
Application Report
SPRA493

Digital Signal Processing Solutions December 1998

How to Interface C and Assembly Language
with the TMS320 Floating Point C Compiler

Yves Gagniere and Dirk Langmesser Digital Signal Processing Solutions

Abstract
The Texas Instruments (TI™) TMS320 digital signal processor (DSP) floating-point ANSI C
compiler generally uses a conventional mechanism for passing arguments and allocating local
variables. Nevertheless, the programmer has several options to pass arguments to a function, to
allocate automatic variables and to return a value from a called function.

If the programmer uses only the C language, the C compiler manages a dedicated mechanism
depending on the selected options at compile time. The mechanism regulates the data flow
between the calling and the called function. These strict conventions are transparent to the user.
If the user plans to interface assembly functions or routines to a C program, it is straightforward to
follow the calling and returning conventions as well as the calling and called function's
responsibilities regarding the saving and restoring of registers.

This application report offers a simple approach using case studies to describe the main choices
available to the programmer to interface C and assembly language. This report is based on
revision 5 of the Texas Instruments TMS320 floating-point tools.

Contents

The Memory Model ..2

The RAM/ROM Model..2

Function Call ..3

Application Report
SPRA493

How to Interface C and Assembly Language with the TMS320 Floating Point C Compiler 2

The Memory Model
The TMS320 floating-point family supports two different memory models that affect how
the global and static variables are accessed. Generally, direct addressing of a data word
in memory is realized through paging by the concatenation of the 8 (TMS320C3x) or 16
(TMS320C4x) least significant bits of the data page pointer (DP) with the 16 least
significant bits of the instruction word. From that, the size of data pages on the C3x or
C4x is 64K-words. The number of pages is 256 on the C3x and 64k on the C4x,
respectively.

The main point is that in the small memory model the complete .bss section, which is the
standard C-section for global and static variables, will be accessed without ever changing
the DP pointer. This means evidently that program space and cycle count might be saved
through this method.

With the small memory model, only the 16 bits of the instruction word can be used for
addressing. From that, there is the requirement that the entire collection of global and
static variables fit within one page, which is a 64K-word contiguous memory space that
should be aligned on a 64K-word boundary – this means that the .bss section has to be
linked appropriately. The small memory option is the default and forces the compiler to
initialize the data page pointer during runtime initialization to point to the beginning of the
.bss section. Now the C compiler can access all objects located in the .bss section using
direct addressing without ever modifying the data page pointer.

On the other hand, the big memory model does not limit the size of the .bss section and
therefore the number of global and static variables – only the memory space available on
the target system causes a restriction. The C compiler accesses all of the objects located
in the .bss section with direct addressing, modifying the data page pointer before each
access and causing at least one additional operation cycle. The big memory model option
can be selected with the -mb command-line switch.

Observe that large globally declared static array objects such as

int table[100000]

will force you to use the big memory model. A more efficient implementation allocates
such an array dynamically:

int *table; /* global declaration */
table = (int *) malloc (100000 * sizeof(int)); /* allocation in main program */

The data object is then allocated on the heap. The size of the heap is determined in the
linker command file with the -heap option. The heap is identical to the .sysmem-section,
which can be located in the memory system also through the linker command file. The
access to heap elements is realized in an indirect way with pointer addressing.

The RAM/ROM Model
C Code should generally be linked with either the -c or the -cr option. The C compiler
then produces code linked with a standard library function called boot.asm located in the
runtime support library (rts.lib). Depending on the option chosen at link time, the
initialization of variables will be performed by the boot function at either load time (-cr:
RAM model) or runtime (-c: ROM model).

Application Report
SPRA493

How to Interface C and Assembly Language with the TMS320 Floating Point C Compiler 3

If the RAM model is selected, it will be the responsibility of a smart loader to initialize the
variables in memory (built-in to TI simulator and debugger). If the ROM model is selected,
the .cinit section is used to store the initialization data of global and static variables in
ROM, which will be copied automatically by the C boot routine to the appropriate
locations within .bss before entering the C main routine. If C is interfaced with assembly
code that uses the .bss section, it will be necessary to create a .cinit table and a .bss
section entry for the assembly code according to the C conventions.

The .bss and .cinit definitions should have the following format in assembly to be used by
a loader or the C boot code routine:

.bss _variablename, size ; _variablename is the reference name for the data structure
; used in the C code; size is the number of 32 bit words;

.sect ".cinit" ; section that contains tables with the values for initializing
; the variables and constants;

.word size ; size is the number of 32 bits words for the data structure;

.word _variablename ; _variablename is the reference name for the data structure;

.word value0, value1,... ; values which will be assigned to the
; _variablename structure;

Function Call
The C compiler imposes a strict set of rules on function calls. Failure to adhere to these
rules can disrupt the C environment and cause the program to fail. The programmer can
choose between two runtime models for function calls. The first model, the stack
argument runtime model, intensively uses the stack to pass arguments between the
calling and the called function. The called function additionally uses the stack for its local
frame and temporary variables as well as to pass arguments as soon as it becomes a
calling function on its own.

The second model is called the register argument runtime model and uses the register
set to pass arguments from the calling to the called function. The stack passing
convention applies to those arguments for which not enough registers are available to
pass them all and those that are not compatible with the register use definition.

The stack argument runtime model is the default mode. The more efficient register
argument runtime model can be activated with the -mr command-line switch of the
compiler.

Preserving Registers

The C language is based on function calls, where the first function called from the C boot
routine is the “main” function. Entering an assembly context from a C routine makes it
necessary to preserve the C environment. Basically this means that those registers used
in the C environment must be saved across calls: these registers are called register
variables.

It is the called function’s responsibility to preserve the contents of these registers if they
are used inside the function. This type of preserving scheme is commonly called save-on-
entry. The C compiler can use the remaining registers to evaluate expressions and store
temporary results. This strategy allows the C compiler to reuse register data, take
advantage of the efficient register addressing modes, and avoid unnecessary accesses
to the local frame. The contents of these registers are not preserved across calls and
therefore must be saved on the local frame of the caller function.

Application Report
SPRA493

How to Interface C and Assembly Language with the TMS320 Floating Point C Compiler 4

The save-on-entry registers (AR3, SP, R4, R5, R6, R7, AR4-AR7, and R8 (C4x only)) are
saved by the called function after entry provided they are used inside the function. The
optimizer tries to allocate all variables to registers – if the optimizer is not used, the
compiler can be forced through the register keyword to try to assign one of the save-on-
entry registers to a variable.

The following table summarizes the usage of the registers and highlights the save-on-
entry registers:

Register Use without Optimizer Use with Optimizer Called
Function

Responsibility
or

Save on Entry

R0 Integer and float expressions or
scalar return values

Integer and float expressions or scalar
return values

no

R1 Integer and float expressions Integer and float expressions no

R2-R3 Integer and float expressions Integer and float register variables no

R4-R5 Integer register variables Integer or float register variables integer part

R6-R7 Float register variables Integer or float register variables floating part

AR0-AR1 Pointer expressions Pointer expressions no

AR2 Pointer expressions Integer and pointer register variables no

AR3 Frame pointer (FP) Frame pointer (FP) yes

AR4-AR7 Pointer register variables Pointer register variables yes

IR0 Extended frame offsets Extended frame offsets no

IR1 Extended frame offsets Integer register variables no

BK Not used Integer register variables no

RC,RS Block (structure) copy Block (structure) copy no

RE Not used Block repeat loop or integer register
variables

no

SP Stack pointer Stack pointer yes

DP Accessing global variables (big
model only)

Accessing global variables (big model only) yes/no**

R8* Integer register variables Integer and float register variables integer part

R9-R11* Integer and float variables Integer and float variables no
* C4x only
** Yes in small model/no in big model

In the special case of the implementation of an interrupt service routine, all registers used
inside the routine must be saved on the stack. In C, you can use the interrupt pragma to
program an interrupt service routine – the necessary preserving of registers will then be
done automatically.

The Stack Argument Runtime Model

The TMS320 floating point C compiler uses a conventional mechanism to manage the
stack for passing arguments and allocating space for the local variables of a function.
The stack pointer is a hardware register. The stack grows toward higher addresses and
the stack pointer always points to the last element pushed onto the stack, i.e., the top of
the stack. The size of the stack is determined through the linker command file with the -
stack option.

Application Report
SPRA493

How to Interface C and Assembly Language with the TMS320 Floating Point C Compiler 5

A second register called Frame Pointer (FP) points to the local frame of the called
function. Basically, this pointer is the reference address to access both the arguments
and the local frame. It has to be seen that the local frame is accessed in an indirect
manner with pointer and offset addressing. From that, a restriction is caused by the
maximum offset size of eight bits. Consequently, the number of local variables that can
be accessed without overhead is also restricted: the local frame should not excess 256
words. If this restriction cannot be met, the most often used variables should be declared
first. An access to the local frame across the 256 word boundary causes one extra cycle
for loading the offset to an index register plus two additional pipeline delay cycles.

The FP has been defined with a syntactic replacement for readability purposes: FP .set
AR3. This means that the FP is not a processor register but that AR3 is used by
convention for this purpose and FP is the AR3 nickname for the C compiler. The following
C code “example0.c” is shown here as a learning exercise.

int func(int e, int f); /* prototype of func; */
int c=3,d=4; /* c & d are global variables; */
void main(void) /* first function called; */
{
int a=1,b=2; /* automatic or local variables; */
for (;;) /* infinite loop; */

{
d = d + 1; /* increment the global variable; */
a = func(c,d); /* call a function that has two arguments */

/* and that should return an integer; */
b = a + 2; /* sum up the local variable; */
}

}

int func (int e, int f) /* function that has two arguments and that */
{ /* returns an integer as result; */
int x; /* this function has one local variable; */
x = e + f; /* sum of parameters; */
x = x + 2; /* sum of automatic variable and constant; */
return(x); /* return result to caller; */
}

The C compiler call cl30 -k example0.c produces the following assembly code. The
options are:

r Stack argument runtime model

r Small memory model

r No optimization

From that, some parts of the code could be implemented more efficiently; however, the
readability would be worse.

;***
;* TMS320C3x/4x ANSI C Code Generator Version 5.00 *
;* Date/Time created: Thu Dec 11 14:43:05 1997 *
;***

.regalias ; enable floating point register aliases
fp .set ar3
FP .set ar3
;***
;* GLOBAL FILE PARAMETERS *

Application Report
SPRA493

How to Interface C and Assembly Language with the TMS320 Floating Point C Compiler 6

;* *
;* Optimization : Always Choose Smaller Code Size *
;* Memory : Small Memory Model *
;* Float-to-Int : Normal Conversions (round toward -inf) *
;* Multiply : in Software (32 bits) *
;* Memory Info : Unmapped Memory Exists *
;* Repeat Loops : Use RPTS and/or RPTB *
;* Calls : Normal Library ASM call *
;* Debug Info : No Debug Info *
;***
; C:\C3xTOOLS\ac30.exe example0.c C:\temp\example0.if

.sect ".cinit" ; definitions of .cinit tables

.field 1,32

.field _c+0,32

.field 3,32 ; _c @ 0

.sect ".text"

.global _c

.bss _c,1 ; reservation of un-initialized space for global variable c

.sect ".cinit"

.field 1,32

.field _d+0,32

.field 4,32 ; _d @ 0

.sect ".text"

.global _d

.bss _d,1 ; reservation of un-initialized space for global variable d

.sect ".text"

.global _main
;**
;* FUNCTION NAME: _main *
;* *
;* Architecture : TMS320C30 *
;* Calling Convention : Stack Parameter Convention *
;* Function Uses Regs : r0,r1,sp *
;* Regs Saved : *
;* Stack Frame : Full (Frame Pointer in AR3) *
;* Total Frame Size : 2 Call + 0 Parm + 2 Auto + 0 SOE = 4 words *
;**
_main: ; step 1 is performed by call _main in the C boot routine
 push fp ; step 2 save old fp in local frame
 ldiu sp,fp ; initialize new fp
 ldiu 1,r1
 addi 2,sp ; step 3 allocate local frame for _a and _b
 ldiu 2,r0
 sti r1,*+fp(1) ; step 3 initialize _a in local frame
 sti r0,*+fp(2) ; initialize _b in local frame
L2:
 ldiu 1,r0
 addi @_d+0,r0 ; access _d (defined in .bss) with direct addressing and add 1
 sti r0,@_d+0 ; write back _d + 1
 push r0 ; step 4 revised _d is pushed on the stack

Application Report
SPRA493

How to Interface C and Assembly Language with the TMS320 Floating Point C Compiler 7

 ldiu @_c+0,r0 ; access _c with direct addressing
 push r0 ; step 4 _c is pushed on the stack
 call _func ; step 5 call the _func function and save the return address on stack
 ; Call Occurs
 ldiu 2,r1
 sti r0,*+fp(1) ; places the return value (r0) to _a location
 bud L2 ; branch delayed to beginning of for(;;) loop
 addi *+fp(1),r1 ; _b is computed
 sti r1,*+fp(2) ; the result is stored in the _b location
 subi 2,sp ; step 9 pops the arguments _d and _c
 ; Branch Occurs to L2

; A return to the C boot routine does not occur here since the main
; program is looping endlessly

.sect ".text"

.global _func
;**
;* FUNCTION NAME: _func *
;* *
;* Architecture : TMS320C30 *
;* Calling Convention : Stack Parameter Convention *
;* Function Uses Regs : r0,r1 .*
;* Regs Saved : *
;* Stack Frame : Full (Frame Pointer in AR3) *
;* Total Frame Size : 2 Call + 2 Parm + 1 Auto + 0 SOE = 5 words *
;**
_func:
 push fp ; step 6 save old FP in local frame
 ldiu sp,fp ; initialize new FP
 addi 1,sp ; step 7 allocate local frame for _x
 ldiu 2,r0
 ldiu *-fp(3),r1 ; load _d argument
 addi *-fp(2),r1 ; load _c argument and add it to _d
 sti r1,*+fp(1) ; store the result into _x location
 addi *+fp(1),r0 ; compute _x
 sti r0,*+fp(1) ; write it back (might be optimized)

; r0 also contains the return value of the function
 ldiu *-fp(1),r1 ; load the return address into R1
 bud r1 ; branch delayed to the return address
 nop
 subi 3,sp ; step 8 the local frame location, old FP and return address are

; removed from the stack
 ldiu *fp,fp ; restore the old FP into FP
 ; Branch Occurs to r1

Within this code are basically three sections: .cinit, .bss, and .text. The .cinit section
contains tables with the values to initialize global variables. The .text section contains the
program. In the C code are two global variables called c and d. In assembly the name is
preceded with an underscore: _c and _d. In the .cinit section, these variables are defined
using the specific format seen previously.

Example of a .cinit table definition:

.sect ".cinit" ; definitions of .cinit tables

.field 1,32 ; there is one value (32 just indicates the length of the bit-field)

Application Report
SPRA493

How to Interface C and Assembly Language with the TMS320 Floating Point C Compiler 8

.field _c+0,32 ; the value has to be copied to the location _c

.field 3,32 ; the value which should be copied is 3

In the .bss section, the C compiler reserves memory space for the variables, which will be
initialized either by the C boot routine or by a specific loader.

Example of a .bss definition:

.bss _c,1 ; _c is the address of an un-initialized location
; before entering the main() it will be initialized with the value 3 coming from
; the .cinit section by a loader or the C boot routine

FP has been defined as a syntactic replacement of the AR3 register and is used as a
reference pointer to address either arguments or automatic variables, i.e. variables that
come into existence only when the appropriate function is called and disappear when the
function is exited.

The C boot routine is called “boot.asm”, which is standard but can be replaced by a user-
defined equivalent. ”boot.asm” should generally perform the following tasks:

r Reset the status register to zero.

r Initialize the stack pointer.

r Get the page and address of the .cinit section.

r Check whether the user selected the RAM or the ROM model.

r If the user selected the ROM model, then .bss will be auto-initialized; otherwise, this
is done by an external loader.

r Set up the data page pointer (DP) to point to the .bss section (used only for small
memory model).

r Call the C code (call _main).

This ensures that the entry point of the user C code is _main and is reached with a
function call. Because it has been accessed with a call, the processor automatically
saves on stack the return address of the caller (step 1). Now the called function has to
save the previous Frame Pointer FP for the following reasons:

r To restore the context on exit (step 2)

r To initialize the FP to point to the old frame pointer (ldiu sp, fp)

r To allocate space in the local frame for the automatic variables a and b and initialize
them

Because the FP actually points to the old FP, the first local variable a is addressed as
*+fp(1) and the second variable b as *+fp(2) (sti r1, *+fp(1) or sti r0, *+fp(2) as it can be
seen at step 3). Afterward, the global variable d is incremented and pushed together with
c onto the stack as arguments (step 4). It is important to notice that arguments are
pushed in reverse order; i.e., the rightmost declared argument is pushed first, and the
leftmost is pushed last. This makes it straightforward to indirectly access the arguments
through the FP because the leftmost has only an offset of minus two and the rightmost
has the maximum offset. This method is called standard runtime model.

Application Report
SPRA493

How to Interface C and Assembly Language with the TMS320 Floating Point C Compiler 9

The call to func then occurs (step 5) and the return address is automatically saved onto
the stack – this is the final action done by the caller. Now it is the responsibility of the
called function to save the old frame pointer onto the stack (step 6) and set up the new
Frame Pointer to the current sp (ldiu sp, fp). The local frame is allocated here by adding 1
to sp because there is only one local variable (step 7).

The called function can now access its arguments, which are addressed as *-fp(2) and *-
fp(3) for _c and _d, respectively, and the _x value is computed and stored in the local
frame (sti r0, *+fp(1)). The called function returns an integer and therefore the return
value has to be located in r0. For more information, see the section, The Return of a
Function.

The called function has executed its code and returns to the caller. This action is
performed within four steps:

1) The return address is loaded into a register (ldiu *-fp(1), r1), the local frame and
return address are de-allocated from stack (step 8), and the old FP is restored (ldiu
*fp, fp). (A delayed branch to the return address r1 has already been performed.)

2) The program control is then passed back to the caller function.

3) The returned value of _func is stored in the local frame (sti r0,*+fp(1)).

The local variable _b is computed according to the C code before being stored in the
local frame (sti r1, *+fp(2)).

4) The two arguments that were passed through the stack (step 9) are de-allocated.

The core loop (for (;;)) has been executed and the program branches delayed to the
next iteration (bud L2), which will act the same way. In this example the loop is
infinite and therefore the main routine will never exit.

The following table shows that the stack evolution has been recapitulated with the filling
up of the stack on the left side and the release of data on the right side:

Application Report
SPRA493

How to Interface C and Assembly Language with the TMS320 Floating Point C Compiler 10

Stack (Top) Stack Use for Call Step
for
Call

Step
for
Return

Stack Use for Return

Free

Free

Free

Free

_x Automatic variable _x is
allocated (local frame)

7 8 Ffunction _func is returned
and therefore the local frame
(_x) is released

Old FP save Save on entry has been done
by the called function

6 8 Function _func is returned
and therefore the old FP is
released

Return address to
the caller

Function _func is called and
therefore the return address is
automatically saved on stack
by CALL

5 8 Function _func is returned
and therefore the return
address to the caller is
released

_c Argument _c is passed by
stack

4 9 Argument _c that was
passed is popped from stack

_d Argument _d is passed by
stack

4 9 Argument _d that was
passed is popped from stack

2 Automatic variable _b is
allocated (local frame)

3

1 Automatic variable _a is
allocated (local frame)

3

Old FP save Save on entry has been done
by the called function

2

Return address to
C

boot routine

Automatically save on stack by
the CALL _main instruction of
the C boot routine

1

Last occupied stack location
before entering C

0 Came back to the old
context

Stack (bottom)

This is the caller function responsibility

This is the called function responsibility

The Register Argument Runtime Model

In the register argument runtime model, the C compiler uses dedicated registers to pass
arguments to the called function. If the arguments do not fit within the dedicated register
set because of type incompatibility or the number of registers has been exhausted, the
remaining arguments are pushed onto the stack following the stack argument runtime
model convention discussed in the previous section.

Application Report
SPRA493

How to Interface C and Assembly Language with the TMS320 Floating Point C Compiler 11

The six registers used to pass arguments are: ar2, r2, r3, rc, rs, and re. In a first pass, r2
and r3 are allocated to any floating-point numbers in the argument list starting from the
left. In a second pass, the integer or pointer type arguments are allocated to the
remaining registers in a left-to-right manner. An exception to these rules is the ellipsis
declaration, such as in example function f3 in the table below, where the number of
arguments is not fixed in the declaration and therefore the number of passed arguments
must equal or exceed the number of function parameters. Here the last explicitly declared
argument is passed on the stack so that its stack address acts as a reference for
accessing the possible other arguments.

The examples below describe the allocation of parameters for function calls:

allocation type function definition pass

int f0(int *a, int b, int c, int d, int e, int f, int g, int h);

float arguments 1st pass left to right

ptr or integer arguments ar2 r2 r3 rc rs re 2nd pass left to right

remaining arguments Stack Stack 3rd pass right to left

global allocation ar2 r2 r3 rc rs re Stack Stack final

int f1(int a, float b, int *c, struct A d, float e, int f, int g);

float arguments r2 r3 1st pass left to right

ptr or integer arguments ar2 rc rs re 2nd pass left to right

remaining arguments Stack 3rd pass right to left

global allocation ar2 r2 rc rs r3 re Stack final

int f2(float a, int *b, float c, int d, float e);

float arguments r2 r3 1st pass left to right

ptr or integer arguments ar2 rc 2nd pass left to right

remaining arguments Stack 3rd pass right to left

global allocation r2 ar2 r3 rc Stack final

int f3(struct x y, int b, int c, int d,...);

float arguments 1st pass left to right

ptr or integer arguments ar2 r2 r3 2nd pass left to right

remaining arguments Stack Stack ... 3rd pass right to left

global allocation ar2 r2 r3 Stack Stack ... final

The following example uses C and assembly interface. The main program calls a function
that calculates the sum of the figures from 0 to 10. This function is coded in assembly
language and assumes that the register argument runtime model is in use to access
arguments. The C program is named example1.c and the assembly program is called
sum.asm. The command line for the C compiler must be:

cl30 -k -mr example1.c sum.asm -z

The option -mr introduces the usage of the register argument runtime model. In the C
code below, the s function is defined as external. From that the reference will be solved
at link time. The exit() function is used to return to the caller of the main function, which is
the boot routine.

Application Report
SPRA493

How to Interface C and Assembly Language with the TMS320 Floating Point C Compiler 12

Example1.c program:

extern int s(int a0,int a1,int a2,int a3,int a4,int a5,int a6,int a7,int a8,int a9);
/* description of s function coded in C language int */
/* s(int a0,int a1,int a2,int a3,int a4,int a5,int a6,int a7,int a8,int a9); */
/* int s(int a0,int a1,int a2,int a3,int a4,int a5,int a6,int a7,int a8,int a9) */
/* { return(a0+a1+a2+a3+a4+a5+a6+a7+a8+a9); } */

main()
{

int c0=0,c1=1,c2=2,c3=3,c4=4,c5=5,c6=6,c7=7,c8=8,c9=9, sum;
sum = s(c0,c1,c2,c3,c4,c5,c6,c7,c8,c9);
exit(0);

}

The assembly-coded version of s is described below. The FP is defined as ar3 for
coherency with C convention. The function s is referenced through _s because the
compiler appends an underscore to the beginning of all identifiers. The global definition of
_s defines the symbol as external and allows the linker to resolve references to it.

The first six arguments are assigned to the six registers used to pass arguments (ar2, r2,
r3, rc, rs, re). The remaining arguments are pushed in reverse order onto the stack
following the stack argument runtime convention. These actions are executed by the
caller. The called function has only to preserve the old frame pointer and initialize the
new one to access arguments that have been stacked. After the computation has been
done, the function must restore the environment and return the result to the caller.

sum.asm example:

FP .set AR3
.globl _s

;>>>> int s(a0,a1,a2,a3,a4,a5,a6,a7,a8,a9)
**
* FUNCTION DEF : _s
**
_s:

PUSH FP
LDI SP,FP

*
* AR2 assigned to parameter a0
* R2 assigned to parameter a1
* R3 assigned to parameter a2
* RC assigned to parameter a3
* RS assigned to parameter a4
* RE assigned to parameter a5
*
;>>>> {return(a0+a1+a2+a3+a4+a5+a6+a7+a8+a9);

ADDI R2,AR2,R0 ;R0=a0+a1
ADDI R3,R0 ;R0+=a2
ADDI RC,R0 ;R0+=a3
ADDI RS,R0 ;R0+=a4
ADDI *-FP(2),R0 ;R0+=a6
ADDI *-FP(3),R0 ;R0+=a7
ADDI *-FP(4),R0 ;R0+=a8
ADDI *-FP(5),R0 ;R0+=a9
LDI *-FP(1),R1
BD R1 ;branch delay to the return address
LDI *FP,FP ; take benefit of the branch delay to restore old FP

Application Report
SPRA493

How to Interface C and Assembly Language with the TMS320 Floating Point C Compiler 13

ADDI RE,R0 ; take benefit of the branch delay to perform the last sum and store the returned
; result into R0 R0+=a5

SUBI 2,SP ; de-allocates old FP location and return address

The caller sequence generated by the compiler will look as follows:
........
local frame management for
local variables
........

;>>>> sum=s(c0,c1,c2,c3,c4,c5,c6,c7,c8,c9);

ldiu ir0,r0 ; load c9 from temporary register to r0
push r0 ; push r0 - this sequence might be optimized with -o
ldiu *+fp(9),r0 ; load c8 into r0
push r0 ; push r0
ldiu *+fp(8),r0
push r0
ldiu *+fp(7),r0
pus r0
ldiu *+fp(1),ar2 ; pass the first six arguments through registers following the

; rules discussed in this paragraph
ldiu *+fp(6),re ; load the remaining parameters to the appropriate registers
ldiu *+fp(4),rc
ldiu *+fp(5),rs
ldiu *+fp(2),r2
ldiu *+fp(3),r3
call _s

 ; Call Occurs

If a function is used as an argument of a function, such as a quick-sort algorithm:

void qsort(void *v[], int left, int right, int (*comp)(void *, void *));

the address of the function will be passed accordingly as just another pointer type of
argument.

Naturally the calling and the called function must be compiled with the same argument
runtime model as well as with the same memory model. In an assembly code, this can be
reflected using conditional programming with the predefined symbols, .REGPARM (==1
indicates register argument runtime model) and BIGMODEL (==1 indicates usage of big
memory model).

The Return of a Function

If the return value of a function is a scalar type of data like an integer value, pointer, or
floating-point number, it will be placed in the register r0. This is demonstrated in the
sample file example0.c previously. If the register-argument runtime model is used, a
pointer will be returned via the ar0 register. If the return value is a structure, memory
space is allocated on the heap and the structure is copied to this memory space. The
address of this structure is then passed via the ar2 register.

Application Report
SPRA493

How to Interface C and Assembly Language with the TMS320 Floating Point C Compiler 14

References
B.W. Kernighan, D.M. Ritchie: The C Programming Language; Prentice Hall 1988

TMS320C3x User’s Guide; Texas Instruments 1997

TMS320C3x/C4x Optimizing C Compiler User’s Guide; Texas Instruments 1997

INTERNET

www.ti.com

Register with TI&ME to build custom information
pages and receive new product updates
automatically via email.

TI Semiconductor Home Page
http://www.ti.com/sc

TI Distributors
http://www.ti.com/sc/docs/distmenu.htm

PRODUCT INFORMATION CENTERS

US TMS320
Hotline (281) 274-2320
Fax (281) 274-2324
BBS (281) 274-2323
email dsph@ti.com

Americas
Phone +1(972) 644-5580
Fax +1(972) 480-7800
Email sc-infomaster@ti.com

Europe, Middle East, and Africa
Phone

Deutsch +49-(0) 8161 80 3311
English +44-(0) 1604 66 3399
Francais +33-(0) 1-30 70 11 64
Italiano +33-(0) 1-30 70 11 67

Fax +33-(0) 1-30-70 10 32
Email epic@ti.com

Japan
Phone

International +81-3-3457-0972
Domestic +0120-81-0026

Fax
International +81-3-3457-1259
Domestic +0120-81-0036

Email pic-japan@ti.com

Asia
Phone

International +886-2-3786800
Domestic

Australia 1-800-881-011

Asia (continued)
TI Number -800-800-1450

China 10811
TI Number -800-800-1450

Hong Kong 800-96-1111
TI Number -800-800-1450

India 000-117
TI Number -800-800-1450

Indonesia 001-801-10
TI Number -800-800-1450

Korea 080-551-2804
Malaysia 1-800-800-011

TI Number -800-800-1450
New Zealand +000-911

TI Number -800-800-1450
Philippines 105-11

TI Number -800-800-1450
Singapore 800-0111-111

TI Number -800-800-1450
Taiwan 080-006800
Thailand 0019-991-1111

TI Number -800-800-1450

IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied on is current and complete. TI warrants performance of its semiconductor products and related
software to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to
support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain application using semiconductor
products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED,
INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of
TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions
concerning potential risk applications should be directed to TI through a local SC sales office. In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated

TI is a trademark of Texas Instruments Incorporated.
Other brands and names are the property of their respective owners.

