
Application Report
SPRA291 - August 2001

1

Implementing Fast Fourier Transform Algorithms of
Real-Valued Sequences With the TMS320 DSP Platform

Robert Matusiak Digital Signal Processing Solutions

ABSTRACT

The Fast Fourier Transform (FFT) is an efficient computation of the Discrete Fourier
Transform (DFT) and one of the most important tools used in digital signal processing
applications. Because of its well-structured form, the FFT is a benchmark in assessing digital
signal processor (DSP) performance.

The development of FFT algorithms has assumed an input sequence consisting of complex
numbers. This is because complex phase factors, or twiddle factors, result in complex
variables. Thus, FFT algorithms are designed to perform complex multiplications and
additions. However, the input sequence consists of real numbers in a large number of real
applications.

This application report discusses the theory and usage of two algorithms used to efficiently
compute the DFT of real-valued sequences as implemented on the Texas Instruments
TMS320C6000 .

The first algorithm performs the DFT of two N-point real-valued sequences using one N-point
complex DFT and additional computations.

The second algorithm performs the DFT of a 2N-point real-valued sequence using one
N-point complex DFT and additional computations. Implementations of these additional
computations, referred to as the split operation, are presented both in C and C6000
assembly language. For implementation on the C6000, optimization techniques in both C and
assembly are covered.

Contents

1 Introduction 3.

2 Basics of the DFT and FFT 3.

3 Efficient Computation of the DFT of Real Sequences 5.
3.1 Efficient Computation of the DFT of Two Real Sequences 5.
3.2 Efficient Computation of the DFT of a 2N-Point Real Sequence 7.

4 TMS320C62xE Architecture and Tools Overview 11.

5 Implementation and Optimization of Real-Valued DFTs 14.

6 Summary 17.

7 References 17.

TMS320C6000 and C6000 are trademarks of Texas Instruments.

Trademarks are the property of their respective owners.

SPRA291

2 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

Appendix A Derivation of Equation Used to Compute the DFT/IDFT of Two Real Sequences 18
A.1 Forward Transform 18.
A.2 Inverse Transform 20.

Appendix B Derivation of Equations Used to Compute the DFT/IDFT of a Real Sequence 21. . .
B.1 Forward Transform 21.
B.2 Inverse Transform 23.

Appendix C C Implementations of the DFT of Real Sequences 27.
C.1 Implementation Notes 27.

Appendix D Optimized C Implementation of the DFT of Real Sequences 42.
D.1 Implementation Notes 42.
D.2 Description 42.

Appendix E Optimized C-Callable ’C62xx Assembly Language Functions Used to
Implement the DFT of Real Sequences 54.

E.1 Implementation Notes 54.

List of Figures

Figure 1. TMS320C6201 DSP Block Diagram 11.

Figure 2. Code Development Flow Chart 13.

List of Tables

Table 1. Comparison of Computational Complexity for Direct Computationof the DFT Versus
the Radix-2 FFT Algorithm 4.

List of Examples

Example 1. Efficient Computation of the DFT of a 2N-Point Real Sequence 15.

Example 2. Efficient Computation of the DFT of Two Real Sequences 15.

Example 3. Efficient Computation of the DFT of a 2N-Point Real Sequence 16.
Example 4. Efficient Computation of the DFT of Two Real Sequences 16.

Example 5. Efficient Computation of the DFT of a 2N-Point Real Sequence 16.

Example 6. Efficient Computation of the DFT of Two Real Sequences 16.

Example C–1. realdft1.c File 27.

Example C–2. split1.c File 31.

Example C–3. data1.c File 32.

Example C–4. params1.h File 32.

Example C–5. realdft2.c File 33.

Example C–6. split2.c File 36.

Example C–7. data2.c File 37.

Example C–8. params2.h File 37.

Example C–9. dft.c File 37.
Example C–10. params.h File 39.

Example C–11. vectors.asm 40.

Example C–12. lnk.cmd 40.

SPRA291

3 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

Example D–1. realdft3.c File 42.

Example D–2. realdft4.c File 47.

Example D–3. radix4.c File 50.

Example D–4. digit.c File 51.

Example D–5. digitgen.c File 52.

Example D–6. splitgen.c File 53.

Example E–1. split1.asm File 54.

Example E–2. split2.asm File 61.

Example E–3. radix4.asm File 67.

Example E–4. digit.asm File 72.

1 Introduction

TI’s C6000 platform of high-performance, fixed-point DSPs provides architectural and speed
improvements that makes the FFT computation faster and easier to program than other
fixed-point DSPs.

The C6000 platform devices are based on an advanced Very Long Instruction Word (VLIW)
central processing unit (CPU) with eight functional units that include two multipliers and six
arithmetic logic units (ALUs). The CPU can execute up to eight instructions per cycle.
Complementing the architecture is a very efficient C compiler that increases performance and
reduces code development time. The C6000 architecture and development tools featured are
discussed in this application report along with the following topics:

• Theory of DFTs of real-valued sequences

• Algorithm implementation

• C6000 CPU features

• C6000 development tools

• Optimizing C code for the C6000

• C-callable assembly language functions for the C6000

2 Basics of the DFT and FFT

Methods of performing the DFT of real sequences involve complex-valued DFTs. This section
reviews the basics of the DFT and FFT.

The DFT is viewed as a frequency domain representation of the discrete-time sequence x(n).
The N-point DFT of finite-duration sequence x(n) is defined as

X (k) � �
N�1

n�0

x(n)W kn
N l � 0, 1,. . . , N � 1 (1)

SPRA291

4 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

and the inverse DFT (IDFT) is defined as

X (n) �
1
N
�
N�1

k�0

X(k)W � kn
N n � 0, 1,. . . , N � 1

where

W
nk
N � e�j2�nk�N

The WN kn factor is also referred to as the twiddle factor. Observation of the above equations
shows that the computational requirements of the DFT increase rapidly as the number of
samples in the sequence N increases. Because of the large computational requirements, direct
implementation of the DFT of large sequences has not been practical for real-time applications.
However, the development of fast algorithms, known as FFTs, has made implementation of DFT
practical in real-time applications.

The definition of FFT is the same as DFT, but the method of computation differs. The basics of
FFT algorithms involve a divide-and-conquer approach in which an N-point DFT is divided into
successively smaller DFTs. Many FFT algorithms have been developed, such as radix-2,
radix-4, and mixed radix; in-place and not-in-place; and decimation-in-time and
decimation-in-frequency.

In most FFT algorithms, restrictions may apply. For example, a radix-2 FFT restricts the number
of samples in the sequence to a power of two.

In addition, some FFT algorithms require the input or output to be re-ordered. For example, the
radix-2 decimation-in-frequency algorithm requires the output to be bit-reversed. It is up to
implementers to choose the FFT algorithm that best fits their application.

Table 1 compares the number of math computations involved in direct computation of the DFT
versus the radix-2 FFT algorithm. As you can see, the speed improvement of the FFT increases
as N increases. Detailed descriptions of the DFT and FFT can be found in the references.123

The following sections describe methods of efficiently computing the DFT of real-valued
sequences using complex-valued DFTs/IDFTs.

Table 1. Comparison of Computational Complexity for Direct Computation
of the DFT Versus the Radix-2 FFT Algorithm

Direct Computation of the DFT Radix-2 FFT

Number
of Points

Complex
Multiplies

Complex
Additions

Complex
Multiplies

Complex
Additions

N N2 N2–N (N/2)log2N Nlog2N

4 16 12 4 8

16 256 240 32 64

64 4096 4032 192 384

256 65536 65280 1024 2048

1024 1048576 1047552 5120 10240

(2)

(3)

SPRA291

5 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

3 Efficient Computation of the DFT of Real Sequences

In many real applications, the data sequences to be processed are real-valued. Even though the
data is real, complex-valued DFT algorithms can still be used. One simple approach creates a
complex sequence from the real sequence; that is, real data for the real components and zeros
for the imaginary components. The complex DFT can then be applied directly. However, this
method is not efficient. This section shows you how to use the complex-valued DFT algorithms
to efficiently process real-valued sequences.

3.1 Efficient Computation of the DFT of Two Real Sequences

Suppose x1(n) and x2(n) are real-valued sequences of length N, and x(n) is a complex-valued
sequence defined as

x(n) � x1 (n) � jx2 (n) 0 � n � N � 1

The DFT of the two N-length sequences x1(n) and x2(n) can be found by performing a single
N-length DFT on the complex-valued sequence and some additional computation. These
additional computations are referred to as the split operation, and are shown below.

X1 (k) �
1
2

[X (k) � X * (N � k)]

k � 0, 1,. . . , N � 1
X2 (k) �

1
2j

[X (k) � X * (N � k)]

As you can see from the above equations, the transforms of x1(n) and x2(n), X1(k) and X2(k),
respectively, are solved by computing one complex-valued DFT, X(k), and some additional
computations.

Now assume we want to get back x1(n) and x2(n) from X1(k) and X2(k), respectively. As with the
forward DFT, the IDFT of X1(k) and X2(k) is found using a single complex-valued DFT. Because
the DFT operation is linear, the DFT of equation (4) can be expressed as

X(k) � X1(k) � jX2(k)

This shows that X(k) can be expressed in terms of X1(k) and X2(k); thus, taking the inverse DFT
of X(k), we get x(n), which gives us x1(n) and x2(n).

The above equations require complex arithmetic not directly supported by DSPs; thus, to
implement these complex-valued equations, it is helpful to express the real and imaginary terms
in real arithmetic. The forward DFT of the equations shown in (5) can be written as follows:

X1 r(k) �
1
2

[Xr (k) � Xr(N � k)] and X1 i(k) �
1
2

[Xi (k) � Xi(N � k)]

k � 0, 1,. . . , N � 1

X2 r(k) �
1
2

[Xi (k) � Xi(N � k)] and X2 i(k) �
� 1

2
[Xr (k) � Xr(N � k)]

(4)

(5)

(6)

(7)

SPRA291

6 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

In addition, because the DFT of real-valued sequences has the properties of complex conjugate
symmetry and periodicity, the number of computations in (7) can be reduced. Using the
properties, the equations in (7) can be rewritten as follows:

X1r(0) � Xr(0) X1i(0) � 0

X2r(0) � Xi(0) X2i(0) � 0

X1r�N�2� � Xr�N�2� X1i�N�2� � 0

X2r�N�2� � Xi�N�2� X2i�N�2� � 0

X1 r(k) �
1
2

[Xr (k) � Xr(N � k)] X1 i(k) �
1
2

[Xi (k) � Xi(N � k)]

X2 r(k) �
1
2

[Xi (k) � Xi(N � k)] X2 i(k) �
� 1

2
[Xr (k) � Xr(N � k)]

X1r(N � k) � X1r(k) X1i(N � k) � � X1i(k)

X2r(N � k) � X2r(k) X2i(N � k) � � X2i(k)

Similarly, the additional computation involved in computing the IDFT can be written as follows:

Xr(k) � X1r(k) � X2i(k)

k � 0, 1,. . . , N � 1

Xi(k) � X1i(k) � X2r(k)

See Appendix A for a detailed derivation of these equations.

Now that we have the equations for the split operation used in computing the DFT of two
real-valued sequences, we turn to the following steps, which outline how to use the equations.
The forward DFT is outlined as follows.

Step 1: Form the N-point complex-valued sequence x(n) from the two N-length sequences x1(n)
and x2(n).

for n=0, …, N–1
xr(n) = x1(n)
xi(n) = x2(n)

Step 2: Compute the N-length complex DFT of x(n).

X(k) = DFT[x(n)]

NOTE: The DFT can be any efficient DFT algorithm (such as one of the various FFT
algorithms), but the output must be in normal order.

(8)

(9)

SPRA291

7 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

Step 3: Compute the split operation equations.

X1r(0) = Xr(0) X1i(0) = 0
X2r(0) = Xi(0) X2i(0) = 0
X1r(N/2) = Xi(N/2) X1i(N/2) = 0
X2r(N/2) = Xi(N/2) X2i(N/2) = 0

for k=1, …, N/2–1
X1r(k) = 0.5 * [Xr(k) + Xr(N – k)] X1i(k) = 0.5 * [Xi(k) – Xi(N – k)]
X2r(k) = 0.5 * [Xi(k) + Xi(N – k)] X2i(k) = 0.5 * [Xr(k) – Xr(N – k)]
X1r(N – k) = X1r(k) X1i(N – k) = – X1i(k)
X2r(N – k) = X2r(k) X2i(N – k) = – X2i(k)

For two frequency domain sequences, X1(k) and X2(k), derived from real-valued sequences,
perform the following steps to take the IDFT of X1(k) and X2(k).

Step 1: Form a single complex-valued sequence X(k) from X1(k) and X2(k) using the IDFT split
equations.

for k=0, …, N–1
Xr(k) = X1r(k) – X2i(k)
Xi(k) = X1i(k) + X2r(k)

Step 2: Compute the N-length IDFT of X(k).

x(n) = IDFT[X(k)]

As with the forward DFT, the IDFT can be any efficient IDFT algorithm. The IDFT can be
computed using the forward DFT and some conjugate operations.

x(n) = [DFT{X*(k)}]*

where:

* is the complex conjugate operator

Step 3: From x(n), form x1(n) and x2(n).

for n = 0, 1, …. N–1
x1(n) = xr(n)
x2(n) = xi(n)

Appendix C contains C implementation of the outlined DFT and IDFT algorithms.

3.2 Efficient Computation of the DFT of a 2N-Point Real Sequence

Assume g(n) is a real-valued sequence of 2N points. We outline the equations involved in
obtaining the 2N-point DFT of g(n) from the computation of one N-point complex-valued DFT.
First, we subdivide the 2N-point real sequence into two N-point sequences as follows:

And define x(n) to be the N-point complex-valued sequence:

x1(n) � g(2n)

0 � n � N � 1
x2(n) � g(2n � 1)

(10)

SPRA291

8 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

The DFT of g(n), G(k), can be computed using

0 � n � N � 1x(n) � x1(n) � jx2(n)

where

k � 0, 1,. . . , N � 1G(k) � X(k)A(k) � X * (N � k)B(k)

with X(N) � X(0)

A(k) �
1
2
�1 � jW

k
2N� and B(k) �

1
2
�1 � jW

k
2N�

As you can see, we have computed the DFT of a 2N-point sequence from one N-point DFT and
additional computations, which we call the split operation.

Similarly, if we have a frequency domain 2N-point sequence, which was derived from a
real-valued sequence, we can use an N-point IDFT to obtain the time domain 2N-point
real-valued sequence using the following equation:

X(k) � G(k)A * (k) � G * (N � k)B * (k) k � 0, 1,. . . , N � 1

with G(N) � G(0)

The equations shown in (12) and (14) are of the same form. Equation (14) can be obtained from
equation (12) if G(k) is swapped with X(k), and A(k) and B(k) are complex conjugated. Thus,
equations (12) and (14) can be implemented with one common split function.

NOTE: In implementing these equations, A(k), A*(k), B(k), and B*(k) can be pre-computed and
stored in a table. Their values can thus be obtained by table look-up as opposed to arithmetic
computation. The result is a large computational savings because the sine and cosine functions
required by twiddle factors do not need to be computed when performing the split. (A detailed
derivation of these equations is provided in Appendix B.)

As in the previous section, Efficient Computation of the DFT of Two Real Sequences, when
implementing the above equations, it is useful to express them in their real and imaginary terms.

Only N points of G(k) are computed in equation (12) because other N points can be found using
the complex conjugate property. This is applied to the following equation.

Gr(k) = Xr(k) Ar(k) – Xi(k) Ai(k) + Xr(N–k) Br(k) + Xi(N–k) Bi(k)
Gi(k) = Xi(k) Ar(k) + Xr(k) Ai(k) + Xr(N–k) Bi(k) – Xi(N–k) Br(k)
Gr(2N–k) = Gr(k)
Gi(2N–k) = –Gi(k)

k � 0, 1,. . . , N � 1

with X(N) � X(0)

Gr(N) � Gr(0) � Gi(0)

Gi(N) � 0

(11)

(12)

(13)

(14)

(15)

SPRA291

9 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

As with the forward DFT, the equations for the IDFT can be expressed in their real and
imaginary terms as follows.

Xr(k) = Gr(k) Ar(k) – Gi(k) (–Ai(k)) + Gr(N–k) Br(k) + Gi(N–k) Bi(k)
Xi(k) = Gi(k) Ar(k) + GXr(k) (–Ai(k)) + Gr(N–k) (–Bi(k)) – Gi(n–k) Br(k)

k � 0, 1,. . . , N � 1

with G(N) � G(0)

Now that we have the equations for the split operation to compute the DFT of a real-valued
sequence, the steps for using these equations are outlined. The forward DFT is outlined first.

Step 1: Initialize A(k)s and B(k)s.

Real applications usually perform this only once during a power-up or initialization
sequence. These values can be pre-stored in a boot ROM or computed. In either case,
once they are generated, this step is no longer needed when performing the DFT. The
pseudo code for generating them is given below.

for k = 0, 1, …., N–
Ai(k) = – cos(πk/N)
Ar(k) = – sin(πk/N)
Bi(k) = cos(πk/N)
Br(k) = sin(πk/N)

Step 2: Let g(n) be a 2N-point real sequence. From g(n), form the N-point complex-valued
sequence.

x(n) = x1(n) + jx2(n)

where

x1(n) = g(2n)
x2(n) = g(2n + 1)

for n = 0, 1, …., N–1
xr(n) = g(2n)
xi(n) = g(2n + 1)

Step 3: Perform an N-point complex FFT on the complex-valued sequence x(n).

X(k) = DFT[x(n)]

NOTE: The FFT can be any DFT method, such as radix-2, radix-4, mixed radix, direct
implementation of the DFT, etc. However, the DFT output must be in normal order.

(16)

SPRA291

10 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

Step 4: Implement the split operation equations.

X(N) = X(0)
Gr(N) = Gr(0) – Gr(0)
Gi(N) = 0

for k=0,1,…,N–1
Gr(k) = Xr(k) Ar(k) – Xi(k) Ai(k) + Xr(N–k) Br(k) + Xi(N–k) Bi(k)
Gi(k) = Xi(k) Ar(k) + Xr(k) Ai(k) + Xr(N–k) Bi(k) – Xi(N–k) Br(k)
Gr(2N–k) = Gr(k)
Gi(2N–k) = –Gi(k)

For a 2N-point frequency domain sequences G(k) derived from a 2N-point real-valued
sequences, perform the following steps for the IDFT of G(k).

Step 1: Initialize A*(k)s and B*(k)s.

As with the forward DFT, this step is usually performed only once during a power-up or
initialization sequence. The values can be pre-stored in a boot ROM or computed. In either
case, once the values are generated, this step is no longer needed when performing the
DFT.

Because A*(k) and B*(k) are the complex conjugates of A(k) and B(k), respectively, each
can be derived from the A(k)s and B(k)s. The following pseudo code is used to generate
them.

for k = 0, 1, …., N–1
A*i(k) = cos(πk/N)
A*r(k) = 1 – sin(πk/N)
B*i(k) = – cos(πk/N)
B*r(k) = 1 + sin(πk/N)

or, if A(k) and B(k) are already generated, you can use the following pseudo code:

for k = 0, 1, …., N–1
A*i(k) = –Ai(k)
A*r(k) = Ar(k)
B*i(k) = – Bi(k)
B*r(k) = Br(k)

Step 2: Let G(k) be a 2N-point complex-valued sequence derived from a real-valued sequence
g(n).

We want to get back g(n) from G(k) → g(n) = IDFT[G(k)]. However, we want to apply the
same techniques we applied with the forward DFT, that is, use an N-point IFFT. This can
be accomplished using the following equations.

G(N) = G(0)

for k = 0,1,…,N–1
Xr(k) = Gr(k) Ar(k) – Gi(k)(–Ai(k)) + Gr(N–k) Br(k) + Gi(N–k) (–Bi(k))
Xi(k) = Gi(k) Ar(k) + Gr(k) (–Ai(k)) + Gr(N–k) (–Bi(k)) – Gi(N–k)Br(k)

SPRA291

11 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

Step 3: Perform the N-point inverse DFT of X(k).

x(n) = x1(n) + jx2(n) = IDFT[X(k)]

NOTE: The IDFT can be any method but must have an output in normal order.

Step 4: g(n) can then be found from x(n).

for n = 0, 1, …., N
g(2n) = x1(n)
g(2n+1) = x2(n)

Appendix C contains C implementations of the outlined DFT and IDFT algorithms.

4 TMS320C62x Architecture and Tools Overview

Before we discuss how to efficiently implement the real-valued FFT algorithms on the C62x , it
is helpful to take a brief look at the C62x architecture and code development tools. The
TMS320C62x fixed-point processors are based on a 256-bit advanced VLIW CPU with eight
functional units, including two multipliers and six arithmetic and logic units (ALUs). The CPU can
execute up to eight 32-bit instructions per cycle. With an instruction clock frequency of 200 MHz
and greater, C62x peak performance starts at 1600 million instructions per second (MIPs).

The C62x processor consists of three main parts:

• CPU

• Peripherals

• Memory

Figure 1 shows a block diagram of the first device in this generation, the TMS320C6201 DSP.

L1 S1 M1 D1

A register file B register file

L1 S1 D1M1

Data path 1 Data path 2

Instruction decode
Instruction dispatch

Program fetch Control
registers

Control
logic

Test

Emulation

Interrupts

C6201 CPU core DMA

Cx0

Cx1

Enhanced
buffer

(T1/E1)
serial port

(T1/E1)
serial port

buffer
Enhanced

Timer

Timer

A

D

18

16

Host port

32

24
A

D

EMIF

32–bit address
256–bit data

program RAM/cache

32–bit address
8–, 16–, 32–bit data

Data RAM

Internal Buses

Figure 1. TMS320C6201 DSP Block Diagram

TMS320C62x and C62x are trademarks of Texas Instruments.

SPRA291

12 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

This discussion focuses on the CPU, or core, of the device. The C62x CPU is the central
building block of all TMS320C62x devices and features two data paths where processing
occurs. Each data path has four functional units (.L, .S, .M, .D), along with a register file
containing 16 32-bit general-purpose registers.

The C62x is a load-store architecture in which all functional units obtain operands from a register
file, rather than directly from memory.

The .D units load/store data from and to memory from the register file with an address reach of
32 bits. The C62x architecture is also byte addressable: the .D units can load or store data in
either 8 bits (byte), 16 bits (half-word), or 32 bits (word). In addition, the .D units can perform
32-bit addition and subtraction and address calculations.

The .M units perform multiplication, featuring a 16-bit by 16-bit multiplier that produces a 32-bit
result. Additional multiplier features include the ability to select either the 16 most significant bits
(MSBs) or 16 least significant bits (LSBs) of a register operand, and optionally left-shift the
multiplier output by one with saturation.

The .S units perform branches and shifting primarily, but also perform bit field operations such
as extract, set and clear bit fields, as well as 32-bit logical operations and 32-bit addition and
subtraction. Another advanced feature of each .S unit is the ability to split its ALU to perform two
16-bit adds or subtracts in a single cycle.

Although the .S and .D units perform ALU functions, the .L unit is the main ALU for the CPU,
performing both 32-bit and 40-bit integer arithmetic. The .L unit also features saturation logic,
comparison instructions, and bit counting and can perform 32-bit logical operations. In support of
the eight functional units, the CPU has a program fetch unit; instruction dispatch unit; instruction
decode unit; control registers; control logic; and test, emulation and interrupt logic.

The C62x features a state of the art software development environment. A very efficient
C compiler, along with a linear assembly optimizer, allows fast time to market through ease of
use. Its orthogonal reduced instruction set computing (RISC)-like CPU architecture makes the
C62x CPU a very good C-compiler target. Combined with TI’s compiler expertise, these features
make the C62x compiler the most efficient DSP compiler on the market today.

Because of its efficiency, most C62x coding can be done in C. However, as with many other
DSPs, some tasks or routines require assembly coding to achieve the highest performance
possible.

As a result, TI has developed a new tool called the assembly optimizer that makes assembly
language coding easier and faster. The assembly optimizer allows you to write linear assembly
code (no parallel instructions) without assigning registers to operands.

The assembly optimizer accepts this input syntax and generates an assembly language output
that parallelizes the linear instructions and assigns registers to operands. This relieves the
assembly language programmer of the following responsibilities:

• Determining which instructions can be executed in parallel

• Knowing how to position code to avoid delay slot conflicts

• Keeping track of which registers are live or free

The C62x assembler is also included in the code development tool set.

SPRA291

13 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

Figure 2 shows the process flow to develop code for the C62x.

Write C code

Write linear
assembly

Compile

Profile

Efficient
?

Complete
Yes

No

Refine C code

Profile

Compile

Efficient
?

No

Yes

Yes
Complete

No

More C
optimizations

?

Assembly optimize

Profile

Efficient
?

Complete

Yes

No

Phase 1

Phase 2

Phase 3

Figure 2. Code Development Flow Chart

In phase 1 of the code development process, TI recommends that the algorithm first be
implemented in C, which serves the following purposes:

• Provides an easy way to verify the functionality of an algorithm

• Provides a working model to verify results of optimized versions

• May meet your efficiency requirements, and thus completes your implementation

SPRA291

14 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

If phase 1 fails to meet your performance requirements, you may need to proceed to phase 2 to
refine and optimize your C code. The process includes modifying your C code for efficiency
using the C code optimization methods. This section offers a brief overview of the C-code
optimization methods. For a more detailed explanation, see the TMS320C6000 Programmers
Guide (SPRU198).

One of the easiest methods used to optimize your C code is the C compilers’ optimizer, evoked
using compiler options. Some of the most commonly used optimizer options are: –o3, –pm, –mt,
and –x2. See the TMS320C6000 Optimizing C Compiler User’s Guide (SPRU187) for a list of
available compiler optimization options and usage.

Other methods to optimize C code for efficiency involve modifying your C code. One very
effective method uses compiler intrinsics – special functions that map directly to inlined C62x
instructions. Intrinsic functions typically allow you to use a C62x specific feature that is not
directly expressible in C, such as .L unit saturation.

Other effective optimization techniques include:

• Loop unrolling

• Software pipelining

• Trip count specification

• Using the const keyword to eliminate memory dependencies

All of these methods produce very efficient C code. Nevertheless, the compiler still may not
produce the efficiency required. In this case, phase 3 may be required. Phase 3 uses the
assembly optimizer and/or the assembler to generate C62x assembly code. By far, the easiest
and recommended route is the assembly optimizer. The assembly optimizer usage is outlined in
detail in the TMS320C6000 Optimizing C Compiler User’s Guide (SPRU187). In addition, the
TMS320C6000 Assembly Language Tools User’s Guide (SPRU186) outlines assembler usage.

A recommended approach for using either assembly method is to implement assembly routines
as C-callable assembly functions.

NOTE: Use caution when implementing C-callable assembly routines so that you do not disrupt
the C environment and cause a program to fail. The TI TMS320C6000 Optimizing C Compiler
User’s Guide (SPRU187) details the register, stack, calling, and return requirements of the C62x
run-time environment. TI recommends that you read the material covering these requirements
before implementing a C-callable assembly language function.

5 Implementation and Optimization of Real-Valued DFTs

Appendix C contains the source code listings for C implementation of the two efficient methods
for performing the DFT of real-valued sequences outlined in this application report. Each
implementation fits into phase 1 of the code development flow chart shown in Figure 2.

The primary purpose of this particular implementation is to verify the functionality of split
operation algorithm implementations and provide a known good model to compare against
optimized versions. Another benefit is that this implementation is generic C code and thus can
be easily ported to other DSPs or CPUs featuring C compilers.

SPRA291

15 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

Because the primary focus of this application report is the split operations used in the efficient
computation of DFTs, the C implementation is not efficient with respect to the other operations
involved in the computation of real-valued DFTs. For example, the direct form of the DFT is
implemented rather than a more computationally efficient FFT. Optimizing the C code to yield
better performance is addressed in Appendix D.

Example 1 and Example 2 show the compiler usage for building the executable files for these
implementations.

Example 1. Efficient Computation of the DFT of a 2N-Point Real Sequence

cl6x –g vectors.asm realdft1.c split1.c data1.c dft.c –z –o test1.out –l
rts6201.lib lnk.cmd

Example 2. Efficient Computation of the DFT of Two Real Sequences

cl6x –g vectors.asm realdft2.c split2.c data2.c dft.c –z –o test2.out –l
rts6201.lib lnk.cmd

The example compiler usage results in two executable files that can be loaded into the C62x
device simulator and run:

• test1.out

• test2.out

The –g option used in the above compiler usage tells the compiler to build the code with debug
information. This means that the compiler does not use the optimizer but allows the code to be
easily viewed by the debugger.

First-time users of the C62x are encouraged to try different compiler options and compare the
effects of each on code performance. For benchmarking code on the C62x debugger, see the
TMS320C6x C Source Debugger User’s Guide (SPRU188).

Appendix D contains the source code listings for optimized C implementations of the two
efficient methods for performing the DFT of real-valued sequences outlined in this application
report. These implementations apply to phase 2 of the code development flowchart shown in .

For this implementation, the C code is refined to yield better performance. Not all C optimization
techniques outlined in this application report have been implemented. This is so that the C code
remains generic and can be ported easily to other DSPs. However, you can easily apply other
C62x C optimization techniques to increase performance. The following optimizations are
implemented in Appendix D.

• The DFT is replaced with a radix-4 FFT, yielding a large computational savings as the
number of data samples to be transformed increases. The radix-4 FFT restricts the size
to a power of 4.

• Split operation tables and FFT twiddle factors are generated using pre-generated look-up
tables instead of the run-time support functions sin() and cos(). This reduces the number of
cycles required for the setup code.

• The code is organized as a series of functions to separate the independent tasks so they
could be easily and independently optimized.

Example 3 and Example 4 show the compiler usage for building executable files for these
implementations.

SPRA291

16 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

Example 3. Efficient Computation of the DFT of a 2N-Point Real Sequence

cl6x –g vectors.asm data1.c digitgen.c digit.c radix4.c realdft3.c split1.c
splitgen.c –z –o test3c.out –l rts6201.lib lnk.cmd

Example 4. Efficient Computation of the DFT of Two Real Sequences

cl6x –g vectors.asm data2.c realdft4.c split2.c radix4.c digit.c digitgen.c –z
–o test4c.out –l rts6201.lib lnk.cmd

The result of the above compiles is two executables:

• test3c.out
• test4c.out

The executables can be loaded into the C62x device simulator and run. The same restrictions
that apply to the executables in Appendix C apply to these executables.

Appendix E contains C62x assembly language source code listings. These implementations fit
into phase 3 of the code development flowchart shown in Figure 2. Each assembly listing
contains a C62x C-callable assembly language function that replaces an equivalent C function
shown in Appendix D. The following list includes functions implemented in assembly.

split1.asm The C-callable assembly language function that implements the split
routine for the efficient computation of the DFT of two real sequences
algorithm.

split2.asm The-callable assembly language function that implements the split routine
for the efficient computation of the DFT of 2N-point real sequence.

radix4.asm Replaces radix4.c. A C-callable assembly language function that
implements the radix-4 FFT.

digit.asm Replaces digit.c. A C-callable assembly language function that implements
the digit reversal for the radix-4 FFT

Because each of the above routines is functionally equivalent in C and assembly, no
modification of other functions in Appendix D is required to use them. All that must be changed
to use these functions is the way in which we build the executables. Example 5 and Example 6
show how to build the executables with the assembly versions.

Example 5. Efficient Computation of the DFT of a 2N-Point Real Sequence

cl6x –g vectors.asm data1.c digitgen.c digit.asm radix4.asm realdft3.c
split1.asm splitgen.c –z –o test3a.out –l rts6201.lib lnk.cmd

Example 6. Efficient Computation of the DFT of Two Real Sequences

cl6x –g vectors.asm data2.c realdft4.c split2.asm radix4.asm digit.asm digit-
gen.c –z –o test4a.out –l rts6201.lib lnk.cmd

The result of the compiles shown in Example 5 and Example 6 is two executables:

• test3a.out
• test4a.out

These can be loaded into the C62x device simulator and run. The same restrictions that apply to
the executables in Appendix C apply to these executables.

SPRA291

17 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

6 Summary

This application report examined the theory and implementation of two efficient methods for
computing the DFT of real-valued sequences. The implementation was presented in both C and
C62x assembly language. As this application report reveals, a large computational savings can
be achieved using these methods on real-valued sequences rather using complex-valued DFTs
or FFTs. Moreover, the TMS320C62x CPU performs well when implementing these algorithms in
either C or assembly.

7 References
1. Burrus, C.S., and Parks, T.W. DFT/FFT and Convolution Algorithms, John Wiley and Sons,

New York,1985.

2. Manolakis, D.G., and Proakis, J.G. Introduction to Digital Signal Processing, Macmillan
Publishing Company, 1988.

3. Digital Signal Processing Applications with the TMS320 Family, Theory, Algorithms and
Implementations, Volume 3 (SPRA017).

4. TMS320C6000 Technical Brief (SPRU197).

5. Burrus, C.S., Heideman, M.T., Jones, D.L., Sorensen, H.V. “Real-Valued Fast Fourier Transform
Algorithms”, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-35,
No. 6,pp. 849–863, June 1987.

6. TMS320C6000 Programmer’s Guide (SPRU198).

7. TMS320C6000 Optimizing C Compiler User’s Guide (SPRU187).

8. TMS320C6000 Assembly Language Tools User’s Guide (SPRU186).

9. TMS320C6x C Source Debugger User’s Guide (SPRU188).

SPRA291

18 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Platform

Appendix A Derivation of Equation Used to Compute the DFT/IDFT of Two
Real Sequences

This appendix provides a detailed derivation of the equations used to compute the FFT/IDFT of
two real sequences using one complex DFT/IDFT.

A.1 Forward Transform
Assume x1(n) and x2(n) are real-valued sequences of length N, and let x(n) be a complex-valued
sequence defined as

x(n) � x1 (n) � jx2 (n) 0 � n � N � 1

The DFT operation is linear, thus the DFT of x(n) may be expressed as:

X(k) � X1(k) � jX2(k) 0 � k � N � 1

We can express the sequences x1(n) and x2(n) in terms of x(n) as follows:

x1(n) �
x(n) � x * (n)

2

where * is the complex conjugate operator

x2(n) �
x(n) � x * (n)

2j

The following shows that these equalities are true:

x(n) � x * (n)
2

�
x1(n) � jx2(n) � x1(n) � jx2(n)

2
� x1(n)

x(n) � x * (n)
2j

�
x1(n) � jx2(n) � x1(n) � jx2(n)

2j
� x2(n)

Therefore, we can express the DFT of x1(n) and x2(n) in terms of x(n) as shown below:

X1(k) � DFT[x1(n)] �
1
2

{DFT[x(n)] � DFT[x * (n)]}

X2(k) � DFT[x2(n)] �
1
2j

{DFT[x(n)] � DFT[x * (n)]}

From the complex property of the DFT, we know the following is true:

If x(n) 	

DFT

N
X(k), then x * (n) 	

DFT

N
X * (N � k)

Thus, we can express X1(k) and X2(k) as follows:

X1(k) �
1
2

[x(k) � X * (N � k)]

X2(k) �
1
2j

[X(k) � X * (N � k)]

From the above equations, we can see that by performing a single DFT on the complex-valued
sequence x(n), we have obtained the DFT of two real-valued sequences with only a small
amount of additional computation in calculating X1(k) and X2(k) from X(k).

(17)

(18)

(19)

(20)

(21)

(22)

SPRA291

19 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Platform

In addition, because x1(n) and x2(n) are real-valued sequences, X1(k) and X2(k) has complex
conjugate symmetry – X1(N–k) = X1*(k) and X2(N–k) = X2*(k); thus, we only need to compute
X1(k) and X2(k) for k = 0,1,2, ..., N/2.

X1 (k) �
1
2

{X(k) � X * (N � k)}

X1(N � k) � X1 * (k)
k � 0, 1,. . . , N�2

with X(N) � X(0)

X2 (k) �
1
2j

{X(k) � X * (N � k)}

X2(N � k) � X2 * (k)

To implement these equations, it is helpful if we express them in terms of their real and
imaginary terms.

X1 (k) �
1
2

{Xr (k) � jXi(k) � Xr(N � k) � jXi(N � k)}

�
1
2

{(Xr (k) � Xr(N � k)) � j(Xi(k) � Xi(N � k))}

k � 0, 1,. . . , N�2

with X(N) � X(0)
X1 r(k) �

1
2

{Xr(k) � Xr(N � k)}

X1 i(k) �
1
2

{Xi(k) � Xi(N � k)}

or

Similarly, it can be shown that

k � 0, 1,. . . , N�2

with X(N) � X(0)

X2 r(k) �
1
2

{Xi(k) � Xi(N � k)}

X2 i(k) �
� 1

2
{Xr(k) � Xr(N � k)}

There are two special cases with the above equations, k = 0 and k = N/2. For k = 0:

X1 r(0) �
1
2

{Xr(0) � Xr(N)}

X1 i(0) �
1
2

{Xi(0) � Xi(N)}

X1 r(0) �
1
2

{Xr(0) � Xr(N)}

X2 r(0) �
1
2

{Xi(0) � Xi(N)}

X2 i(0) �
� 1

2
{Xr(0) � Xr(N)}

(23)

(24)

(25)

(26)

SPRA291

20 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Platform

Because of the periodicity property of the DFT, we know X(k + N) = X(k). Therefore, Xr(0) =
Xr(N) and Xi(0) = Xi(N). Using this property, the above equations can be expressed as follows:

X1 r(0) � Xr(0)

X1 i(0) � 0

X2 r(0) � Xi(0)

X1 i(0) � 0

X2 i(0)

For k = N/2:

X1 r�N�2� �
1
2
�Xr�N�2� � Xr�N�2��

X1 i�N�2� �
1
2
�Xi�N�2� � Xi�N�2��

X1 r�N�2� �
1
2
�Xr�N�2� � Xr�N�2��

X2 r�N�2� �
1
2
�Xi�N�2� � Xi�N�2��

X2 i�N�2� �
� 1

2
�Xr�N�2� � Xr�N�2��

or

X1 r�N�2� � Xr�N�2�

X1 i�N�2� � 0

X2 r�N�2� � Xr�N�2�

X2 i�N�2� � 0

Thus, (24) and (25) must be computed only for k = 1,2, ... N/2 – 1.

A.2 Inverse Transform

We can use a similar method to obtain the IDFT. We know X1(k) and X2(k). We want to express
X(k) in terms of X1(k) and X2(k). Recall, the relationship between x1(n), x2(n) and x(n) is
x(n) = x1(n) + jx2(n). Since the DFT operator is linear, X(k) = X1(k) + jX2(k). Thus, X(k) can be
found by the following equations:

Xr(k) � X1r(k) � X2 i(k)

Xi(k) � X1 i(k) � X2r(k)

x(n) can then be found by taking the inverse transform of X(k).

x(n) = IDFT[X(k)]

From x(n), we can get x1(n) and x2(n).

X1(n) � xr(n)

X2(n) � xi(n)

(27)

(28)

(29)

SPRA291

21 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

Appendix B Derivation of Equations Used to Compute the DFT/IDFT of a
Real Sequence

This appendix details the derivation of the equations used to compute the DFT/IDFT of a
2N-length real-valued sequence using an N-length complex DFT/IDFT.

B.1 Forward Transform

Assume g(n) is a real-valued sequence of 2N points. The following shows how to obtain the
2N-point DFT of g(n) using an N-point complex DFT.

Let

X1(n) � g(2n)

X2(n) � g(2n � 1)

We have subdivided a 2N-point real sequence into two N-point sequences. We now can apply
the same method shown in Appendix A.

Let x(n) be the N–point complex–valued sequence.

x(n) � x1 (n) � jx2 (n) 0 � n � N � 1

From the results shown in Appendix A, we have

X1(k) �
1
2

{X(k) � X * (N � k)}

X2(k) �
1
2j

{X(k) � X * (N � k)}

k � 0, 1,. . . , N � 1

We now express the 2N-point DFT in terms of two N-point DFTs.

G(k) = DFT[g(n)] = DFT[g(2n) + g(2n + 1)] = DFT[g(2n)] + DFT[g(2n + 1)]

� �
N�1

n�0

g(2n)W
2nk
2N � �

N�1

n�0

g(2n � 1)W
(2n � 1)k
2N

� �
N�1

n�0

x1(n)W
nk
N � W

k
2N
�
N�1

n�0

x2(n)W
nk
N

k � 0, 1,. . . , N � 1

Thus,

G(k) � X1(k) � W
k
2N X2(k) k � 0, 1,. . . , N � 1

Using equation (32), we can express G(k) in terms of X(k).

G(k) �
1
2

{X(k) � X * (N � k)} � W
k
2N

1
2j

{X(k) � X * (N � k)}

k � 0, 1,. . . , N � 1

� X(k)
1
2
�1 � jW

k
2N��� X * (N � k)
1

2
�1 � jW

k
2N��

(30)

(31)

(32)

(33)

(34)

(35)

SPRA291

22 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

Let

A(k) �
1
2
�1 � jW

k
2N��

k � 0, 1,. . . , N � 1
A(k) �
1

2
�1 � jW

k
2N��

B(k) �
1
2
�1 � jW

k
2N��

Thus, G(k) can be expressed as follows:

G(k) � X(k)A(k) � X * (N � k)B(k) k � 0, 1,. . . , N � 1

Because x(n) is a real–valued sequence, we know that the DFT transform results will have
complex conjugate symmetry. Also, because of the periodicity property of the DFT, we know
X(k+N) = X(k); therefore, X(N) = X(0). Using these properties, we can find the other half of the
DFT result.

Thus, we have computed the DFT of a 2N-point real sequence using one N-point complex DFT
and additional computations.

To implement these equations, it is helpful to express them in terms of their real and imaginary
terms.

G(k) � (Xr(k) � j Xi(k))(Ar(k) � j Ai(k)) � (Xr(N � k) � j Xi(N � k))(Br(k) � j Bi(k))

k � 0, 1,. . . , N � 1

Carrying out the multiplication, separating the real and imaginary terms, and applying the
periodicity and complex conjugate properties, we have the following:

Gr(k) � Xr(k)Ar(k) � Xi(k)Ai(k) � Xr(N � k)Br(k) � Xi(N � k)Bi(k)

k � 0, 1,. . . , N � 1

with X(N) � X(0)

Gr(k) � Xr(k)Ar(k) � Xi(k)Ai(k) � Xr(N � k)Br(k) � Xi(N � k)Bi(k)

Gi(k) � Xi(k)Ar(k) � Xr(k)Ai(k) � Xr(N � k)Bi(k) � Xi(N � k)Br(k)

Gr(k) � Xr(0) � Xi(0) k � N

Gi(k) � 0

Gr(2N � k) � Gr(k)

Gi(2N � k) � Gi(k)
k � 1, 2,. . . , N � 1

(36)

(37)

(38)

(39)

SPRA291

23 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

B.2 Inverse Transform

We will now derive the equations for the IDFT of a 2N-point complex sequence derived from a
real sequence using an N-point complex IDFT. We express the N-point complex sequence, X(k),
in terms of the 2N-point complex sequence G(k). Once X(k) is known, x(n) can be found by
taking the IDFT of X(k). Once x(n) is known, g(n) follows.

Equation (37) can be rewritten as follows:

G(k) � X(k)A(k) � X * (N � k)B(k) k � 0, 1,. . . , N � 2

G(N � k) � X(N � k)A(N � k) � X * (k)B(N � k) k � 0, 1,. . . , N�2 � 1

where

A(N � k) �
1
2
�1 � jW

N � k
2N �� �
1

2
�1 � jW

� k
2N �� � A * (k)

B(N � k) �
1
2
�1 � jW

N � k
2N �� �
1

2
�1 � jW

� k
2N �� � B * (k)

The above equalities can be shown to be true by recalling the following definition and
substituting appropriately for k.

W
k
2N � e�j2�k�2N � cos�2�k�2N� � j sin�2�k�2N�

We would like to make the ranges of k for G(k) and G(N–k) the same. Look at G(N/2):

G�N�2� � X�N�2�A�N�2� � X * �N�2�B�N�2�

� X�N�2�
1
2
�1 � jW

N�2
2N
��� X * �N�2�
1

2
�1 � jW

N�2
2N
��

But from (42), we see that

W
N�2
2N

� � j

Therefore:

G�N�2� � X * �N�2�

(40)

(41)

(42)

(43)

(44)

(45)

SPRA291

24 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

Now we can express G(k) and G(N–k) with the same ranges of k, and along with (41) and (43)
we have

G(k) � X(k)A(k) � X * (N � k)B(k) k � 0, 1,. . . , N�2 � 1

G(N � k) � X(N � k)A * (k) � X * (k)B(k) k � 0, 1,. . . , N�2 � 1

G�N�2� � X * �N�2�

From (46) and (47) you can see we have two equations and two unknowns, X(k) and X(N–k).
We can use some algebra tricks to come up with equations for X(k) and X(N–k). If we multiply
both sides of (46) with A(k), complex conjugate both sides of (47), then multiply both sides by
B(k), we have the following:

G(k)A(k) � X(k)A(k) � X * (N � k)B(k)A(k)

k � 0, 1,. . . , N�2 � 1

� G * (N � k)B(k) � X(k)B(k)B(k) � X * (N � k)B(k)A(k)
G(k)A(k) � G * (N � k)B(k) � X(k){A(k)A(k) � B(k)A(k)}

Solving for X(k):

k � 0, 1,. . . , N�2 � 1X(k) �
G(k)A(k) � G * (N � k)B(k)

A(k)A(k) � B(k)B(k)

Equation (49) can be simplified as follows:

A(k)A(k) �
1
2
�1 � jW

k
2N��
12�1 � jW

k
2N�� �

1
4

1 � 2 jW

k
2N � W

k
2N�

B(k)B(k) �
1
2
�1 � jW

k
2N��
12�1 � jW

k
2N�� �

1
4

1 � 2 jW

k
2N � W

k
2N�

k � 0, 1,. . . , N�2 � 1X(k) �
G(k)A(k) � G * (N � k)B(k)

� jW
k
2N

A(k)kA(k) � B(k)B(k) � � jW
k
2N

Similarly, if we multiply both sides of (47) with A*(k), conjugate both sides of (46), then multiply
both sides by B*(k), we have the following:

G * (k)B * (k) � X * (k)A * (k)B * (k) � X(N � k)B * (k)B * (k)

k � 0, 1,. . . , N�2 � 1

� G * (N � k)A * (k) � X * (k)A * (k)B * (k) � X(N � k)A * (k)A * (k)
G * (k)B * (k) � G(N � k)A * (k) � X(N � k){A * (k)A * (k) � B * (k)B * (k)}

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

SPRA291

25 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

Solving for X(N–k):

k � 0, 1,. . . , N�2 � 1X(N � k) �
G * (k)B * (k) � G(N � k)A * (k)

A * (k)A * (k) � B * (k)B * (k)

Equation (54) can be simplified as follows:

� � ����� � ���� ��
�
�
��� ��

� �
��
��
�

�
��� ��

� �
��
��� �� �

�

�� ����

� �
�� ���

� �
��
�

� � ����� � ���� ��
�
�
��� ��

� �
��
��
�

�
��� ��

� �
��
��� �� �

�

�� ����

� �
�� ���

� �
��
�

A * (k)A * (k) � B * (k)B * (k) � jW
� k
2N

k � 0, 1,. . . , N�2 � 1X(N � k) �
G * (k)B * (k) � G(N � k)A * (k)

� jW
� k
2N

It can be shown that

A(k)

� jW
k
2N

� A * (k) and
B(k)

� jW
k
2N

� B(k)

A * (k)

jW
k
2N

� A * (k) and
B * (k)

jW
k
2N

� B(k)

Making these substitutions, we get:

k � 0, 1,. . . , N�2 � 1
X(k) � G(k)A * (k) � G * (N � k)B * (k)

X(N � k) � G * (k)B(k) � G(N � k)A(k)X(N � k) � G * (k)B(k) � G(N � k)A(k)X(N � k) � G * (k)B(k) � G(N � k)A(k)

X�N�2� � G * �N�2�

For equation (61), if we make the following substitutions, along with replacing k with N/2 – k,

A(N � k) � A * (k) and B(N � k) � B * (k)

we can see that X(k) can be expressed as a single equation.

k � 0, 1,. . . , N � 1X(k) � G(k)A * (k) � G * (N � k)B * (k)

G(N) � G(0)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

SPRA291

26 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

Now, in terms of implementing these equations, it is helpful to express them in terms of their real
and imaginary terms.

k � 0, 1,. . . , N � 1

X(k) � (Gr(k) � jGi(k))(Ar(k) � jAi(k)) � (Gr(N � k) � jGi(N � k))(Br(k) � jBi(k))

with G(N) � G(0)

Carrying out the multiplication and separating the real and imaginary terms, we have the
following:

k � 0, 1,. . . , N � 1

Xr(k) � Gr(k)Ar(k) � Gi(k)Ai(k) � Gr(N � k)Br(k) � Gi(N � k)Bi(k)

with G(N) � G(0)

Xi(k) � Gi(k)Ar(k) � Gr(k)Ai(k) � Gr(N � k)Bi(k) � Gi(N � k)Br(k)

Now we have formed the complex sequence with which we can use an N-point complex DFT to
obtain x(n), which we then can use to get g(n).

n � 0, 1,. . . , N � 1

x(n) � xr(n) � jxi(n) � IDFT[X(k)]

g(2n) � xr(n)

g(2n � 1) � xi(n)

(64)

(65)

(66)

SPRA291

27 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

Appendix C C Implementations of the DFT of Real Sequences

This appendix contains C implementations of the efficient methods for performing the DFT of
real-valued sequences.

C.1 Implementation Notes

The following lists usage, assumptions, and limitations of the code.

Data format All data and state variables are 16-bit signed integers (shorts). In this example, the
decimal point is assumed to be between bits 15 and 14, thus the Q15 data format.
For complex data and variables, the real and imaginary components are both Q15
numbers. From this data format, you can see that this code was developed for a
fixed-point processor.

Memory Complex data is stored in memory in imaginary/real pairs. The imaginary component
is stored in the most significant halfword (16 bits) and the real component is stored
in the least significant halfword, unless otherwise noted.

Endianess The code is presented and tested in little endian format. Some modification to the
code is necessary for big endian format.

Overflow No overflow protection or detection is performed.

File Description

realdft1.c DFT of a 2N-point real sequence main program

split1.c Split function for the DFT of a 2N-point real sequence

data1.c Sample data

params1.h Header file, for example

realdft2.c DFT of a two N-point real sequence main program

split2.c Split function for the DFT of two N-point real sequence

data2.c Sample data

params2.h Header file, for example

dft.c Direct implementation of the DFT function

params.h Header file

vectors.asm Reset vector assembly source

lnk.cmd Example linker command file

Example C–1. realdft1.c File

/**

 FILE

 realdft1.c – C source for an example implementation of the DFT/IDFT

of a 2N-point real sequences using one N-point complex DFT/IDFT.

SPRA291

28 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

Description

This program is an example implementation of an efficient way of computing the DFT/IDFT of a
real-valued sequence.

In many applications, the input is a sequence of real numbers. If this condition is taken into
consideration, additional computational savings can be achieved because the FFT of a real
sequence has some symmetrical properties. The DFT of a 2N-point real sequence can be
efficiently computed using a N-point complex DFT and some additional computations.

The following steps are required in the computation of the FFT of a real-valued sequence using
the split function:

1. Let g(n) be a 2N-point real sequence. From g(n), form the the N-point complex valued
sequence, x(n) = x1(n) + jx2(n), where x1(n) = g(2n) and x2(n) = g(2n + 1).

2. Perform an N-point complex FFT on the complex valued sequence x(n) -> X(k) =
DFT{x(n)}. Note that the FFT can be any DFT method, such as radix-2, radix-4, mixed
radix, direct implementation of the DFT, etc. However, the DFT output must be in normal
order.

3. The following additional computation are used to get G(k) from
X(k)Gr(k) = Xr(k)Ar(k) – Xi(k)Ai(k) + Xr(N–k)Br(k) + Xi(N–k)Bi(k)

k = 0, 1, ..., N–1
and X(N) = X(0)

Gi(k) = Xi(k)Ar(k) + Xr(k)Ai(k) + Xr(N–k)Bi(k) – Xi(N–k)Br(k)

Note that only N-points of the 2N-point sequence of G(k) are computed in the above
equations. Because the DFT of a real-sequence has symmetric properties, we can easily
compute the remaining N points of G(k) with the following equations.
Gr(N) = Xr(0) – Xi(0)
Gi(N) = 0
Gr(2N–k) = Gr(k)

 k = 1, 2, ..., N–1
Gi(2N–k) = –Gi(k

As you can see, the above equations assume that A(k) and B(k), which are sine and cosine
coefficients, are pre-computed. The C-code can be used to initialize A(k) and B(k).

for(k=0; k<N; k++)

{

A[k].imag = (short)(16383.0*(–cos(2*PI/(double)(2*N)*(double)k)));

A[k].real = (short)(16383.0*(1.0 – sin(2*PI/(double)(2*N)*(double)k)));

B[k].imag = (short)(16383.0*(cos(2*PI/(double)(2*N)*(double)k)));

B[k].real = (short)(16383.0*(1.0 + sin(2*PI/(double)(2*N)*(double)k)));

}

The following steps are required in the computation of the IFFT of a complex valued frequency
domain sequence that was derived from a real sequence:

SPRA291

29 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

1. Let G(k) be a 2N-point complex valued sequence derived from a real valued sequence
g(n). We want to get back g(n) from G(k) –> g(n) = IDFT{G(k)}. However, we want to apply
the same techniques as we did with the forward FFT. Use a N-point IFFT. This can be
accomplished by the following equations.
Xr(k) = Gr(k)IAr(k) – Gi(k)IAi(k) + Gr(N–k)IBr(k) + Gi(N–k)IBi(k)

k = 0, 1, ..., N–1
and G(N) = G(0)

Xi(k) = Gi(k)IAr(k) + Gr(k)IAi(k) + Gr(N–k)IBi(k) – Gi(N–k)IBr(k)

2. Perform the N-point inverse DFT of X(k) –> x(n) = x1(n) + jx2(n) = IDFT{X(k)}. Note that
the IDFT can be any method, but must have an output that is in normal order.

3. g(n) can then be found from x(n).
g(2n) = x1(n)

n = 0, 1, ..., N–1
g(2n+1) = x2(n)

As you can see, the above equations can be used for both the forward and inverse FFTs,
however, the pre-computed coefficients are slightly different. The following C-code can be used
to initialize IA(k) and IB(k).

for(k=0; k<N; k++)

{

IA[k].imag = –(short)(16383.0*(–cos(2*PI/(double)(2*N)*(double)k)));

IA[k].real = (short)(16383.0*(1.0 – sin(2*PI/(double)(2*N)*(double)k)));

IB[k].imag = –(short)(16383.0*(cos(2*PI/(double)(2*N)*(double)k)));

IB[k].real = (short)(16383.0*(1.0 + sin(2*PI/(double)(2*N)*(double)k)));

}

Note, IA(k) is the complex conjugate of A(k) and IB(k) is the complex conjugate of
B(k).

 ***/

#include <math.h>

#include ”params1.h”

#include ”params.h”

extern short g[];

void dft(int, COMPLEX *);

void split(int, COMPLEX *, COMPLEX *, COMPLEX *, COMPLEX *);

main()

{

int n, k;

COMPLEX x[NUMPOINTS+1]; /* array of complex DFT data */

COMPLEX A[NUMPOINTS]; /* array of complex A coefficients */

COMPLEX B[NUMPOINTS]; /* array of complex B coefficients */

COMPLEX IA[NUMPOINTS]; /* array of complex A* coefficients */

COMPLEX IB[NUMPOINTS]; /* array of complex B* coefficients */

COMPLEX G[2*NUMPOINTS]; /* array of complex DFT result */

SPRA291

30 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

/* Initialize A,B, IA, and IB arrays */

for(k=0; k<NUMPOINTS; k++)

{

A[k].imag = (short)(16383.0*(–cos(2*PI/(double)(2*NUMPOINTS)*(double)k)));

A[k].real = (short)(16383.0*(1.0 – sin(2*PI/(double)(2*NUMPOINTS)*(double)k)));

B[k].imag = (short)(16383.0*(cos(2*PI/(double)(2*NUMPOINTS)*(double)k)));

B[k].real = (short)(16383.0*(1.0 + sin(2*PI/(double)(2*NUMPOINTS)*(double)k)));

IA[k].imag = –A[k].imag;

IA[k].real = A[k].real;

IB[k].imag = –B[k].imag;

IB[k].real = B[k].real;

}

/* Forward DFT */

/* From the 2N point real sequence, g(n), for the N-point complex sequence, x(n) */

for (n=0; n<NUMPOINTS; n++)

{

x[n].imag = g[2*n + 1]; /* x2(n) = g(2n + 1) */

x[n].real = g[2*n]; /* x1(n) = g(2n) */

}

/* Compute the DFT of x(n) to get X(k) –> X(k) = DFT{x(n)} */

dft(NUMPOINTS, x);

/* Because of the periodicity property of the DFT, we know that X(N+k)=X(k). */

x[NUMPOINTS].real = x[0].real;

 x[NUMPOINTS].imag = x[0].imag;

/* The split function performs the additional computations required to get

 G(k) from X(k). */

split(NUMPOINTS, x, A, B, G);

/* Use complex conjugate symmetry properties to get the rest of G(k) */

G[NUMPOINTS].real = x[0].real – x[0].imag;

G[NUMPOINTS].imag = 0;

for (k=1; k<NUMPOINTS; k++)

{

G[2*NUMPOINTS–k].real = G[k].real;

G[2*NUMPOINTS–k].imag = –G[k].imag;

}

/* Inverse DFT – We now want to get back g(n). */

SPRA291

31 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

/* The split function performs the additional computations required to get

 X(k) from G(k). */

split(NUMPOINTS, G, IA, IB, x);

/* Take the inverse DFT of X(k) to get x(n). Note the inverse DFT could be any

 IDFT implementation, such as an IFFT. */

/* The inverse DFT can be calculated by using the forward DFT algorithm directly by
complex conjugation – x(n) = (1/N)(DFT{X*(k)})*, where * is the complex conjugate
operator. */

/* Compute the complex conjugate of X(k). */

for (k=0; k<NUMPOINTS; k++)

{

x[k].imag = –x[k].imag; /* complex conjugate X(k) */

 }

/* Compute the DFT of X*(k). */

dft(NUMPOINTS, x);

/* Complex conjugate the output of the DFT and divide by N to get x(n). */

for (n=0; n<NUMPOINTS; n++)

{

x[n].real = x[n].real/16;

x[n].imag = (–x[n].imag)/16;

}

/* g(2n) = xr(n) and g(2n + 1) = xi(n) */

for (n=0; n<NUMPOINTS; n++)

{

g[2*n] = x[n].real;

g[2*n + 1] = x[n].imag;

}

return(0);

 }

Example C–2. split1.c File

/**

 FILE

split1.c – This is the C source code for the implementation of the

split routine, which is the additional computation in computing the

DFT of an 2N-point real-valued sequences using a N-point complex DFT.

Description
Computation of the DFT of 2N-point real-valued sequences can be efficiently computed using
one N-point complex DFT and some additional computations. This function implements these
additional computations, which are shown below.
Gr(k) = Xr(k)Ar(k) – Xi(k)Ai(k) + Xr(N–k)Br(k) + Xi(N–k)Bi(k)

k = 0, 1, ..., N–1
and X(N) = X(0)

Gi(k) = Xi(k)Ar(k) + Xr(k)Ai(k) + Xr(N–k)Bi(k) – Xi(N–k)Br(k)

SPRA291

32 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

***/

#include ”params1.h”

#include ”params.h”

void split(int N, COMPLEX *X, COMPLEX *A, COMPLEX *B, COMPLEX *G)

{

int k;

 int Tr, Ti;

for (k=0; k<N; k++)

{

Tr = (int)X[k].real * (int)A[k].real – (int)X[k].imag * (int)A[k].imag +

(int)X[N–k].real * (int)B[k].real + (int)X[N–k].imag * (int)B[k].imag;

G[k].real = (short)(Tr>>15);

Ti = (int)X[k].imag * (int)A[k].real + (int)X[k].real * (int)A[k].imag +

(int)X[N–k].real * (int)B[k].imag – (int)X[N–k].imag * (int)B[k].real;

G[k].imag = (short)(Ti>>15);

}

}

Example C–3. data1.c File

/**

 FILE

 data1.c – Sample data used in realdft1.c

 **

/* array of real–valued input sequence, g(n) */

short g[] = {255, –35, 255, –35, 255, 255, 255, 255,

255, 255, 255, 20, 255, 255, 255, 255,

0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0};

Example C–4. params1.h File

/**

 FILE

 params1.h – This is the C header file for example real FFT

implementations.

 **/

#define NUMDATA 32 /* number of real data samples */

#define NUMPOINTS NUMDATA/2 /* number of point in the DFT */

SPRA291

33 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

Example C–5. realdft2.c File

/**

 FILE

 realdft2.c – C source for an example implementation of the DFT/IDFT of two
N-point real sequences using one N-point complex DFT/IDFT.

 **

Description

This program is an example implementation of an efficient way of computing the DFT/IDFT of
two real-valued sequences.

Assume we have two real-valued sequences of length N – x1[n] and x2[n]. The DFT of x1[n] and
x2[n] can be computed with one complex-valued DFT of length N, as shown above, by following
this algorithm.

1. Form the complex-valued sequence x[n] from x1[n] and x2[n]
xr[n] = x1[n] and xi[n] = x2[n], 0,1, ..., N–1

Note, if the sequences x1[n] and x2[n] are coming from another algorithm or a data
acquisition driver, this step may be eliminated if these put the data in the complex-valued
format correctly.

2. Compute X[k] = DFT{x[n]}

This can be the direct-form DFT algorithm or an FFT algorithm. If using an FFT algorithm, make
sure the output is in normal order – bit reversal is performed.

3. Compute the following equations to get the DFTs of x1[n] and x2[n].

X1r[0] = Xr[0]
X1i[0] = 0

X2r[0] = Xi[0]
X2i[0] = 0

X1r[N/2] = Xr[N/2]
X1i[N/2] = 0

X2r[N/2] = Xi[N/2]
X2i[N/2] = 0
for k = 1,2,3,, N/2–1

X1r[k] = (Xr[k] + Xr[N–k])/2
X1i[k] = (Xi[k] – Xi[N–k])/2
X1r[N–k] = X1r[k]
X1i[N–k] = X1i[k]

X2r[k] = (Xi[k] + Xi[N–k])/2
X2i[k] = (Xr[N–k] – Xr[k])/2
X2r[N–k] = X2r[k]
X2i[N–k] = X2i[k]

SPRA291

34 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

4. Form X[k] from X1[k] and X2[k]

for k = 0,1, ..., N–1
Xr[k] = X1r[k] – X2i[k]
Xi[k] = X1i[k] + X2r[k]

5. Compute x[n] = IDFT{X[k]}

This can be the direct form IDFT algorithm, or an IFFT algorithm. If using an IFFT algorithm,
make sure the output is in normal order – bit reversal is performed

**/

#include <math.h> /* include the C RTS math library */

#include ”params2.h” /* include file with parameters */

#include ”params.h” /* include file with parameters */

extern short x1[];

extern short x2[];

void dft(int, COMPLEX *);

extern void split2(int, COMPLEX *, COMPLEX *, COMPLEX *);

main()

{

int n, k;

COMPLEX X1[NUMDATA]; /* array of real-valued DFT output sequence, X1(k) */

COMPLEX X2[NUMDATA]; /* array of real-valued DFT output sequence, X2(k) */

COMPLEX x[NUMPOINTS+1]; /* array of complex DFT data, X(k) */

/* Forward DFT */

/* From the two N-point real sequences, x1(n) and x2(n), form the N-point complex

 sequence, x(n) = x1(n) + jx2(n) */

for (n=0; n<NUMDATA; n++)

{

x[n].real = x1[n];

x[n].imag = x2[n];

}

/* Compute the DFT of x(n), X(k) = DFT{x(n)}. Note, the DFT can be any

 DFT implementation such as FFTs. */

dft(NUMPOINTS, x);

/* Because of the periodicity property of the DFT, we know that X(N+k)=X(k). */

x[NUMPOINTS].real = x[0].real;

 x[NUMPOINTS].imag = x[0].imag;

SPRA291

35 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

/* The split function performs the additional computations required to get

 X1(k) and X2(k) from X(k). */

split2(NUMPOINTS, x, X1, X2);

/* Inverse DFT – We now want to get back x1(n) and x2(n) from X1(k) and X2(k) using

 one complex DFT */

/* Recall that x(n) = x1(n) + jx2(n). Since the DFT operator is linear,

 X(k) = X1(k) + jX2(k). Thus we can express X(k) in terms of X1(k) and X2(k). */

for (k=0; k<NUMPOINTS; k++)

{

x[k].real = X1[k].real – X2[k].imag;

x[k].imag = X1[k].imag + X2[k].real;

 }

/* Take the inverse DFT of X(k) to get x(n). Note the inverse DFT could be any

 IDFT implementation, such as an IFFT. */

/* The inverse DFT can be calculated by using the forward DFT algorithm directly

 by complex conjugation – x(n) = (1/N)(DFT{X*(k)})*, where * is the complex

 conjugate operator. */

/* Compute the complex conjugate of X(k). */

for (k=0; k<NUMPOINTS; k++)

{

x[k].imag = –x[k].imag;

 }

/* Compute the DFT of X*(k). */

dft(NUMPOINTS, x);

/* Complex conjugate the output of the DFT and divide by N to get x(n). */

for (n=0; n<NUMPOINTS; n++)

{

x[n].real = x[n].real/16;

x[n].imag = (–x[n].imag)/16;

}

/* x1(n) is the real part of x(n), and x2(n) is the imaginary part of x(n). */

for (n=0; n<NUMDATA; n++)

{

x1[n] = x[n].real;

x2[n] = x[n].imag;

}

return(0);

 }

SPRA291

36 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

Example C–6. split2.c File

/**

 FILE

 split2.c – This is the C source code for the implementation of the

 split routine, which is the additional computations in computing the

DFT of two N-point real-valued sequences using one N-point complex DFT.

 **

Description

Computation of the DFT of two N-point real-valued sequences can be efficiently computed using
one N-point complex DFT and some additional computations. This function implements these
additional computations, which are shown below.

X1r[0] = Xr[0]
X1i[0] = 0

X2r[0] = Xi[0]
X2i[0] = 0

X1r[N/2] = Xr[N/2]
X1i[N/2] = 0

X2r[N/2] = Xi[N/2]
X2i[N/2] = 0

for k = 1,2,3,, N/2–1
X1r[k] = (Xr[k] + Xr[N–k])/2
X1i[k] = (Xi[k] – Xi[N–k])/2
X1r[N–k] = X1r[k]
X1i[N–k] = X1i[k]
X2r[k] = (Xi[k] + Xi[N–k])/2
X2i[k] = (Xr[N–k] – Xr[k])/2
X2r[N–k] = X2r[k]
X2i[N–k] = X2i[k]

 ***/

#include ”params.h”

void split2(int N, COMPLEX *X, COMPLEX *X1, COMPLEX *X2)

{

int k;

X1[0].real = X[0].real;
X1[0].imag = 0;

X2[0].real = X[0].imag;
X2[0].imag = 0;

X1[N/2].real = X[N/2].real;
X1[N/2].imag = 0;

X2[N/2].real = X[N/2].imag;
X2[N/2].imag = 0;

for (k=1; k<N/2; k++)
{

X1[k].real = (X[k].real + X[N–k].real)/2;

SPRA291

37 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

X1[k].imag = (X[k].imag – X[N–k].imag)/2;

X2[k].real = (X[k].imag + X[N–k].imag)/2;
X2[k].imag = (X[N–k].real – X[k].real)/2;

X1[N–k].real = X1[k].real;
X1[N–k].imag = –X1[k].imag;

X2[N–k].real = X2[k].real;
X2[N–k].imag = –X2[k].imag;

}
}

Example C–7. data2.c File

/**

 FILE

 data2.c – Sample data used in realdft2.c

/* array of real-valued input sequence, x1(n) */

short x1[] = {255, 255, 255, 255, 255, 255, 255, 255,

0, 0, 0, 0, 0, 0, 0, 0};

/* array of real-valued input sequence, x2(n) */

short x2[] = {–35, –35, –35, –35, –35, –35, –35, –35,

0, 0, 0, 0, 0, 0, 0, 0};

Example C–8. params2.h File

/**

 FILE

params2.h – This is the C header file for example real FFT

implementations.

 **/

#define NUMDATA 16 /* number of real data samples */

#define NUMPOINTS NUMDATA /* number of point in the DFT */

Example C–9. dft.c File

/**

 FILE

 dft.c – This is the C source code for the direct implementation of the

 Discrete Fourier Transform (DFT) algorithm.

 **

SPRA291

38 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

Description

This function computes the DFT of an N-length complex-valued sequence. Note, N cannot
exceed 1024 without modification to this code.

The N point DFT of a finite-duration sequence x(n) of length L<–N is defined as

 N–1

 X(k) = SUM x(n) * exp(–j2pikn/N) k = 0,1,2, ..., N–1

 n=0

It is always helpful to express the above equation in its real and imaginary terms for
implementation.

exp(–j2*pi*n*k/N) = cos(2*pi*n*k/N) – jsin(2*pi*n*k/N) –> several

identities used here

e(jb) = cos(b) + j sin(b)

e(–jb) = cos(–b) + j sin(–b)

cos(–b) = cos(b) and sin(–b) = –sin(b)

e(–jb) = cos(b) – j sin(b)

 N–1

 X(k) = SUM {[xr(n) + j xi(n)][cos(2*pi*n*k/N) – jsin(2*pi*n*k/N)]}

 n=0

k=0,1,2, ... ,N–1

 OR

 N–1

 Xr(k) = SUM {[xr(n) * cos(2*pi*n*k/N)] + [xi(n) * sin(2*pi*n*k/N)]}

 n=0

k=0,1,2, ... ,N–1

 N–1

 Xi(k) = SUM {[xi(n) * cos(2*pi*n*k/N)] – [xr(n) * sin(2*pi*n*k/N)]}

 n=0

**/

#include <math.h>

#include ”params.h”

void dft(int N, COMPLEX *X)

{

int n, k;

double arg;

int Xr[1024];

int Xi[1024];

short Wr, Wi;

SPRA291

39 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

for(k=0; k<N; k++)

{

Xr[k] = 0;

Xi[k] = 0;

for(n=0; n<N; n++)

{

arg =(2*PI*k*n)/N;

Wr = (short)((double)32767.0 * cos(arg));

Wi = (short)((double)32767.0 * sin(arg));

Xr[k] = Xr[k] + X[n].real * Wr + X[n].imag * Wi;

Xi[k] = Xi[k] + X[n].imag * Wr – X[n].real * Wi;

}

}

for (k=0;k<N;k++)

{

X[k].real = (short)(Xr[k]>>15);

X[k].imag = (short)(Xi[k]>>15);

}

}

Example C–10. params.h File

/**

 FILE

params.h – This is the C header file for example real FFT

implementations.

 **/

#define TRUE 1

#define FALSE 0

#define BE TRUE

#define LE FALSE

#define ENDIAN LE /* selects proper endianess. If

 building code in Big Endian,

 use BE, else use LE */

#define PI 3.141592653589793 /* definition of pi */

/* Some functions used in the example implementations use word loads which make

 the code endianess dependent. Thus, one of the below definitions need to be

 used depending on the endianess you are using to build your code */

/* BIG Endian */

#if ENDIAN == TRUE

typedef struct {

short imag;

SPRA291

40 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

short real;

} COMPLEX;

#else

/* LITTLE Endian */

typedef struct {

short real;

short imag;

} COMPLEX;

#endif

Example C–11. vectors.asm

/***/

/* vectors.asm – reset vector assembly */

/***/

 .def RESET

 .ref _c_int00

 .sect ”.vectors”

RESET:

 mvk .s2 _c_int00, B2

 mvkh .s2 _c_int00, B2

 b .s2 B2

 nop

 nop

 nop

 nop

 nop

Example C–12. lnk.cmd

/***/

/* lnk.cmd – example linker command file */

/***/

–c

–heap 0x2000

–stack 0x8000

MEMORY

{

 VECS: o = 00000000h l=00200h /* reset & interrupt vectors*/

 IPRAM: o = 00000200h l=0FE00h /* internal program memory */

 IDRAM: o = 80000000h l=10000h /* internal data memory */

}

SPRA291

41 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

SECTIONS

{

 vectors > VECS
 .text > IPRAM
 .tables > IDRAM
 .data > IDRAM
 .stack > IDRAM
 .bss > IDRAM
 .sysmem > IDRAM
 .cinit > IDRAM
 .const > IDRAM
 .cio > IDRAM
 .far > IDRAM
}

SPRA291

42 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

Appendix D Optimized C Implementation of the DFT of Real Sequences
This appendix contains optimized C implementations of the efficient methods for performing the
DFT of real-valued sequences outlined in this application report.

D.1 Implementation Notes

The following lists usage, assumption, and limitations of the code.

Data format All data and state variables are 16-bit signed integers (shorts). In this example, the
decimal point is assumed to be between bits 15 and 14, thus the Q15 data format.
For complex data and variables, the real and imaginary components are both Q15
numbers. From this data format, you can see that this code was developed for a
fixed-point processor.

Memory Complex data is stored in memory in imaginary/r,eal pairs. The imaginary
component is stored in the most significant halfword (16 bits) and the real
component is stored in the least significant halfword, unless otherwise noted.

Endianess The code is presented and tested in little endian format. Some modification to the
code is necessary for big endian format.

Overflow No overflow protection or detection is performed.

File Description

realdft3.c DFT of a 2N-point real sequence main program

realdft4.c DFT of a two N-point real sequence main program

radix4.c Radix-4 FFT C function

digit.c Radix-4 digit reversal C function

digitgen.c C function used to initialize digit reversal table used by the function in digit .c

splitgen.c C function used to initialize the split tables used by the split1 routines

Example D–1. realdft3.c File

/**

 FILE

 realdft3.c – C source for an example implementation of the DFT/IDFT

of a 2N-point real sequence, using one N-point complex DFT/IDFT.

D.2 Description

This program is an example implementation of an efficient way of computing the DFT/IDFT of a
real-valued sequence.

In many applications, the input is a sequence of real numbers. If this condition is taken into
consideration, additional computational savings can be achieved because the FFT of a real
sequence has some symmetrical properties. The DFT of a 2N-point real sequence can be
efficiently computed using a N-point complex DFT and some additional computations.

The following steps are required in the computation of the FFT of a real-valued sequence using
the split function:

SPRA291

43 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

1. Let g(n) be a 2N-point real sequence. From g(n), form the the N-point complex-valued
sequence, x(n) = x1(n) + jx2(n), where x1(n) = g(2n) and x2(n) = g(2n + 1).

2. Perform an N-point complex FFT on the complex valued sequence x(n) –> X(k) =
DFT{x(n)}. Note that the FFT can be any DFT method, such as radix-2, radix-4, mixed
radix, direct implementation of the DFT, etc. However, the DFT output must be in normal
order.

3. The following additional computation are used to get G(k) from X(k)
Gr(k) = Xr(k)Ar(k) – Xi(k)Ai(k) + Xr(N–k)Br(k) + Xi(N–k)Bi(k)

k = 0, 1, ..., N–1
and X(N) = X(0)

Gi(k) = Xi(k)Ar(k) + Xr(k)Ai(k) + Xr(N–k)Bi(k) – Xi(N–k)Br(k)

Note that only N-points of the 2N-point sequence of G(k) are computed in the above equations.
Because the DFT of a real–sequence has symmetric properties, we can easily compute the
remaining N points of G(k) with the following equations.
Gr(N) = Xr(0) – Xi(0)
Gi(N) = 0

Gr(2N–k) = Gr(k)
k = 1, 2, ..., N–1

Gi(2N–k) = –Gi(k)

As you can see, the above equations assume that A(k) and B(k), which are sine and cosine
coefficients, are pre–computed. The C–code can be used to initialize A(k) and B(k).

for(k=0; k<N; k++)

{

A[k].imag = (short)(16383.0*(–cos(2*PI/(double)(2*N)*(double)k)));

A[k].real = (short)(16383.0*(1.0 – sin(2*PI/(double)(2*N)*(double)k)));

B[k].imag = (short)(16383.0*(cos(2*PI/(double)(2*N)*(double)k)));

B[k].real = (short)(16383.0*(1.0 + sin(2*PI/(double)(2*N)*(double)k)));

}

The following steps are required in the computation of the IFFT of a complex-valued frequency
domain sequence that was derived from a real sequence:

1. Let G(k) be a 2N-point complex valued sequence derived from a real-valued sequence
g(n). We want to get back g(n) from G(k) –> g(n) = IDFT{G(k)}. However, we want to apply
the same techniques as we did with the forward FFT, using an N-point IFFT. This can be
accomplished by the following equations.
Xr(k) = Gr(k)IAr(k) – Gi(k)IAi(k) + Gr(N–k)IBr(k) + Gi(N–k)IBi(k)

k = 0, 1, ..., N–1
and G(N) = G(0)

Xi(k) = Gi(k)IAr(k) + Gr(k)IAi(k) + Gr(N–k)IBi(k) – Gi(N–k)IBr(k)

2. Perform the N-point inverse DFT of X(k) –> x(n) = x1(n) + jx2(n) = IDFT{X(k)}. Note that
the IDFT can be any method, but must have an output that is in normal order.

3. g(n) can then be found from x(n).
g(2n) = x1(n)

n = 0, 1, ..., N–1
g(2n+1) = x2(n)

SPRA291

44 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

As you can see, the above equations can be used for both the forward and inverse FFTs;
however, the pre-computed coefficients are slightly different. The following C code can be used
to initialize IA(k) and IB(k).

for(k=0; k<N; k++)

{

IA[k].imag = –(short)(16383.0*(–cos(2*PI/(double)(2*N)*(double)k)));

IA[k].real = (short)(16383.0*(1.0 – sin(2*PI/(double)(2*N)*(double)k)));

IB[k].imag = –(short)(16383.0*(cos(2*PI/(double)(2*N)*(double)k)));

IB[k].real = (short)(16383.0*(1.0 + sin(2*PI/(double)(2*N)*(double)k)));

}

Note that IA(k) is the complex conjugate of A(k), and IB(k) is the complex conjugate of B(k).

**/

typedef struct { /* define the data type for the radix-4 twiddle factors */

short imag;

short real;

} COEFF;

#include ”params1.h” /* header files with parameters */

#include ”params.h”

#include ”splittbl.h” /* header file that contains tables used to generate

 the split tables */

#include ”sinestbl.h” /* header file that contains the FFT twiddle factors */

#pragma DATA_ALIGN(x,64); /* radix-4 routine requires x to be

 aligned to a 4*NUMPOINTS boundry */

COMPLEX x[NUMPOINTS+1]; /* array of complex DFT data */

extern short g[]; /* real-valued input sequence */

/* functions defined externally */

void FftSplitTableGen(int N, COMPLEX *W, COMPLEX *A, COMPLEX *B);

void R4DigitRevIndexTableGen(int, int *, unsigned short *, unsigned short *);

void split1(int, COMPLEX *, COMPLEX *, COMPLEX *, COMPLEX *);

void digit_reverse(int *, unsigned short *, unsigned short *, int);

void radix4(int, short[], short[]);

main()

{

int n, k;

COMPLEX A[NUMPOINTS]; /* array of complex A coefficients */

COMPLEX B[NUMPOINTS]; /* array of complex B coefficients */

COMPLEX IA[NUMPOINTS]; /* array of complex A* coefficients */

COMPLEX IB[NUMPOINTS]; /* array of complex B* coefficients */

COMPLEX G[2*NUMPOINTS]; /* array of complex DFT result */

unsigned short IIndex[NUMPOINTS], JIndex[NUMPOINTS];

SPRA291

45 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

int count;

/* Initialize A,B, IA, and IB arrays */

FftSplitTableGen(NUMPOINTS, W, A, B);

/* Split tables for the IDFT are the complex conjugate of the split

 tables of the DFT */

for(k=0; k<NUMPOINTS; k++)

{

IA[k].imag = –A[k].imag;

IA[k].real = A[k].real;

IB[k].imag = –B[k].imag;

IB[k].real = B[k].real;

}

/* Initialize tables for FFT digit reversal function */

R4DigitRevIndexTableGen(NUMPOINTS, &count, IIndex, JIndex);

/* Forward DFT */

/* From the 2N point real sequence, g(n), for the N-point complex sequence, x(n) */

for (n=0; n<NUMPOINTS; n++)

{

x[n].imag = g[2*n + 1]; /* x2(n) = g(2n + 1) */

x[n].real = g[2*n]; /* x1(n) = g(2n) */

}

/* Compute the DFT of x(n) to get X(k) –> X(k) = DFT{x(n)} */

radix4(NUMPOINTS, (short *)x, (short *)W4);

digit_reverse((int *)x, IIndex, JIndex, count);

/* Because of the periodicity property of the DFT, we know that X(N+k)=X(k). */

x[NUMPOINTS].real = x[0].real;

 x[NUMPOINTS].imag = x[0].imag;

/* The split function performs the additional computations required to get

 G(k) from X(k). */

split1(NUMPOINTS, x, A, B, G);

/* Use complex conjugate symmetry properties to get the rest of G(k) */

G[NUMPOINTS].real = x[0].real – x[0].imag;

G[NUMPOINTS].imag = 0;

for (k=1; k<NUMPOINTS; k++)

{

SPRA291

46 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

G[2*NUMPOINTS–k].real = G[k].real;

G[2*NUMPOINTS–k].imag = –G[k].imag;

}

/* Inverse DFT – We now want to get back g(n). */

/* The split function performs the additional computations required to get

 X(k) from G(k). */

split1(NUMPOINTS, G, IA, IB, x);

/* Take the inverse DFT of X(k) to get x(n). Note the inverse DFT could be any

 IDFT implementation, such as an IFFT. */

/* The inverse DFT can be calculated by using the forward DFT algorithm directly

 by complex conjugation – x(n) = (1/N)(DFT{X*(k)})*, where * is the complex

 conjugate operator. */

/* Compute the complex conjugate of X(k). */

for (k=0; k<NUMPOINTS; k++)

{

x[k].imag = –x[k].imag; /* complex conjugate X(k) */

 }

/* Compute the DFT of X*(k). */

radix4(NUMPOINTS, (short *)x, (short *)W4);

digit_reverse((int *)x, IIndex, JIndex, count);

 /* Complex conjugate the output of the DFT and divide by N to get x(n). */

for (n=0; n<NUMPOINTS; n++)

{

x[n].real = x[n].real/16;

x[n].imag = (–x[n].imag)/16;

}

/* g(2n) = xr(n) and g(2n + 1) = xi(n) */

for (n=0; n<NUMPOINTS; n++)

{

g[2*n] = x[n].real;

g[2*n + 1] = x[n].imag;

}

return(0);

 }

SPRA291

47 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

Example D–2. realdft4.c File

/**

 FILE

 realdft4.c – C source for an example implementation of the DFT/IDFT

of two N-point real sequences using one N-point complex DFT/IDFT.

Description

This program is an example implementation of an efficient way of computing the DFT/IDFT of
two real-valued sequences.

Assume we have two real-valued sequences of length N – x1[n] and x2[n]. The DFT of x1[n] and
x2[n] can be computed with one complex–valued DFT of length N, as shown above, by following
this algorithm.

1. Form the complex–valued sequence x[n] from x1[n] and x2[n]
r[n] = x1[n] and xi[n] = x2[n], 0,1, ..., N–1

Note, if the sequences x1[n] and x2[n] are coming from another algorithm or a data
acquisition driver, this step may be eliminated if these put the data in the complex–valued
format correctly.

2. Compute X[k] = DFT{x[n]}

This can be the direct form DFT algorithm, or an FFT algorithm. If using an FFT algorithm,
make sure the output is in normal order – bit reversal is performed.

3. Compute the following equations to get the DFTs of x1[n] and x2[n].

X1r[0] = Xr[0]
X1i[0] = 0

X2r[0] = Xi[0]
X2i[0] = 0

X1r[N/2] = Xr[N/2]
X1i[N/2] = 0

X2r[N/2] = Xi[N/2]
X2i[N/2] = 0

for k = 1,2,3,, N/2–1
X1r[k] = (Xr[k] + Xr[N–k])/2
X1i[k] = (Xi[k] – Xi[N–k])/2
X1r[N–k] = X1r[k]
X1i[N–k] = X1i[k]

SPRA291

48 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

X2r[k] = (Xi[k] + Xi[N–k])/2
X2i[k] = (Xr[N–k] – Xr[k])/2
X2r[N–k] = X2r[k]
X2i[N–k] = X2i[k]

4. Form X[k] from X1[k] and X2[k]

for k = 0,1, ..., N–1
Xr[k] = X1r[k] – X2i[k]
Xi[k] = X1i[k] + X2r[k]

5. Compute x[n] = IDFT{X[k]}
This can be the direct form IDFT algorithm or an IFFT algorithm. If using an IFFT
algorithm, make sure the output is in normal order – bit reversal is performed.

**/

typedef struct { /* define the data type for the radix-4 twiddle factors */

short imag;

short real;

} COEFF;

#include ”params2.h” /* include file with parameters */

#include ”params.h” /* include file with parameters */

#include ”sinestbl.h” /* header file that contains the FFT twiddle factors */

#pragma DATA_ALIGN(x,64); /* radix-4 routine requires x to be

 aligned to a 4*NUMPOINTS boundary */

COMPLEX x[NUMPOINTS+1]; /* array of complex DFT data, X(k) */

extern short x1[];

extern short x2[];

void R4DigitRevIndexTableGen(int, int *, unsigned short *, unsigned short *);

extern void split2(int, COMPLEX *, COMPLEX *, COMPLEX *);

void digit_reverse(int *, unsigned short *, unsigned short *, int);

void radix4(int, short[], short[]);

main()

{

int n, k;

COMPLEX X1[NUMDATA]; /* array of real-valued DFT output sequence, X1(k) */

COMPLEX X2[NUMDATA]; /* array of real-valued DFT output sequence, X2(k) */

unsigned short IIndex[NUMPOINTS], JIndex[NUMPOINTS];

int count;

/* Initialize tables for FFT digit reversal function */

R4DigitRevIndexTableGen(NUMPOINTS, &count, IIndex, JIndex);

/* Forward DFT */

/* From the two N-point real sequences, x1(n) and x2(n), form the N-point complex

 sequence, x(n) = x1(n) + jx2(n) */

SPRA291

49 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

for (n=0; n<NUMDATA; n++)

{

x[n].real = x1[n];

x[n].imag = x2[n];

}

/* Compute the DFT of x(n), X(k) = DFT{x(n)}. Note, the DFT can be any

 DFT implementation such as FFTs. */

radix4(NUMPOINTS, (short *)x, (short *)W4);

digit_reverse((int *)x, IIndex, JIndex, count);

/* Because of the periodicity property of the DFT, we know that X(N+k)=X(k). */

x[NUMPOINTS].real = x[0].real;

 x[NUMPOINTS].imag = x[0].imag;

/* The split function performs the additional computations required to get

 X1(k) and X2(k) from X(k). */

split2(NUMPOINTS, x, X1, X2);

/* Inverse DFT – We now want to get back x1(n) and x2(n) from X1(k) and X2(k) using

 one complex DFT */

/* Recall that x(n) = x1(n) + jx2(n). Since the DFT operator is linear,

 X(k) = X1(k) + jX2(k). Thus we can express X(k) in terms of X1(k) and X2(k). */

for (k=0; k<NUMPOINTS; k++)

{

x[k].real = X1[k].real – X2[k].imag;

x[k].imag = X1[k].imag + X2[k].real;

 }

/* Take the inverse DFT of X(k) to get x(n). Note the inverse DFT could be any

 IDFT implementation, such as an IFFT. */

/* The inverse DFT can be calculated by using the forward DFT algorithm directly

 by complex conjugation – x(n) = (1/N)(DFT{X*(k)})*, where * is the complex

 conjugate operator. */

/* Compute the complex conjugate of X(k). */

for (k=0; k<NUMPOINTS; k++)

{

x[k].imag = –x[k].imag;

 }

/* Compute the DFT of X*(k). */

radix4(NUMPOINTS, (short *)x, (short *)W4);

digit_reverse((int *)x, IIndex, JIndex, count);

/* Complex conjugate the output of the DFT and divide by N to get x(n). */

for (n=0; n<NUMPOINTS; n++)

SPRA291

50 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

{

x[n].real = x[n].real/16;

x[n].imag = (–x[n].imag)/16;

}

/* x1(n) is the real part of x(n), and x2(n) is the imaginary part of x(n). */

for (n=0; n<NUMDATA; n++)

{

x1[n] = x[n].real;

x2[n] = x[n].imag;

}

return(0);

 }

Example D–3. radix4.c File

/**

 FILE

 radix4.c – radix-4 FFT function based on Burrus, Parks p .113

 **/

void radix4(int n, short x[], short w[])

{

int n1, n2, ie, ia1, ia2, ia3, i0, i1, i2, i3, j, k;

short t, r1, r2, s1, s2, co1, co2, co3, si1, si2, si3;

n2 = n;

ie = 1;

for (k = n; k > 1; k >>= 2) {

n1 = n2;

n2 >>= 2;

ia1 = 0;

for (j = 0; j < n2; j++) {

ia2 = ia1 + ia1;

ia3 = ia2 + ia1;

co1 = w[ia1 * 2 + 1];

si1 = w[ia1 * 2];

co2 = w[ia2 * 2 + 1];

si2 = w[ia2 * 2];

co3 = w[ia3 * 2 + 1];

si3 = w[ia3 * 2];

ia1 = ia1 + ie;

for (i0 = j; i0 < n; i0 += n1) {

i1 = i0 + n2;

i2 = i1 + n2;

SPRA291

51 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

i3 = i2 + n2;

r1 = x[2 * i0] + x[2 * i2];

r2 = x[2 * i0] – x[2 * i2];

t = x[2 * i1] + x[2 * i3];

x[2 * i0] = r1 + t;

r1 = r1 – t;

s1 = x[2 * i0 + 1] + x[2 * i2 + 1];

s2 = x[2 * i0 + 1] – x[2 * i2 + 1];

t = x[2 * i1 + 1] + x[2 * i3 + 1];

x[2 * i0 + 1] = s1 + t;

s1 = s1 – t;

x[2 * i2] = (r1 * co2 + s1 * si2) >> 15;

x[2 * i2 + 1] = (s1 * co2–r1 * si2)>>15;

t = x[2 * i1 + 1] – x[2 * i3 + 1];

r1 = r2 + t;

r2 = r2 – t;

t = x[2 * i1] – x[2 * i3];

s1 = s2 – t;

s2 = s2 + t;

x[2 * i1] = (r1 * co1 + s1 * si1) >>15;

x[2 * i1 + 1] = (s1 * co1–r1 * si1)>>15;

x[2 * i3] = (r2 * co3 + s2 * si3) >>15;

x[2 * i3 + 1] = (s2 * co3–r2 * si3)>>15;

}

}

ie <<= 2;

}

}

Example D–4. digit.c File

/**

 FILE

 digit.c – This is the C source code for a digit reversal function for

a radix-4 FFT.

 **/

void digit_reverse(int *yx, unsigned short *JIndex, unsigned short *IIndex, int
count)

{

int i;

unsigned short I, J;

int YXI, YXJ;

SPRA291

52 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

for (i = 0; i<count; i++)

{

I = IIndex[i];

J = JIndex[i];

YXI = yx[I];

YXJ = yx[J];

yx[J] = YXI;

yx[I] = YXJ;

}

}

Example D–5. digitgen.c File

/**

 FILE

 digitgen.c – This is the C source code for a function used to generate

index tables for a digit reversal function for a radix-4 FFT.

 **/

void R4DigitRevIndexTableGen(int n, int *count, unsigned short *IIndex, unsigned
short *JIndex)

{

 int j, n1, k, i;

 j = 1;

n1 = n – 1;

*count = 0;

for(i=1; i<=n1; i++)

{

if(i < j)

{

IIndex[*count] = (unsigned short)(i–1);

JIndex[*count] = (unsigned short)(j–1);

*count = *count + 1;

}

k = n >> 2;

while(k*3 < j)

{

j = j – k*3;

k = k >> 2;

}

j = j + k;

}

}

SPRA291

53 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

Example D–6. splitgen.c File

/**

 FILE

 splitgen.c – This is the C source code for a function used to generate

tables for a split routine used to efficiently compute the DFT of a 2N-point

real-valued sequence.

 **/

#include ”params.h”

void FftSplitTableGen(int N, COMPLEX *W, COMPLEX *A, COMPLEX *B)

{

int k;

for(k=0; k<N/2; k++)

{

A[k].real = 16383 – W[k].imag;

A[k].imag = –W[k].real;

A[k + N/2].real = 16383 – W[k].real;

A[k + N/2].imag = W[k].imag;

B[k].real = 16383 + W[k].imag;

B[k].imag = W[k].real;

B[k + N/2].real = 16383 + W[k].real;

B[k + N/2].imag = –W[k].imag;

}

}

SPRA291

54 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

Appendix E Optimized C-Callable ’C62xx Assembly Language Functions
Used to Implement the DFT of Real Sequences

This appendix contains optimized C-callable ‘C62xx assembly language functions used to
implement the DFT of real sequences.

E.1 Implementation Notes

The following lists usage, assumption, and limitations of the code.

Data format All data and state variables are 16-bit signed integers (shorts). In this example, the
decimal point is assumed to be between bits 15 and 14, thus the Q15 data format.
For complex data and variables, the real and imaginary components are both Q15
numbers. From this data format, you can see that this code was developed for a
fixed-point processor.

Memory Complex data is stored in memory in imaginary/real pairs. The imaginary component
is stored in the most significant halfword (16 bits) and the real component is stored
in the least significant halfword, unless otherwise noted.

Endianess The code is presented and tested in little endian format. Some modification to the
code is necessary for big endian format.

Overflow No overflow protection or detection is performed.

File Description

split1.asm C-callable ‘C62xx assembly version of the split function for the DFT of a 2N-point
real sequence

split2.asm C-callable ‘C62xx assembly version of the split function for the DFT of a 2N-point
real sequences.

radix4.asm Radix-4 FFT C-callable ‘C62xx assembly function.

digit.asm Radix-4 digit reversal C-callable ‘C62xx assembly function.

Example E–1. split1.asm File

*===
*
* TEXAS INSTRUMENTS, INC.
*
* Real FFT/IFFT split operation
*
* Revision Date: 5/15/97
*
* USAGE This routine is C-callable, and can be called as:
*
* void split1(int N, COMPLEX *X, COMPLEX *A, COMPLEX *B, COMPLEX *G)
*
* N = 1/2 the number of samples of the real valued sequence
* X = pointer to complex input array
* A = pointer to complex coefficients
* B = pointer to complex coefficients
* G = pointer to complex output array
*

SPRA291

55 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

* If routine is not to be used as a C-callable function,
* then all instructions relating to stack should be removed.
* Refer to comments of individual instructions. You will also
* need to initialize values for all of the values passed, as these
* are assumed to be in registers as defined by the calling
* convention of the compiler, (refer to the C compiler reference
* guide).
*
* C Code This is the C equivalent of the assembly code without
* restrictions. Note that the assembly code is hand-optimized, and
* restrictions may apply.
*
* One small, but important note. The split functions uses word
* loads to read imaginary/real pairs from memory. Because of this,
* some C definitions may need to be endianess-dependent. Below are
* the type definitions for COMPLEX for both big and little endian. Also,
* the split function, as shown below, is written for big endian. See
* comments in the code to see how to modify, if little endian is desired.
*
* LITTLE ENDIAN BIG ENDIAN
* typedef struct { typedef struct {
* short real; short imag;
* short imag; short real;
* } COMPLEX; } COMPLEX;
*
* void split(int N, COMPLEX *X, COMPLEX *A, COMPLEX *B, COMPLEX *G)
* {
*
* int k;
* int Tr, Ti;
*
* for (k=0; k<N; k++)
* {
* Tr = (int)X[k].real * (int)A[k].real –
* (int)X[k].imag * (int)A[k].imag +
* (int)X[N–k].real * (int)B[k].real +
* (int)X[N–k].imag * (int)B[k].imag;
*
* G[k].real = (short)(Tr>>15);
*
* Ti = (int)X[k].imag * (int)A[k].real +
* (int)X[k].real * (int)A[k].imag +
* (int)X[N–k].real * (int)B[k].imag –
* (int)X[N–k].imag * (int)B[k].real;
*
* G[k].imag = (short)(Ti>>15);
*
* }
* }
*
*

SPRA291

56 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

* DESCRIPTION
* In many applications, the input is a sequence of real numbers.
* If this condition is taken into consideration, additional computational
* savings can be achieved because the FFT of a real sequence has some
* symmetrical properties. The DFT of a 2N-point real sequence can be
* efficiently computed using a N-point complex DFT and some additional
* computations which have been implemented in this split function.
* Note this split function can be used in the computation of FFTs and IFFTs.
*
* The following steps are required in the computation of the FFT of
* a real-valued sequence using the split function:
*
* 1. Let g(n) be a 2N-point real sequence. From g(n), form the
* the N-point complex-valued sequence, x(n) = x1(n) + jx2(n),
* where x1(n) = g(2n) and x2(n) = g(2n + 1).
*
* 2. Perform an N-point complex FFT on the complex-valued sequence,
* x(n) –> X(k) = DFT{x(n)}. Note that the FFT can be any DFT method,
* such as radix–2, radix–4, mixed radix, direct implementation of
* the DFT, etc. However, the DFT output must be in normal order.
*
* 3. The following additional computations are used to get G(k) from X(k),
* and are implemented by the split function.
* Gr(k) = Xr(k)Ar(k) – Xi(k)Ai(k) + Xr(N–k)Br(k) + Xi(N–k)Bi(k)
* k = 0, 1, ..., N–1
* and X(N) = X(0)
* Gi(k) = Xi(k)Ar(k) + Xr(k)Ai(k) + Xr(N–k)Bi(k) – Xi(N–k)Br(k)
*
* Note that only N-points of the 2N-point sequence of G(k) are computed
* in the above equations. Because the DFT of a real–sequence has
* symmetric properties, we can easily compute the remaining N points
* of G(k) with the following equations.
*
* Gr(N) = Gr(0) – Gi(0)
* Gi(N) = 0
*
* Gr(2N–k) = Gr(k)
* k = 1, 2, ..., N–1
* Gi(2N–k) = –Gi(k)
*
* As you can see, the split function assumes that A(k) and B(k),
* which are sine and cosine coefficient, are pre-computed. The
* C–code can be used to initialize A(k) and B(k).
*
* for(k=0; k<N; k++)
* {
* A[k].imag = (short)(16383.0*(–cos(2*PI/(double)(2*N)*(double)k)));
* A[k].real = (short)(16383.0*(1.0 – sin(2*PI/(double)(2*N)*(double)k)));
* B[k].imag = (short)(16383.0*(cos(2*PI/(double)(2*N)*(double)k)));
* B[k].real = (short)(16383.0*(1.0 + sin(2*PI/(double)(2*N)*(double)k)));
* }
*

SPRA291

57 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

* The following steps are required in the computation of the IFFT of
* a complex-valued frequency domain sequence that was derived from
* a real sequence using the split function:
*
* 1. Let G(k) be a 2N-point complex-valued sequence derived from a real
* valued sequence g(n). We want to get back g(n) from G(k) –>
* g(n) = IDFT{G(k)}. However, we want to apply the same techniques
* as we did with the forward FFT, use a N-point IFFT. This can be
* accomplished by the following equations.
*
* Xr(k) = Gr(k)IAr(k) – Gi(k)IAi(k) + Gr(N–k)IBr(k) + Gi(N–k)IBi(k)
* k = 0, 1, ..., N–1
* and G(N) = G(0)
* Xi(k) = Gi(k)IAr(k) + Gr(k)IAi(k) + Gr(N–k)IBi(k) – Gi(N–k)IBr(k)
*
* 2. Perform the N-point inverse DFT of X(k) –> x(n) = x1(n) + jx2(n) =
* IDFT{X(k)}. Note that the IDFT can be any method, but must have an
* output that is in normal order.
*
* 3. g(n) can then be found from x(n).
*
* g(2n) = x1(n)
* n = 0, 1, ..., N–1
* g(2n+1) = x2(n)
*
* As you can see, the split function can be used for both the forward and
* inverse FFTs; however, the pre–computed coefficients are slightly
 different.
* The following C code can be used to initialize IA(k) and IB(k).
*
* for(k=0; k<N; k++)
* {
* IA[k].imag = –(short)(16383.0*(–cos(2*PI/(double)(2*N)*(double)k)));
* IA[k].real = (short)(16383.0*(1.0 – sin(2*PI/(double)(2*N)*(double)k)));
* IB[k].imag = –(short)(16383.0*(cos(2*PI/(double)(2*N)*(double)k)));
* IB[k].real = (short)(16383.0*(1.0 + sin(2*PI/(double)(2*N)*(double)k)));
* }
*
* Note that IA(k) is the complex conjugate of A(k), and IB(k) is the complex
* conjugate of B(k).
*
* TECHNIQUES
* 32–bit loads are used to load two 16–bit loads.
*
* ASSUMPTIONS
*
* A, B, X, and G are stored as imaginary/real pairs.
*
* Big endian is used. If little endian is desired, modification to
* the code is required. See comments in the code for which instructions
* require modification for little endian use.
*

SPRA291

58 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

* MEMORY NOTE
* A, B, X and G arrays should be aligned to word boundaries. Also,
* A and B should be aligned such that they do not generate a memory
* hit with X.
*
* A, B, X, and G are all complex data and are required to be stored
* as imaginary/real pairs in memory, regardless of endianess. In other
* words, a load word from any of these arrays should result in the imaginary
* component in the upper 16 bits of a register, and the real component in the
* lower 16 bits.
*
* CYCLES 4*N + 32
*
*===
N .set a4 ; Argument 1 – number of points in the FFT
XPtr .set b4 ; Argument 2 – pointer to complex data
APtr .set a6 ; Argument 3 – pointer to A complex coefficients
BPtr .set b6 ; Argument 4 – pointer to B complex coefficients
GPtr .set a8 ; Argument 5 – pointer to output buffer
aI_aR .set a0 ; Coefficient value loaded from APtr
XNPtr .set a1 ; Pointer to the bottom of the data buffer

; This pointer gets decremented through the loop.
x2I_x2R .set a2 ; Data value loaded from XNPtr
xRaR .set a3 ; Product
xIaI .set a5
x2RbR .set a7
x2IbI .set a9
re1 .set a10
re2 .set a11
real .set a12
CNT .set b0 ; Counter for looping
xI_xR .set b1
bI_bR .set b2
xIaR .set b5
xRaI .set b7
x2IbR .set b8
x2RbI .set b9
im1 .set b10
im2 .set b11
imag .set b12

.global _split1
_split1:

sub .d2 B15,24,B15 ; Allocate space on the stack.
stw .d2 A10,*B15++[1] ; Push A10 onto the stack.
stw .d2 A11,*B15++[1] ; Push A11 onto the stack.
stw .d2 A12,*B15++[1] ; Push A12 onto the stack.
stw .d2 B10,*B15++[1] ; Push B10 onto the stack.

|| sub .l2x N,1,CNT ; Initialize loop count register.
stw .d2 B11,*B15++[1] ; Push B11 onto the stack.

|| shl .s1 N,2,N ; Calculate offset to initialize
; a pointer to the bottom of the
; input data buffer.

stw .d2 B12,*B15++[1] ; Push B12 onto the stack.

SPRA291

59 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

|| add .l1x N,XPtr,XNPtr ; XNPtr –> yx[N]

; Because there are delay slots in loads, we will begin by
; SW pipelining the split operations – in other words, while
; we are finishing the current loop iteration, we will be
; beginning the next.
ldw .d1 *APtr++[1],aI_aR ; Load a coefficient pointed by APtr.

|| ldw .d2 *XPtr++[1],xI_xR ; Load a data value pointed by XPtr.
nop ; Fill a delay slot.
ldw .d1 *XNPtr––[1],x2I_x2R ; Load a data value pointed by XNPtr.

|| ldw .d2 *BPtr++[1],bI_bR ; Load a coefficient pointed by BPtr.
nop ; Fill a delay slot.

ldw .d1 *APtr++[1],aI_aR ; Load the next value pointed by APtr.
; (Note that it will not overwrite
; the current value of aI_aR until
; 4 delay slots later).

|| ldw .d2 *XPtr++[1],xI_xR ; Load the next value pointed by XPtr.
; for performing the multiplies, we take advantage of the feature
; feature that allows you to choose the operands from either the upper
; or lower halves of the register.

mpy .m1x xI_xR,aI_aR,xRaR ; xRaR = xR * aR – mpy lower * lower
|| mpyhl .m2x xI_xR,aI_aR,xIaR ; xIaR = xI * aR – mpy upper * lower

mpylh .m2x xI_xR,aI_aR,xRaI ; xRaI = xR * aI – mpy lower * upper
|| mpyh .m1x xI_xR,aI_aR,xIaI ; xIaI = xI * aI – mpy upper * upper
|| ldw .d1 *XNPtr––[1],x2I_x2R ; load a data value pointed by XNPtr
|| ldw .d2 *BPtr++[1],bI_bR ; load a coefficient pointed by BPtr

mpy .m1x x2I_x2R,bI_bR,x2RbR ; x2RbR = x2R * bR – mpy lower * lower
|| mpyhl .m2x x2I_x2R,bI_bR,x2IbR ; x2IbR = x2I * bR – mpy upper * lower

mpylh .m2x x2I_x2R,bI_bR,x2RbI ; x2RbI = x2R * bI – mpy lower * upper
|| mpyh .m1x x2I_x2R,bI_bR,x2IbI ; x2IbI = x2I * bI – mpy upper * upper
|| sub .l1 xRaR,xIaI,re1 ; re1 = xRaR – xIaI
|| add .l2 xRaI,xIaR,im1 ; im1 = xRaI + xIaR
|| ldw .d1 *APtr++[1],aI_aR ; 3rd load of aI_aR
|| ldw .d2 *XPtr++[1],xI_xR ; 3rd load of xI_xR

; the second loads of xI_xR and aI_aR are now avaiable, thus we can use
; them to begin the 2nd iteration of X’s and A’s multiplies

mpy .m1 xI_xR,aI_aR,xRaR ; xRaR = xR * aR – mpy lower * lower
|| mpyhl .m2x xI_xR,aI_aR,xIaR ; xIaR = xI * aR – mpy upper * lower

mpylh .m2 xI_xR,aI_aR,xRaI ; xRaI = xR * aI – mpy lower * upper
|| mpyh .m1x xI_xR,aI_aR,xIaI ; xIaI = xI * aI – mpy upper * upper
|| add .l1 x2RbR,x2IbI,re2 ; re2 = x2RbR + x2IbI
|| sub .l2 x2RbI,x2IbR,im2 ; im2 = x2RbI – x2IbR
|| ldw .d1 *XNPtr––[1],x2I_x2R ; 3rd load of x2I_x2R
|| ldw .d2 *BPtr++[1],bI_bR ; 3rd load of bI_bR

; The second loads of x2I_x2R and bI_bR are now available, thus we can use
; them to begin the 2nd iteration of X2’s and B’s multiplies.

mpy .m1 x2I_x2R,bI_bR,x2RbR ; x2RbR = x2R * bR – mpy lower * lower
|| mpyhl .m2x x2I_x2R,bI_bR,x2IbR ; x2IbR = x2I * bR – mpy upper * lower
|| add .l1 re1,re2,real ; real = re1 + re2
|| add .l2 im1,im2,imag ; imag = im1 + im2

SPRA291

60 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

|| b .s2 LOOP ; Branch to LOOP – Note that this is the
; branch for the first time through
; the loop. Because of this, we only
; need to do count–1 branches to LOOP
; within LOOP.

mpylh .m2 x2I_x2R,bI_bR,x2RbI ; x2RbI = x2R * bI – mpy lower * upper
|| mpyh .m1x x2I_x2R,bI_bR,x2IbI ; x2IbI = x2I * bI – mpy upper * upper
|| sub .l1 xRaR,xIaI,re1 ; rel = xRaR – xIaI
|| add .l2 xRaI,xIaR,im1 ; im1 = xRaI + xIaR
|| shr .s1 real,15,real ; real = real >> 15
|| shr .s2 imag,15,imag ; imag = imag >> 15
|| ldw .d1 *APtr++[1],aI_aR ; 4th load of aI_aR
|| ldw .d2 *XPtr++[1],xI_xR ; 4th load of xI_xR

; CAUTION – because of SW pipelining, we actually load more values
; of aI_aR, xI_xR, bI_bR, and x2I_x2R than we actually use. Thus,
; make sure these arrays are NOT aligned to a boundary close to the
; edge of illegal memory.

LOOP: ; this loop is executed N times
mpy .m1 xI_xR,aI_aR,xRaR ; xRaR = xR * aR – mpy lower * lower

|| mpyhl .m2x xI_xR,aI_aR,xIaR ; xIaR = xI * aR – mpy upper * lower
;|| sth .d1 imag,*GPtr++[1] ; Store imag in output buffer.

; CAUTION – Big Endian specific code
; If Little Endian is desired,
; replace this line with:

|| sth .d1 real,*GPtr++[1]
|| [CNT] sub .l2 CNT,1,CNT ; If (CNT != 0), CNT = CNT – 1.

mpylh .m2 xI_xR,aI_aR,xRaI ; xRaI = xR * aI – mpy lower * upper
|| mpyh .m1x xI_xR,aI_aR,xIaI ; xIaI = xI * aI – mpy upper * upper
|| add .l1 x2RbR,x2IbI,re2 ; re2 = x2RbR + x2IbI
|| sub .l2 x2RbI,x2IbR,im2 ; im2 = x2RbI – x2IbR
|| ldw .d1 *XNPtr––[1],x2I_x2R ; Next load of x2I_x2R
|| ldw .d2 *BPtr++[1],bI_bR ; Next load of bI_bR

mpy .m1 x2I_x2R,bI_bR,x2RbR ; x2RbR = x2R * bR – mpy lower * lower
|| mpyhl .m2x x2I_x2R,bI_bR,x2IbR ; x2IbR = x2I * bR – mpy upper * lower
|| add .l1 re1,re2,real ; real = re1 + re2
|| add .l2 im1,im2,imag ; imag = im1 + im2
;|| sth .d1 real,*GPtr++[1] ; Store real in output buffer.

; CAUTION – Big Endian specific code
; If Little Endian is desired,
; replace this line with:

|| sth .d1 imag,*GPtr++[1]
|| [CNT] b .s2 LOOP ; If (CNT != 0), branch to LOOP.

mpylh .m2x x2I_x2R,bI_bR,x2RbI ; x2RbI = x2R * bI – mpy lower * upper
|| mpyh .m1x x2I_x2R,bI_bR,x2IbI ; x2IbI = x2I * bI – mpy upper * upper
|| sub .l1 xRaR,xIaI,re1 ; rel = xRaR – xIaI
|| add .l2 xRaI,xIaR,im1 ; im1 = xRaI + xIaR
|| shr .s1 real,15,real ; real = real >> 15
|| shr .s2 imag,15,imag ; imag = imag >> 15
|| ldw .d1 *APtr++[1],aI_aR ; next load of aI_aR

SPRA291

61 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

|| ldw .d2 *XPtr++[1],xI_xR ; next load of xI_xR
 ; end of LOOP

ldw .d2 *––B15[1],B12 ; Pop B12 from the stack.
ldw .d2 *––B15[1],B11 ; Pop B11 from the stack.
ldw .d2 *––B15[1],B10 ; Pop B10 from the stack.
ldw .d2 *––B15[1],A12 ; Pop A12 from the stack.
ldw .d2 *––B15[1],A11 ; Pop A11 from the stack.
ldw .d2 *––B15[1],A10 ; Pop A10 from the stack.
b .s2 B3 ; Function return add .d2

B15,24,B15 ; Deallocate space from the stack.
nop 4 ; Fill delay slots.

Example E–2. split2.asm File
*===
*
* TEXAS INSTRUMENTS, INC.
*
* Real FFT/IFFT split operation
*
* Revision Date: 6/4/97
*
* USAGE This routine is C-Callable and can be called as:
*
* void split2(int N, COMPLEX *X, COMPLEX *X1, COMPLEX *X2)
*
* N = the number of samples of each real valued sequence
* X = pointer to complex input array
* X1 = pointer to complex array DFT result of sequence 1
* X2 = pointer to complex array DFT result of sequence 2
*
* If routine is not to be used as a C-callable function,
* then all instructions relating to stack should be removed.
* Refer to comments of individual instructions. You will also
* need to initialize values for all of the values passed, as these
* are assumed to be in registers as defined by the calling
* convention of the compiler, (refer to the C compiler reference
* guide).
*
* C Code This is the C equivalent of the assembly code without
* restrictions. Note that the assembly code is hand optimized, and
* restrictions may apply.
*
* One small, but important note. The split functions uses word loads
* to read imaginary/real pairs from memory. Because of this, some C
* definitions may need to be endianess-dependent. Also,
* the split function as shown below is written for little endian.
*
* typedef struct {
* short real;
* short imag;
* } COMPLEX;
*
* void split2(int N, COMPLEX *X, COMPLEX *X1, COMPLEX *X2)
* {
*

SPRA291

62 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

* int k;
*
* X1[0].real = X[0].real;
* X1[0].imag = 0;
*
* X2[0].real = X[0].imag;
* X2[0].imag = 0;
*
* X1[N/2].real = X[N/2].real;
* X1[N/2].imag = 0;
*
* X2[N/2].real = X[N/2].imag;
* X2[N/2].imag = 0;
*
*
* for (k=1; k<N/2; k++)
* {
* X1[k].real = (X[k].real + X[N–k].real)/2;
* X1[k].imag = (X[k].imag – X[N–k].imag)/2;
*
* X2[k].real = (X[k].imag + X[N–k].imag)/2;
* X2[k].imag = (X[N–k].real – X[k].real)/2;
*
* X1[N–k].real = X1[k].real;
* X1[N–k].imag = –X1[k].imag;
*
* X2[N–k].real = X2[k].real;
* X2[N–k].imag = –X2[k].imag;
* }
*
* }
*
*
* DESCRIPTION
* In many applications, the input is a sequence of real numbers.
* If this condition is taken into consideration, additional computational
* savings can be achieved because the FFT of a real sequence has some
* symmetrical properties. The DFT of a two N-point real sequence can be
* efficiently computed using one N-point complex DFT and some additional
* computations which have been implemented in this split function.
* Note that this split function can be used in the computation of FFTs and IFFTs.
*
* The following steps are required in the computation of the FFT of
* two real-valued sequence using the split function:
*
* Assume we have two real-valued sequences of length N – x1[n] and x2[n].
* The DFT of x1[n] and x2[n] can be computed with one complex–valued DFT of
* length N, as shown above, by following this algorithm.
*
* 1. Form the complex-valued sequence x[n] from x1[n] and x2[n]
*
* xr[n] = x1[n] and xi[n] = x2[n], 0,1, ..., N–1
*

SPRA291

63 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

* Note that if the sequences x1[n] and x2[n] are coming from another algorithm
* or a data acquisition driver, this step may be eliminated, if these put the
* data in the complex-valued format correctly.
*
* 2. Compute X[k] = DFT{x[n]}
*
* This can be the direct form DFT algorithm or an FFT algorithm. If using an
* FFT algorithm, make sure the output is in normal order – bit reversal is
* performed.
*
* 3. Compute the following equations to get the DFTs of x1[n] and x2[n].
* These are the equations that this file implements.
*
* X1r[0] = Xr[0]
* X1i[0] = 0
*
* X2r[0] = Xi[0]
* X2i[0] = 0
*
* X1r[N/2] = Xr[N/2]
* X1i[N/2] = 0
*
* X2r[N/2] = Xi[N/2]
* X2i[N/2] = 0
*
* for k = 1,2,3,, N/2–1
* X1r[k] = (Xr[k] + Xr[N–k])/2
* X1i[k] = (Xi[k] – Xi[N–k])/2
* X1r[N–k] = X1r[k]
* X1i[N–k] = X1i[k]
*
* X2r[k] = (Xi[k] + Xi[N–k])/2
* X2i[k] = (Xr[N–k] – Xr[k])/2
* X2r[N–k] = X2r[k]
* X2i[N–k] = X2i[k]
*
*
* 4. Form X[k] from X1[k] and X2[k]
*
* for k = 0,1, ..., N–1
* Xr[k] = X1r[k] – X2i[k]
* Xi[k] = X1i[k] + X2r[k]
*
* 5. Compute x[n] = IDFT{X[k]}
*
* This can be the direct-form IDFT algorithm, or an IFFT algorithm. If using
* an IFFT algorithm, make sure the output is in normal order – bit reversal is
* performed.
*

SPRA291

64 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

* TECHNIQUES
* 32-bit loads are used to load two 16-bit loads.
*
* ASSUMPTIONS
*
* X, X1, and X2 are stored as imaginary/real pairs.
*
* Little endian is used. If little endian is desired, modification to
* the code is required.
*
* MEMORY NOTE
* X must be aligned to a 32-bit boundary.
*
* CYCLES 5*(N/2–1) + 29
*
*===
N .set a4
XPtr .set b4
X1Ptr .set a6
X2Ptr .set b6
CNT .set b0
XNmkPtr .set a3
N4 .set a0
XiXr .set b2
XNiXNr .set a2
X1NmkPtr .set a1
X2NmkPtr .set b1
X2rX1r .set a8
X1iX2i .set b8
X1r .set a9
X1i .set b9
X2r .set a10
X2i .set b10
X1Nr .set a12
X1Ni .set b12
X2Nr .set a13
X2Ni .set b13
nullA .set a14
nullB .set b5

.global_split2
_split2:

subaw .d2 B15,10,B15 ; Allocate space on the stack
ldh .d2 *XPtr,X1r ; X1r = Xr[0]
add .l B15,4,A15 ; A15 points to the stack as well

|| ldh .d2 *+XPtr[1],X2r ; X2r = Xi[0]
stw .d1 A10,*A15++[2] ; Push A10 onto the stack.

|| stw .d2 B10,*B15++[2] ; Push B10 onto the stack.
stw .d1 A11,*A15++[2] ; Push A11 onto the stack.

|| stw .d2 B11,*B15++[2] ; Push B11 onto the stack.
stw .d1 A12,*A15++[2] ; Push A12 onto the stack.

|| stw .d2 B12,*B15++[2] ; Push B12 onto the stack.
stw .d1 A13,*A15++[2] ; Push A13 onto the stack.

|| stw .d2 B13,*B15++[2] ; Push B13 onto the stack.
stw .d1 A14,*A15++[2] ; Push A14 onto the stack.

SPRA291

65 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

|| stw .d2 B14,*B15++[2] ; Push B14 onto the stack.
sth .d1 X1r, *X1Ptr ; X1r[0]=Xr[0]
shl .s1 N, 2, N4 ; N4 = 4*N

|| sth .d2 X2r, *X2Ptr ; X2r[0]=Xi[0]
|| zero .l2 nullB ; nullA = 0
|| zero .l1 nullA ; nullB = 0

sub .l1 N4, 4, N4 ; N4 = N4 – 1
|| sth .d1 nullA, *+X1Ptr[1] ; X1i[0]=0
|| sth .d2 nullB, *+X2Ptr[1] ; X2i[0]=0

add .l1x N4, XPtr, XNmkPtr ; XNmkPtr –> X[N–1]
|| add .l2 XPtr, 4, XPtr ; XPTR –> X[1]

ldw .d2 *XPtr++[1], XiXr ; Load X[k].real and X2[k].imag.
|| ldw .d1 *XNmkPtr––[1], XNiXNr ; Load X[N–k].real and X[N–k].imag.

shr .s2x N, 1, CNT ; CNT = N/2
sub .s2 CNT, 1, CNT ; CNT = N/2 – 1
add .l1 N4, X1Ptr, X1NmkPtr ; X1NmkPtr –> X1[N–1]

|| add .l2x N4, X2Ptr, X2NmkPtr ; X2NmkPtr –> X2[N–1]
add .l X1Ptr, 4, X1Ptr ; X1Ptr –> X1[1]

|| add .l X2Ptr, 4, X2Ptr ; X2Ptr –> X2[1]

add2 .s1x XiXr, XNiXNr, X2rX1r ; X2[k].real = X[k].imag + X[N–k].imag
; (upper 16 bits)
; X1[k].real = X[k].real + X[N–k].real
; (lower 16 bits)

|| sub2 .s2x XiXr, XNiXNr, X1iX2i ; X1[k].imag = X[k].imag – X[N–k].imag
; (upper 16 bits)
; X2[k].imag = X[k].real – X[N–k].real
; (lower 16 bits)

|| ldw .d2 *XPtr++[1], XiXr ; load X[k].real and X2[k].imag
|| ldw .d1 *XNmkPtr––[1], XNiXNr ; load X[N–k].real and X[N–k].imag

shr .s1 X2rX1r, 17, X2r ; X2[k].real = (X[k].imag +
; X[N–k].imag)/2
; X2r = X2rX1r>>17

|| sub2 .s2 nullB, X1iX2i, X2i ; X2[k].imag = X[N–k].real – X[k].real
; (lower 16 bits)
; upper 16 bits are don’t cares

shr .s2 X1iX2i, 17, X1i ; X1[k].imag = (X[k].imag +
; X[N–k].imag)/2
; X1i = X1iX2i>>17

|| b .s1 LOOP ; Branch for the first time through loop.
LOOP:

ext .s1 X2rX1r, 16,17, X1r ; X1[k].real = X1[k].real/2
|| ext .s2 X2i, 16,17, X2i ; X2[k].imag = X2[k].imag/2
|| sth .d1 X1i, *+X1Ptr[1] ; Store X1[k].imag.
|| sth .d2 X2r, *X2Ptr++[1] ; Store X2[k].real.

mv.l1 X1r, X1Nr ; X1[N–k].real = X1[k].real
|| mv.s1 X2r, X2Nr ; X2[N–k].real = X2[k].real
|| sub .l2 nullB, X1i, X1Ni ; X1[N–k].imag = –X1[k].imag
|| sub .s2 nullB, X2i, X2Ni ; X2[N–k].imag = –X2[k].imag
|| sth .d2 X2i, *X2Ptr++[1] ; Store X2[k].imag.

SPRA291

66 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

|| sth .d1 X1r, *X1Ptr++[2] ; Store X1[k].real.
add2 .s1x XiXr, XNiXNr, X2rX1r ; X2[k].real = X[k].imag + X[N–k].imag

; (upper 16 bits)
; X1[k].real = X[k].real + X[N–k].real
; (lower 16 bits)

|| sub2 .s2x XiXr, XNiXNr, X1iX2i ; X1[k].imag = X[k].imag – X[N–k].imag
; (upper 16 bits)
; X2[k].imag = X[k].real – X[N–k].real
; (lower 16 bits)

|| ldw .d2 *XPtr++[1], XiXr ; Load X[k].real and X2[k].imag.
|| ldw .d1 *XNmkPtr––[1], XNiXNr ; Load X[N–k].real and X[N–k].imag.

shr .s1 X2rX1r, 17, X2r ; X2[k].real = (X[k].imag +
; X[N–k].imag)/2
; X2r = X2rX1r>>17

|| sub2 .s2 nullB, X1iX2i, X2i ; X2[k].imag = X[N–k].real – X[k].real
; (lower 16 bits)
; Upper 16 bits are don’t cares.

|| sth .d1 X1Ni, *+X1NmkPtr[1] ; Store X1[N–k].imag.
|| sth .d2 X2Nr, *X2NmkPtr––[2] ; Store X2[N–k].real.
|| [CNT] sub .l2 CNT, 1, CNT ; decrement loop counter

shr .s2 X1iX2i, 17, X1i ; X1[k].imag = (X[k].imag +
; X[N–k].imag)/2
; X1i = X1iX2i>>17

|| sth .d1 X1Nr, *X1NmkPtr––[2] ; Store X1[N–k].real.
|| sth .d2 X2Ni, *+X2NmkPtr[3] ; Store X2[N–k].imag.
|| [CNT] b .s1 LOOP ; Conditional branch.
; LOOP END

ldw .d1 *––A15[2],A14 ; Pop A14 from the stack.
|| ldw .d2 *––B15[2],B14 ; Pop B14 from the stack.

ldw .d1 *––A15[2],A13 ; Pop A13 from the stack.
|| ldw .d2 *––B15[2],B13 ; Pop B13 from the stack.

ldw .d2 *––B15[2],B12 ; Pop B12 from the stack.
|| ldw .d1 *––A15[2],A12 ; Pop A12 from the stack.

ldw .d1 *––A15[2],A11 ; Pop A11 from the stack.
|| ldw .d2 *––B15[2],B11 ; Pop B11 from the stack.
|| b .s2 B3 ; Function return.

ldw .d2 *––B15[2],B10 ; Pop B10 from the stack.
|| ldw .d1 *––A15[2],A10 ; Pop A10 from the stack.

addaw .d2 B15,10,B15 ; Deallocate space from the stack.
nop 3 ; Fill delay slots.

SPRA291

67 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

Example E–3. radix4.asm File

*
* TEXAS INSTRUMENTS INC.
*
* COMPLEX FFT (Radix 4)
*
* Revision Data: 04/28/97
*
* USAGE This routine is C-callable and can the called as
*
* void radix4(int n, short x[], short w[])
*
* n ––– FFT size (power of 4) (input)
* x[] ––– input and output sequences (dim–n) (input/output)
* w[] ––– FFT coefficients (dim–n) (input)
*
* If the routine is not to be used as a C-callable function,
* then all instructions relating to dummy should be removed.
* Refer to comments of individual instructions. You will also
* need to initialize values for all the values passed as these
* are assumed to be in registers as defined by the calling
* convention of the compiler, (refer to the C compiler reference
* guide.)
*
* C CODE
*
* This is the C equivalent of the assembly code, without the
* assumptions listed below. Note that the assembly code is hand-
* optimized and assumptions apply.
*
* SOURCE:Burrus, Parks p .113
*
* void radix4(int n, short x[], short w[])
* {
* int n1, n2, ie, ia1, ia2, ia3, i0, i1, i2, i3, j, k;
* short t, r1, r2, s1, s2, co1, co2, co3, si1, si2, si3;
*
* n2 = n;
* ie = 1;
* for (k = n; k > 1; k >>= 2) {
* n1 = n2;
* n2 >>= 2;
* ia1 = 0;
* for (j = 0; j < n2; j++) {
* ia2 = ia1 + ia1;
* ia3 = ia2 + ia1;
* co1 = w[ia1 * 2 + 1];
* si1 = w[ia1 * 2];
* co2 = w[ia2 * 2 + 1];
* si2 = w[ia2 * 2];
* co3 = w[ia3 * 2 + 1];
* si3 = w[ia3 * 2];
* ia1 = ia1 + ie;

SPRA291

68 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

* for (i0 = j; i0 < n; i0 += n1) {
* i1 = i0 + n2;
* i2 = i1 + n2;
* i3 = i2 + n2;
* r1 = x[2 * i0] + x[2 * i2];
* r2 = x[2 * i0] – x[2 * i2];
* t = x[2 * i1] + x[2 * i3];
* x[2 * i0] = r1 + t;
* r1 = r1 – t;
* s1 = x[2 * i0 + 1] + x[2 * i2 + 1];
* s2 = x[2 * i0 + 1] – x[2 * i2 + 1];
* t = x[2 * i1 + 1] + x[2 * i3 + 1];
* x[2 * i0 + 1] = s1 + t;
* s1 = s1 – t;
* x[2 * i2] = (r1 * co2 + s1 * si2) >> 15;
* x[2 * i2 + 1] = (s1 * co2–r1 * si2)>>15;
* t = x[2 * i1 + 1] – x[2 * i3 + 1];
* r1 = r2 + t;
* r2 = r2 – t;
* t = x[2 * i1] – x[2 * i3];
* s1 = s2 – t;
* s2 = s2 + t;
* x[2 * i1] = (r1 * co1 + s1 * si1) >>15;
* x[2 * i1 + 1] = (s1 * co1–r1 * si1)>>15;
* x[2 * i3] = (r2 * co3 + s2 * si3) >>15;
* x[2 * i3 + 1] = (s2 * co3–r2 * si3)>>15;
* }
* }
* ie <<= 2;
* }
* }
*
* DESCRIPTION
*
* This routine is used to compute FFT of a complex sequence
* of size n, a power of 4, with ”decimation-in-frequency
* decomposition” method. The output is in digit-reversed
* order. Each complex value is with interleaved 16-bit real
* and imaginary parts.
*
* TECHNIQUES
* 1. Loading input x as well as coefficient w in word.
* 2. Both loops j and i0 shown in the C code are placed in the
* INNERLOOP of the assembly code.
*
* ASSUMPTIONS
* 4 <= n <= 65536
* Both input x and coefficient w should be aligned on word
* boundary.
*

SPRA291

69 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

* MEMORY NOTE
* Align x and w on different word boundaries to minimize
* memory bank hits. There are N/4 memory bank hits total
*
* CYCLES
* LOGBASE4(N) * (10 * N/4 + 33) + 7 + N/4
*

.global dummy

.global _radix4

.bss dummy,52 ; Reserve space for dummy.

.text
_radix4:

MVK .S1 dummy, A0 ; New dummy pointer in A0 and B1
|| MVK .S2 dummy, B1

MVKH .S1 dummy, A0 ; New dummy pointer in A0 and B1
|| MVKH .S2 dummy, B1.

STW .D2 B3, *B1 ; Push return address on dummy.
STW .D1 A10, *+A0[1] ; Push A10 on dummy.

|| STW .D2 B10, *+B1[2] ; Push B10 on dummy.
*** BEGIN Benchmark Timing ***
B_START:

MVK .S1 32, A1 ; A1 = 32
|| LMBD .L1 1, A4, A2 ; 31 – log2(n)
|| SHR .S2X A4, 2, B6 ; n2 = n / 4
|| ZERO .L2 B7 ; Mask
|| STW .D1 A11, *+A0[3] ; Push A11 on dummy.
|| STW .D2 B11, *+B1[4] ; Push B11 on dummy.

SUB .L1 A1, A2, A4 ; log2(n)+1 (circ buff size in bytes)
|| SHR .S1 A4, 1, A7 ; 2 * n2 = n / 2, a–side
|| SHR .S2X A4, 1, B9 ; 2 * n2 = n / 2, b–side
|| MV .L2 B6, B0 ; n / 4
|| STW .D1 A12, *+A0[5] ; Push A12 on dummy.
|| STW .D2 B12, *+B1[6] ; Push B12 on dummy.

SHL .S1 A4, 16, A4 ; Shift into BK0 field.
|| MVC .S2 B4, IRP ; Save off x.
|| STW .D1 A13, *+A0[7] ; Push A13 on dummy.
|| STW .D2 B13, *+B1[8] ; Push B13 on dummy.

ADDK .S1 0404h,A4 ; A5, B5 set circular mode on BK0
|| MVK .S2 1, B8 ; ie = 1
|| STW .D1 A14, *+A0[9] ; Push A14 on dummy.
|| STW .D2 B14, *+B1[10] ; Push B14 on dummy.

MVC .S2X A4, AMR ; Load AMR.
|| STW .D1 A15, *+A0[11] ; Push A15 on dummy.
|| STW .D2 B15, *+B1[12] ; Push B15 on dummy.
|| SUB .L2 B0, 1, B0 ; Loop coutner = n / 4 – 1
K_LOOP:

MV .L2 B4, B5 ; Reset X load pointer.
|| MV .L1X B4, A5 ; Reset X store pointer.
|| ADD .D2 B0, 1, B1 ; i = loop counter + 1
|| MV .D1 A6, A1 ; Setup twiddle factor pointer

ZERO .S1 A4 ; j = 0
|| SUBAW .D1 A5, A7, A5 ; Setup for first preincrement
|| AND .S2 B1, B7, B1 ; J loop twiddle reload test

SUBAW .D1 A5, A7, A5 ; Setup for first preincrement

SPRA291

70 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

|| MPY .M2 B1, 1, B2 ; J loop twiddle reload test
LDW .D2 *B5++[B6], B10 ; xi0=xt[0*n2],yi0 = yt[0*n2+1]
LDW .D2 *B5++[B6], A8 ; xi1=xt[2*n2],yi1 = yt[2*n2+1]

|| [!B2] LDW .D1 *++A1[A4], B15 ; si1 = w[2 * j], co1 = w[2*j+1]
LDW .D2 *B5++[B6], B11 ; xi2=xt[4*n2],yi2 = yt[4*n2+1]

|| [!B2] LDW .D1 *++A1[A4], A3 ; si2 = w[4*j], co2 = w[4*j+1]
LDW .D2 *B5++[B6], A9 ; xi3=xt[6*n2],yi3 = yt[6*n2+1]
NOP 2
[!B2] LDW .D1 *++A1[A4], A13 ; si3 = w[6*j], co3 = w[6*j+1]

|| [!B2] ADD .L1X A4, B8, A4 ; j += ie
SUB2 .S2 B10, B11, B3 ; r2a=xi0 – xi2,s2a = yi0 – yi2

|| ADD .L2 B0, 0, B1 ; * i = loop counter
|| MV .L1 A6, A1 ; reset w

SUB2 .S1 A8, A9, A10 ; t3=xi1 – xi3, t1 = yi1 – yi3
|| AND .S2 B1, B7, B1 ; * j loop twiddle reload test

ADD2 .S1 A8, A9, A8 ; t0=xi1 + xi3, t2 = yi1 + yi3
|| ADD2 .S2 B10, B11, B1 ; r1a=xi0 + xi2,s1a = yi0 + yi2
|| MPY .M2 B1, 1, B2 ; * j loop twiddle reload test
|| [!B1] ADDAW .D2 B5, 1, B5 ; * reset x input, (circular)
|| [!B2] SUBAW .D1 A5, 1, A5 ;
|| ADD .L2 B0, 1, B0 ;
|| ZERO .L1 A2 ; First pass cond. init to zero.
LOOP:

SHR .S1X B3, 16, A9 ; * extract s2a
|| SHR .S2X A10, 16, B10 ; * extract t1
|| [!B2] ADDAW .D1 A5, 1, A5 ; * reset x output, (circular)
|| LDW .D2 *B5++[B6], B10 ; ** xi0=xt[0*n2], yi0=yt[0*n2+1]
|| MV .L1 A6, A1 ; ** reset w

ADD .L2 B3, B10, B11 ; * r1c = r2a + t1
|| SUB .L1 A9, A10, A12 ; * s1c = s2a – t3
|| SUB2 .S2X B1, A8, B1 ; * r1b=r1a – t0, s1b = s1a – t2
|| ADD2 .S1X B1, A8, A8 ; * xo0=r1a + t0, yo0 = s1a + t2
|| LDW .D2 *B5++[B6], A8 ; ** xi1=xt[2*n2], yi1=yt[2*n2+1]
|| [!B2] LDW .D1 *++A1[A4], B15 ; ** si1 = w[2*j], co1 = w[2*j+1]

[A2] ADD .S2X A11, 2, B3 ; copy B–side x store pointer
|| [A2] SHR .S1 A14, 15, A14 ; xo2 = xa2 >> 15
|| SUB .L2 B3, B10, B12 ; * r2c = r2a – t1
|| ADD .L1 A9, A10, A9 ; * s2c = s2a + t3
|| MPY .M1X A12, B15, A10 ; * ss1 = s1c * si1
|| MPYLH .M2 B11, B15, B10 ; * rc1 = r1c * co1
|| LDW .D2 *B5++[B6], B11 ; ** xi2=xt[4*n2], yi2=yt[4*n2+1]
|| [!B2] LDW .D1 *++A1[A4], A3 ; ** si2 = w[4*j], co2 = w[4*j+1]

[A2] SHR .S2 B13, 15, B13 ; yo1 = ya1 >> 15
|| [A2] SHR .S1 A15, 15, A15 ; xo3 = xa3 >> 15
|| MPYLH .M1X B1, A3, A10 ; * rc2 = r1b * co2
|| MPYLH .M2X A12, B15, B11 ; * sc1 = s1c * co1
|| LDW .D2 *B5++[B6], A9 ; ** xi3=xt[6*n2], yi3=yt[6*n2+1]
|| ADDAW .D1 A5, A7, A5 ;

[A2] SHR .S2 B14, 15, B14 ; yo2 = ya2 >> 15
|| [B0] B .S1 LOOP ; for i
|| MPY .M1 A9, A13, A12 ; * ss3 = s2c * si3
|| ADD .L1X B10, A10, A8 ; * xa1 = rc1 + ss1
|| MPY .M2 B11, B15, B13 ; * rs1 = r1c * si1
|| [B0] STW .D1 A8, *++A5[A7] ; * xt[0*n2]=xo0, yt[0*n2+1]=yo0

SPRA291

71 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

[A2] STH .D2 B13, *B3++[B9] ; yt[2 * n2 + 1] = yo1
|| [A2] SHR .S2 B4, 15, B4 ; yo3 = ya3 >> 15
|| [A2] STH .D1 A0, *A11++[A7] ; xt[2 * n2] = xo1
|| SHR .S1 A8, 15, A0 ; * xo1 = xa1 >> 15
|| MPYH .M2X B1, A3, B14 ; * sc2 = s1b * co2
|| MPYHL .M1X B1, A3, A9 ; * ss2 = s1b * si2

[A2] STH .D2 B14, *B3++[B9] ; yt[4 * n2 + 1] = yo2
|| MPYLH .M1 A9, A13, A1 ; * sc3 = s2c * co3
|| MPY .M2X B1, A3, B12 ; * rs2 = r1b * si2
|| SUB .L2 B11, B13, B13 ; * ya1 = sc1 – rs1
|| [!B2] LDW .D1 *++A1[A4], A13 ; ** si3 = w[6*j], co3 = w[6*j+1]
|| [!B2] ADD .L1X A4, B8, A4 ; ** j += ie
|| SUB .S2 B0, 1, B0 ; *** generate loop counter

[A2] STH .D2 B4, *B3 ; yt[6 * n2 + 1] = yo3
|| [A2] STH .D1 A14, *A11++[A7] ; xt[4 * n2] = xo2
|| MPY .M2X B12, A13, B12 ; * rs3 = r2c * si3
|| MPYLH .M1X B12, A13, A11 ; * rc3 = r2c * co3
|| ADD .L1 A10, A9, A14 ; * xa2 = rc2 + ss2
|| SUB2 .S2 B10, B11, B3 ; ** r2a = xi0–xi2, s2a = yi0–yi2
|| SUB .L2 B0, 1, B1 ; *** i = loop counter – 1

[A2] STH .D1 A15, *A11 ; xt[6 * n2] = xo3
|| SUB .L2 B14, B12, B14 ; * ya2 = sc2 – rs2
|| SUB2 .S1 A8, A9, A10 ; ** t3=xi1 – xi3, t1 = yi1–yi3
|| AND .S2 B1, B7, B1 ; *** j loop twiddle reload test
|| [!A2] ADD .L1 A2, 1, A2 ; First Pass Done Set Cond. Reg

ADDAH .D1 A5, A7, A11 ; * copy A-side x store pointer
|| SUB .L2X A1, B12, B4 ; * ya3 = sc3 – rs3
|| ADD .L1 A11, A12, A15 ; * xa3 = rc3 + ss3
|| ADD2 .S1 A8, A9, A8 ; ** t0=xi1 + xi3, t2 = yi1+yi3
|| ADD2 .S2 B10, B11, B1 ; ** r1a = xi0+xi2, s1a = yi0+yi2
|| MPY .M2 B1, 1, B2 ; *** j loop twiddle reload test
|| [!B1] ADDAW .D2 B5, 1, B5 ; *** reset x input, (circular)
; LOOP ends here

SHL .S2 B7, 2, B7 ; mask <<= 2
|| MPY .M2 B6, B8, B0 ; n/4 = n2 * ie

SHR .S1 A7, 2, A7 ; 2 * n2 >>= 2
|| SHR .S2 B9, 2, B9 ; 2 * n2 >>= 2
|| ADD .L2 B7, 3, B7 ; mask += 3

SHR .S2 B6, 2, B6 ; n2 >>= 2
|| SUB .L2 B0, 1, B0 ; loop counter = n/4 – 1

CMPGT .L2 B7, B0, B1 ; kcond = mask > n / 4 – 1
[!B1] B .S1 K_LOOP ; if (!kcond) do loop

|| SHL .S2 B8, 2, B8 ; ie <<= 2
MVC .S2 IRP, B4 ; Reload x.
NOP 4

; K_LOOP ends here
B_END:
*** END Benchmark Timing ***
 MVK .S1 dummy, A0 ; New dummy pointer in A0 and B0.
|| MVK .S2 dummy, B0 ; New dummy pointer in A0 and B0.
 MVKH .S1 dummy, A0 ; New dummy pointer in A0 and B0.
|| MVKH .S2 dummy, B0 ; New dummy pointer in A0 and B0.
 LDW .D2 *B0, B3 ; Pop return address off dummy.

SPRA291

72 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

|| ZERO .L2 B2
 LDW .D1 *+A0[1], A10 ; Pop A10 off dummy.
|| LDW .D2 *+B0[2], B10 ; Pop B10 off dummy.
|| MVC .S2 B2, AMR ; Reset AMR.
 LDW .D1 *+A0[3], A11 ; Pop A11 off dummy.
|| LDW .D2 *+B0[4], B11 ; Pop B11 off dummy.
 LDW .D1 *+A0[5], A12 ; Pop A12 off dummy.
|| LDW .D2 *+B0[6], B12 ; Pop B12 off dummy.
 LDW .D1 *+A0[7], A13 ; Pop A13 off dummy.
|| LDW .D2 *+B0[8], B13 ; Pop B13 off dummy.
 LDW .D1 *+A0[9], A14 ; Pop A14 off dummy.
|| LDW .D2 *+B0[10], B14 ; Pop B14 off dummy.
|| B .S2 B3
 LDW .D1 *+A0[11], A15 ; Pop A15 off dummy.
|| LDW .D2 *+B0[12], B15 ; Pop B15 off dummy.

NOP 4 ; Wait 4 cycles for the last pop
 ; to occur before returning.

Example E–4. digit.asm File

;**
; FILE
; digit.asm – C62xx assembly source for a C-callable FFT digit reversal
; function.
;
;**
; DESCRIPTION
;
; This functions implements, by table lookup, digit/bit reversal for FFT
; algorithms. The function assumes that index tables which contain the
; indexes of data pairs that get swapped are pre-computed, and stored as
; two separate arrays. Since this is a table lookup method, this is a
; generic routine. It can be used for bit-reversal of radix-2 FFTs, or
; digit-reversal of radix-4 FFTs etc.
;
;**
; POTOTYPE
; void digit_reverse(int *yx, unsigned short *IIndex,
; unsigned short *JIndex, int count)
;
;
;**
; IMPLEMENTATION
;
; The following C code is functional equivalent to this assembly version.
;
;
; void digit_reverse(int *yx, unsigned short *JIndex,
; unsigned short *IIndex, int count)
; {
;
; int i;
; unsigned short I, J;
; int YXI, YXJ;
;

SPRA291

73 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

; for (i = 0; i<count; i++)
; {
; I = IIndex[i];
; J = JIndex[i];
; YXI = yx[I];
; YXJ = yx[J];
; yx[J] = YXI;
; yx[I] = YXJ;
; }
;
; }
;
;**

.global _digit_reverse

AXPtr .set a4 ; arg1 passed by calling function
; Pointer to FFT data. This is a static
; pointer. Data to be reversed is accessed
; using indexes. Also this an A register,
; thus it is used in the .d1 unit.

JIndexPtr .set b4 ; arg2 passed by calling function
; pointer to digit reversal index

IIndexPtr .set a6 ; arg3 passed by calling function
; pointer to other digit reversal index

count .set b6 ; arg4 passed by calling function
; Number of points to reverse

J .set a0 ; index loaded using JIndex pointer
I .set b0 ; Index loaded using IIndex pointer
TJ .set a7 ; Temporary copy of J. This is needed

; because the next value of J is loaded
; before the current one is finished being used.
; It is used to store the data value
; loaded by the I index.

TI .set b7 ; Temporary copy of I. This is needed
; because the next value of I is loaded
; before the current one is finished being used.
; It is used to store the data value
; loaded by the J index.

XI .set a5 ; Data value loaded using the I index.
XJ .set b5 ; Data value loaded using the J index.
BXPtr .set b2 ; Pointer to FFT data, points to the same

; memory location as AXPtr. It is a B register,
; so it can be used in the .d2 unit.

CNT .set b1 ; Count register, used for looping
.text

_digit_reverse:
ldh .d1 *IIndexPtr++[1], I ; Load an I index.

|| ldh .d2 *JIndexPtr++[1], J ; Load a J index.
|| mv.l2x AXPtr, BXPtr ; Copy AXPtr to BXPtr.

nop 2 ; Fill the delay slots.
ldh .d1 *IIndexPtr++[1], I ; Load the next I index.

|| ldh .d2 *JIndexPtr++[1], J ; Load the next J index.

SPRA291

74 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With TMS320 DSP Family

|| sub .l2 count,1,CNT ; Decrement the count by
; one, and put into a register
; that can be used as a
; condition register.

nop 1 ; Fill a delay slot.
ldw .d1 *+AXPtr[J],XJ ; Load the value pointed by

; the first J index loaded.
|| ldw .d2 *+BXPtr[I],XI ; Load the value pointed by

; the first I index loaded.
|| b LOOP ; Branch for the first time

; through the loop.
nop ; Fill a delay slot.
mv.l1 J,TJ ; Make a copy of J so that

; the value is not lost due
; to the reloading of J.

|| mv .l2 I,TI ; Make a copy of I so that
; the value is not lost due
; to the reloading of I.

LOOP:
 ldw .d1 *+AXPtr[J],XJ ; load the value pointed by J
|| ldw .d2 *+BXPtr[I],XI ; load the value pointed by I
||[CNT] b .s1 LOOP ; conditional branch, branch

; if CNT != 0
;||[!CNT]b .s2 B3 ; having the return

; here may be a bug,
; we can try it when
; we get everything else
; working

ldh .d1 *IIndexPtr++[1], I ; Load the next I index.
|| ldh .d2 *JIndexPtr++[1], J ; Load the next J index.
||[CNT] sub .l2 CNT,1,CNT ; Decrement the loop counter.

stw .d1 XI,*+AXPtr[TJ] ; Data loaded from the I index
; is stored at the location
; pointed by the J index.

|| stw .d2 XJ,*+BXPtr[TI] ; Data loaded from the J index
; is stored at the location
; pointed by the I index.
; Note that TJ and TI have the I
; and J values, 3 iterations back.

|| mv.l1 J,TJ ; Make a copy of J so that
; the value is not lost due
; to the reloading of J.

|| mv .l2 I,TI ; Make a copy of I so that
; the value is not lost due
; to the reloading of I.

;loop end

b .s2 B3 ; Function return
nop 5

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2002, Texas Instruments Incorporated

