs can be achi eved because the FFT of a real sequence has sone
symmetrical properties. The DFT of a 2N-point real sequence can be
efficiently conputed using a N-point conplex DFT and some additional
conput ati ons whi ch have been inmplemented in this split function.

Note this split function can be used in the conputation of FFTs and | FFTs.

The following steps are required in the conputation of the FFT of
a real -val ued sequence using the split function:

1. Let g(n) be a 2N-point real sequence. Fromg(n), formthe
the N-point conpl ex-val ued sequence, x(n) = x1(n) + jx2(n),
where x1(n) = g(2n) and x2(n) = g(2n + 1).

2. Performan N-point conplex FFT on the conpl ex-val ued sequence,
x(n) —> X(k) = DFT{x(n)}. Note that the FFT can be any DFT net hod,
such as radi x—2, radi x—4, mxed radi x, direct inplenentation of
the DFT, etc. However, the DFT output rust be in nornal order.

3. The followi ng additional conputations are used to get G k) from X(k),
and are inplenented by the split function.
G (k) = Xr(k)Ar(k) — Xi(k)Ai (k) + Xr(N-k)Br(k) + Xi (N-k)Bi (k)
k =0, 1, ..., N1
and X(N) = X(0)
G (k) = Xi (k)Ar(k) + Xr(k)Ai (k) + Xr(N-k)Bi (k) — Xi (N-k)Br (k)

Note that only N-points of the 2N-point sequence of G k) are conputed
in the above equations. Because the DFT of a real —sequence has
symetric properties, we can easily conpute the renmaining N points

of k) with the follow ng equati ons.

G(N = G(0) - G(0)
G(N =0
G (2N-k) = G (k)
k =1, 2, ,ON-1
G (2N-k) = -G (k)

As you can see, the split function assunes that A(k) and B(k),
whi ch are sine and cosine coefficient, are pre-conputed. The
C-code can be used to initialize A(k) and B(Kk).

for(k=0; k<N, k++)

Al k].imag = (short)(16383. 0*(—cos(2*PI/ (doubl e) (2*N) *(doubl e)k)));
Al k].real = (short)(16383.0*(1.0 — sin(2*Pl/(double)(2*N)*(double)k)));
B[k].imag = (short)(16383.0%(cos(2*PI/(double) (2*N)*(doubl e)k)));
B[k].real = (short)(16383.0*(1.0 + sin(2*PlI/(double)(2*N)*(double)k)));

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

The following steps are required in the conputation of the | FFT of
a conpl ex-val ued frequency domai n sequence that was derived from
a real sequence using the split function:

1. Let G k) be a 2N-point conpl ex-val ued sequence derived froma rea
val ued sequence g(n). W want to get back g(n) from k) —>
g(n) = IDFT{3 k)}. However, we want to apply the sanme techni ques
as we did with the forward FFT, use a N-point |FFT. This can be
acconpl i shed by the foll owi ng equati ons.

Xr(k) = G (K)IA(K) — G (K)TAi(K) + G(NK)IBr(k) + G (N=k)IBi (k)
k=0, 1, ..., N-1
and (N) = 0)

Xi (k) = G (K)IAr(k) + G(K)IA (k) + G (Nk)IBi (k) — G (N=k)IBr(k)

2. Performthe N-point inverse DFT of X(k) —> x(n) = x1(n) + jx2(n) =
| DFT{X(k)}. Note that the |IDFT can be any nethod, but nust have an
output that is in normal order.

3. g(n) can then be found from x(n).

g(2n) = x1(n)

g(2n+1) = x2(n)

E I I TR T . I B B R A B S T R N N N N S

As you can see, the split function can be used for both the forward and
i nverse FFTs; however, the pre—conputed coefficients are slightly
different.

The following C code can be used to initialize I A(Ck) and |B(k).

for(k=0; k<N, k++)

{
| Alk].imag = —(short) (16383. 0*(—cos(2*PI/ (doubl €) (2*N) *(doubl e)k)));
| Afk].real = (short)(16383.0*(1.0 — sin(2*Pl/(double)(2*N)*(double)k)));
IB[k].imag = —(short) (16383. 0*(cos(2*PI/(doubl e) (2*N)*(doubl e)k)));
IB[k].real = (short)(16383.0*(1.0 + sin(2*Pl/(double)(2*N)*(double)k)));
}
Note that | A(k) is the conplex conjugate of A(k), and IB(k) is the conplex
conj ugat e of B(k).
TECHNI QUES
32-bit loads are used to |oad two 16-bit | oads.
ASSUMPTI ONS

A B, X, and G are stored as inmmginary/real pairs.

Big endian is used. If little endian is desired, nodification to
the code is required. See coments in the code for which instructions
require nodification for little endian use.

L T T S R T R B N S N R N N N N . N B B

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 57

{'.f TEXAS

SPRA291 INSTRUMENTS
* MEMORY NOTE
* A, B, X and G arrays should be aligned to word boundaries. Also,
* A and B should be aligned such that they do not generate a nenory
* hit with X
*
* A B, X, and G are all conplex data and are required to be stored
* as imagi nary/real pairs in nmenory, regardl ess of endianess. In other
* words, a load word fromany of these arrays should result in the inmaginary
* component in the upper 16 bits of a register, and the real conmponent in the
* | ower 16 bits.
*
* CYCLES 4*N + 32
*
*
N .set a4 ; Argunent 1 — nunber of points in the FFT
XPtr .set b4 ; Argunment 2 — pointer to conplex data
APt 1 .set a6 ; Argunent 3 — pointer to A conplex coefficients
BPt r .set b6 ; Argunent 4 — pointer to B conplex coefficients
GPtr .set a8 ; Argunment 5 — pointer to output buffer
al _aR .set a0 ; Coefficient value | oaded from APtr
XNPt r .set al ; Pointer to the bottom of the data buffer
; This pointer gets decremented through the | oop.
x2l _x2R .set a2 ; Data val ue | oaded from XNPtr
xRaR .set a3 ; Product
x| al .set a5
x2RbR .set a7
x21 bl .set a9
rel .set alo
re2 .set all
real .set alz
CNT .set bO ; Counter for |ooping
xI _xR .set bl
bl bR .set b2
xl aR .set b5
xRal .set b7
x21 bR .set b8
x2Rbl .set b9
i ml .set bl0
i n2 .set bll
i mag .set bl2
.global _splitl
_splitl:
sub .d2 B15, 24, B15 ; Al'l ocate space on the stack
stw .d2 Al10, *B15++[1] ; Push A10 onto the stack
stw .d2 All, *B15++[1] ; Push All onto the stack
stw .d2 Al2, *B15++[1] ; Push Al2 onto the stack
stw .d2 B10, *B15++[1] ; Push B10 onto the stack
|| sub 12x N, 1, CNT ; Initialize | oop count register
stw .d2 B11, *B15++[1] ; Push Bl11 onto the stack
|| shl .s1 N, 2, N ; Calculate offset to initialize
; a pointer to the bottom of the
; input data buffer.
stw .d2 B12, *B15++[1] ; Push B12 onto the stack
58 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{f’ TEXAS

INSTRUMENTS SPRA291
|| add I Ax N XPtr, XNPtr i XNPtr —> yx[N

; Because there are delay slots in loads, we will begin by

; SWpipelining the split operations — in other words, while

; we are finishing the current loop iteration, we will be

; begi nning the next.

| dw .dil *APtr++[1], al _aR ; Load a coefficient pointed by APtr
[] 1dw .d2 *XPtr++[1], xI _xR ; Load a data val ue pointed by XPtr

nop ; Fill a delay slot.

| dw .dl *XNPtr—[1], x2I _x2R ; Load a data val ue pointed by XNPtr
[] ldw .d2 *BPtr++[1], bl _bR ; Load a coefficient pointed by BPtr

nop ; Fill a delay slot.

| dw .dl *APtr++[1], al _aR ; Load the next value pointed by APtr

; (Note that it will not overwite

; the current value of al_aR until
; 4 delay slots later).
[] 1dw .d2 *XPtr++[1], xI _xR ; Load the next value pointed by XPtr
; for performing the multiplies, we take advantage of the feature
; feature that allows you to choose the operands from either the upper
; or lower halves of the register

nmpy .mlx xI_xR, al _aR, xRaR ; XRaR = xR * aR — npy |ower * |ower
|| npyhl .m2x xI_xR al _aR xl aR ; xlaR = xI * aR — npy upper * | ower
nmpyl h .m2x xl _xR, al _aR, xRal ; XRal = xR * al — npy |ower * upper
|| rnpyh .mlx xl _xR al _aR, xI al ; xlal = xI * al — npy upper * upper
[] 1dw .d1 *XNPt r—[1], x21 _x2R ; load a data val ue pointed by XNPtr
[| 1dw .d2 *BPtr++[1], bl _bR ; load a coefficient pointed by BPtr
nmpy .mlx x21 _x2R, bl _bR, x2RbR ; X2RbR = x2R * bR — npy |l ower * | ower
|| rmpyhl .m2x x21 _x2R, bl _bR, x21 bR ; X2l bR = x21I * bR — npy upper * | ower
mpyl h .m2x x21 _x2R, bl _bR, x2Rbl ; X2Rbl = x2R * bl — npy | ower * upper
|| rnpyh .mlx x21 _x2R, bl _bR, x21I bl ; X2Ibl = x2I * bl — nmpy upper * upper
|| sub 1 xRaR, xl al , rel ; rel = xRaR — xla
|| add A2 xRal , xl aR, i nl ; inml = xRal + xlaR
[] 1dw .d1 *APtr++[1], al _aR ; 3rd load of al_aR
[] 1dw .d2 *XPtr++[1], xI xR ; 3rd load of xlI_xR

; the second | oads of xI xR and al _aR are now avai abl e, thus we can use
; themto begin the 2nd iteration of X's and A's nmultiplies

npy .l x| _xR, al _aR, xRaR ; XRaR = xR * aR — npy | ower * | ower
|| npyhl .m2x xl_xR al _aR xl aR ; xlaR = xI * aR — npy upper * |ower
mpyl h 1% x|l xR, al _aR, xRal ; XRal = xR * al — nmpy |ower * upper
|| rmnpyh .mx xl_xR, al _aR, xI al ; xlal = xI * al — npy upper * upper
|| add 1 X2RbR, x2I bl , re2 ; re2 = x2RbR + x2I bl
|| sub A2 X2Rbl , X2I bR, i n2 ; in2 = x2Rbl — x2I bR
[] ldw .dl *XNPt r—[1], x21 _x2R ; 3rd load of x2I_x2R
[] ldw .d2 *BPtr++[1], bl _bR ; 3rd load of bl_bR

; The second | oads of x2I_x2R and bl _bR are now avail abl e, thus we can use
; themto begin the 2nd iteration of X2's and B's multiplies.

my .l x21 _x2R, bl _bR, x2RbR 7 X2RbR = x2R * bR — npy lower * | ower
|| rmpyhl .m2x x21 _x2R, bl _bR, x2I bR ; X2l bR = x2I * bR — npy upper * | ower
|| add 1 rel,re2, real ; real =rel + re2
|| add 12 im,in2,inmg ; imag = im + inR

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 59

{'.f TEXAS

SPRA291 INSTRUMENTS
|| b .s2 LOOP ; Branch to LOOP — Note that this is the
; branch for the first time through
; the | oop. Because of this, we only
; need to do count-1 branches to LOOP
; Within LOOP
nmpyl h .2 x21 _x2R, bl _bR, x2Rbl 7 X2Rbl = x2R * bl — npy lower * upper
|| rmpyh .mlx x21 _x2R, bl _bR, x2I bl 7 X2Ibl = x21 * bl — npy upper * upper
|| sub 1 xRaR, xl al ,rel ; rel = xRaR — xla
|| add .12 xRal,xlaR,iml ; iml = xRal + xlaR
|| shr .sl real, 15, real ; real = real >> 15
|| shr .82 i mag, 15, i mag ; imag = imag >> 15
|| 1dw .dl *APtr++[1], al _aR ; 4th load of al_aR
|| 1dw .d2 *XPtr++[1], xI _xR ; 4th load of xI_xR
; CAUTI ON — because of SWpipelining, we actually |oad nore val ues
; of al_aR, xI xR, bl _bR and x2I x2R than we actually use. Thus,
; make sure these arrays are NOT aligned to a boundary close to the
; edge of illegal nenory.
LOOP: ; this loop is executed N tines
nmpy .ml x|l xR, al _aR, xRaR ; XRaR = xR * aR — nmpy | ower * | ower
|| mpyhl .m2x xlI xR al _aR xl aR ; xlaR = xI * aR — npy upper * | ower
;]| sth .dl i mag, *CGPtr++[1] ; Store imag in output buffer
; CAUTI ON — Big Endian specific code
; If Little Endian is desired,
; replace this line with:
|| sth .dl real ,*GPtr++[1]
|| [CNT] sub A2 CNT, 1, CNT ; If (CNT I'= 0), CONT = CNT — 1.
nmpyl h .2 x| xR, al _aR, xRal ; XRal = xR * al — npy lower * upper
|| mpyh .mlx xl_xR, al _aR xI al ; xlal = xI * al — npy upper * upper
|| add 1 x2RbR, x2I bl , re2 ; re2 = x2RbR + x21 bl
|| sub A2 x2Rbl , x2I bR, i n2 ;i = x2Rbl — x21 bR
[ldw .dl *XNPt r——([1], x21 _x2R ; Next |oad of x2I_x2R
[ldw .d2 *BPtr++[1], bl _bR ; Next load of bl_bR
npy .l x2l _x2R, bl bR, x2RbR ; X2RbR = x2R * bR — npy lower * | ower
|| npyhl .m2x x21 _x2R, bl _bR, x21 bR 7 X2IbR = x21 * bR — npy upper * |ower
|| add 1 rel,re2, real ; real =rel + re2
|| add A2 imL,in2,inmg ; imag = inl + inR
;]| sth .dl real , *GPtr++[1] ; Store real in output buffer
; CAUTION — Big Endian specific code
; If Little Endian is desired,
; replace this line with:
|| sth .dl i mag, *GPtr++[1]
|| [CNT] b .82 LOOP ; If (CNT !=0), branch to LOCP.
nmpyl h .m2x x21 _x2R, bl bR, x2Rbl ; X2Rbl = x2R * bl — npy |ower * upper
|| npyh .mlx x21 _x2R, bl _bR, x2I bl 7 X2Ibl = x21 * bl — npy upper * upper
|| sub 1 xRaR, xl al , rel ; rel = xRaR — xla
|| add .12 xRal , xl aR, i mlL ; im = xRal + xlaR
|| shr .s1 real, 15, real ; real = real >> 15
|| shr .82 i mg, 15, i mag ; imag = imag >> 15
|| Idw .dl *APtr++[1], al _aR ; next load of al_aR

60 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{f’ TEXAS

INSTRUMENTS SPRA291
|| ldw .d2 *XPtr++[1], xI _xR ; next load of xI_xR
; end of LOOP

| dw .d2 *——B15[1], B12 ; Pop B12 fromthe stack.

| dw .d2 *——B15[1], B11 ; Pop Bl1l fromthe stack.

| dw .d2 *——B15[1], B10 ; Pop B10 fromthe stack.

| dw .d2 *—-B15[1], Al12 ; Pop A12 fromthe stack.

| dw .d2 *——B15[1], A1l ; Pop A1l fromthe stack.

| dw .d2 *——B15[1], A10 ; Pop A10 fromthe stack.

b .s2 B3 ; Function return add .d2
B15, 24, B15 ; Deal |l ocate space fromthe stack

nop 4 ; Fill delay slots.

Example E-2. split2.asm File

TEXAS | NSTRUMVENTS, | NC

Real FFT/IFFT split operation

Revi si on Date: 6/4/97

USACE This routine is C-Callable and can be called as:

void split2(int N, COWLEX *X, COWPLEX *X1, COWPLEX *X2)

N = the nunber of sanples of each real val ued sequence
X = pointer to conplex input array
X1 pointer to conplex array DFT result of sequence 1

X2 = pointer to conplex array DFT result of sequence 2

If routine is not to be used as a C-callable function

then all instructions relating to stack should be renoved.

Refer to coments of individual instructions. You will also

need to initialize values for all of the val ues passed, as these
are assurmed to be in registers as defined by the calling
convention of the conpiler, (refer to the C conpiler reference
gui de) .

C Code This is the C equivalent of the assenbly code wi thout
restrictions. Note that the assenbly code is hand optim zed, and
restrictions may apply.

One small, but inportant note. The split functions uses word | oads
to read i magi nary/real pairs from nenory. Because of this, sone C
definitions may need to be endi aness-dependent. Al so,

the split function as shown belowis witten for little endian

typedef struct {
short real;
short i mag;
} COWPLEX;

void split2(int N, COMWPLEX *X, COWLEX *X1, COWPLEX *X2)
{

L T S S T B B R S R S S T I R B N N R B R T R T T A T I R

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 61

{'.f TEXAS

SPRA291 INSTRUMENTS
int k;
X1[0].real = X O0].real;
X1[0].img = O;
X2[0].real = X O0].inmag;
X2[0].imag = O;
X1[N2].real = X[N2].real;
X1[N2].imag = O;
X2[N2].real = X[N2].inmag;
X2[N2].imag = O;

for (k=1; k<N 2; k++)

{
X1[k].real = (X[Kk].real + X[N-k].real)/?2;
X1[Kk].imag = (X[K].imag — X[N-k].inmag)/2;
X2[K].real = (X[k].imag + X[N-k].inag)/2;
X2[k].imag = (X[N-k].real — X[k].real)/2;
X[N-k] .real = X1[Kk].real;
X[N-k].imag = —X1[K] .i mag;
X2[N-Kk].real = X2[k].real;
X2[N-K].imag = —X2[K] . i mag;

}

}
DESCRI PTI ON

In many applications, the input is a sequence of real nunbers.

If this condition is taken into consideration, additional conputational

savi ngs can be achi eved because the FFT of a real sequence has sone
symretrical properties. The DFT of a two N-point real sequence can be
efficiently conputed using one N point conplex DFT and sone additi onal

comput ati ons whi ch have been inmplenented in this split function.

Note that this split function can be used in the conputation of FFTs and | FFTs.

The followi ng steps are required in the conputation of the FFT of
two real -val ued sequence using the split function:

Assunme we have two real -val ued sequences of length N — x1[n] and x2[n].
The DFT of x1[n] and x2[n] can be conputed with one conpl ex—val ued DFT of
length N, as shown above, by followi ng this algorithm

1. Formthe conpl ex-val ued sequence x[n] from x1[n] and x2[n]

L S S T T I R I S I T R N S R S . T R S B N S N I B T S S T I . S N N B R T

xr[n] = x1[n] and xi[n] = x2[n], 0,1, ..., N1

62 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

E o T B . R I N N B I S T R T I N N . N N . N N N R T . T R I R R N N I

Note that if the sequences x1[n] and x2[n] are coming from another algorithm
or a data acquisition driver, this step may be elininated, if these put the
data in the conpl ex-valued format correctly.

2. Conpute X[k] = DFT{x[n]}
This can be the direct form DFT algorithmor an FFT algorithm |f using an
FFT algorithm nake sure the output is in normal order — bit reversal is

per f or med.

3. Conpute the followi ng equations to get the DFTs of x1[n] and x2[n].
These are the equations that this file inplenents.

X1r[0] = Xr[O0]

X1li[0] =0

X2r[0] = Xi[0]

X2i[0] =0

XIr[N2] = Xr[N 2]

X1li[N2] =0

X2r[N2] = Xi[N2]

X2i[N2] =0

for k = 1,2,3, ., N2-1
Xir[k] = (Xr[k] + Xr[N-k])/2
XLi[k] = (Xi[k] — Xi[N-k])/2
X1r[N=k] = Xir[Kk]
X1i [N~k] = X1i[K]
X2r[k] = (Xi[k] + Xi[N-Kk])/2
X2i[k] = (Xr[N-k] = Xr[k])/2

X2r [N-k] = X2r[K]
X2i [N-k] = X2i [K]

4. Form X[k] from X1[k] and X2[K]

for k = 0,1, ..., N-1

Xr[k] = Xir[k] — X2i[K]

Xi[k] = XLi[k] + X2r[K]
5. Conpute x[n] = IDFT{ X[k]}

This can be the direct-formI|IDFT algorithm or an |FFT algorithm |If using
an | FFT algorithm nake sure the output is in normal order — bit reversal is
per f or nmed.

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 63

{'.f TEXAS

SPRA291 INSTRUMENTS

* TECHNI QUES

* 32-bit loads are used to |load two 16-bit | oads.

*

* ASSUMPTI ONS

*

* X, X1, and X2 are stored as inaginary/real pairs.

*

* Little endian is used. If little endian is desired, nodification to

* the code is required.

*

* MEMORY NOTE

* X must be aligned to a 32-bit boundary.

*

* CYCLES 5*(N2-1) + 29

*

*

N .set a4

XPtr .set b4

X1Ptr .set a6

X2Pt r .set b6

CNT .set bO

XNk Pt r .set a3

N4 .set a0

Xi Xr .set b2

XNi XNr .set a2

XINmk Pt r .set al

X2Nk Pt r .set bl

X2r X1r .set a8

X1i X2i .set b8

X1r .set a9

X1i .set b9

X2r .set al0

X2i .set bil0

XINr .set al2

X1Ni .set bl2

X2Nr .set al3

X2Ni .set Dbl3

nul I A .set al4

nul | B .set bb

.gl obal _split2

_split2:
subaw .d2 B15, 10, B15 ; Al'l ocate space on the stack
I dh .d2 *XPtr, X1r ;o Xlr = Xr[0]
add A B15, 4, A15 ; Al5 points to the stack as well

[1 Idh .d2 *+XPtr[1], X2r ;o X2r = Xi[0]
stw .dl Al10, * A15++[2] ; Push A10 onto the stack.

|| stw .d2 B10, * B15++[2] ; Push B10 onto the stack.
stw .dl All, * A15++[2] ; Push All onto the stack.

|| stw .d2 B11, *B15++[2] ; Push Bl11 onto the stack.
stw .dl Al2, * A15++[2] ; Push Al2 onto the stack.

|| stw .d2 B12, * B15++[2] ; Push B12 onto the stack.
stw .dl Al3, * A15++[2] ; Push Al3 onto the stack.

|| stw .d2 B13, * B15++[2] ; Push B13 onto the stack.
stw .dl Al4, *AL5++[2] ; Push Al4 onto the stack.

64 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{f’ TEXAS

INSTRUMENTS SPRA291
|| stw .d2 B14, * B15++[2] ; Push Bl14 onto the stack.
sth .dl Xir, *X1Ptr ; X1r[0] =Xr[0]
shl .sl N, 2, N4 ; Nd = 4*N
|| sth .d2 X2r, *X2Ptr ;o X2r[0]=Xi[0]
|| zero A2 nul | B ; nullA=0
|| zero 1 nul I A ; nullB =20
sub 1 N4, 4, N4 N =N - 1
|| sth .d1 nul | A, *+X1Ptr[1] ; X1i[0]=0
|| sth .d2 nul | B, *+X2Ptr[1] ; X2i[0]=0
add S Ax M4, XPtr, XNmkPtr i XNmkPtr —> X[N-1]
|| add 12 XPtr, 4, XPt r ;. XPTR —> X[1]
| dw .d2 *XPtr++[1], Xi Xr ; Load X[k].real and X2[k].inag.
[] 1dw .d1 *XNnkPt r—[17, XNi XNr ; Load X[N-k].real and X N-k].inag.
shr .s2x N, 1, CNT ; ONT = N2
sub .82 CNT, 1, CNT 7 ONT = N2 -1
add 1 N4, X1Ptr, XINmk Pt r 7 XINmkPtr —> X1[N-1]
|| add 0 2x M4, X2Ptr, X2Nmk Pt r ;o X2NmkPtr —> X2[N-1]
add A X1Ptr, 4, X1Ptr ; X1Ptr —> X1[1]
|| add A X2Ptr, 4, X2Pt r ;o X2Ptr —> X2[1]
add2 .81x Xi Xr, XNi XNr, X2r X1r 7 X2[Kk].real = X[k].imag + X[N-K].inag
; (upper 16 bits)
; X1[K].real = X[k].real + X[N-K].real
; (lower 16 bits)
|| sub2 .82x Xi Xr, XNi XNr, XLli X2i 7 X1[K].imag = X[k].imag — X[N-K].inag
; (upper 16 bits)
7 X2[k].imag = X[k].real — X[N-K].real
; (lower 16 hits)
[] 1dw .d2 *XPtr++[1], X Xr ; load X[k].real and X2[k].inag
[] ldw .dl * XNk Pt r——[1], XNi XNr ; load X[N-k].real and X[N-Kk].imag
shr .s1 X2r X1r, 17, X2r 7 X2[k].real = (X[k].imag +
7 XIN-Kk].imag)/2
;o X2r = X2r X1r >>17
|| sub2 .82 nul I B, X1i X2i, X2i ; X2[K].imag = X[N-k].real — X Kk].real
; (lower 16 bits)
; upper 16 bits are don’t cares
shr .82 X1i X2i, 17, Xii ; X[K].imag = (X[k].imag +
7 XIN-Kk].imag)/2
;o XL = X1i X2i >>17
|| b .sl LOCP ; Branch for the first time through | oop.
LOOP:
ext .s1 X2r X1r, 16,17, Xir ; X1[K].real = X1[k].real/2
|| ext .82 X2i, 16,17, X2i i X2[K].imag = X2[Kk].imag/2
|| sth .dl X1li, *+X1Ptr[1] ; Store X1[Kk].i mag.
|| sth .d2 X2r, *X2Ptr++[1] ; Store X2[K].real.
nv.l1 X1r, XINr 7 X[N-k].real = X1[Kk].real
[] mv.sl X2r, X2Nr 7 X2[N-k].real = X2[k].real
|| sub 12 nul | B, Xli, XINi ; XI[N-K].imag = —X1[K].i mag
|| sub .82 nul | B, X2i, X2Ni ; X2[N-K].imag = —-X2[k].inag
|| sth .d2 X2i, *X2Ptr++[1] ; Store X2[K].inag.

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

65

{'.f TEXAS

SPRA291 INSTRUMENTS
[| sth .dl Xlr, *X1Ptr++[2] Store X1[k].real.
add2 .81x Xi Xr, XNi XNr, X2rXlr X2[Kk].real = X[k].inmag + X[N-K].inmag
(upper 16 bits)
X1[k].real = X[k].real + X[N-K].real
(l ower 16 bits)
|| sub2 .82x Xi Xr, XNi XNr, X1i X2i X1[k].imag = X[k].img — X[N-K].inag
(upper 16 bits)
X2[Kk].imag = X[k].real — X[N-Kk].real
(lower 16 bits)
[ldw .d2 *XPtr++[1], XiXr Load X[k].real and X2[K].i nag.
[ldw .dl * XNk Pt r—[1], XNi XNr Load X[N-k].real and X[N-k].i nmag.
shr .s1 X2r X1r, 17, X2r X2[k].real = (X[k].imag +
X[N-K].imag)/2
X2r = X2r X1r >>17
|| sub2 .82 nul I B, X1i X2i, X2i X2[k].imag = X[N-k].real — X K].real
(lower 16 bits)
Upper 16 bits are don't cares.
[| sth .dl XINi, *+X1INmkPtr[1] Store X1[N-k].inmag.
|| sth .d2 X2Nr, * X2NmkPt r —[2] Store X2[N-k].real.
|| [CNT] sub A2 CNT, 1, CNT decrenent | oop counter
shr .s2 Xili X2i, 17, X1i X1[Kk].imag = (X[k] .inmag +
X[N-K].imag)/2
Xli = X1i X2i >>17
|| sth .dl XINr, *XINmkPtr—I[2] Store X1[N-k].real.
|| sth .d2 X2Ni, *+X2NnkPt r [3] Store X2[N-k].i nag.
|| [CNT] b .s1 LOOP Condi tional branch.
; LOOP END
| dw .dl *——Al15[2], Al14 Pop Al4 fromthe stack.
[ldw .d2 *——B15[2], B14 Pop Bl14 fromthe stack.
| dw .dl *——Al5[2], A13 Pop Al3 fromthe stack.
|| 1dw .d2 *——B15[2], B13 Pop B13 fromthe stack.
| dw .d2 *——B15[2], B12 Pop B12 fromthe stack.
[ldw .dl *——A15[2], Al12 Pop Al2 fromthe stack.
| dw .dl *——Al5[2], A1l Pop All fromthe stack.
[ldw .d2 *——B15[2], B11 Pop B11l fromthe stack.
|| b .s2 B3 Function return.
| dw .d2 *——B15[2], B10 Pop B10 fromthe stack.
[ldw .dl *——Al15[2], A10 Pop Al10 fromthe stack.
addaw .d2 B15, 10, B15 Deal | ocate space fromthe stack.
nop 3 Fill delay slots.

66 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

Example E-3. radix4.asm File

khkhkkhkhkhkhkhhhhhhhhhhhhhhdhhhhhhhhhdhhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhhhdhdhrddhrddrrdrx*

TEXAS | NSTRUMENTS | NC.

COVPLEX FFT (Radi x 4)

Revi si on Data: 04/28/97

USAGE This routine is Ccallable and can the called as

void radix4(int n, short x[], short wW])

n —— FFT size (power of 4) (input)
X[l ——— input and output sequences (di m-n) (input/output)
W] —— FFT coefficients (dimn) (input)

If the routine is not to be used as a Ccallable function

then all instructions relating to dumry should be renpved.
Refer to comments of individual instructions. You will also
need to initialize values for all the values passed as these
are assuned to be in registers as defined by the calling
convention of the compiler, (refer to the C conpiler reference
gui de.)

C CODE
This is the C equivalent of the assenbly code, wi thout the
assunptions |isted below. Note that the assenbly code is hand-
optim zed and assunptions apply.

SCOURCE: Burrus, Parks p .113

voi d radi x4(int n, short x[], short W])

L B S T R T B S T T R B I S B R T R B N R T D T R R T T R R

{
i nt ni, n2, ie, ial, ia2, ia3, i0, i1, i2, i3, j, k;
short t, r1, r2, s1, s2, col, co2, co3, sil, si2, si3
n2 = n;
ie = 1;
for (k = n; k >1; k >=2) {
nl = n2;
n2 >>= 2;
ial = 0;
for (j =0;] <n2; j++) {
ia2 = ial + ial;
ia3 = ia2 + ial;
col = wial * 2 + 1];
sil =wial * 2];
co2 =wia2 * 2 + 1];
si2 =wia2 * 2];
co3 =wWia3 * 2 + 1];
si3 =wia3 * 2];
ial = ial + ie;

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 67

SPRA291

{'f TEXAS
INSTRUMENTS

L S . T T R T R D S N . N N S SN N B N I I S I . TN N S N N N N N N R

68

for (i0 =j; i0 <n; i0 += nl) {
il =1i0 + n2;
i2 =il + n2;
i3 =i2 + n2;
ri =x[2*i0] + x[2 * i2];

r2 =x[2*i0] - x[2 * i2];
t = x[2* i1] +x[2 * i3];
X[2 *i0] =r1 + t;

ri=r1-t,
sl = x[2*i0+ 1] +x[2* i2 + 1];
s2 = x[2*i0 + 1] - x[2*i2 + 1];

t =x[2* i1+ 1] +x[2* i3+ 1];

x[2 * i0 + 1] = sl +t;

sl =sl1 —-t;

x[2 * i2] = (rl * co2 + sl * si2) >> 15;
x[2 * i2 + 1] = (sl * co2-r1 * si?2)>>15;

t = x[2* i1+ 1] —-x[2* i3 + 1];

rl =r2 + t;

r2z =r2—-1t;

t =x[2 *il] —x[2 * i3];

sl =s2 - t;

s2 = s2 +t;

x[2 * i1l] = (rl * col + sl * sil) >>15

x[2 * i1l + 1] = (sl * col-rl * sil)>>15;
X[2 * i3] = (r2 * co3 + s2 * si3) >>15
X[2 * i3 + 1] = (s2 * co3-r2 * sj3)>>15;

}
}
ie <<= 2;
}
}
DESCRI PTI ON
This routine is used to conpute FFT of a conpl ex sequence
of size n, a power of 4, with "decinmation-in-frequency
deconposition” method. The output is in digit-reversed
order. Each conplex value is with interleaved 16-bit rea
and i magi nary parts
TECHNI QUES
1. Loading input x as well as coefficient win word.
2. Both loops j and i0 shown in the C code are placed in the
| NNERLOOP of the assenbly code.
ASSUMPTI ONS

4 <= n <= 65536
Both input x and coefficient w should be aligned on word
boundary.

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

MEMORY NOTE
Align x and w on different word boundaries to mnimze
nmenory bank hits. There are N4 menory bank hits total

* CYCLES
* LOGBASE4(N) * (10 * N4 + 33) + 7 + N 4
*
*

khkkhkkhkhkhhkhkhhhkhhhkhhhkhhhkhhhhhhhhdhhhhhhhhhhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhkhdhkrkkhkrkk rkkx**x

. gl obal dumry
.global _radi x4
. bss dunmy, 52 ; Reserve space for dumy.
.text
_radi x4:
MVK . S1 dumy, A0 ; New dunmy pointer in AO and Bl
|| MWK .S2 dumy, Bl
MVKH . S1 dunmy, A0 ; New dunmy pointer in A0 and Bl
|| MVKH .S2 dumy, B1.
STW .D2 B3, *Bl ; Push return address on dummy.
STW .Dl1 Al0, *+A0[1] ; Push A10 on dummy.
|| STW . D2 B10, *+B1[2] ; Push B10 on dummy.
*** BEGQ N Benchmark Timng ***
B_START:
MK .S1 32, Al ; Al = 32
|] LMBD . L1 1, A4, A2 ; 31 — log2(n)
|] SHR .S2X A4, 2, B6 ; n2 =n/ 4
|| ZERO .L2 B7 ; Mask
|] STW .D1 All, *+A0[3] ; Push A1l on dummy.
|] STW . D2 B11, *+B1[4] ; Push B11 on dummy.
SuB .L1 Al, A2, A4 ; log2(n)+1 (circ buff size in bytes)
[] SHR . S1 A4, 1, A7 ;. 2*n2 =n/ 2, a-side
[] SHR . S2X A4, 1, B9 ; 2*n2 =n/ 2, b-side
|| W .L2 B6, BO ;on/ 4
[] STW .D1 Al12, *+AQ[5] ; Push A12 on dummy.
|| STW . D2 B12, *+B1[6] ; Push B12 on dummy.
SHL .S1 A, 16, A ; Shift into BKO field
[] wC . S2 B4, | RP ; Save of f x.
[] STW .D1 Al13, *+A0[7] ; Push A13 on dunmmy.
|| STW . D2 B13, *+B1[8] ; Push B13 on dummy.
ADDK .S1 0404h, A4 ; A5, B5 set circular node on BKO
|| MK . S2 1, B8 ; ie =1
[] STW .D1 Al4, *+A0[9] ; Push Al4 on dunmmy.
[] STW .D2 B14, *+B1[10] ; Push B14 on dunmmy.
MWC .S2X A4, AMR ; Load AMR
|| STW .D1 Al5, *+A0[11] ; Push A15 on dummy.
|| STW . D2 B15, *+B1[12] ; Push B15 on dummy.
[] SUB .L2 BO, 1, BO ; Loop coutner = n/ 4 -1
K_LQOOP:
Y . L2 B4, B5 ; Reset X | oad pointer
|] %Y .L1X B4, A5 ; Reset X store pointer.
|] ADD .D2 BO, 1, B1 ; 1 = loop counter + 1
|] %Y . D1 A6, Al ; Setup twiddle factor pointer
ZERO .S1 A4 ;)] =0
[] SUBAW . D1 A5, A7, A5 ; Setup for first preincrenent
|] AND . S2 B1, B7, Bl ; J loop twi ddle rel oad test
SUBAW . D1 A5, A7, A5 ; Setup for first preincrenment

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 69

{'.f TEXAS

SPRA291 INSTRUMENTS
| MY . MR B1, 1, B2 ; J loop twiddle reload test
LDW . D2 *B5++[B6], B10O ; Xi 0=xt[0*n2],yi0 = yt[0*n2+1]
LDW .D2 *B5++[B6], A8 ;o Xil=xt[2*n2],yil = yt[2*n2+1]
| ['B2] LDW .D1 *++Al[A4], Bl5 ;o sil =w2 *)], col = w 2% +1]
LDW .D2 *B5++[B6], Bl1 ;o Xi2=xt[4*n2],yi 2 = yt[4*n2+1]
[['B2] LDW .D1 *++Al[A4], A3 ; si2 = w4*j], co2 = w 4*j +1]
LDW .D2 *B5++[B6], A9 7 Xi3=xt[6*n2],yi3 = yt[6*n2+1]
NOP 2
['B2] LDW .D1 *++Al[A4], Al3 ; si3 = w6*j], co3 = w 6*j+1]
| ['B2] ADD .L1X A4, B8, A4 j +=ie
SuB2 . S2 B10, Bl11, B3 ; r2a=xi0 — xi2,s2a =yi0 — yi2
|] ADD . L2 BO, o, B1 ; * i = loop counter
[W .L1 A6, Al ; reset w
suB2 .S1 A8, A9, Al10 ; t3=xil1 — xi3, tl=yil-yi3
| AND . S2 B1, B7, B1 ; * j loop twiddle reload test
ADD2 .S1 A8, A9, A8 ; tO=xil + xi3, t2=yil +yi3
|] ADD2 . S2 B10, Bl1, Bl ; rla=xi0 + xi2,sla =vyi0 + yi2
| MPY . MR B1, 1, B2 7 * j loop twiddle reload test
[[!Bl] ADDAW . D2 BS, 1, B5 ; * reset x input, (circular)
[['B2] SUBAW.Dl1 A5, 1, A5 ;
[] ADD . L2 BO, 1, BO ;
|] ZERO .L1 A2 ; First pass cond. init to zero.
LOOP:
SHR .S1X B3, 16, A9 ; * extract s2a
[SHR .S2X Al0, 16, B10 ; * extract tl
[['B2] ADDAW.D1 A5, 1, A5 ; * reset x output, (circular)
| LDW .D2 *B5++[B6], B10 ; ** xi 0=xt[0*n2], yiO=yt[0*n2+1]
[W .L1 A6, Al ; ** reset w
ADD . L2 B3, B10, B1l1 ;7 *rlc =r2a +t1l
|| SuB . L1 A9, Al10, Al12 ; * slc = s2a —t3
|| SuB2 .S2X B1, A8, B1 . * rlb=rla — t0, slb = sla — t2
|| ADD2 .S1X B1, A8, A8 ; * xo0=rla + t0, yoO = sla + t2
|| LDW .D2 *B5++[B6], A8 ;o ** xil=xt[2*n2], yil=yt[2*n2+1]
[[!'B2] LDW .DL *++Al[A4], B15 ;o ** osil = wW2%)], col = w 2*%) +1]
[A2] ADD .S2X All, 2, B3 ; copy B-side x store pointer
|1 [A2] SHR .S1 Al14, 15, Al4 ; X02 = xa2 >> 15
|| SuB . L2 B3, B10, B12 ; *r2c =r2a —t1l
|| ADD . L1 A9, Al10, A9 ; ¥ s2c = s2a + t3
[] MPY .MLX A12, B15, Al0 . * ss1 = slc * sil
[l MPYLH .M B11, B15, B10 ; *rcl =rlc * col
|| LDW .D2 *B5++[B6], Bl1 ;o ** xi2=xt[4*n2], yi2=yt[4*n2+1]
[l [!'B2] LDW .DlL *++Al[Ad4], A3 ;o ** si2 = wW4*j], co2 = W 4*) +1]
[A2] SHR .S2 B13, 15, B13 ; yol = yal >> 15
|1 [A2] SHR .S1 Al15, 15, Al5 ; X03 = xa3 >> 15
[l MPYLH . MX B1, A3, Al0 ; *rc2 =rlb * co2
[l MPYLH . M2X Al2, B1l5, Bll1l ; * scl = slc * col
[| LDW .D2 *B5++[B6], A9 ; ** Xi3=xt[6*n2], yi3=yt[6*n2+1]
|| ADDAW .D1 A5, A7, A5 ;
[A2] SHR .S2 B14, 15, B14 ; yo2 = ya2 >> 15
|1 [BO] B .S1 LOOP ; for i
|| MPY ML A9, Al3, A12 ; ¥ ss3 = s2c * si3
|| ADD .L1X B10, Al0, A8 ; * xal = rcl + ssl
[l MY . B11, B15, B13 ;o *rsl =rlc * sil
[| [BO] STW .D1 A8, *++A5[A7] 7 * xt[0*n2] =x00, yt[O0*n2+1]=yo00
70 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{f’ TEXAS

INSTRUMENTS SPRA291
[A2] STH .D2 B13, *B3++[B9] yt[2 * n2 + 1] = yol

[[A2] SHR . S2 B4, 15, B4 yo3 = ya3 >> 15

|| [A2] STH .D1 A0, *All++[A7] xt[2 * n2] = xol

|| SHR . S1 A8, 15, A0 * xol = xal >> 15

|] MPYH . M2X B1, A3, Bl14 * sc2 = slb * co2

|| MPYHL .MLX B1, A3, A9 * ss2 = slb * si2
[A2] STH .D2 Bl4, *B3++[B9] yt[4 * n2 + 1] = yo2
MPYLH .M A9, Al13, Al * sc3 = s2c * co3
MPY . M2X B1, A3, B12 * rs2 =rlb * si2
SUB .L2 B11, B13, B13 * yal = scl —rsl

[1B2] LDW .DL *++Al[A4], A13
[1B2] ADD .L1X A4, B8, A4
SUB .S2 BO, 1, BO
[A2] STH .D2 B4, *B3

[[A2] STH .D1 Al4, *All++ A7]
|| MPY .MX Bl12, Al3, BIl2
[|] MPYLH .MLX B12, Al1l3, All
|| ADD .L1 A10, A9, Al4
|| SuB2 . S2 B10, B11, B3
|| SuB .L2 BO, 1, Bl
[A2] STH .D1 Al5, *All
|| SuB .L2 Bl4, Bl12, Bl4
|| SuB2 .S1 A8, A9, Al10
|| AND . 82 B1, B7, Bl
[[!A2] ADD .L1 A2, 1, A2
ADDAH .D1 A5, A7, All
|| SuB .L2X A1, Bl12, B4
|| ADD L1 A1l1, Al12, Al5
|| ADD2 .S1 A8, A9, A8
|| ADD2 . S2 B10, B11, Bl
] MPY Y% B1, 1, B2
|| [!Bl] ADDAW.D2 BS, 1, B5
; LOOP ends here
SHL . S2 B7, 2, B7
|| MPY Y% B6, B8, BO
SHR .81 A7, 2, A7
|| SHR . 82 B9, 2, B9
|| ADD L2 B7, 3, B7
SHR . S2 B6, 2, B6
|| SuB .L2 BO, 1, BO
CWGT . L2 B7, BO, Bl
[!B1] B . S1 K_LOOP
|| SHL . S2 B8, 2, B8
MC . S2 IRP, B4
NOP 4
; K LOOP ends here
B_END.
*** END Benchmark Timng ***
MVK .S1 dumy, A0
|] MVK . S2 dumy, BO
MVKH . S1 dumry, A0
|] MVKH . 82 dummy, BO
LDW . D2 * B0, B3

** 5i3 = wW6*j], co3 = w 6% +1]
**j += je

*** generate | oop counter

yt[6 * n2 + 1] = yo3

xt[4 * n2] = xo02

* rs3 =r2c * si3

*rc3 =r2c * co3

* Xa2 = rc2 + ss2

** r2a = xi 0—xi 2, s2a = yiO-yi2
*** | = |oop counter — 1

xt[6 * n2] = xo03

* ya2 = sc2 — rs2

** t3=xil — xi3, tl1 =yil-yi3
*** | loop twiddl e rel oad test
First Pass Done Set Cond. Reg
* copy A-side x store pointer
* ya3 = sc3 — rs3

* xa3 = rc3 + ss3

** t0=xil + xi3, t2 =yil+yi3
** rla = xi 0+xi 2, sla = yiO+yi2
*** | |oop twiddle reload test
*** reset x input, (circular)

mask <<= 2
nf4 = n2 * i
2 * n2 >>= 2
2 * n2 >>= 2
mask += 3
n2 >>= 2
| oop counter = n/4 — 1
kcond =msk >n/ 4 -1
if (!kcond) do | oop

ie <<= 2

Rel oad x.

e

; New dunmy pointer in A0 and BO.
; New dunmy pointer in A0 and BO.
; New dunmy pointer in A0 and BO
; New dunmy pointer in A0 and BO.
; Pop return address off dummy.

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 71

{'.f TEXAS

SPRA291 INSTRUMENTS
|| ZERO L2 B2
LDW . D1 *+A0[1], Al10 ; Pop A10 of f dunmy.
[LDW . D2 *+B0[2], B10 ; Pop B10 of f dunmy.
[] MWWC . S2 B2, AMR ; Reset AMR
LDW .D1 *+A0[3], All ; Pop A1l of f dunmy.
|] LDW . D2 *+B0[4], B11 ; Pop B1l of f dunmy.
LDW . D1 *+A0[5], Al2 ; Pop A12 of f dunmy.
[LDW . D2 *+B0[6], B12 ; Pop B12 off dunmy.
LDW . D1 *+A0[7], Al3 ; Pop A13 off dunmy.
[LDW . D2 *+BO0[8], B13 ; Pop B13 off dunmy.
LDW . D1 *+A0[9], Al4 ; Pop Al4 of f dunmy.
| LDW . D2 *+B0[10] , B14 ; Pop B14 of f dunmy.
|[|] B.S2 B3
LDW . D1 *+A0[11], Al5 ; Pop Al5 off dummy.
[LDW . D2 *+BO[12], B15 ; Pop B15 off dummy.
NOP 4 ; Wait 4 cycles for the last pop

; to occur before returning.

Example E-4. digit.asm File

ERE R S S S Rk Sk O kR R o Rk O O b S O R Sk kO S R S kS
1

i FILE
; digit.asm— C62xx assenbly source for a C-callable FFT digit reversa
; functi on.

Rk R Sk b S S R R O S O R O R Rk Ik bk S R Rk I R kR R I Rk o

; DESCRI PTI ON

; This functions inplenents, by table | ookup, digit/bit reversal for FFT
; al gorithnms. The function assunes that index tables which contain the

; i ndexes of data pairs that get swapped are pre-conputed, and stored as
; two separate arrays. Since this is a table | ookup nmethod, this is a

; generic routine. It can be used for bit-reversal of radix-2 FFTs, or

; digit-reversal of radix-4 FFTs etc.

ERE R R R Sk R kO Rk A R R o R R kb S R R R Sk R R R Sk O o O S R O R R
1

; POTOTYPE
; void digit _reverse(int *yx, unsigned short *II|ndex,
; unsi gned short *Jlndex, int count)

Rk R Sk b S R R S O O SRR I o S R IR R I O O S O S R R Rk bk o

;| MPLEMENTATI ON

; The following C code is functional equivalent to this assenbly version

; void digit_reverse(int *yx, unsigned short *Jlndex,
; unsi gned short *11ndex, int count)

o

; int i;

; unsi gned short 1, J;
; int YX, YXJ;

72 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{9 TEXAS
INSTRUMENTS SPRA291

; for (i = 0; i<count; i++)

; I = lIndex[i];
; J = Jindex[i];
; YXI = yx[1];

; YXJ = yx[J];

; yx[J] = YXI;

; yx[1] = YXJ;

: }

; }

IR R R R O I I R R I O I R I R I I I R I I I I I R I S

. gl obal _digit_reverse

AXPt r .set a4 ; argl passed by calling function
; Pointer to FFT data. This is a static
; pointer. Data to be reversed is accessed
; using indexes. Also this an A register
; thus it is used in the .dl unit.

JI ndexPtr .set b4 ; arg2 passed by calling function
; pointer to digit reversal index
I I ndexPtr .set a6 ; arg3 passed by calling function
; pointer to other digit reversal index
count .set b6 ; arg4 passed by calling function
; Nunber of points to reverse
J .set a0 ; index | oaded using Jlndex pointer
I .set b0 ; I'ndex | oaded using Ilndex pointer
TJ .set a7 ; Tenporary copy of J. This is needed

; because the next value of J is |oaded
; before the current one is finished being used.
; It is used to store the data val ue
; loaded by the | index.
TI .set b7 ; Tenporary copy of I. This is needed
; because the next value of | is |oaded
; before the current one is finished being used.
; It is used to store the data val ue
; loaded by the J index.

Xl .set ab ; Data value | oaded using the | index.
XJ .set b5 ; Data value | oaded using the J index.
BXPt r .set b2 ; Pointer to FFT data, points to the same

; menory location as AXPtr. It is a B register,
; SO it can be used in the .d2 unit.

CNT .set bl ; Count register, used for |ooping
. text

_digit_reverse
I dh .d1 *1 1 ndexPtr++[1], | ; Load an | i ndex.

|| Idh .d2 *JIndexPtr++[1], J ; Load a J index.

[] mv.12x AXPtr, BXPtr ; Copy AXPtr to BXPtr.
nop 2 ; Fill the delay slots.
| dh .dl *| I ndexPtr++[1], | ; Load the next | index.

|| Idh .d2 *JIndexPtr++[1], J ; Load the next J index.

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family 73

{'.f TEXAS

SPRA291 INSTRUMENTS
|| sub |2 count, 1, CNT Decrenent the count by
one, and put into a register
that can be used as a
condition register.
nop 1 Fill a delay slot.
| dw .dl1 *+AXPtr[J], XJd Load the val ue pointed by
the first J index | oaded.
[ldw .d2 *+BXPtr[I1], X Load the val ue pointed by
the first | index | oaded.
|| b LOOP Branch for the first tine
t hr ough the | oop.
nop Fill a delay slot.
m.l1 J, TJ Make a copy of J so that
the value is not |ost due
to the rel oading of J.
LY |2 [, Tl Make a copy of | so that
the value is not |ost due
to the rel oadi ng of I
LOOP
| dw .dl *+AXPtr[J], XJ | oad the val ue pointed by J
[ldw .d2 *+BXPtr[1], Xl | oad the val ue pointed by
| | [CNT] b .s1 LOOP condi ti onal branch, branch
if CNT!=0
i||['CNTlb .s2 B3 having the return
here may be a bug,
we can try it when
we get everything el se
wor ki ng
I dh .dl *1 I ndexPtr++[1], Load the next | index.
[1 Idh .d2 *JIndexPtr++[1], Load the next J index.
| | [CNT] sub 12 CNT, 1, CNT Decrenent the | oop counter
stw .dl X, *+AXPt r [TJ] Data | oaded fromthe | index
is stored at the location
poi nted by the J index.
|| stw .d2 X3, *+BXPtr[Tl] Data | oaded fromthe J index
is stored at the location
poi nted by the | index.
Note that TJ and Tl have the
and J values, 3 iterations back.
[l mv. 11 3,7 Make a copy of J so that
the value is not |ost due
to the rel oadi ng of J.
] v | 2 [, Tl Make a copy of | so that
the value is not |ost due
to the rel oading of |
;1 oop end
b .s2 B3 Function return
nop 5

74 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subjectto TI's terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Tl components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by Tl regarding third—party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright 00 2002, Texas Instruments Incorporated

