
Application Report
SPRA384A - September 2002

1

Programming the TMS320VC5509 RTC Peripheral
Scott Tater DSP Applications – Semiconductor Group

ABSTRACT

This application report demonstrates the procedure used to program the TMS320VC5509
digital signal processor (DSP) Real Time Clock (RTC). Basic operations of the RTC, such as
reading and writing the time, as well as interrupt configuration, are covered. All interaction
with the peripheral is accomplished using the Chip Support Library (CSL) RTC module. An
example that illustrates usage of these routines is also presented.

Contents

1 Introduction 2.
2 Basic Operation 3.

2.1 Initializing the RTC Time and Alarm With the DSP/BIOS Configuration Tool 3.
2.2 Reading and Writing the RTC Using Embedded Chip Support Library Function Calls 4.

2.2.1 Using ANSI C Style Time Functions 7.
2.3 Configuring Real Time Clock Interrupts 7.

2.3.1 Interrupts Using the CSL RTC Dispatcher 8.
2.3.2 Interrupts Using DSP/BIOS Module Without the CSL RTC Dispatcher 9.

3 Examples: Programming the Real Time Clock 10.
4 References 12.
Appendix A Working With the Spectrum Digital C5509 EVM 13.

List of Figures

Figure 1. RTC Block Diagram 2.
Figure 2. DSP/BIOS Configuration Tool With RTC Module 4.
Figure 3. Data Structure Example 5.
Figure 4. Binary Coded Decimal Conversion 5.
Figure 5. RTC Support Function Example 6.
Figure 6. Using RTC_setCallback() to Bind ISR Functions 9.
Figure 7. HWI Manager Setup for RTC 9.
Figure 8. Example 3: CSL RTC Interrupt Dispatcher Code 10.

List of Tables

Table 1. RTC Data Structures 5.
Table 2. RTC Utility Functions 5.
Table 3. Binary Coded Decimal Example 6.
Table 4. RTC Basic Calls 6.
Table 5. RTC ANSI C Style Calls 7.
Table 6. CSL Structures and Functions Used With RTC Interrupts 8.
Table A-1 JP10 RTC Clock Input Source 13.

Trademarks are the property of their respective owners.

SPRA384A

2 Programming the TMS320VC5509 RTC Peripheral

1 Introduction

The RTC module maintains time and date information independent of DSP operation. The RTC
achieves independent operation by using a separate external clock and power source from the
DSP. Figure 1 shows the RTC block diagram.

The RTC tracks time in the following formats:

• Seconds (0–59)

• Minutes (0–59)

• Hours (0–23)

• Days of the week (1–7)

• Days of the month (1–31)

• Months (1–12)

• Years with leap year correction (0–99)

The RTC provides three separate interrupt sources: periodic, alarm, and update. The periodic
interrupt has a programmable period from 122 �s to 1 minute. The alarm interrupt can be set to
a flexible combination of the second, minute, hour, and day of the week. The update interrupt is
associated with RTC internal operation and, while the interrupt originates under internal RTC
control, the user may enable or disable transmission to the central processing unit (CPU) core.

Write
Buffer

Time,
Calendar,

Alarm

Bus
Interface

Clock Selector

Clock DividerRTCX1

TCLK

Peripheral
Bus

NRESET

DI[7:0]

RTCX2

IRQ

DO[7:0]
Read
Buffer

Control
Status

Registers

Figure 1. RTC Block Diagram

For detailed information on the RTC, including hardware implementation and operation, please
refer to the RTC chapter of the TMS320C55x DSP Peripherals Reference Guide (SPRU317).

SPRA384A

3 Programming the TMS320VC5509 RTC Peripheral

2 Basic Operation

Program interaction with the RTC typically involves one of the following three types of
operations:

• Initializing the RTC time and alarm information using the DSP/BIOS Configuration tool

• Reading and writing the RTC using embedded CSL function calls

• Configuring RTC Interrupts with either embedded CSL function calls or with the DSP/BIOS
Configuration tool.

The DSP/BIOS Configuration tool is used to perform the initialization of the RTC at start-up, the
CSL code interface is used during run time to interact with the RTC as needed, and then the
CSL or DSP/BIOS is used to implement the interrupt capabilities of the device, if desired.

2.1 Initializing the RTC Time and Alarm With the DSP/BIOS Configuration Tool

The DSP/BIOS Configuration tool provides a graphical interface to initialize the RTC at code
start-up. Figure 2 shows a typical view of the Configuration tool with the RTC module expanded.

The RTC module contains two parts: the Configuration Manager and the Resource Manager.
The Configuration Manager allows the user to create one or more configuration objects. Each
object contains all the information needed to initialize the RTC control registers. The Resource
Manager associates the RTC hardware with a particular configuration object. At run time,
DSP/BIOS will automatically load the information stored in the configuration object into the RTC.

DSP/BIOS is a trademark of Texas Instruments.

SPRA384A

4 Programming the TMS320VC5509 RTC Peripheral

Figure 2. DSP/BIOS Configuration Tool With RTC Module

For more detailed information on using the DSP/BIOS Configuration tool, see the TMS320
DSP/BIOS User’s Guide (SPRU423).

2.2 Reading and Writing the RTC Using Embedded Chip Support Library
Function Calls

The CSL is a collection of C-callable functions, macros, and symbols used to control and access
on-chip peripherals that share a standard interface. The CSL speeds development time by
reducing code reinvention, and its standardized interface reduces programming errors and
facilitates simple debugging. It also provides a level of hardware abstraction to facilitate porting
software between different Texas Instruments DSPs.

In addition to the CSL style interface, the RTC module includes support for the ANSI C style time
interface. This interface is similar to that provided in the standard include file time.h. A complete
description of the RTC time.h implementation is given in section 2.2.1.

SPRA384A

5 Programming the TMS320VC5509 RTC Peripheral

CSL support for the RTC consists of two types of objects: RTC specific data structures and
support functions. The data structures are pre-defined C structures designed to store RTC
register information. The support functions automate interaction with the RTC and utilize the
CSL standard interface. Table 1 shows the data structures.

Table 1. RTC Data Structures

RTC Data Structure Name ...is used to

RTC_Alarm Store information for setting the alarm time

RTC_Data Store information for setting the date

RTC_Time Store information for setting the time

All data is passed to the RTC in binary coded decimal form (BCD). Figure 3 shows an example
of code used to declare an RTC_Time structure and store the time in BCD format. Notice that
CSL supports 24-hour time format only.

RTC_Time myTime = {
 0x21, // Hour (Note 24 hour time notation)
 0x58, // Minutes
 0x30, // Seconds
};

Figure 3. Data Structure Example

The RTC CSL module includes two functions used to facilitate conversion between binary and
BCD forms. These functions will reduce translation errors and speed development. Table 2 lists
these two utility functions, and Figure 4 shows an example of their use. Table 3 provides a BCD
to decimal translation example.

Table 2. RTC Utility Functions

RTC Utility Function Name ...is used to

RTC_bcdToDec() Convert BCD format to decimal

RTC_decToBcd() Convert decimal to BCD format

minute = RTC_bcdToDec(currentTime.minute); //Convert value from native RTC BCD
second = RTC_bcdToDec(currentTime.second); //format to decimal

currentTime.minute = RTC_decToBcd(minute); //Convert value from decimal to
currentTime.second = RTC_decToBcd(second); //native RTC BCD format

Figure 4. Binary Coded Decimal Conversion

SPRA384A

6 Programming the TMS320VC5509 RTC Peripheral

Table 3. Binary Coded Decimal Example

Decimal Binary Coded Decimal

0 0x0

1 0x1

2 0x2

3 0x3

… …

10 0x10

11 0x11

12 0x12

13 0x13

14 0x14

The majority of program interaction with the RTC will make use of a basic set of operations.
These operations include performing reads and writes to the time, date, and alarm registers.
Table 4 lists each of the support functions used to perform these operations.

Table 4. RTC Basic Calls

RTC Support Function Name …is used to

RTC_getDate() Read current date from RTC registers

RTC_getTime() Read current time from RTC registers

RTC_setAlarm() Set the alarm to a specific time

RTC_setDate() Set the RTC calendar

RTC_setTime() Set the RTC clock

RTC_start() Start the RTC clock

RTC_stop() Stop the RTC clock

RTC_reset() Set the RTC to its initial state

For a complete listing of all the available RTC operations in the CSL, see the TMS320C55x Chip
Support Library API Reference Guide (SPRU433).

The support functions work with the RTC data structures to access the RTC. Using the example
code shown in Figure 3, the example in Figure 5 shows the RTC_setTime() function used to
write data to the time registers.

// Set Time For Real Time Clock
RTC_setTime(&myTime);

Figure 5. RTC Support Function Example

SPRA384A

7 Programming the TMS320VC5509 RTC Peripheral

The TMS320C55x DSP Peripherals Reference Guide (SPRU317) describes certain access
methods to use when working with RTC register values. These methods are designed to ensure
that the data transferred to or from the RTC is not corrupted by an update cycle (an update cycle
occurs when the RTC changes its stored values to reflect current time). The CSL incorporates
these methods and thus a CSL programmer need only be concerned with the provided
interface, and not specific RTC access methods.

2.2.1 Using ANSI C Style Time Functions

The RTC module provides ANSI C style time functions in addition to the standard CSL style
functions. These interfaces will benefit a C programmer familiar with the time.h header who
wishes to either maintain continuity with existing C code, or make use of the rich time-related
string manipulation provided in the header. Table 5 lists each of the ANSI C style time functions.
Notice that each function is identical to its C counterpart, except for the addition of the RTC
module prefix.

Table 5. RTC ANSI C Style Calls

RTC ANSI C Support
Function Name …is used to

RTC_asctime Convert a time to an ASCII string

RTC_ctime Convert calendar time to local time

RTC_difftime Return the difference between two calendar times

RTC_gmtime Convert calendar time to GMT

RTC_localtime Convert calendar time to local time

RTC_mktime Convert local time to calendar time

RTC_strftime Format a time into a character string

RTC_time Return the current RTC time and date

These functions maintain a similar interface, data structure, and functionality to their ANSI C
counterparts.

For additional documentation on these functions, please refer to the ANSI C equivalent routines
in the TMS320C55x Optimizing C Compiler User’s Guide (SPRU281). More information about
the ANSI C routines can be found in The C Programming Language [5].

2.3 Configuring Real Time Clock Interrupts

The Real Time Clock can provide various interrupts to the CPU in addition to keeping time.
Three interrupt sources exist in the RTC:

• Alarm Interrupt

• Periodic Interrupt

• Update Cycle Interrupt

SPRA384A

8 Programming the TMS320VC5509 RTC Peripheral

Each of the three interrupt sources share the main RTC interrupt line. Any enabled source can
trigger the RTC interrupt. The alarm interrupt is based on the alarm time set in the RTC. It can be
set to occur with a period of one second to one week. The periodic interrupt does not depend on
the set time or alarm, and can occur with periods from one minute to 122 �s. Note that while the
alarm interrupt can be set to nearly continuous values because it is based on the time format, the
periodic interrupt can be set to one of 16 pre-determined values inside its period range.

The update cycle interrupt occurs once each second as the RTC updates its stored time.

The CSL simplifies the process of interrupt and interrupt service routine (ISR) configuration.
Table 6 summarizes the CSL data structures and support functions used with RTC interrupts.

Table 6. CSL Structures and Functions Used With RTC Interrupts

CSL Data Structure
or Function Name …is used to

RTC_IsrAddr Data structure, to hold ISR names

RTC_eventDisable() Disable an interrupt source on the main RTC interrupt

RTC_eventEnable() Enable an interrupt source on the main RTC interrupt

RTC_setCallback() Bind ISR names to the CSL interrupt handler

RTC_setPeriodicInterval() Set the interval of the periodic interrupt

The CSL function RTC_setCallback() is used to associate an interrupt service routine with each
RTC interrupt source (periodic, alarm, and update). The same binding between ISR and RTC
interrupt can also be accomplished with the HWI module in DSP/BIOS. Due to the underlying
method of implementation of each, it is important to choose one method for binding RTC
interrupts to ISRs for the entire project.

Two solutions for interrupt management are presented in sections 2.3.1 and 2.3.2, to allow
maximum flexibility for code:

• Using the CSL RTC Dispatcher

• Using the DSP/BIOS HWI module without the CSL RTC Dispatcher

2.3.1 Interrupts Using the CSL RTC Dispatcher

The CSL function RTC_setCallback() supports interrupt service routines when the HWI module
is not used. Configuration of the RTC Dispatcher is a two-step process:

1. Create an ISR for each active RTC interrupt source

2. Bind the individual ISRs to the RTC Dispatcher

The RTC data structure RTC_IsrAddr is used to hold the names of each specific ISR, and the
function RTC_setCallback() binds the function names in the structure to the interrupt.
RTC_setCallback will configure the RTC dispatcher to direct an incoming interrupt to the correct
ISR automatically. Figure 6 shows an example using this function to configure RTC ISRs.

Note that the individual ISRs (myPeriodicIsr, etc.) should not be declared with the interrupt
keyword when they are used with the RTC dispatcher.

SPRA384A

9 Programming the TMS320VC5509 RTC Peripheral

// Declare and initialize an RTC interrupt callback function structure

RTC_IsrAddr addr = {
 myPeriodicIsr, //function name of desired Period Interrupt ISR
 myAlarmIsr, //function name of desired Alarm Interrupt ISR
 myUpdateIsr //function name of desired Update Interrupt ISR
};

// Bind address of each interrupt service routine for RTC interrupts
RTC_setCallback(&addr);

Figure 6. Using RTC_setCallback() to Bind ISR Functions

2.3.2 Interrupts Using DSP/BIOS Module Without the CSL RTC Dispatcher

A program that binds the RTC interrupt using the HWI module should not also use the CSL RTC
interrupt configuration objects. Instead, create an ISR and associate it with the RTC hardware
interrupt signal in the HWI manager. The DSP/BIOS HWI manager will configure the system to
run the specified ISR when the interrupt signal occurs.

Because most systems will only use one of the three RTC sources to trigger an interrupt, it is not
recommended to decode the RTC interrupt signal to determine which of the three potential
sources was the trigger. Instead, use the HWI manager to call the ISR directly. Figure 7 shows
an example of the HWI manager configured to call the ISR.

Figure 7. HWI Manager Setup for RTC

SPRA384A

10 Programming the TMS320VC5509 RTC Peripheral

3 Examples: Programming the Real Time Clock

The accompanying zip file contains four separate example projects. These projects show how to
program the RTC using the:

• Example 1: DSP/BIOS HWI Module
• Example 2: CSL RTC Module
• Example 3: CSL RTC Interrupt Dispatcher
• Example 4: CSL RTC ANSI C Style Routines

Complete source code for each example is provided in the archive file that accompanies this
report. (If you do not have the archive file, it is available on the TI website at http://www.ti.com).

The source code for Example 3: CSL RTC Interrupt Dispatcher is shown in Figure 8. The code is
annotated with text callouts to describe the functionality step by step. The example shows how
to use configure an ISR to service an RTC interrupt using RTC_setCallback() and the
associated data structures.

#include <csl.h>
#include <csl_rtc.h>
#include <stdio.h>

void myPeriodicIsr(void);
void myUpdateIsr(void);
extern Uint32 myVec();

volatile Uint16 rtc_cnt = 0;
volatile Uint16 counterPer = 0, counterUp = 0, sec;
int min0, min1 = 0;
int stop = 0;
int old_intm;
int eventId;

RTC_Date myDate = {
 0x02, /* Year */
 0x02, /* Month */
 0x28, /* Daym */
 0x05 /* Dayw */
};

RTC_Time myTime = {
 0x1, /* Hour */
 0x4, /* Minutes */
 0x59, /* Seconds */
};

RTC_IsrAddr addr = {
 myPeriodicIsr,
 NULL,
 myUpdateIsr
};

main()
{
 CSL_init();

Include CSL headers.

Declare and initialize CSL RTC date
and time data structures.

Declare and initialize CSL RTC
interrupt service routines for the
periodic and update interrupts
(alarm interrupt is unused).

Figure 8. Example 3: CSL RTC Interrupt Dispatcher Code

SPRA384A

11 Programming the TMS320VC5509 RTC Peripheral

 RTC_setTime(&myTime);
 RTC_setDate(&myDate);

 old_intm = IRQ_globalDisable();
 IRQ_setVecs((Uint32)myVec);

 /* Clear any pending RTC interrupts */
 eventId = RTC_getEventId();
 IRQ_clear(eventId);

 RTC_setCallback(&addr);

 /*
 RTC_setPeriodicInterval(RTC_RATE_500ms);

 /* Enable all maskable interrupts */
 IRQ_globalEnable();

 RTC_start();

 sec = RTC_RGET(RTCSEC);

 while (sec != 0) {
 sec = RTC_RGET(RTCSEC);
 }

 RTC_eventEnable(RTC_EVT_PERIODIC);
 RTC_eventEnable(RTC_EVT_UPDATE);

 min0 = RTC_RGET(RTCMIN);

 while (!stop)
 {
 while (RTC_FGET(RTCPINTR,UIP) != 0);
 min1 = RTC_RGET(RTCMIN);

 if ((min1 – min0) >= 1)
 {
 RTC_eventDisable(RTC_EVT_PERIODIC);
 RTC_eventDisable(RTC_EVT_UPDATE);
 stop = 1;
 }

 }

 printf(”\nRTC – testing of update and periodic interrupts – successful\n”);

 RTC_stop();
}

Set interrupt table to be the one
defined in file vectors.asm.

Place interrupt service routine
address at associated vector
location.

Set the RTC periodic interval.

Start RTC.

Wait until seconds equals
zero.

Enable alarm interrupt to start
one second after clock is started.

Allow interrupts to occur for
one minute.

Disable periodic and update
interrupts when a minute has
passed.

Stop STRC.

Configure RTC time and date.

Figure 8. Example 3: CSL RTC Interrupt Dispatcher Code (Continued)

SPRA384A

12 Programming the TMS320VC5509 RTC Peripheral

void myPeriodicIsr()
{

 ++counterPer;

 printf(”\tPeriodic interrupt at: %x::%x::%x\n”,
 RTC_FGET(RTCHOUR, HR), min1, RTC_RGET(RTCSEC));
}

void myUpdateIsr()
{

 ++counterUp;
 sec = RTC_RGET(RTCSEC);

 printf(”Update interrupt at: %x::%x::%x\n”,
 RTC_FGET(RTCHOUR, HR), min1, sec);

}

Figure 8. Example 3: CSL RTC Interrupt Dispatcher Code (Continued)

4 References
1. TMS320C55x DSP Peripherals Reference Guide (SPRU317).

2. TMS320 DSP/BIOS User’s Guide (SPRU423).

3. TMS320C55x Chip Support Library API Reference Guide (SPRU433).

4. TMS320C55x Optimizing C Compiler User’s Guide (SPRU281).

5. The C Programming Language, 2nd Edition, Brian W. Kernighan and Dennis M. Ritchie.

6. TMS320VC5509 Fixed-Point DSP (SPRS163).

SPRA384A

13 Programming the TMS320VC5509 RTC Peripheral

Appendix A Working With the Spectrum Digital C5509 EVM

Spectrum Digital (www.spectrumdigital.com) provides a hardware evaluation module (EVM) to
work with the C5509 DSP. In order to use the RTC peripheral and run the examples included
with this application report, the RTC input clock (RTCLK) source needs to be configured.

Jumper JP10 is used to select the source for the RTC input clock. The clock can be driven by
either the timer output pin, TOUT, or the onboard crystal. When position 1-2 is selected, the
RTCLK is driven by TOUT. When the 2-3 position is used, the real-time clock is driven by a
32.768K-hertz crystal. For the example programs in this application report, JP10 should be in
position 2-3. Note that the square solder profile on the board’s underside marks pin 1.
Table A–1 shows the positions and their functions.

Table A–1. JP10 RTC Clock Input Source

JP10 Position Function

1–2 TOUT Selected as RTCLK Source

2–3 32.768K MHz Selected as RTCLK Source

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2002, Texas Instruments Incorporated

