Extended Precision IIR Filter Design on
the TMS320C54x DSP

Application on an Audio Equalizer

Literature Number: SPRA454
Texas Instruments Europe
June 1998

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their
products or to discontinue any product or service without notice, and advise customers to
obtain the latest version of relevant information to verify, before placing orders, that
information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific
testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE
FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL
APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS
UNDERSTOOD TO BE FULLY AT THE CUSTOMER'’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not
warrant or represent that any license, either express or implied, is granted under any patent
right, copyright, mask work right, or other intellectual property right of Tl covering or relating
to any combination, machine, or process in which such semiconductor products or services
might be or are used. TI's publication of information regarding any third party’s products or
services does not constitute TI's approval, warranty or endorsement thereof.

Copyright 0 1998, Texas Instruments Incorporated

Contents

Contents

B 11 0T ¥4 1] o EO PP 1
. Extended Precision MUltIpliCatioN.............ooevuiiiiiiii e 1
2.1 The 32x32-bit MUItIPCAtIONoiiiiiiii e 3

2.2 The 32x16-bit Multiplicationccoooei i 3

2.3 ‘Ch4x instruction set to handle extended precision computation 4

B 1 111 €SP 4
00 R B 11 1= od il o] 1 0 N PSP 5
3.2 DIFECE FOIM Il 6
3.3 CasCade FOIMcooiiiiiiiiiiii 7

. Implementation of Extended Precision multiplication on ‘C54Xcccceevveeevviennnns 8
4.1 Extended Precision 32x32-bit multiplicationcoiiiiiiiiiiiien 8

4.2 Extended Precision 32x16-bit or 16x32-bit multiplication 9

. Implementations of IIR filters in extended precision on ‘C54X.........ccccccceeieeeeeennn. 10
5.1 Implementation of the 32x16-bit Direct FOrm I..............ovviiiiiiiierieeeeiiiinnn, 10
511 Circular BUfer......coo 10

5.1.2 MemOory OrganiZation.............ueeieeeeeeeeeeeriiieee e e e e e e eeeeenne s 10

5.1.3 Program organization............ccceeeeeeerieeeeiiiiiinieeeeeeeeeeneiinneens 11

5.14 Program explanationscooeieeiiiiieiiiiiiine e 12

5.1.5 PerformancCes........cccccoiiiiiiiiii 13

5.2 Implementation of the 32x16-bit Direct Form Il.............cccceeeiiiiieiiieeiiiiiinnn, 13
5.21 MemOory OrganiZatioN............uuuuieeeeeeeeeeeiiiiiaee e e e eeeeen s 15

5.2.2 Program organization...........cccooeeeeeeieeeeiiiiiniie e 16

5.2.3 Program explanationceeeieeeiiiiieeiiiiiee e 16

5.24 PerformManCesS........oov i 17

5.3 Implementation of the 32x16-bit Cascade FOrm..........ccccvvviiiiiiieeeeveennnnns 17
5.3.1 MemOory OrganiZation.............ueeiieeeeeeeeeeeriiiiiee e e e e e eeeeeaenne s 18

5.3.2 Program organization............ccoooeeeeiiieiiiiiiinne e 20

5.3.3 Atypical application: an equalizer...........ccccceevveeeeveeeeeinnnnnnnn. 21

5.3.4 PerformancCes........cccccoiiiiiiiii 22

5.4 Implementation of the 32x32-bit Direct FOrm l...........coouviiiiiiiiiiiiiiiiiiiinnn, 22
54.1 Memory Organization.............ccceeeeeeeeeeeeeiiiiiieeeeeeeeeeeinanns 22

5.4.2 RESOUICES ... e 23

5.4.3 PerfOrmManCeS.......coov i 23

5.5 Implementation of the 32x32-bit Direct Form ll.............ccceeiiiiiieiiieeeiiiinn, 24

Extended Precision IIR Filter Design on the TMS320C54x DSP i

Contents

551 Memory Organization..............cooeeeeeeeeeeeeiiiiiieee e eeeeeeiiies 25

5.5.2 RESOUICES ... e 25

553 Performances.........cccccooiiiiiiii 25

5.6 Implementation of the 32x32-bit Cascade FOrm..........cccccviiiieieeeeeveeninnnns 25

5.6.1 Memory Organization..............cooeeeeeeeeeeeiiiiiiee e 26

5.6.2 RESOUICES ... i 28

5.6.3 PerformancCes.........cccccooiiiiiiiii 28

5.7 Implementation of the 16x32-bit Direct FOrm l...........coouviiiiiiiiiiiiiiiiiiinnn, 28

5.7.1 Memory Organization and reSOUICEScooeeeeveeeeevirnnineeennn 29

5.7.2 Program explanationcccooveeeiiiiieiiiiiei e 29

5.7.3 PerfOrmManCeS.......coov i 30

RETEIEINCES ...ttt e e e e e e e e e e ettt e e e e e e e e eeeanenes 31
Appendix A: The implementation of an IIR 32x16-bit Direct Form | on ‘C54x............ 32
Appendix B: The implementation of an IIR 32x16-bit Direct Form Il on ‘C54x........... 35
Appendix C: Implementation of an 32x16-bit Equalizer on ‘C54Xcccceevvieeiiiinnnnnns 39
Appendix D: Implementation of an IR 32x32-bit Direct Form | on ‘C54x................... 43
Appendix E: Implementation of an 32x32-bit IR Direct Form Il on ‘C54x.................. 46
Appendix F: Implementation of an 32x32-bit Equalizer on ‘C54Xccccovvveeeiiiiennnnns 50
Appendix G: Implementation of the 16x32-bit Direct Form | on ‘C54X..............cc....... 55

Extended Precision IIR Filter Design on the TMS320C54x DSP iv

Contents

List of Figures

Figure 1: The ‘C54X aCCUMUIALOIScoeviiiiiiiie e e e e e e 2
Figure 2: Multiplication 32X32-Ditccoeiiiiiiiiie e e 3
Figure 3: Multiplication 32X16-Ditcceeuuiiiiiir e e e e e e 3
FIQUIE 4: DIr€CE FOIM | ..ot e e e e e e e e e e e et e e e e e e e e e e eesannnnes 5
FIQUIE 5: DIr€Ct FOIMM 1l ..ot e e e e e e et e e e e e e e e e e eeennnnnas 6
FIgure 6: CasCade FOMMoouiiiiii e e et e e e e e e e e e et s e e e e e e e e eeeasnnnnas 7
Figure 7: Memory organization for the Direct Form | implementationc....... 10
Figure 8: Data circular buffer Update............ceiii i 11
Figure 9: Memory OrganiZationcuuuuuuiiieee e eeeeeiiiee s e e e e e e e e e e e e e e e eaean e eees 15
Figure 10: Data circular buffer Update..........ccooeeeiiiiieiiiiii e 15
Figure 11: Optimized IR CasCade FOIM.......ccouieeiiiiieieiiiiie e ee et e e e e e e 18
Figure 12: Canonical DIF€Ct FOIMcooiiiiiiiiiiiiie e e e e e e e e e e e e e eeeaneees 18
Figure 13: Memory organization of the Cascade FOrmccccvvvviiiiiieieeceeveice e, 19
Figure 14: Data circular buffer Update.........ccooeeeeiiiiiiiiiiiii e 20
Figure 15: Memory organization of the 32x32-bit Direct FOrmccoooeevvvviviiiiiinneeenn, 23
Figure 16: Memory organization of the 32x32-bit Direct FOrm Ilccovvvviiiiiinneeenn. 25
Figure 17: Memory organization of the 32x32-bit Cascade FOrmccccvvvvvvvcinneeennn. 27
Figure 18: Memory organization of the 16x32-bit Direct FOrmccooeeeviviiiiiiiineeeenn, 29

Extended Precision IIR Filter Design on the TMS320C54x DSP v

SPRA454

Extended Precision IIR Filter Design on the TMS320C54x DSP

ABSTRACT
This paper presents methods of achieving a good compromise in accuracy
when carrying out extended-precision multiplications for the implementation
of IR (Infinite Impulse Response) filters.

The ‘C54x devices are 16-bit fixed-point processors and have several
features that help to perform extended-precision computation efficiently.

1. Introduction

An useful convention for fixed-point digital signal processing is to interpret signal samples
as integers, i.e. in QO format, and to represent coefficients in sub-unitary format, that is to
allow only coefficient values less than unity, thus reducing the overflow problems [3].
Generally all coefficients are represented in binary format with the implied binary point to

the left of the MSB (signed coefficients from -1 to (1- 2"°) using Q15 format).

Firstly, extended-precision 16x32-bit (or 32x16-bit) and 32x32-bit multiplications are
explained and an implementation on the ‘C54x is shown. Then, after a brief theory of IR
filters, implementations of the following different forms of IIR filters are described:

» Direct Form | in extended precision 32x16-bit.
» Direct Form Il in extended precision 32x16-bit.
» Cascade Form in extended precision 32x16-bit.
» Direct Form | in extended precision 32x32-bit.
» Direct Form Il in extended precision 32x32-bit.
» Cascade Form in extended precision 32x32-bit.
» Direct Form | in extended precision 16x32-bit.

2. Extended Precision Multiplication

The ‘C54x CPU has a 17x17-bit hardware multiplier coupled to a 40-bit dedicated adder.
The advantage of this multiplier is that it can multiply two unsigned numbers or two
signed numbers as well as signed/unsigned numbers [4]. The ‘C54x has two
accumulators called A and B which can be configured as the destination registers for the
multiplier/adder unit.

Each accumulator is split into three parts, as shown in Figure 1.

Extended Precision IIR Filter Design on the TMS320C54x DSP 1

SPRA454

39-32 31-16 15-0
G L H
Guard bits high-order bits low-order bits

Figure 1: The ‘C54x accumulators

The guard bits are used as headmargin for computations allowing some overflow in
iterative calculations.

The fractional mode of the ‘C54x allows the multiplier to shift left by one bit to
compensate for the extra sign bit generated by multiplying two signed 16-bit numbers in
fractional mode (when the FRCT bit of the ST1 register is set the fractional mode is
selected).
« For signed multiplication, the 16-bit memory operands are assumed to be 17-bit
words with sign extension.
« For unsigned multiplication, a zero is added to the MSB (the 17" bit) in each operand.
« For signed/unsigned multiplication, one operand is signed extended, while the other
is extended with a zero in the MSB.

The SXM bit of the register ST1 controls the signed/unsigned extension of the data
operands (when the SXM bit is set the signed extension mode is selected) [4].

The ‘C54x architecture is built around eight major 16-bit buses (four program/data buses
and four address buses). The ‘C54x can generate up to two data memory addresses per
cycle.

Other advantages of the C54x multiplier/adder unit are its several input sources and its
dedicated zero detector, its rounder and its overflow/saturation logic.

The possible input sources to the multiplier for the first operand are:
« the T register,
» a data-memory operand from data bus DB,
« accumulator A (bits 32-16).

The possible input sources to the multiplier for the second operand are:
« a data-memory operand from data bus DB,
» a data-memory operand from data bus CB,
« a program-memory operand from program bus PB,
« accumulator A (bits 32-16).

Extended Precision IIR Filter Design on the TMS320C54x DSP 2

SPRA454

2.1 The 32x32-bit multiplication
The following figure shows how two 32-bit numbers can be multiplied to obtain a 64-bit

result.
H1 | L1
X H2 | L2
12 x L1

L2 x H1

L1 x H2

+| HL x H2

R3 R2 R1 RO

Figure 2: Multiplication 32x32-bit

The first multiplication L1 x L2 is an unsigned/unsigned multiplication. The second and
third ones, L2 x H1 and L1 x H2, are signed/unsigned multiplications. The last, H1xH2, is

a signed/signed multiplication.

2.2 The 32x16-bit multiplication
The following figure shows how a 32-bit number and a 16-bit number can be multiplied to

obtain a 48-bit result.

H1 | L1
< W
L1 X W

R2 R1 RO

Figure 3: Multiplication 32x16-bit

Extended Precision IIR Filter Design on the TMS320C54x DSP

SPRA454

The first multiplication L1xW is a signed/unsigned multiplication, whereas the second one
H1xW is a signed/signed multiplication.

2.3 ‘Ch4x instruction set to handle extended precision computation

The following instructions lead to extended precision multiplications being performed
efficiently.

« MACSU

« MAC

« MPYU

* MPY

« LD

e DLD

e DST

* Rounding mode

The MPYU instruction multiplies two unsigned 16-bit numbers and places the 32-bit result
in one of the two accumulators in a single cycle whereas the MACSU instruction permits
multiplication of a signed 16-bit number by an unsigned 16-bit number and adds the
result to the source accumulator in a single cycle [5]. The LD instruction may be used to
perform a right-shift of the accumulator by 16 bits in a single cycle in order to obtain a 16-
bit result [5].

The two internal data buses, CB and DB, allow some instructions to handle 32-bit
operands in a single cycle like DLD and DST instructions. The DLD instruction enable
loading of a long-word into a specified accumulator. With the DST instruction a specified
accumulator can be stored in memory as a long-word.

Alternatively, the rounding method consists of adding 8000h to the 32-bit result of the
accumulator before shifting the lower 16 bits [3]. When the suffix R is included with the
special multiply instructions MAC (multiplication/accumulation), or MAS
(multiply/subtract), or MPY, or load operation LD, the rounding operation is executed [5].

3. lIR Filters
The goal is to use extended-precision multiplications to implement IIR filters.

A filter is called IIR if its z-transform has poles. The underlying problem is that it can be
unstable. The IIR filters have an impulse response that bends towards zero if the filter is
stable and towards a different value if not. The general expression for its z-transform is:

o _ &
X(2 l+zb|2_i

az'
G(2 =

and the corresponding difference equation is:

Extended Precision IIR Filter Design on the TMS320C54x DSP 4

SPRA454

MM=-Y By)+ axn) ®

3.1 Direct Form |

The direct graphic representation of the difference equation (1) is called the Direct Form |
[1]. This structure is depicted in Figure 4.

x(n) D5
A
-1
Z ay
e
=1
Z a
—————————
val ;1
ay T T —y

Figure 4: Direct Form |

Note that the left half of the figure implements the numerator (zeros) of G(z), while the
right half implements the denominator (poles) of G(z).

Extended Precision IIR Filter Design on the TMS320C54x DSP 5

SPRA454

3.2 Direct Form Il

When the order of the numerator and the order of the denominator are the same (N=M),

the delay lines can be combined in a single one. This structure, called the Direct Form Il
[1], is shown in Figure 5.

x(n) d(n) a,

»(¥) 20)
1
_ Z
_h & JT;
1
_bz Z a,
+ ;’7-9
v

(o Lo]

Figure 5: Direct Form Il

> y(n)

A

A

The two forms require the same number of arithmetic operations, but the form Il can
require as few as half the number of memory registers for storing the past values of the
inputs and outputs. Although Direct Form | and Direct Form Il have the same z-transform
G(z),the corresponding difference equations are not the same. The difference equation of
the Form Il structure is:

d(n)=-;bKd(n- K+ X0

y(n):gakd(n_ K

Other structures or other sets of equations can be found for the implementation of IIR
filters by manipulating the z-transform G(z).

Extended Precision IIR Filter Design on the TMS320C54x DSP 6

SPRA454

3.3 Cascade Form

The cascade form is obtained by factoring the numerator and denominator of the
z-transform into second order polynomials to give the following z-transform:

(N+D/2 5 4 Z—l + 2—2
G(2)=C |—| o al_l %_2
1=1 1+b|12 + bz z

(2)

When N is odd or when N # M, some of the coefficients in (2) will be equal to zero. This
form is a serial structure which can be built as a cascade of second order filters
implemented in any desirable form. An example with N=M=4 where the second-order
filters are implemented in Direct Form Il is shown in Figure 6.

x(n) - din) a, y1(n) d2(n) a,, @ Y
‘—1 ‘—1
-, L& &, £ ay |
« , i g®
z z
1, a -, e

Figure 6: Cascade Form

Another form can be used to implement the second order filters involved in the cascade
form [1]. It will be seen in paragraph 5.3 as a cascade form using a modified Direct Form
| to implement the second order filters.

Extended Precision IIR Filter Design on the TMS320C54x DSP 7

SPRA454

4. Implementation of Extended Precision multiplication on ‘C54x

Our aim is to use the extended precision multiplication for the implementation of IIR
filters. Thus, recursive calculations have to be performed. If two n-bit numbers are
multiplied, 2n bits are required to store the result. It is possible to use two instructions to
store both halves of the result in consecutive memory locations, but this doubles the time
taken to store the output and the amount of memory required. It also doubles the time
required to retrieve the value for use in subsequent calculations. Because of this
overhead it is usual to store only the most significant bits and truncate the result. There is
also an option to round the result before truncating it. In this paragraph the
implementation of different multiplications in extended precision is described and the
error due to the truncation is evaluated.

4.1 Extended Precision 32x32-bit multiplication

In order to have full accuracy it is necessary to preserve the 64-bit result. However, if we
want to use the result recursively as an input in later calculations, it is useful to keep only
the most significant 32 bits. For example the 32 LSB corresponding to L1 x L2 can be
neglected and the result of the addition L1xH2 + L2xH1 can be truncated to keep only the
16 MSB (bits 16-31) before being added to H1xH2.

The implementation of this extended precision multiplication on a ‘C54x can be
performed by the following assembly instructions:

MACSU *AR1-*AR2+,A y A= A+(H2*L1)<<1
MACSU *AR2-*ARL1A ;A= A+(L2*H1)<<1
LD A,-16,A ; A=A>>16

MAC *AR1-*AR2,A ; A = A+(H1*H2)

Initially, the auxiliary register AR1 points to the low 16-bit of the first 32-bit word and the
auxiliary register AR2 points to the high 16-bit of the second 32-bit word. Note the use of
MACSUand LD instructions. The final 32-bit result is in the accumulator A.

Truncation noise

The accuracy error introduced in such a multiplication can be evaluated. We introduce an
error of 1 LSB for the loss of the intermediate product L1xL2 and another 1 LSB by
truncating the 16 LSB of the addition L1xH2 + L2xH1 in the worst case [6] [7]. On

average, we introduce an error of 1 LSB with a mean squareo = % where q is the step

2 2

of quantification or a variance V:UZ:%Where q=2". This variance of %

corresponds to the addition of the variance V, =g,> for the loss of the intermediate

product L1xL2 and the variance V, = g for the truncation of the 16 LSB of the addition

L1xH2 + L2xH. Each of them corresponds to an error of one LSB in the worst case and
21 2 2

2 1
q 2 q 2 _ 9 q
we have V, =V, = x“dx—=—[[xd{° =——=. Therefore we have V=V, +V,=—. In
1 2 2'([2 _!)- 12 1 2 6

Extended Precision IIR Filter Design on the TMS320C54x DSP 8

SPRA454

order to reduce the error of accuracy it is possible to do a rounding instead of discarding
the 16 LSB of the intermediate product L1 x L2. In this case, an error of half a LSB is
introduced in the worst case, rather than one LSB, with an average of zero [6] [7].
However, this would take one operation more.

4.2 Extended Precision 32x16-bit or 16x32-bit multiplication

The result of the multiplication L1xW is truncated to keep only the 16 MSB. The
implementation of this extended-precision multiplication on a ‘C54x can be performed as
follow:

MACSU *AR1+*AR2,A y A= A+(W*L1)<<1
LD A,-16,A ; A=A>>16
MAC *AR1-*AR2,A ; A = A+(W*H1)

Initially, AR1 points to the LSB of the 32-bit word. Note the use of MACSUand LD
instructions. At the end, the final 32-bit result is present in accumulator A.

Truncation noise

The error E due to the truncation of the L1xW1 result is equal to one LSB (q=2"%) in the

- 1 q_
worst case. We have 0< E <. On average we introduce an error of > LSB (2 =27)

) I q
with a standard deviation o0 = — [6].
2 [6]

Extended Precision IIR Filter Design on the TMS320C54x DSP 9

SPRA454

5. Implementations of IIR filters in extended precision on ‘C54x

Efficient implementations of the Direct Form |, Direct Form Il and Cascade Form in
extended precision 32x16-bit and 32x32-bit are explained in this section.

Several buffers have to be used and must be multiplied in the correct order. Additionally,
although the coefficient values are static, the input data changes every sample period,
e.g. the x(n) value for one sampling period becomes x(n-1)in the next one, then x(n-2), ...,
until it simply drops off the end of the delay line.

The most efficient method for handling these data tables is to load all the input values
into a circular buffer [2].

5.1 Implementation of the 32x16-bit Direct Form |

In this paragraph, an example of a second order IIR filter in a Direct Form 1 is given, with
coefficients in a Q15 format and one circular buffer for handling the data samples. The
ARO auxiliary register is used to carry out an indexed circular addressing mode.

5.1.1 Circular buffer

A circular buffer requires:

» the location of the first (lowest) address. A circular buffer which contains R 16-bit
words must start on an address whose N LSB are 0, where N is the smallest integer

that satisfies 2" > R [4],

* an initialization of the circular-buffer size register BK to specify the size of the circular
buffer. The value R must be loaded into BK [4].

5.1.2 Memory organization

coefficients buffer data circular buffer
low address
po>—> a2 P+—»| X(n-2)| 16 MSB
al x(n-2) | 16 LSB
a0 x(n-1) | 16 MSB
b2 x(n-1) | 16 LSB
bl x(n) | 16 MSB
x(n) | 16 LSB
y(n-2)
y(n-2)
y(n-1) \ 4
y(n-1) high address

Figure 7: Memory organization for the Direct Form | implementation

Extended Precision IIR Filter Design on the TMS320C54x DSP 10

SPRA454

The 32-bit values x(i) are stored in memory using two 16-bit words.

When the end of the buffer is reached (here, for example, when the pointer is on x(n)),
the pointer automatically goes back onto the beginning of the buffer (here x(n-2)) when it
is incremented.

Data circular buffer update is performed as follows:

» Data pointers need to be on x(n-2) before computation and then they are incremented
automatically to do the multiplication with the correct coefficients. The new sample is
placed at the 32-bit position x(n). At the end of the output calculation
yin=axn-2)+axXnd+ g&kh- pbynrd- b(yna, the pointer P1 is set on
x(n-2) MSB and the 32 bits of y(n) are stored instead of the old x(n-2).

» The pointers are incremented to point to the old x(n-1) which becomes x(n-2) and the
x(n) becomes x(n-1).

* A new x(n) will be stored instead of the old y(n-2) value, the old y(n-1) values
becoming y(n-2).

the circular buffer at the b@ning the circular buffer after the calculationy(h)

low address

pP1—»| x(n-2)| 16 MSB y(n) 16 MSB

X(n-2) | 16 LSB y(n) |16LSB

X(n-1) | 16 MSB p1—»| X(n-2)| 16 MSB

X(n-1)| 16 LSB X(n-2)| 16 LSB

x(n) | 16 MSB x(n-1) | 16 MSB

X(n) | 16 LSB x(n-1) | 16 LSB

y(n-2) x(n)

y(n-2) X(n)

y(n-1) y(n-2) v

n-1 _
y(n-1) y(n-2) high address

Figure 8: Data circular buffer update

where PLlis the pointer on the current data high.

The INDEX value, that is the content of the auxiliary register ARO (index of the pointers
P1), is set to 1 in order to jump in the data buffer from one 16-bit MSB to the LSB of the
same data.

5.1.3 Program organization

When processing a 32x16-bit multiplication, signed/unsigned multiplications are used
with a 16-bit right shift followed by a signed multiplication. In order to decrease the
number of cycles, we have grouped the signed/unsigned multiplications on one side
before performing the truncation (the right shift) and the signed multiplications on the
other side. This gives a better accuracy.

Extended Precision IIR Filter Design on the TMS320C54x DSP 11

SPRA454

The coefficients have been calculated so that the filter does not have a gain greater than
1. Nevertheless, an internal overflow may occur because of the accumulation of
multiplications. Therefore overflow is allowed (OVM = 0) in the guard bits of the
accumulator.

Six auxiliary registers are needed:

* AR2 (dual access) to point to the low internal values (16 bits). This is declared as
IIR_DATA_P_L.

* AR3 (dual access) to point to the high internal values (16 bits). This is declared as
IIR_DATA_P_H.

» AR4 (dual access) to point to the coefficients declared as plIR_COEFF.

* ARG to point to the inputs. This is declared as INBUF_P.

* ARTY to point to the outputs. This is declared as OUTBUF_P.

» and ARO to index the circular buffer. This is declared as IIR_INDEX.

The 32-bit output result is in Accumulator B before being stored.
The entry and output conditions are SXM=1 (sign extended mode), OVM=0 (to allow
overflow mode) and FRCT=1 (fractional mode) in the status register ST1 [4].

5.1.4 Program explanations

The full program is given in the appendix but some explanations are given here of the
main instructions that make up the IIR filter. These instructions are:

lirFilterBegin

STM #(K_FRAME_SIZE-1),BRC
RPTBD lirFilterLoopEnd-1

ST™M #(DataFilout),pOUTBUF ; Load output address memory
LD #0,A

MPY *plIR_DATA+0%,*plIR_COEFF,B ; A2*x(n-2)high

MACSU *plIR_DATA+0%,*plIR_COEFF+,A ; A2*X(n-2)low

MAC *plIR_DATA+0%,*plIR_COEFF,B ; Al*x(n-1)high

MACSU *plIR_DATA+0%,*plIR_COEFF+,A ; Al*x(n-1)low

MVDD *pINBUF+,*plIR_DATA+ ; Load x(n) (32 bits)
MVDD *pINBUF+,*plIR_DATA- ; in the data buffer

MAC *plIR_DATA+0%,*plIR_COEFF,B ; A0*Xx(n)high

MACSU *plIR_DATA+0%,*plIR_COEFF+,A ; AD*X(n)low

MAC *plIR_DATA+0%,*plIR_COEFF,B ; -B2*y(n-2)high

MACSU *plIR_DATA+0%,*plIR_COEFF+,A ; -B2*y(n-2)low

MAC *plIR_DATA+0%,*plIR_COEFF,B ; -B1*y(n-1)high

MACSU *plIR_DATA+0%,*plIR_COEFF,A ; -B1*y(n-1)low

ADD A,-16,B

MAR *+plIR_COEFF(-4) ; PIIR_COEFF points on A2
STH B,*plIR_DATA+0% ; Store y(n) in the buffer
STL B,*plIR_DATA+0%

DST B,*pOUTBUF+ ; Store y(n) in the output

lirFilterLoopEnd

Extended Precision IIR Filter Design on the TMS320C54x DSP 12

SPRA454

We use the RPTBD instruction that permits the repetition of a block of instructions by the
number of times specified by the memory-mapped block-repeat counter (BRC). BRC
must be loaded before the execution of this instruction and, if the loaded value is equal to
N, the block of instructions will be executed N+1 times. We load the counter BRC with the
total number of input samples. The RPTB instruction allows the parallel execution of one
2-word instruction or two 1-word instructions following the RPTBD instead of flushing the
pipeline. These instructions cannot belong to the repeated block of instructions. The
RPTBD instructions effectively execute in 2 cycles. To have a better accuracy, all the
multiplications and additions on the low data are realized before doing the 16-bit right
shift to keep only the 16 MSB.

In order to use the double load instruction DLD to load a 32-bit input sample in one of the
two accumulator and then two instructions STL and STH to store the input data into the
correct location in the data buffer, we have used two instructions MVDD. These
instructions make it possible to move the 32-bit input data directly into the data buffer
location (a dual data-memory operand is needed). We can use either a double store
instruction DST or the two instructions STL and STH to store the 32-bit result.

One instruction MAR *+plIR_COEFF(-4) is used to restart the pointer AR4 at the
beginning of the coefficients vector stored in memory.
5.1.5 Performances

The performance of the loop implementing the equations of a second order IIR filter in a
32x16-bit Direct Form 1 is, for each input sample:

Number of cycles Number of registers

19 cycles 15 words 18 words 5

5.2 Implementation of the 32x16-bit Direct Form I
For the implementation of this form, a circular buffer can be used for the coefficients.

In this paragraph an example of a second order IIR filter in a Direct Form Il is described
with coefficients in a Q15 format and using two circular buffers, one for handling the
internal data and the other for handling the coefficients. The ARO auxiliary register is
used for an indexed addressing mode.

For this form, in contrast to the Direct Form I, a 2-bit right shift is used to reduce the input
level thus preventing an eventual overflow of the internal data d(n) that have to be stored.
Before storing the output of the filter, a 2-bit left shift is applied to restore the output level.

For the implementation of the Direct Form I, the intermediate calculations are stored in an
accumulator. So, an eventual internal overflow due to the numerator computations of the
filter z-transform is allowed (8 guard bits in an accumulator). The calculations of the
denominator then bring down the output value. As the intermediate calculations are not

Extended Precision IIR Filter Design on the TMS320C54x DSP 13

SPRA454

stored in memory but are kept in an accumulator, there is no problem in terms of internal
overflow.

Extended Precision IIR Filter Design on the TMS320C54x DSP 14

SPRA454

5.2.1 Memory organization

The memory organization for the coefficients circular buffer and the internal data circular
buffer is as follows:

Coefficients circular buffer internal values circular buffer

low address b2 d(n-2) 16 MSB

bl d(n-2) | 16 LSB

a2 d(n-1) | 16 MSB

al d(n-1) | 16 LSB

a0 d(n) 16 MSB

M d(n) 16 LSB
high address

Figure 9: Memory organization
The 32-bit values d(i) are stored in memory using two 16-bit words for each.

Data circular buffer update is performed as follows:

» Data pointer points to d(n-2) before computation. Then
din=xnN-bhdn2)- bd 1 is calculated and stored in the data buffer after the
values of d(n-1)

« The data pointer is restarted on the d(n-2) and the output is calculated:
yin=adn-2)+adnr)+ agdh

» Finally the pointer is set on d(n-1) which becomes d(n-2), d(n) becomes d(n-1)and the
new d(n) calculated is stored instead the old d(n-2)value.

data buffer attime i data buffer at time i+1

low add
OWatEESS 51 5l dn-2) din) | 16-bit MSB

P2—» d(n-2) d(n) | 16-bitLSB
din-1) [p1—| d(n-2) | 16-bit MSB
d(n-1) P2 —»| d(n-2) | 16-bitLSB
d(n) d(n-1) | 16-bit MSB
d(n) d(n-1) | 16-bit LSB

high address

Figure 10: Data circular buffer update

where P1 is the pointer on the MSB of the current data and P2 is the pointer on the LSB
of the current data.

Extended Precision IIR Filter Design on the TMS320C54x DSP 15

SPRA454

The size of the data buffer is one 16-bit word larger than the coefficients buffer. One word
is not used at the end of the coefficients buffer so to jump over this word and go back to
the beginning of the buffer, the pointer is incremented by the INDEX value (index of the
circular buffers). This is set to 2 (ARO = 2) in order to jump within the data buffer from one
16 MSB word (or LSB) to the next one.

5.2.2 Program organization

As in the previous Direct Form I, to implement the Direct Form Il, seven auxiliary registers
are required as followed :

* AR2 (dual access) points to the low internal values (16 bits). This is declared as
IIR_DATA P_L.

* AR3 (dual access) points to the high internal values (16 bits). This is declared as
IIR_DATA_P_H.

* AR4 and AR5 (dual access) point to the coefficients. We need two registers, one for
the multiplication with the low 16-bit of the internal values and another one for the
multiplication with the high 16-bit of the internal values. These are declared as
IIR_COFF_P_1 and IIR_COFF_2.

* ARG points to the inputs. This is declared as INBUF_P.
* ARY7 points to the outputs. This is declared as OUTBUF_P.
« and ARO indexes the two circular buffers. This is declared as IIR_INDEX.

The 32-bit output result is in the Accumulator B before being stored.

The entry and output conditions are SXM=1 (sign extended mode), OVM=0 (to allow
overflow mode) and FRCT=1 (fractional mode) in the status register ST1.

5.2.3 Program explanation

The full program is given in the appendix. Nevertheless some explanation is given here of
the main instructions, which are:

RPTBD iir_filter_loop_end-1

ST™M #(d_filout),OUTBUF_P ; Load output address memory
DLD *INBUF_P+,A ; Load in A the new Q31 sample
LD A-2,A ; pre scaling
; feedback_path
LD #0,B
MACSU *IIR_DATA P_L+0%,*IIR_COFF P_1+B ; -b2*d(n-2)low
MACSU *IIR_DATA P_L+0%,*IIR_COFF P_1+B ; -b1*d(n-1)low
ADD B,-16,A ;X(n)+(-b2*d(n-2)low-b1*d(n-1)low)>>16

MAC *[IR_COFF_P_2+*IIR_DATA_P_H+0%,A ;-b2*d(n-2)high
MAC *[IR_COFF_P_2+*IIR_DATA_P_H+0%,A ;-b1*d(n-1)high
STL A*IIR_DATA P_L+0% ; Store the 32-bit result d(n)
STH A*IIR_DATA_P_H+0%
;forward_path
LD #0,B
MACSU *IIR_DATA P_L+0%,*IIR_COFF P _1+B ;a2*d(n-2)low
MACSU *IIR_DATA P_L+0%,*IIR_COFF P_1+B ;al*d(n-1)low

Extended Precision IIR Filter Design on the TMS320C54x DSP 16

SPRA454

MACSU *IIR_DATA_P_L+0%,*IIR_COFF_P_1+0%,B ,a0*d(n)low
LD B,-16,B ;a0*d(n)low+al*d(n-1)low+a2*d(n-2)low>>16

MAC *IIR_COFF_P_2+*IR_DATA_P_H+0%,B ;a2*d(n-2)high
MAC *IIR_COFF_P_2+*IR_DATA_P_H+0%,B :al*d(n-1)high
MAC *IIR_COFF_P_2+0%,*IR_DATA_P_H+0%,B ;a0*d(n)high

MAR *IIR_DATA_P_L+0% ; Update d(n-2)=d(n-1)
MAR *[IR_DATA_P_H+0% ; Update d(n-1)=d(n)
LD B,2,B ; post scaling

STH B,*OUTBUF_P+ ; Store the low and high
STL B,*OUTBUF_P+ ; part of the Q31 result

iir_filter_loop_end

As in the previous Direct Form I, the RPTBD instruction is used. The double load
instruction DLD is used to load the input data in one cycle. In this form, only one circular
buffer is used for handling coefficients. In this case, to restart the pointer on the beginning
of the coefficients buffer, in the last MAC and MACSU instructions the addresses in the
auxiliary registers AR4 and AR5 are incremented by the content of ARO using circular
addressing (*plIR_COFF_P_1+0% et *plIR_COFF_P_2+0%). This enables again of two
instructions STM to restart the pointers on the beginning of the coefficients buffer.

5.2.4 Performances

The performance of the loop implementing the equations of a second order IIR filter in a
32x16-bit Direct Form 1l is,for each input sample:

Number of cycles Number of registers

23 cycles 11 words 23 words 7

5.3 Implementation of the 32x16-bit Cascade Form

The advantage of an IIR cascade form of 2™ order structure is its modularity. This permits
an efficient implementation which limits overflow problems. The optimal cascade form
uses second-order filters implemented in a Direct Form | as illustrated in the following
figure:

YN-1(n) = (n) Sng

L

yN(n),= y(n)

x(n) = x0(n) 3o YoM =x1(n) g

Yy y

Z—l Z—l | Z—l Z—l

I aOl@ ;b01 2

4 A Y Y y /

=1 =1 =1 =1 =1

Z Z Z Z
Aoz -Dy;

Extended Precision IIR Filter Design on the TMS320C54x DSP 17

SPRA454

Figure 11: Optimized IIR Cascade Form

The alternating calculation of zeros and poles limits the overflow problem on the stored
data (i.e. xi(n-j)). Each second order IIR uses Direct Form I. The number of taps is
reduced by combining the poles of a second order IIR with the zeros of the next second
order lIR. This reduction gives us the following canonical direct form.

=))
;@—»G:-) --------- @)

\ 4

x(n)

Y \

— 1
L]I Z_ all b

Aoy 3 (%;bm (3 (IP-E eV
7] Fa

App -by; apo D12

Figure 12: Canonical Direct Form

The implementation of this form has low cost in terms of memory (because we use the
same delay line for the calculation of the poles of a filter and the zeroes of the next one)
and also in terms of number of cycles.

5.3.1 Memory organization

One circular buffer is used for handling the input data. The coefficients buffer can be a
circular one but the size of the input data buffer is larger than the coefficients buffer. To
restart the auxiliary register which points to the coefficients buffer, it will take us more
than the two instructions STM we have previously taken.

The ARO auxiliary register is used to adopt an indexed addressing mode. It is set to 2 in
order to jump within the data buffer from one 16 MSB word (or LSB) to another.

The 32-bit values x(i) are stored in memory using two 16-bit words. The size of the
coefficients buffer is equal to 5x Nbf where Nbf is the number of filters, each filter

needing 5 coefficients (a0, al, a2, -b1, and -B2The size of the circular buffer of input data
is equal to:

3x2x Nbf + 4

/

the three data x(n), x(n-1) and x(n-2) are
required (the output of a filter is the input
of the next one y;.1(n)=x(n))

Extended Precision IIR Filter Design on the TMS320C54x DSP 18

SPRA454

every sample is stored in
two 16-bit words.

for the 32-bit taps of the last filter yy(n-1) and yn(n-2) and
the output yn(n) can be stored instead of the old xg(n-2)
value.

The memory organization of the cascade form is given in Figure 13.

coefficients buffer data circular buffer
P3 & P4—> a02 p1 —»| x0(n-2) 16-bit MSB low address

a0l P2 —»| x0(n-2) 16-bit LSB

a00 x0(n-1) 16-bit MSB

-b02 x0(n-1) 16-bit LSB

-b01 x0(n) 16-bit MSB

. x0(n) 16-bit LSB

ai2 .

ail xi(n-2)

ail xi(n-2)

-bi2 xi(n-1)

-bil xi(n-1)

a(i+1)2 xi(n)

a(i+1)1 xi(n)

. Xi+1(n-2)

xi+1(n-2)

aN2

aN1 .

aNo XN (n)

-bN2 XN (n)

-bN1 yN(n-1)
yN(n-1)
YN(n-2) v
yN(n-2) high address

Figure 13: Memory organization of the Cascade Form

Data circular buffer update is implemented as follows:

» Data pointer needs to be on x0(n-2) before computation. Then the output
yin=axn-2)+axXnd)+ g&kh- pbyard- b(yna (for one input sample) is
calculated, and the pointers P1and P2 are set on xg(n-1) which becomes xy(n-2) and
the xo(n) becomes xy(n-1) and so on x(n) becomes x(n-1), ...

» the output yn(n) is stored instead of the old xg(n-2),

Extended Precision IIR Filter Design on the TMS320C54x DSP 19

SPRA454

« and a new sample x(n) will be stored instead of the old x;(n-2) value.
This update is shown in Figure 14.

at the beginning after the yN(n) calculation
p1 —»| x0(n-2) yN(n) 16-bit MSB low address
P2 — x0(n-2) yN(n) 16-bit LSB
x0(n-1) P1 —» x0(n-2) | 16-bitMSB
x0(n-1) P2 —{ x0(n-2) [16-bitLSB
x0(n) x0(n-1) | 16-bit M SB
x0(n) x0(n-1) | 16-bit LSB
xi(n-2) xi-1(n)
xi(n-2) xi-1(n)
xi(n-1) xi(n-2)
xi(n-1) xi(n-2)
xi(n) xi (n-1)
xi(n) xi(n-1)
Xi+1(n-2) xi (n)
Xi+1(n-2) xi(n)
xN(n) xN(n-1)
xN(n) xN(n-1)
yN(n-1) yN(n-2)
yN(n-1) yN (n-2)
yN (n-2) yN(n-2) v
yN(n-2) yN(n-2) high address

Figure 14: Data circular buffer update

where P1is the pointer on the current data high and P2is the pointer on the current data
low.

5.3.2 Program organization

In order to decrease the number of cycles and to increase the accuracy, we have
grouped the signed/unsigned multiplications in one side before carrying out the truncation
(the right 16-bit shift) and the signed multiplications in the other side.

This implies that there can be an overflow. The coefficients have been calculated such
that the filter does not have a gain greater than 1. However, if an overflow occurs before
d(n) has been stored, then the value that is updated in the data buffer is wrong. To
prevent an internal overflow, it is usually necessary to scale down the input signal. We
have scaled the input value by a 2-bit left shift. And then, the output value is scaled by a
2-bit right shift.

We need seven auxiliary registers as follows :
+ AR2 (dual data-memory addressing) to point to the low internal values (16 bits). This
is declared as pEQZ_DATA L .

Extended Precision IIR Filter Design on the TMS320C54x DSP 20

SPRA454

« AR3 (dual data-memory addressing) to point to the high internal values (16 bits). This
is declared as pEQZ_DATA_H.

 AR4 and AR5 (dual data-memory addressing) to point to the coefficients. We need
two registers, one for the multiplication with the low 16-bit of the internal values and
another one for the multiplication with the high 16-bit of the internal values. These are
declared as pEQZ_COFF_1 and peQZ_COFF_2.

» ARG to point to the inputs. This is declared as pINBUF-.

« ARTY to point to the outputs. This is declared as pOUTBUF.

* ARL1 to handle the number of input samples.

« And ARO to index the two circular buffers. This is declared aslIR_INDEX.

The 32-bit output result is in the Accumulator A before being stored.

The entry and output conditions are SXM=1 (sign extended mode), OVM=0 (to allow
overflow mode) and FRCT=1 (fractional mode) in the status register ST1.

AR2 and ARS3 are the previous pointers P1 and P2.

5.3.3 A typical application: an equalizer
An equalizer can be implemented as a cascade form of 2™ order IIR filters.

The equalizer program given in the appendix uses a cascade form of five 2™ order Direct
Form | IR filters using one circular buffer (for data). The coefficients are calculated to
give an equalization between -12dB and 12dB. To prevent an eventual overflow, a 2-bit
right shift is applied (a division by 4) to bring down the level between -24dB and 0dB
(because 20log(1/4) = -12dB) in order to allow a maximum gain of 4. Each filter is a pass-
band filter centered on one of the frequencies of interest. For the coefficients given in the
example in the appendix, these are: 100 Hz, 330 Hz, 1 kHz, 3.3 kHz and 10 kHz.

The coefficients of the filters may be greater than 1 in absolute value. To represent them
in a Q15 format, they must be divided by the correct power of two in order to bring them
back into the range [-1, (1-2™)]. The right shifts of the coefficients can be applied before
storing them in memory. Therefore, a left shift corresponding to the same power of two
must be performed before storing the output of each filter (we have used the instruction:
LD B,1,B).

We do all the multiplications and additions with the low data such that:
a2i*Xilow(n-2) + ali*Xilow(n-1) + a0i*Xilow(n) - b2i*Yilow(n-2) - bli*Yi(n-1) before making
the 16-bit right shift to keep only the 16 MSB.

Figure 11 shows a periodic structure which is implemented with a conditional loop. This
loop is improved thanks to the BANZD instruction.

Loop:
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF_1+,A ;-b2/2*ylow(n-2)
MACSU *pEQZ_DATA L, *pEQZ_COFF_1+,A ;-b1/2*ylow(n-1)
ADD A,-16,B
MAC *pEQZ_DATA_H+0%,*pEQZ_COFF_2+,B ;-b2/2*yhigh(n-2)

Extended Precision IIR Filter Design on the TMS320C54x DSP 21

SPRA454

MAC *pEQZ_DATA_H,*pEQZ_COFF 2+B --b1/2*yhigh(n-1)
MAR *pEQZ_DATA_L-0%
MAR *pEQZ_DATA_H-0%

MPY *pEQZ_DATA_H+0%,*pEQZ_COFF_2+,A ;a2/2*xhigh(n-2)next

MAC *pEQZ_DATA_H+0%,*pEQZ_COFF_2+,A ;al/2*xhigh(n-1)next

LD B,1,B

DST B,*pEQZ_DATA_H

MAC *pEQZ_DATA_H+0%,*pEQZ_COFF_2+,A ;a0/2*xhigh(n)next

LD AB

LD #0,A

MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF_1+,A ;a2/2*xlow(n-2)next

BANZD Loop,*EQZ_NB-

MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF_1+,A ;al/2*xlow(n-1)next

MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF_1+,A ;a0/2*xlow(n)next
EndLoop

The first part of the first filter and the last part of the last filter are realized respectively
before and after this conditional loop. The complete cascade structure is computed for
each input sample using a RPTBD instruction.

To restart the pointers at the beginning of the coefficients memory location we use the
two instructions MAR *+pEQZ_COFF_1(-24) and MAR *+pEQZ_COFF_2(-24).
5.3.4 Performances

The performance of the loop implementing the equations of an IIR filter in a 32x16-bit
Cascade Form of N 2™ order is, for each input sample:

Number of cycles Number of registers

25+18*N cycles 5*N + 6*N+4 words | 24+17*N words 8

5.4 Implementation of the 32x32-bit Direct Form |

The complete code for the implementation of the 32x32-bit Direct Form | is given in the
appendix. This code is similar to the one in the 32x16-bit implementation. Nevertheless, a
comparison between the two Direct Form | implementations 32x16-bit and 32x32-bit in
terms of memory organization and resources can be given in this paragraph.

5.4.1 Memory Organization
Both coefficients buffer and data buffer are circular because they have the same size.

Extended Precision IIR Filter Design on the TMS320C54x DSP 22

SPRA454

coefficients circular buffer data circular buffer
low address

P1— a2 |16MSB P3—»| x(n-2) | 16 MSB
P2— a2 16 LSB P4—» x(n-2) | 16 LSB

al 16 MSB X(n-1) | 16 MSB

al 16 LSB x(n-1) | 16 LSB

a0 16 MSB X(n) | 16 MSB

a0 16 LSB x(n) 16 LSB

-b2 y(n-2)

-b2 y(n-2)

-bl y(n-1) v

bl y(n-1) high address

Figure 15: Memory organization of the 32x32-bit Direct Form

As for the 32x16-bit implementation, each pointer is used to address a dual data-memory
operand because of the MACSU instruction which needs two dual data-memory
operands. But here, two pointers are used to handle the 32-bit coefficients. As there are
only four auxiliary registers that permit a dual data-memory addressing, the MVDD
instruction cannot be used to acquire the 32-bit input value x(n). This instruction needs
two dual data-memory operands. Thus, the instruction DLD is used to permit this
acquisition and then a DST instruction is used to store this data at the right location in the
memory buffer.

5.4.2 Resources

For this implementation, four pointers are required in order to improve the multiplications-
additions L1xH2 + H1xL2 for each coefficient and data that have to be multiplied
together. L1 is the 16-bit word corresponding to the coefficients LSB and H1 is the 16-bit
word corresponding to the coefficients MSB. Apart from the data, L2 and H2 are handled
the same way. All these multiplications-additions have to be performed before discarding
the 16 LSB of the result (with a 16-bit shift) to have better accuracy. The result of these
products with a 16-bit shift is stored in the accumulator B. Then, before starting the first
multiplication H1xH2, the pointers are returned to the beginning of the circular buffers.
These multiplications-accumulations H1xH2 are improved for each coefficient and data
with the pointers P1 and P3 which are indexed by the content of ARO. They are stored in
the accumulator A. The final result is A+B.

5.4.3 Performances

The performance of the loop implementing the equations of a 2™ order IIR filter in a
32x32-bit Direct Form 1 is, for each input sample:

Number of cycles RAM ROM Number of registers

‘ 24 cycles ‘ 20 words ‘ 22 words ‘ 7 ‘

Extended Precision IIR Filter Design on the TMS320C54x DSP 23

SPRA454

5.5 Implementation of the 32x32-bit Direct Form Il

The complete code for the implementation of the 32x32-bit Direct Form Il is given in the
appendix. A comparison between the two Direct Form Il implementations 32x16-bit and
32x32-bit in terms of memory organization and resources is given in this paragraph.

Extended Precision IIR Filter Design on the TMS320C54x DSP 24

SPRA454

5.5.1 Memory Organization

The two buffers, one for data one and one for coefficients, cannot be circular because
they do not have the same size. Thus, only the data buffer is circular.

coefficients buffer data internal circular buffer
low address

pP1—| -b2 16 MSB p2 —| d(n-2)| 16 MSB

-b2 |16LSB P3—> d(n-2)| 16 LSB

-b1 |16 MSB d(n-1) | 16 MSB

-b1 |16LSB d(n-1)| 16 LSB

a2 16 MSB din) | 16 MSB

a2 16 LSB din) | 16LSB

al

al

a0 \/

a0 high address

Figure 16: Memory organization of the 32x32-bit Direct Form Il

5.5.2 Resources

Three pointers are required for this implementation. The input is stored in the
accumulator A to be added to -b2xd(n-2)-b1xd(n-1) to calculate the value d(n). Thus, for
this form no special resource is required for handling the input value.

As with the 32x16-bit implementation, a 2-bit right shift on the input value is used to bring
down the input level, thus preventing an eventual overflow of the internal data d(n) that
would have to be stored. Before storing the output of the filter, a 2-bit left shift is applied
to restore the output level.

5.5.3 Performances

The performance of the loop implementing the equations of a 2™ order IIR filter in a
32x32-bit Direct Form 1l is, for each input sample:

Number of cycles RAM ROM Number of registers

‘ 29 cycles ‘ 16 words | 29 words | 6 ‘

5.6 Implementation of the 32x32-bit Cascade Form

The complete code for the implementation of the 32x32-bit Direct Form Il is given in the
appendix. A comparison between the two Cascade Form implementations 32x16-bit and
32x32-bit in terms of memory organization and resources is given in this paragraph.

Extended Precision IIR Filter Design on the TMS320C54x DSP 25

SPRA454

5.6.1 Memory Organization

The coefficients buffer and the data buffer have a different sizes and only the data buffer
is circular.

Extended Precision IIR Filter Design on the TMS320C54x DSP 26

SPRA454

coefficients buffer

P3 —

a02
a02
a0l
a0l
a00
a00
-b02
-b02
-b01
-b01

ai2
ai2
ail
ail
aio
aio
-bi2
-bi2
-bil
-bil

aN2
aN2
aN1
aN1
aNO
aNO
-bN2
-bN2
-bN1
-bN1

data circular buffer

P1 —»
P2 —»

x0(n-2)
x0(n-2)
x0(n-1)
x0(n-1)
x0(n)
x0(n)

xi(n-2)
xi(n-2)
xi(n-1)
xi(n-1)
xi(n)
xi(n)
Xi+1(n-2)
Xi+1(n-2)

XN(n)
XN(n)
yN(n-1)
yN(n-1)
yN(n-2)
yN(n-2)

16 MSB
16 LSB
16 MSB
16 LSB
16 MSB
16 LSB

low address

v
high address

Figure 17: Memory organization of the 32x32-bit Cascade Form

Extended Precision IIR Filter Design on the TMS320C54x DSP

27

SPRA454

5.6.2 Resources

In this implementation, unlike the 32x16-bit one, only three auxiliary registers are needed.
But, to ensure the correct multiplications-additions for each 32-bit coefficient and 32-bit
data, the two accumulators are used. For the input, a temporary buffer is then used.
When the two pointers P1 and P2 are in the correct, location the temporary buffer is
stored in this memory location with two instructions MVDD.

In contrast to the 32x16-bit implementation in the 32x32-bit implementation, the MAC
instructions have to be located after each second instruction MACSU to improve the
H1xH2 multiplications. Thus, for each set of data and coefficients, there are in the
program two instructions MACSU permitting the L1xH2 and the H1xL2 multiplications,
followed by a MAC instruction allowing the H1xH2 multiplication. Otherwise, three
pointers on the data buffer can be used. In this case several MAR instructions have to be
added in the code to store the input data in memory and to handle the coefficients pointer
to improve the H1xH2 multiplications-additions. This is because the coefficients buffer is
not circular and a dual data-memory operand can be incremented only with an index
using circular addressing.

5.6.3 Performances

The performance of the loop implementing the equations of an IIR filter in a 32x32-bit
Cascade Form of N 2™ order is, for each input sample:

Number of cycles RAM ROM Number of registers

‘ 31+22*N cycles ‘ 10*N + 6*N+4 words ‘ 29+22*N words ‘ 8 ‘

5.7 Implementation of the 16x32-bit Direct Form |

For the implementations 16x32-bit, only the Direct Form | structure is described in this
note because they are very similar to the 32x16-bit implementations.

The complete code for the implementation of the 16x32-bit Direct Form | is given in the
appendix. A comparison between the two Direct Form | implementations 32x16-bit and
16x32-bit in terms of memory organization and resources is given in this paragraph.

Extended Precision IIR Filter Design on the TMS320C54x DSP 28

SPRA454

5.7.1 Memory Organization and resources

The memory organization is the inverse of the one used for the 32x16-bit implementation.
Three pointers are still used in this implementation.

coefficients buffer

Pr—>
p2—>

a2
a2
al
al
a0
a0
-b2
-b2
-bl
-bl

Figure 18: Memory organization of the 16x32-bit Direct Form

But here, two pointers are used to handle the 32-bit coefficients.

16 MSB
16 LSB
16 MSB
16 LSB
16 MSB
16 LSB

5.7.2 Program explanation

data circular buffer

pP3—| x(n-2)
X(n-1)
X(n)

y(n-2)
y(n-1)

low address

 J
high address

In this implementation only one instruction MVDD is needed to store the input value x(n)
in memory. To store the y(n) value in the data buffer only one instruction STH is required
instead of two instructions STH and STL. And finally, to store the y(n) value in the output
value, one instruction STH (1 cycle) replaces the DST instruction (2 cycles).

RPTBD
ST™M

LD
MPY
MACSU
MAC
MACSU
MVDD
MAC
MACSU
MAC
MACSU
MAC
MACSU
ADD
MAR
STH
STH

lirFilterLoopEnd

lirFilterLoopEnd-1
#(DataFilout),pOUTBUF

#0,A
*plIR_COEFF+,*plIR_DATA,B ; A2high*x(n-2)
*plIR_COEFF+,*plIR_DATA+0%,A ; A2low*x(n-2)
*plIR_COEFF+,*plIR_DATA,B ; Alhigh*x(n-1)
*plIR_COEFF+,*plIR_DATA+0%,A ; Allow*x(n-1)
*pINBUF+,*plIR_DATA ; load x(n) in the buffer
*plIR_COEFF+,*plIR_DATA,B ; AOhigh*x(n)
*plIR_COEFF+,*plIR_DATA+0%,A ; A0low*x(n)
*plIR_COEFF+,*plIR_DATA,B ; -B2high*y(n-2)
*plIR_COEFF+,*plIR_DATA+0%,A ; -B2low*y(n-2)
*plIR_COEFF+,*plIR_DATA,B ; -B1lhigh*y(n-1)
*plIR_COEFF,*plIR_DATA+0%,A ; -Bllow*y(n-1)
A,-16,B

*+pllR_COEFF(-9)
B,*plIR_DATA+0%

B,*pOUTBUF+

; Load output address memory

; plIR_COEFF points on A2high

; Store y(n) in the buffer
; Store y(n) in the output

Extended Precision IIR Filter Design on the TMS320C54x DSP 29

SPRA454

5.7.3 Performances

The performance of the loop implementing the equations of an IIR filter in a 16x32-bit
Direct Form | is, for each input sample:

Number of cycles ‘ RAM ROM Number of registers ‘
16 cycles 15 words 16 words 5

Extended Precision IIR Filter Design on the TMS320C54x DSP 30

References

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

J. G. Proakis & D. G. Manolakis, Digital Signal Processing - Principles,
Algorithms, and Applications, Prentice-Hall, Third Edition 1996.

G. Marven & G. Ewers, Digital Signal Processing, Texas Instruments,
1993.

A. Bateman & W. Yates, Digital Signal Processing Design, Pitman Computer,
Systems Series, 1988.

TMS320C54x DSP CPU and Peripherals, Texas Instruments, Reference Set Volume
1, 1996.

TMS320C54x DSP Mnemonic Instruction Set, Texas Instruments, Reference Set
Volume 2, 1996.

M. Bellanger, Traitement Numeérique du Signal - Théorie et Pratique, Masson et
CNET-ENST, Paris, 1980-1996.

R. Boite & H. Leich, Les Filtres Numériques - Analyse et Synthese des filtres
unidimensionnels, Masson 1982.

Extended Precision IIR Filter Design on the TMS320C54x DSP 31

Appendix A: The implementation of an IIR 32x16-bit Direct Form | on ‘C54x

Appendix A: The implementation of an IR 32x16-bit Direct Form |

on ‘C54x

; TEXAS INSTRUMENTS FRANCE

: AUTHOR MESSINA Nathalie
; CAVALIER Philippe

; (C) Copyright 1997. Texas Instruments France. All rights reserved

* macro definitions *

.mmregs
.include "init54x.inc"

* reset/interrupt/trap vectors *

*

* Always start from Reset.
*

.global Start
.sect "vecs"
Start
BD Init ; Branch to MainLine.
NOP
NOP
* Set up constant and filter coeff *
K_FRAME_SIZE .set 128 ; Number of samples
K_NB_FILTER set 1 ; Number of 2nd-order IIR filter
K_BUFFER_INDEX set 1 ; Circ buff index
K_BUFFER_SIZE .set (6*(K_NB_FILTER+1)-2) ; Circ buff size
BPFilterCoffTable .sect"iir_coff"
.word 0100Ah ;A2
.word 02014h cAl
.word 0100Ah ; AO
.word 0DCO1h :-B2
.word 063D6h ;-B1
* Set up in/out buffer *
DataFilin .usect "iir_vars",256 ; for 128 samples
DataFilout .usect "iir_vars",256 ; for 128 samples

Datalnternal
DataTempBuff

.usect "iir_bfr',K_BUFFER_SIZE
.usect "iir_bfr",1

Extended Precision IIR Filter Design on the TMS320C54x DSP 32

Appendix A: The implementation of an IIR 32x16-bit Direct Form | on ‘C54x

* *

* * *

* Init section *
text
Init
LD #0,A
STLM A,SWWSR
STLM A,BSCR
STM #K_STO0,STO
STM #K_ST1,ST1
STM #K_PMST,PMST
* *
* Main program *
* *
Main
CALL lirFilterInit
Continue
NOP
NOP
CALL lirFilterTask
NOP
NOP
B Continue
* *
* Sub routines *
* *
.asg ARO,IIR_INDEX
.asg AR2,plIR_DATA
.asg AR3,plIR_COEFF
.asg AR4,pINBUF
.asg AR5,pOUTBUF
.sect "iir_prog"
lirFilterInit
ST™M #Datalnternal,plIR_DATA
RPTZ A#(K_BUFFER_SIZE-1)
STL A*plIR_DATA+
STM #Datalnternal,plIR_DATA
ST™M #BPFilterCoffTable,plIR_COEFF
STM #K_BUFFER_SIZE,BK
RETD
STM #K_BUFFER_INDEX,IIR_INDEX
lirFilterTask
STM #(DataFilin),pINBUF
lirFilterBegin

; acc = >00000000.

; 0 Wait States.
: Bank shift.

; Circ buff index ARO=1
; data circular buffer pointer
; Coefficient pointer
; Input data
; Output data

: Clear the internal data
; data buffer
; pIIR_DATA points on the
; first high word of the
; data buffer

: Load circ buff size

: Load circ buff index

; Load input add mem

Extended Precision IIR Filter Design on the TMS320C54x DSP

33

Appendix A: The implementation of an IIR 32x16-bit Direct Form | on ‘C54x

STM
RPTBD
ST™M

LD
MPY
MACSU
MAC
MACSU
MVDD
MVDD
MAC
MACSU
MAC
MACSU
MAC
MACSU
ADD
MAR
STH
STL
DST

lirFilterLoopEnd
RET
.end

#(K_FRAME_SIZE-1),BRC
lirFilterLoopEnd-1
#(DataFilout),pOUTBUF

#0,A
*plIR_DATA+0%,*plIR_COEFF,B
*plIR_DATA+0%,*plIR_COEFF+,A
*plIR_DATA+0%,*plIR_COEFF,B
*plIR_DATA+0%,*plIR_COEFF+A
*pINBUF+,*pllR_DATA+
*pINBUF+,*plIR_DATA-
*plIR_DATA+0%,*plIR_COEFF,B
*plIR_DATA+0%,*plIR_COEFF+,A
*plIR_DATA+0%,*plIR_COEFF,B
*plIR_DATA+0%,*plIR_COEFF+,A
*plIR_DATA+0%,*plIR_COEFF,B
*plIR_DATA+0%,*plIR_COEFF,A
A-16,B

*+plIR_COEFF(-4)
B,*plIR_DATA+0%

B,*plIR_DATA+0%

B,*pOUTBUF+

; Load output add mem

; A2*x(n-2)high
; A2*x(n-2)low
; A1*x(n-1)high
; Al*x(n-1)low
; Load x(n) (32 bits)
: in the buffer
; AO*x(n)high
; AO*x(n)low
; -B2*y(n-2)high
; -B2*y(n-2)low
; -B1*y(n-1)high
; -B1*y(n-1)low

; plIR_COEFF points on A2
; Store y(n) in the buffer

; Store y(n) in the output

Extended Precision IIR Filter Design on the TMS320C54x DSP 34

Appendix B: The implementation of an IIR 32x16-bit Direct Form Il on ‘C54x

Appendix B: The implementation of an IR 32x16-bit Direct Form Il on
‘C54x

; TEXAS INSTRUMENTS FRANCE

; AUTHORS CAVALIER Philippe
; ERCOLE Damien

; (C) Copyright 1997. Texas Instruments France. All rights reserved

* * * * *

* Macro definitions *

* * * * * *

.mmregs
.include "init54x.inc"

* * * * *

* Reset/interrupt/trap vectors *

* * * *

*

* Always start from Reset.
*

.global start
.sect "vecs"
start
BD init : Branch to MainLine.
NOP
NOP
* Set up constant and filter coeff *
K_FRAME_SIZE .set 128 ; Number of samples
K_IIR_INDEX set 2 ; Circ buff index
K_IIR_BFFR set 6 ; Circ buff size
iir_coff_table .sect "iir_coff"
.word 0DCO1h ;-B2
.word 063D6h 1 -B1l
.word 0100Ah s A2
.word 02014h Al
.word 0100Ah ; AO
* Set up in/out buffer *
d_filin .usect "iir_vars",256 ; for 32 samples
d_filout .usect "iir_vars",256 ; for 32 samples
d_iir_dn .usect "iir_bfr",6 ; to store d(n),d(n-1),d(n-2)
* Init section *
text
init

Extended Precision IIR Filter Design on the TMS320C54x DSP 35

Appendix B: The implementation of an IIR 32x16-bit Direct Form Il on ‘C54x

LD #0,A ; acc = >00000000.
STLM A,SWWSR : 0 Wait States.
STLM A,BSCR ; Bank shift.

STM #K_STO,STO

STM #K_ST1,ST1

STM #K_PMST,PMST

Extended Precision IIR Filter Design on the TMS320C54x DSP 36

Appendix B: The implementation of an IIR 32x16-bit Direct Form Il on ‘C54x

* *
Main program *
* *
Main
CALL iir_init
Continue
NOP
NOP
CALL iir_task
NOP
NOP
B Continue
* *
Sub routines *
* *
.asg ARO,IIR_INDEX ; Circ buff index
.asg AR2IIR_DATA P_L ; Low word of internal value
.asg AR3,IIR_DATA P_H ; High word of internal value
.asg AR4IIR_COFF_P_1 ; Coefficient pointer 1
.asg AR5,IIR_COFF_P_2 ; Coefficient pointer 2
.asg ARG6,INBUF_P ; Input data
.asg AR7,0UTBUF_P ; Output data
.sect "iir_prog"
iir_init
STM #d_iir_dn,IIR_DATA_P_L
RPTZ A#(K_IIR_BFFR-1) ; Clear the internal
STL A*IIR_DATA P_L+ ; value buffer
STM #d_iir_dn+1,IIR_DATA P_L
; IR_DATA_P_L points on the
; first low word of the internal value
STM #d_iir_dn,IIR_DATA_P_H
; IR_DATA_P_H points on the
; first high word of the internal value
ST™M #iir_coff_table,IIR_COFF_P_1
; IR_COFF_P_1 points on the
; first coefficient -B2
STM #iir_coff_table,IIR_COFF_P_2
; IR_COFF_P_2 points on the
; first coefficient -B2
ST™M #K_IIR_BFFR,BK ; Load circ buff size
RETD
STM #K_IIR_INDEX,IIR_INDEX ; Load circ buff index
iir_task
ST™M #(d_filin),INBUF_P ; Load input add mem
STM #K_FRAME_SIZE-1,BRC
RPTBD iir_filter_loop_end-1
ST™M #(d_filout), OUTBUF_P ; Load output address memory
DLD *INBUF_P+,A ; Load in A the new Q31 sample
LD A-2,A ; pre scaling
; feedback_path
LD #0,B

Extended Precision IIR Filter Design on the TMS320C54x DSP 37

Appendix B: The implementation of an IIR 32x16-bit Direct Form Il on ‘C54x

MACSU *IR_DATA_P_L+0%,*IR_COFF_P_1+B ;-b2*d(n-2)low

MACSU *IIR_DATA_P_L+0%,*IIR_COFF_P_1+,B ; -b1*d(n-1)low

ADD B,-16,A ;X(n)+(-b2*d(n-2)low-b1*d(n-1)low)>>16

MAC *[IR_COFF_P_2+*IIR_DATA_P_H+0%,A ;-b2*d(n-2)high

MAC *[IR_COFF_P_2+*IIR_DATA_P_H+0%,A ;-b1*d(n-1)high

STL AXIIR_DATA_P_L+0% ; Store the 32-hit result d(n)

STH A*IIR_DATA P_H+0%

;forward_path

LD #0,B

MACSU *IIR_DATA_P_L+0%,*IIR_COFF_P_1+,B ;a2*d(n-2)low

MACSU *[IR_DATA_P_L+0%,*IIR_COFF_P_1+,B ;al*d(n-1)low

MACSU *IIR_DATA_P_L+0%,*IIR_COFF_P_1+0%,B ,a0*d(n)low

LD B,-16,B ;a0*d(n)low+al*d(n-1)low+a2*d(n-2)low>>16

MAC *[IR_COFF_P_2+*IIR_DATA_P_H+0%,B ;a2*d(n-2)high

MAC *[IR_COFF_P_2+*IIR_DATA_P_H+0%,B ;al*d(n-1)high

MAC *[IR_COFF_P_2+0%,*IIR_DATA_P_H+0%,B ;a0*d(n)high

MAR *[IR_DATA_P_L+0% ; Update d(n-2)=d(n-1)

MAR *IIR_DATA_P_H+0% ; Update d(n-1)=d(n)

LD B,2,B ; post scaling

STH B,*OUTBUF_P+ ; Store the low and high

STL B,*OUTBUF_P+ ; part of the Q31 result
iir_filter_loop_end

RET

.end

Extended Precision IIR Filter Design on the TMS320C54x DSP 38

Appendix C: Implementation of an 32x16-bit Equalizer on ‘C54x

Appendix C: Implementation of an 32x16-bit Equalizer on ‘C54x

: TEXAS INSTRUMENTS FRANCE
; Audio DSP Development

; ASM Code Module of the eqz32x16.asm

: AUTHOR CAVALIER Philippe
; MESSINA Nathalie

; (C) Copyright 1997. Texas Instruments France. All rights reserved

* macro definitions *
.mmregs
.include "init4x.inc"

* reset/interrupt/trap vectors *

*

* Always start from Reset.
*

.global Start

.sect "vecs"
Start

BD Init ; Branch to MainLine.

NOP

NOP
* Set up constant and filter coeff *
K_FRAME_SIZE .set 128 ; Number of samples
K_NB_FILTER set 5 ; Number of 2nd-order IIR filter
K_BUFFER_INDEX .set 2 ; Circ buff index
K_BUFFER_SIZE .set 2*3*(K_NB_FILTER+1)-2 ; Circ buff size

EqzCoffTable .sect "eqz_coff"

.word 03fd4h i A2/2 first IR filter
.word 0802dh AL1/2

.word 03ffth ; AO/2 (0dB/100hz)
.word 0c02ah 1 -B2/2

.word 07fd2h ; -B1/2

.word 03efdh ; A2/2

.word 081a8h AL1/2

.word 03f80h ; AO/2 (-9dB/330hz)
.word 0c189h 1 -B2/2

.word 07e57h ;-B1/2

.word 03d54h 1 A2/2

.word 082hb9%h ; Al/2

.word 04105h ; AO/2 (7dB/1khz)
.word Ocla5h ;. -B2/2

.word 07d46h 1 -B1/2

Extended Precision IIR Filter Design on the TMS320C54x DSP 39

Appendix C: Implementation of an 32x16-bit Equalizer on ‘C54x

.word 039f9h : A2/2
.word 091d5h ; Al/2
.word 03ef8h ; AO/2 (-3dB/3k3hz)
.word 0c70dh ; -B2/2
.word 06e2ah 1 -B1/2
.word 032c2h :A2/2 Last IR filter
.word 0d345h ; Al/2
.word 03d01h ; AO/2 (-4dB/10khz)
.word 0d03bh 1 -B2/2
.word 02cbah ; -B1/2
* Set up in/out buffer *
DataFilin .usect "eqz_vars",256
DataFilout .usect "eqz_vars",256
Datalnternal .usect "eqz_bfr',K_BUFFER_SIZE
DataTempBuff .usect "eqz_bfr",1
* Init section *
text
Init
LD #0,A
STLM A,SWWSR
STLM A,BSCR ; Bank shift.
ST™M #K_STO0,STO
ST™M #K_ST1,ST1
ST™M #K_PMST,PMST
* *
* Main program *
* *
Main
CALL EqzlInit
Continue
NOP
NOP
CALL EqzTask
NOP
NOP
B Continue
* *
* Sub routines *
* *

.asg ARO,EQZ_INDEX
.asg AR1,EQZ_NB

.asg AR2,pEQZ_DATA_L
.asg AR3,pEQZ_DATA_H

; for 32 samples
; for 32 samples
; to store d(n),d(n-1),d(n-2)

; acc = >00000000.
; 0 Wait States.

; Circ buff index

; Number of filters

; Low word of data buffer
; High word of data buffer

Extended Precision IIR Filter Design on the TMS320C54x DSP

40

Appendix C: Implementation of an 32x16-bit Equalizer on ‘C54x

.asg AR4,pEQZ_COFF_1
.asg AR5,pEQZ_COFF_2
.asg ARG6,pINBUF
.asg AR7,pOUTBUF
.sect "egz_prog"
EqzlInit
STM #Datalnternal, pPEQZ_DATA_L
RPTZ A#(K_BUFFER_SIZE-1)
STL A*pEQZ_DATA_ L+
STM #Datalnternal+1,pEQZ_DATA L
ST™M #Datalnternal,pPEQZ_DATA _H
STM #K_BUFFER_SIZE,BK
STM #K_BUFFER_INDEX,EQZ_INDEX
ST™M #EqzCoffTable,pEQZ_COFF_1
RETD
ST™M #EqzCoffTable,pEQZ_COFF_2
EqzTask
STM #(DataFilin),pINBUF
STM #(K_FRAME_SIZE-1),BRC
EqzFilterBegin
RPTBD EgzFilterEnd-1
ST™M #(DataFilout),pOUTBUF
STM #(K_NB_FILTER-2),EQZ_NB
DLD *nINBUF+,B
LD B,-2,B
LD #0,A
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF_1+A
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF_1+A
STL B,*pEQZ_DATA_L-%
STH B,*pEQZ_DATA_L+%
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF_1+A
MPY *pEQZ_DATA_H+0%,*pEQZ_COFF_2+,B
MAC *pEQZ_DATA_H+0%,*pEQZ_COFF_2+,B
MAC *pEQZ_DATA_H+0%,*pEQZ_COFF_2+,B
Loop:
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF_1+,A
MACSU *pEQZ_DATA_L,*pEQZ_COFF_1+A
ADD A,-16,B
MAC *pEQZ_DATA_H+0%,*pEQZ_COFF_2+,B
MAC *pEQZ_DATA H,*pEQZ_COFF_2+,B
MAR *pEQZ_DATA_L-0%
MAR *pEQZ_DATA_H-0%
MPY *pEQZ_DATA_H+0%,*pEQZ_COFF_2+,A
MAC *pEQZ_DATA_H+0%,*pEQZ_COFF_2+,A
LD B,1,B
DST B,*pEQZ_DATA H
MAC *pEQZ_DATA_H+0%,*pEQZ_COFF_2+,A
LD AB
LD #0,A

; Coefficient pointer 1

; Coefficient pointer 2
; Input data

; Output data

; Clear the data
: buffer

; PEQZ_DATA_L points on the
; first low word of the data buffer

; PEQZ_DATA_H points on the
; first high word of the data buffer
: Load circ buff size
; Load circ buff index

; PEQZ_COFF_1 points on the

; first coefficient

; PEQZ_COFF_2 points also on
; the first coefficient

; Load input add mem

; Load loop counter

; Load output add mem

;a2/2*x0low(n-2)
;al/2*x0low(n-1)
;storage x0Ohigh(n)
;storage x0low(n)
;a0/2*x0low(n)
;a2/2*x0high(n-2)
;al/2*x0high(n-1)
;a0/2*x0high(n)

;-b2/2*ylow(n-2)
;-b1/2*ylow(n-1)

;-b2/2*yhigh(n-2)
;-b1/2*yhigh(n-1)

;a2/2*xhigh(n-2)next
;al/2*xhigh(n-1)next

;a0/2*xhigh(n)next

Extended Precision IIR Filter Design on the TMS320C54x DSP

41

Appendix C: Implementation of an 32x16-bit Equalizer on ‘C54x

MACSU *pEQZ_DATA L+0%*pEQZ_COFF_1+A ;a2/2*xlow(n-2)next

BANZD Loop,*EQZ_NB-
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF_1+A ;al/2*xlow(n-1)next
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF_1+A ;a0/2*xlow(n)next

EndLoop
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF_1+A ;-b2/2*ylow(n-2)
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF_1,A ;-b1/2*ylow(n-2)
ADD A,-16,B
MAC *pEQZ_DATA_H+0%,*pEQZ_COFF_2+,B ;-b2/2*yhigh(n-2)
MAC *pEQZ_DATA_ H+0%,*pEQZ_COFF_2,B ;-b1/2*yhigh(n-1)
LD B,1,B
STH B,*pEQZ_DATA_ H+0%
STL B,*pEQZ_DATA_L+0%
MAR *+pEQZ_COFF_1(-24)
MAR *+pEQZ_COFF_2(-24)
DST B,*pOUTBUF+

EqzFilterEnd
RET
.end

Extended Precision IIR Filter Design on the TMS320C54x DSP 42

Appendix D: Implementation of an IIR 32x32-bit Direct Form | on ‘C54x

Appendix D: Implementation of an IIR 32x32-bit Direct Form | on ‘C54x

; TEXAS INSTRUMENTS FRANCE

: AUTHOR MESSINA Nathalie
: CAVALIER Philippe

; (C) Copyright 1997. Texas Instruments France. All rights reserved

* macro definitions *
.mmregs
.include "init4x.inc"

* reset/interrupt/trap vectors *

*

* Always start from Reset.
*

.global start
.sect "vecs"

start
BD init : Branch to MainLine.
NOP
NOP
* Set up constant and filter coeff *
K_FRAME_SIZE .set 128 ; Number of samples
K_BUFFER_INDEX .set 2 ; Circ buff index
K_BUFFER_SIZE .set 2*(3*2-1) ; Circ buff size
iir_coff_table .sect "iir_coff"
.word 0100Ah ;A2 high
.word 0Oh ;A2 low
.word 02014h ;Al high
.word 0Oh ;AL low
.word 0100Ah ;A0 high
.word 0Oh ;A0 low
.word 0ODCO1h ;-B2 high
.word 0Oh ;-B2 low
.word 063D6h ;-B1 high
.word 0Oh ;-B1 low
* Set up in/out buffer *
d_filin .usect "iir_vars",256 ; for 32 samples
d_filout .usect "iir_vars",256 ; for 32 samples
d_internal .usect "iir_bfr",K_BUFFER_SIZE

Extended Precision IIR Filter Design on the TMS320C54x DSP 43

Appendix D: Implementation of an IR 32x32-bit Direct Form | on ‘C54x

d_temp_buff .usect "iir_bfr",1
* Init section *
text
init
LD #0,A ; acc = >00000000.
STLM A,SWWSR ; 0 Wait States.
STLM A,BSCR : Bank shift.
STM #K_STO0,STO
STM #K_ST1,ST1
STM #K_PMST,PMST
* *
* Main program *
* *
Main
CALL lirFilterInit
Continue
NOP
NOP
CALL lirFilterTask
NOP
NOP
B Continue
* *
Sub routines *
* *
.asg ARO,IIR_INDEX ; Circ buff index
.asg AR2,plIR_DATA_L ; Low word of internal value
.asg AR3,plIR_DATA_H ; High word of internal value
.asg AR4,plIR_COFF_L ; Low Part Coefficient pointer
.asg ARS5,plIR_COFF_H ; High Part Coefficient pointer
.asg AR6,pINBUF ; Input data
.asg AR7,pOUTBUF ; Output data
.sect "iir_prog"
lirFilterInit
ST™M #d_internal,plIR_DATA L
RPTZ A#K_BUFFER_SIZE-1 : Clear the internal
STL A*plIR_DATA_L+ ; value buffer
STM #d_internal+1,plIR_DATA L
; IR_DATA_P_L points on the first low
; word of the internal value
ST™M #d_internal,plIR_DATA_H
; IR_DATA_P_H points on the first
; high word of the internal value
STM #iir_coff_table,plIR_COFF_H
; IR_COFF_P_H points on the high part
; of the first coefficient
ST™M #iir_coff_table+1,plIR_COFF_L

Extended Precision IIR Filter Design on the TMS320C54x DSP 44

Appendix D: Implementation of an IR 32x32-bit Direct Form | on ‘C54x

; IR_COFF_P_L points on the low part
; of the first coefficient

ST™M #K_BUFFER_SIZE,BK ; Load circ buff size

RETD

ST™M #K_BUFFER_INDEX,IIR_INDEX ; Load circ buff index
’ .sect "iir_prog"
lirFilterTask

ST™M #(d_filin),pINBUF ; Load input add mem

ST™M #K_FRAME_SIZE-1,BRC

RPTBD lirFilterLoopEnd-1

ST™M #(d_filout),p OUTBUF ; Load output add mem
lirFilterBegin

DLD *pINBUF+,A ; Load in B the new Q31

LD #0,B

MACSU *plIR_COFF_L+0%,*plIR_DATA_H+0%,B ;a2low*x(n-2)high
MACSU *plIR_DATA_L+0%,*plIR_COFF_H+0%,B ;a2high*x(n-2)low
MACSU *plIR_COFF_L+0%,*plIR_DATA_H+0%,B ;allow*x(n-1)high
MACSU *plIR_DATA_L+0%,*plIR_COFF_H+0%,B ;alhigh*x(n-1)low
DST A*plIR_DATA H ;store x(n)
MACSU *plIR_COFF_L+0%,*plIR_DATA_H+0%,B ;a0low*x(n)high
MACSU *plIR_DATA_L+0%,*plIR_COFF_H+0%,B ;a0high*x(n)low
MACSU *plIR_COFF_L+0%,*plIR_DATA_H+0%,B ;-b2low*y(n-2)high
MACSU *plIR_DATA_L+0%,*plIR_COFF_H+0%,B ;-b2high*y(n-2)low
MACSU *plIR_COFF_L+0%,*plIR_DATA_H+0%,B ;-bllow*y(n-1)high
MACSU *plIR_DATA_L+0%,*plIR_COFF_H+0%,B ;-blhigh*y(n-1)low

MPY *plIR_COFF_H+0%,*plIR_DATA_H+0%,A ;a2high*x(n-2)high
MAC *plIR_COFF_H+0%,*plIR_DATA_H+0%,A ;alhigh*x(n-1)high
MAC *plIR_COFF_H+0%,*plIR_DATA_H+0%,A ;a0high*x(n)high
MAC *plIR_COFF_H+0%,*plIR_DATA_H+0%,A ;-b2high*y(n-2)high
MAC *plIR_COFF_H+0%,*plIR_DATA_H+0%,A ;-blhigh*x(n-1)high
ADD B,-16,A ; y(n)
STH A*plIR_DATA_H+0%
STL A*plIR_DATA_L+0%
DST A*pOUTBUF+

lirFilterLoopEnd
RET
.end

Extended Precision IIR Filter Design on the TMS320C54x DSP 45

Appendix E: Implementation of an 32x32-bit IR Direct Form Il on ‘C54x

Appendix E: Implementation of an 32x32-bit IR Direct Form Il on ‘C54x

: TEXAS INSTRUMENTS FRANCE
; Audio DSP Development

; ASM Code Module of the iir32x32.asm

: AUTHOR CAVALIER Philippe
; MESSINA Nathalie

; (C) Copyright 1997. Texas Instruments France. All rights reserved

* * * * *

* macro definitions *
.mmregs
.include "init54x.inc"

* reset/interrupt/trap vectors *

* * * * *

*

* Always start from Reset.

*

.global start

.sect "vecs"

start
BD init : Branch to MainLine.
NOP
NOP
* Set up constant and filter coeff *
K_FRAME_SIZE .set 128 ; Number of samples
K_IIR_INDEX set 2 ; Circ buff index
K_IIR_BFFR set 6 ; Circ buff size
iir_coff_table .sect "iir_coff"
.word 00000h ;-B2 low
.word 0ODCO1h ;-B2 high
.word 00000h ;-B1 low
.word 063D6h ;-B1 high
.word 00000h ;A2 low
.word 0100Ah ;A2 high
.word 00000h ;AL low
.word 02014h ;Al high
.word 00000h ;A0 low
.word 0100Ah ;A0 high
* Set up in/out buffer *

Extended Precision IIR Filter Design on the TMS320C54x DSP 46

Appendix E: Implementation of an 32x32-bit IR Direct Form Il on ‘C54x

d_filin .usect "iir_vars",256 ; for 128 samples

d_filout .usect "iir_vars",256 ; for 128 samples

d_iir_dn .usect "iir_bfr",6 ; to store d(n),d(n-1),d(n-2)
d_iir_y .usect "iir_bfr",1

Extended Precision IIR Filter Design on the TMS320C54x DSP 47

Appendix E: Implementation of an 32x32-bit IR Direct Form Il on ‘C54x

* *

* Init section *
text
init
LD #0,A ; acc = >00000000.
STLM A,SWWSR ; 0 Wait States.
STLM A,BSCR : Bank shift.
STM #K_STO0,STO
STM #K_ST1,ST1
STM #K_PMST,PMST
* *
* Main program *
* *
Main
CALL iir_init
Continue
NOP
NOP
CALL iir_task
NOP
NOP
B Continue
* *
* Sub routines *
* *
.asg ARO,plIR_INDEX ; Circ buff index
.asg AR2,plIR_DATA_L ; Low word of internal value
.asg AR3,plIR_DATA_H ; High word of internal value
.asg AR4,plIR_COFF ; Coefficient pointer
.asg ARG6,pINBUF ; Input data
.asg AR7,pOUTBUF ; Output data
.sect "iir_prog"
iir_init
STM #d_iir_dn,plIR_DATA_L
RPTZ A#K_IIR_BFFR-1 : Clear the internal
STL A*plIR_DATA_L+ ; value buffer
STM #d_iir_dn+1,plIR_DATA L
; plIR_DATA_L points on the first low
; word of the internal value
STM #d_iir_dn,plIR_DATA_H
; pIR_DATA_H points on the first high
; word of the internal value
STM #iir_coff_table,plIR_COFF
; pIIR_COFF points on the low word of
; the first coefficient A2
ST™M #K_IIR_BFFR,BK ; Load circ buff size
RETD
STM #K_IIR_INDEX,plIR_INDEX ; Load circ buff index
.sect "iir_prog"

Extended Precision IIR Filter Design on the TMS320C54x DSP 48

Appendix E: Implementation of an 32x32-bit IR Direct Form Il on ‘C54x

iir_task
ST™M #(d_filin),pINBUF ; Load input add mem
STM #K_FRAME_SIZE-1,BRC
RPTBD iir_filter_loop_end-1
ST™M #(d_filout),p OUTBUF ; Load output add mem
DLD *pINBUF+,A ; Load in A the new Q31
LD A-2,A ; sample that will be treated

iir_filter

;feedback_path

LD #0,B

MACSU *plIR_COFF+*plIR_DATA H,B ; B=b2Low*d(n-2)High

MACSU *plIR_DATA_L+0%,*plIR_COFF,B ; B=B+b2High*d(n-2)Low

MAC *plIR_COFF+,*plIR_DATA_H+0%,A ; A=A+b2High*d(n-2)High

MACSU *plIR_COFF+,*plIR_DATA_H,B ; B=b1lLow*d(n-1)High

MACSU *plIR_DATA_L+0%,*plIR_COFF,B ; B=B+b1High*d(n-1)Low

MAC *plIR_COFF+,*plIR_DATA_H+0%,A ; A=A+b1High*d(n-1)High

ADD B,-16,A ; 16 Right shift \ add

STL A*plIR_DATA_L+0% ; Store d(n) the result

STH A*plIR_DATA_H+0% ; of the add and mult.

; forward_path

LD #0,B

MACSU *plIR_COFF+,*plIR_DATA_H,B ; B=a2Low*d(n-2)High

MACSU *plIR_DATA_L+0%,*plIR_COFF,B ; B=B+a2High*d(n-)Low

MPY *plIR_COFF+,*plIR_DATA_H+0%,A ; A=A+a2High*d(n-2)High

MACSU *plIR_COFF+*plIR_DATA_H,B ; B=alLow*d(n-1)High

MACSU *plIR_DATA_L+0%,*plIR_COFF,B ; B=alLow*d(n-1)High

MAC *plIR_COFF+,*plIR_DATA_H+0%,A ; A=A+alHigh*d(n-1)High

MACSU *plIR_COFF+,*plIR_DATA_H,B ; B=aOLow*d(n)High

MACSU *plIR_DATA_L+0%,*plIR_COFF,B ; B=aOLow*d(n)High

MAC *plIR_COFF,*plIR_DATA_H+0%,A ; A=A+aOHigh*d(n)High

ADD B,-16,A

MAR *plIR_DATA_L+0% ; Update the circular

MAR *plIR_DATA_H+0% ; buffer d(n-2)=d(n-1)

; and d(n-1)=d(n)

MAR *+plIR_COFF(-9)

LD A2A

STH A*pOUTBUF+ ; Store the low and high

STL A*pOUTBUF+ ; part of the Q31 result
iir_filter_loop_end

RET

.end

Extended Precision IIR Filter Design on the TMS320C54x DSP 49

Appendix F: Implementation of an 32x32-bit Equalizer on ‘C54x

Appendix F: Implementation of an 32x32-bit Equalizer on ‘C54x

; TEXAS INSTRUMENTS FRANCE

: AUTHOR CAVALIER Philippe
; MESSINA Nathalie

; (C) Copyright 1997. Texas Instruments France. All rights reserved

* * * * *

* macro definitions *

* * * * *

.mmregs
.include "init54x.inc"

* * * * *

* reset/interrupt/trap vector *

* * * * * *

*

* Always start from Reset.

*

.global Start

.sect "vecs"

Start
BD Init
NOP
NOP
* Set up constant and filter coeff *

* * * * *

K_FRAME_SIZE .set 128
K_NB_FILTER set 5

K_BUFFER_INDEX .set 2

K_BUFFER_SIZE .set 2*3*(K_NB_FILTER+1)-2

EqzCoffTable .sect "eqz_coff"

.word 0000h
.word 03fd4h
.word 0000h
.word 0802dh
.word 0000h
.word 03fffh
.word 0000h
.word 0c02ah
.word 0000h
.word 07fd2h
.word 0000h
.word 03ef4h
.word 0000h
.word 08l1a8h
.word 0000h

.word 03f80h

; Branch to MainLine.

; Number of samples
; Number of 2nd-order IIR filter
; Circ buff index
; Circ buff size

:A2/2 low
;A2/2 high
:Al1/2 low
;AL/2 high
;A0/2 low
;A0/2 high
:-B2/2 low
;-B2/2 high
:-B1/2 low
;-B1/2 high

:A2/2 low
;A2/2 high
:Al/2 low
;AL/2 high
:A0/2 low
;A0/2 high

Extended Precision IIR Filter Design on the TMS320C54x DSP

50

Appendix F: Implementation of an 32x32-bit Equalizer on ‘C54x

.word 0000h -B2/2 low
.word 0c189h ;-B2/2 high
.word 0000h :-B1/2 low
.word 07e57h ;-B1/2 high
.word 0000h :A2/2 low
.word 03d54h ;A2/2 high
.word 0000h :A1/2 low
.word 082b%h ;A1/2 high
.word 0000h :A0/2 low
.word 04105h ;AO0/2 high
.word 0000h :-B2/2 low
.word Ocla5h ;-B2/2 high
.word 0000h :-B1/2 low
.word 07d46h ;-B1/2 high
.word 0000h :A2/2 low
.word 039f9h ;A2/2 high
.word 0000h :Al1/2 low
.word 091d5h ;AL/2 high
.word 0000h :A0/2 low
.word 03ef8h ;A0/2 high
.word 0000h -B2/2 low
.word 0c70dh ;-B2/2 high
.word 0000h -B1/2 low
.word 06e2ah ;-B1/2 high
.word 0000h :A2/2 low
.word 032c2h ;A2/2 high
.word 0000h :Al1/2 low
.word 0d345h ;AL/2 high
.word 0000h ;A0/2 low
.word 03d01h ;AO0/2 high
.word 0000h :-B2/2 low
.word 0d03bh ;-B2/2 high
.word 0000h :-B1/2 low
.word 02chah ;-B1/2 high
* Set up in/out buffer *
DataFilin .usect "eqz_vars",256 ; for 32 samples
DataFilout .usect "eqz_vars",256 ; for 32 samples
Datalnternal .usect "eqz_bfr',K_BUFFER_SIZE

DataTempBuff .usect "eqz_bfr",1

* * * *

* Init section *
text

Init
LD #0,A ; acc = >00000000.
STLM A,SWWSR ; 0 Wait States.
STLM A,BSCR ; Bank shift.
ST™M #K_STO0,STO
ST™M #K_ST1,ST1

Extended Precision IIR Filter Design on the TMS320C54x DSP 51

Appendix F: Implementation of an 32x32-bit Equalizer on ‘C54x

STM #K_PMST,PMST
* *
* Main program *
* *

* * *

Main

CALL EqzlInit
Continue

NOP

NOP

CALL EqzTask

NOP

NOP

B Continue

Extended Precision IIR Filter Design on the TMS320C54x DSP 52

Appendix F: Implementation of an 32x32-bit Equalizer on ‘C54x

Sub routines

* *

* * *

.asg ARO,EQZ_INDEX ; Circular buffer index
.asg AR1,EQZ NB
.asg AR2,pEQZ_DATA L ; Low word of internal value
.asg AR3,pEQZ_DATA_H ; High word of internal value
.asg AR4,pEQZ_COFF ; Coefficients pointer
.asg AR5,pTEMP_BUFF
.asg ARG6,pINBUF ; Input data
.asg AR7,pOUTBUF ; Output data
.sect "eqz_prog"
EqzlInit
ST™M #Datalnternal, pPEQZ_DATA L
RPTZ A#K_BUFFER_SIZE-1 : Clear the internal
STL A*pEQZ_DATA_ L+ ; value buffer
ST™M #(DataTempBuff),p TEMP_BUFF
STM #Datalnternal+1,pEQZ_DATA L
; PEQZ_DATA_L points on the
; first low word of the internal value
STM #Datalnternal, pPEQZ_DATA_H
; PEQZ_DATA_H points on the
; first high word of the internal value
ST™M #EqzCoffTable,pEQZ_COFF
; PEQZ_COFF points on the first
; coefficient
STM #K_BUFFER_SIZE,BK : Load circ buff size
RETD
STM #K_BUFFER_INDEX,EQZ_ INDEX ; Load circ buff index
.sect "eqz_prog"
.bss InputHigh,1
.bss InputLow,1
EqzTask
ST™M #(DataFilin),pINBUF ; Load input add mem
ST™M #(K_FRAME_SIZE-1),BRC ; Load loop counter
EqzFilterBegin
RPTBD EqzFilterEnd-1
ST™M #(DataFilout),pOUTBUF ; Load output add mem
STM #(K_NB_FILTER-2),EQZ_NB
DLD *pINBUF+,B
LD B,-2,B
DST B,*pTEMP_BUFF
LD #0,B
MACSU *pEQZ_COFF+*pEQZ_DATA_ H,B ;a2/2low*x0(n-2)high
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF,B ;a2/2high*x0(n-2)low
MPY *pEQZ_COFF+*pEQZ_DATA_H+0%,A ;a2/2high*x0(n-2)high
MACSU *pEQZ_COFF+,*pEQZ_DATA_H,B ;al/l2low*x1(n-1)high
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF,B ;al/2high*x1(n-1)low
MAC *pEQZ_COFF+*pEQZ_DATA_H+0%,A ;al/2high*x1(n-1)high
MVDD *pTEMP_BUFF+,*pEQZ_DATA H ;X(n)high storage
MVDD *pTEMP_BUFF-,*pEQZ_DATA L X(n)low storage

Extended Precision IIR Filter Design on the TMS320C54x DSP

53

Appendix F: Implementation of an 32x32-bit Equalizer on ‘C54x

MACSU *pEQZ_COFF+,*pEQZ_DATA_H,B ;a0/2low*x(n)high
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF,B ;a0/2high*x(n)low
MAC *pEQZ_COFF+,*pEQZ_DATA_H+0%,A ;a0/2high*x(n)high
Loop:
MACSU *pEQZ_COFF+*pEQZ_DATA H,B ;b2/2low*y(n-2)high
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF,B ;b2/2high*y(n-2)low
MAC *pEQZ_COFF+,*pEQZ_DATA_ H+0%,A ;b2 /2high*y(n-2)high
MACSU *pEQZ_COFF+,*pEQZ_DATA_H,B ;b1/2low*y(n-1)high
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF,B ;b1/2high*y(n-1)high
MAC *pEQZ_COFF+,*pEQZ_DATA_H+0%,A ;b1/2high*y(n-1)high
ADD B,-16,A
LD ALA
STH A*pEQZ_DATA_H-0%
STL A*pEQZ_DATA_L-0%
LD #0,B
MAR *pEQZ_DATA_H-0%
MAR *pEQZ_DATA_L-0%
MACSU *pEQZ_COFF+,*pEQZ_DATA H,B ;a2/2low*x(n-2)high next
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF,B ;a2/2high*x(n-2)low next
MPY *pEQZ_COFF+,*pEQZ_DATA_H+0%,A ;a2/2high*x(n-2)high next
MACSU *pEQZ_COFF+,*pEQZ_DATA H,B ;al/2low*x(n-1)high next
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF,B ;al/2high*x(n-1)low next
MAC *pEQZ_COFF+,*pEQZ_DATA_H+0%,A ;al/2high*x(n-1)high next
MACSU *pEQZ_COFF+,*pEQZ_DATA H,B ;a0/2low*x(n)high next
BANZD Loop,*EQZ_NB-
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF,B ;a0/2high*x(n)low next
MAC *pEQZ_COFF+,*pEQZ_DATA_H+0%,A ;a0/2high*x(n)high next
EndLoop
MACSU *pEQZ_COFF+*pEQZ_DATA_H,B ;b2/2low*y(n-2)high next
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF,B ;b2/2high*y(n-2)low next
MAC *pEQZ_COFF+,*pEQZ_DATA_H+0%,A ;b2/2high*y(n-2)high next
MACSU *pEQZ_COFF+,*pEQZ_DATA H,B ;b1/2low*y(n-1)high next
MACSU *pEQZ_DATA_L+0%,*pEQZ_COFF,B ;b1/2high*y(n-1)low next
MAC *pEQZ_COFF+,*pEQZ_DATA_H+0%,A ;b1/2high*y(n-1)high next
ADD B,-16,A
LD ALA
STH A*pEQZ_DATA_H+0%
STL A*pEQZ_DATA_L+0%
MAR *+pEQZ_COFF(-24)
DST A*pOUTBUF+
EqzFilterEnd
RET
.end

Extended Precision IIR Filter Design on the TMS320C54x DSP 54

Appendix G: Implementation of the 16x32-bit Direct Form | on ‘C54x

Appen

dix G: Implementation of the 16x32-bit Direct Form | on ‘C54x

; TEXAS INSTRUMENTS FRANCE

; AUTHOR

(C) Copyright

MESSINA Nathalie
CAVALIER Philippe

1997. Texas Instruments France. All rights reserved

*

* * * * *

* macro definitions *
.mmregs
.include "init54x.inc"

* reset/interrupt/trap vectors *

*

* Always start fi

*

* * * * *

rom Reset.

.global Start

.sect "vecs"

Start
BD Init ; Branch to MainLine.
NOP
NOP
* Set up constant and filter coeff *
K_FRAME_SIZE .set 128 ; Number of samples
K_NB_FILTER set 1 ; Number of 2nd-order IIR filter
K_BUFFER_INDEX .set 1 ; Circ buff index
K_BUFFER_SIZE .set (3*(K_NB_FILTER+1)-1) ; Circ buff size
BPFilterCoffTable .sect"iir_coff"
.word 0100Ah ; A2 high
.word 00000h ;A2 low
.word 02014h ; Al high
.word 00000h ; Al low
.word 0100Ah ; AO high
.word 00000h ; AO low
.word 0ODCO1h ; -B2 high
.word 00000h ;-B2 low
.word 063D6h ; -B1 high
.word 00000h ;-B1 low
* Set up in/out buffer *
DataFilin .usect "iir_vars",128 ; for 128 samples
DataFilout .usect "iir_vars",128 ; for 128 samples
Datalnternal .usect "iir_bfr",K_BUFFER_SIZE
DataTempBuff .usect "iir_bfr",1

Extended Precision IIR Filter Design on the TMS320C54x DSP 55

Appendix G: Implementation of the 16x32-bit Direct Form | on ‘C54x

Extended Precision IIR Filter Design on the TMS320C54x DSP 56

Appendix G: Implementation of the 16x32-bit Direct Form | on ‘C54x

* * * * * *

* Init section *
text
Init
LD #0,A ; acc = >00000000.
STLM A,SWWSR ; 0 Wait States.
STLM A,BSCR : Bank shift.
STM #K_STO0,STO
STM #K_ST1,ST1
STM #K_PMST,PMST
* *
* Main program *
* *
Main
CALL lirFilterInit
Continue
NOP
NOP
CALL lirFilterTask
NOP
NOP
B Continue
* *
* Sub routines *
* *
.asg ARO,IIR_INDEX ; Circ buff index
.asg AR2,plIR_DATA ; High word of data buffer
.asg AR3,plIR_COEFF ; Coefficient pointer 1
.asg AR4,pINBUF ; Input data
.asg AR5,pOUTBUF ; Output data
.sect "iir_prog"
lirFilterInit
STM #Datalnternal,plIR_DATA
RPTZ A#(K_BUFFER_SIZE-1) ; Clear the internaldata
STL A*plIR_DATA+ ; data buffer
ST™M #Datalnternal,plIR_DATA
; pIIR_DATA points on the first high
; word of the data buffer
STM #BPFilterCoffTable,plIR_COEFF
ST™M #K_BUFFER_SIZE,BK ; Load circ buff size
RETD
STM #K_BUFFER_INDEX,IIR_INDEX ; Load circ buff index
lirFilterTask
ST™M #(DataFilin),pINBUF ; Load input add mem
lirFilterBegin
STM #(K_FRAME_SIZE-1),BRC

Extended Precision IIR Filter Design on the TMS320C54x DSP 57

Appendix G: Implementation of the 16x32-bit Direct Form | on ‘C54x

RPTBD lirFilterLoopEnd-1

ST™M #(DataFilout),pOUTBUF ; Load output add mem

LD #0,A

MPY *plIR_COEFF+,*plIR_DATA,B ; A2high*x(n-2)

MACSU *plIR_COEFF+,*plIR_DATA+0%,A ; A2low*x(n-2)

MAC *plIR_COEFF+,*plIR_DATA,B ; Alhigh*x(n-1)

MACSU *plIR_COEFF+,*plIR_DATA+0%,A ; Allow*x(n-1)

MVDD *pINBUF+,*plIR_DATA ; load x(n) in the buffer

MAC *plIR_COEFF+,*plIR_DATA,B ; AOhigh*x(n)

MACSU *plIR_COEFF+,*plIR_DATA+0%,A ; AOlow*x(n)

MAC *plIR_COEFF+,*plIR_DATA,B ; -B2high*y(n-2)

MACSU *plIR_COEFF+,*plIR_DATA+0%,A ; -B2low*y(n-2)

MAC *plIR_COEFF+,*plIR_DATA,B ; -Blhigh*y(n-1)

MACSU *plIR_COEFF,*plIR_DATA+0%,A ; -Bllow*y(n-1)

ADD A,-16,B

MAR *+plIR_COEFF(-9) ; PIIR_COEFF points on A2high

STH B,*plIR_DATA+0% ; Store y(n) in the buffer

STH B,*pOUTBUF+ ; Store y(n) in the output
lirFilterLoopEnd

RET

.end

Extended Precision IIR Filter Design on the TMS320C54x DSP 58

Notes

Extended Precision IIR Filter Design on the TMS320C54x DSP 59

Notes

Extended Precision IIR Filter Design on the TMS320C54x DSP 60

Notes

Extended Precision IIR Filter Design on the TMS320C54x DSP 61

Notes

Extended Precision IIR Filter Design on the TMS320C54x DSP 62

Notes

Extended Precision IIR Filter Design on the TMS320C54x DSP 63

Notes

Extended Precision IIR Filter Design on the TMS320C54x DSP 64

Notes

Extended Precision IIR Filter Design on the TMS320C54x DSP 65

