
Application Report
SPRA495

Digital Signal Processing Solutions December 1998

Setting up TMS320C2xx Interrupts in
Assembler or C

Frank Zeller Digital Signal Processoring Solutions

Typically, interrupts are generated by devices that need to give or take data from the
Texas Instruments (TIä) TMS320C2xx, for example, analog-to-digital (A/D) and digital-to-
analog (D/A) converters or other processors. When the C2xx recognizes an interrupt
signal, it suspends execution of the code specific to the particular interrupt event
(Interrupt Subroutine).

The C2xx family supports three or four different sorts of interrupts:

q Maskable external interrupts (INT1-3)

q Non-maskable external interrupts (NMI, RS)

q Maskable internal interrupts (TINT, RINT, XINT, TXRXINT)

q Software interrupts (INT8-16, INT20-31)

This document shows as simply as possible the general way to use these interrupts. The
TMS320C2xx handles interrupts in three phases:

q Reception of the interrupt request

q Acknowledgement of the interrupt

q Execution of the corresponding Interrupt Subroutine (ISR)

Contents

Setting Up TMS320C2xx Interrupts in Assembler2

Setting Up TMS320C2xx Interrupts in C..8
Hardware...11

Figures
Figure 1. Circuit Diagram...11

Tables
Table 1. Register Setting4
Table 2. Memory Allocation..9

Application Report
SPRA495

Setting up TMS320C2xx Interrupts in Assembler or C 2

Setting Up TMS320C2xx Interrupts in Assembler

Introduction

Typically, interrupts are generated by devices that need to give or take data from the
Texas Instruments (TIä) TMS320C2xx, for example, analog-to-digital (A/D) and digital-to-
analog (D/A) converters or other processors. When the C2xx recognizes an interrupt
signal, it suspends execution of the code specific to the particular interrupt event
(Interrupt Sub Routine).

The C2xx family supports three or four different sorts of interrupts:

q Maskable external interrupts (INT1-3)

q Non-maskable external interrupts (NMI, RS)

q Maskable internal interrupts (TINT, RINT, XINT, TXRXINT)

q Software interrupts (INT8-16, INT20-31)

This document shows as simply as possible the general way to use these interrupts. The
TMS320C2xx handles interrupts in three phases:

q Reception of the interrupt request

q Acknowledgement of the interrupt

q Execution of the corresponding Interrupt Sub Routine (ISR)

Interrupt Management

Flags

When a valid signal is generated on an interrupt pin, the corresponding flag bit is set in
the IFR (Interrupt Flag Register). Because INT2/INT3 share the same bit in the IFR, two
additional flags (FINT2 and FINT3) located in the ICR (Interrupt Control Registers) allow
us to distinguish between both.

Masks

The user can select which interrupts the TMS320C2xx should respond to at a given time.
A “1” written to any mask bit of the IMR (Interrupt Masked Register) enables the
corresponding interrupt. This IMR includes two “combo-flags”:

q INT1/HOLD

q INT2/INT3

Hence, to separate the combined masks, two additional bits (MINT2 and MINT3 in the
ICR) allow us to distinguish those interrupts.

Application Report
SPRA495

Setting up TMS320C2xx Interrupts in Assembler or C 3

The HOLD and INT1 signals share the same external pin. Although INT1/HOLD are
combined in the IFR, they are mutually exclusive. The MODE bit (bit 4 of the ICR)
separates both types of inquiries:

q MODE = “0” HOLD is selected

q MODE = “1” INT1 is chosen

Even through HOLD is shown in the IMR, the HOLD function cannot be masked.

Controls

The ICR (Interrupt Controls Register) provides the capability to:

q Individually mask INT2 and INT3 (MINT2 and MINT3 bits)

q Clearly identify which interrupt INT2 or INT3 has been requested (FINT2 and FINT3
bits)

q Differentiate HOLD and INT (MODE bit)

Global Enabling

The INTM (Interrupt Mode bit, bit 9 of the ST0) globally enables or disables all maskable
interrupts.

q INTM = ‘0’ enables masked interrupts

q INTM = ‘1’ inhibits masked interrupts

Interrupt Initialization

Registers Definition

Some registers are mapped to data space (from 0000h to 0060h). The .mmregs directive
defines global symbols for all memory-mapped registers (listed on page 5-35 of the
TMS320C2xx User’s Guide, literature number SPRU127B).

To facilitate the access to I/O mapped registers, you can define the address of on-chip
registers mapped to I/O space. This table depends on the target DSP.

The on-chip registers mapped to I/O space for the TMS320C203 are:
CLK .set 0FFE8h ;CLK Register
IC .set 0FFECh ;Interrupt Control Register
SDTR .set 0FFF0h ;Synch. Serial Port Transmit/Receive Register
SSPCR .set 0FFF1h ;Synch. Serial Port Control Register
ADTR .set 0FFF4h ;Async. Serial Port Receive/Transmit Register
ASPCR .set 0FFF5h ;Async. Serial Port Control Register
IOSR .set 0FFF6h ;Input/Output Status Register.
BRD .set 0FFF7h ;Baud Rate Divisor Register
TCR .set 0FFF8h ;Timer Control Register
PRD .set 0FFF9h ;Timer Period Register
TIM .set 0FFFAh ;Timer Counter Register
WSGR .set 0FFFCh ;Wait State Generator Control Register

Application Report
SPRA495

Setting up TMS320C2xx Interrupts in Assembler or C 4

Steps of the Initialization

During the initialization of the processor, the user can define his working environment and
enable/disable interrupts according to the application. We can distinguish three steps in
the initialization process.

Global Disable Interrupts

To the prevent interruption of processor initialization, all interrupts are disabled by setting
the INTM bit using the following command:

SETC INTM ; disable interrupts

Mask Interrupts

q IMR setting. As this is a memory-mapped register and assuming that the IMR value is
contained in IMR_Value:

SPLK IMR,#IMR_Value ; mask interrupts

q ICR setting. As this is a I/O-mapped register and assuming that the ICR value is
contained in ICR_Value:

SPLK #IC_Value,TEMP ;load ICR_Value in a temporary variable
OUT TEMP,IC ;write ICR_Value in ICR

Flag Clear

To avoid servicing an interrupt, the flag bits have to be cleaned up. The IFR is cleared by
writing a ‘1’ in each bit whereas the flag in the ICR can be cleared ; meanwhile the mask
is set (see previous point).

IFR_CLR .set 0FFFFh
SPLK #IFR_CLR,IFR

Global Reenable All Unmasked Interrupts.

Before starting the main function, the INTM bit is reset. Thus, all unmasked interrupts are
enabled.

CLRC INTM ;enable all unmasked interrupts

Table 1. Register Setting

Interrupt Condition on IMR Condition on ICR Observations

INT1 bit 0 = ‘1’ bit 4 = ‘1’ mutually exclusive with
HOLD

HOLD
bit 0 = ‘1’ bit 4 = ‘0’ mutually exclusive with INT1

INT2
bit 1 = ‘1’ bit 0 = ‘1’

INT3
bit 1 = ‘1’ bit 1 = ‘1’

TINT bit 2 = ‘1’ not involved

Application Report
SPRA495

Setting up TMS320C2xx Interrupts in Assembler or C 5

Vector Table Allocation

Once the interrupt is received, the C2xx branches to its corresponding subroutine called
an ISR (Interrupt Service Routine). The C2xx follows the branch instruction you place at
the predetermined address (the vector location) and executes the ISR you have written.
The vector location table is shown on page 5-16 of the TMS320C2xx User’s Guide,
literature number SPRU127B). The user must map it at address 0000h in the program
space via the command file (interr.cmd). Typically, a .sect directive is used.

For each interrupt, two words are reserved: one to code the branch instruction and the
other for the address to be branched. If one of those interrupts is unused, replace the
branch instruction by the directive, .space 2*16. It reserves 2*16 = 32 bits. The following
is an example of an interrupt table :

.sect “vectors”
B INIT ;reset
B IT1HOLD ;INT1/HOLD
B INT2_3 ;INT2 and INT3
B TINT ;TINT

Interrupt Service Routine

Before returning from any interrupt, you generally need to reenable unmasked interrupts.
Thus, the ISR ends with:

CLRC INTM ;reenable unmasked interrupts

RET ;return from interrupt

HOLD and INT1

Both signals are connected to the same pin. Thus, they share the same mask bit and the
same flag. The MODE bit (in the ICR) distinguishes them. To know which subroutine has
to be branched, we test the MODE. If MODE = ‘0’, the HOLD state is set up ;otherwise,
the interrupt INT1 has to be served. The function of this pin is selected by the user and
may depend on the part of the running program. For example,

*Registers values
FLAGIT1 .set 0010h ;identify the HOLD mode
ICRHOLD .set 0000h ;Hold mode
ICRINT1 .set 0010h ;INT1 mode

SPLK #ICRINT1,TEMP ;set-up INT1 (use ICRHOLD to set up HOLD)
OUT TEMP,IC ;INT1 is enabled

The code below is a possible test.

Application Report
SPRA495

Setting up TMS320C2xx Interrupts in Assembler or C 6

IT1HOLD: IN TEMP,IC ;capture ICR
LACL TEMP
AND FLAGIT1 ;test MODE bit
BCND HOLD,EQ ;if HOLD mode, branch to HOLD

INT1: NOP ;interrupt1 service routine
SETC XF ;XF=1, shows that INT1 is operating
RPT TEMP2 ;repeat 32768 times
NOP
CLRC XF ;INT1 ended
CLRC INTM ;enable interrupts before return
RET ;return from interrupt

HOLD: LACL IMR ;save the current IMR
SPLK #1,IMR ;mask all interrupts

;only a positive edge on the INT1/HOLD pin
;may issue the HOLD mode

IDLE ;power down mode
;(HOLD mode-HOLDA is asserted)

SPLK #HOLD_CLR,IFR ;clear HOLD to prevent
;a 2nd service of the IT

SACL IMR ;restore the mask
CLRC INTM ;enable unmasked interrupts before return
RET ;return from HOLD mode

There are three methods for exiting the HOLD mode while de-asserting HOLDA:

q Rising edge on the INT1/HOLd pin

q Reset

q NMI

Even if any other unmasked interrupt can exit an idle state, the HOLD would not be
properly left (the HOLDA will not be de-asserted). That is why the current IMR is saved at
the beginning of the Hold subroutine and changed to 0001h (only the INT1/HOLD is
enabled) before the idle. On a rising edge of the INT1/HOLd pin, the idle state is exited
and the old IMR is restored.

INT2 and INT3

Bit 1 of the IFR is the flag for both INT2 and INT3. This bit is cleared automatically by the
CPU when either interrupt is serviced. To determine which one was received, the ISR
must read FINT2 and FINT3 in the ICR and then branch as required to the proper place
in the ISR.

Application Report
SPRA495

Setting up TMS320C2xx Interrupts in Assembler or C 7

FLAGIT2 .set 0004h ;mask of the ICR differentiate INT2 from INT3
IMR_VAL .set 0002h ;IMR mask - enable INT2 and INT3
ICR_VAL .set 0003h ;ICR value - unmask INT2 / mask INT3 : 0001h

;ICR value - mask INT2 / unmask INT3 : 0002h
;ICR value - unmask both INT2 and INT3: 0003h

INT2_3: IN TEMP,IC ;capture ICR
LACL TEMP
AND #FLAGIT2 ;test FINT2
BCND INT3,EQ ;branch to INT3 subroutine if FINT2=0

INT2: NOP ;here is the ISR corresponding to INT2
...

INT3: NOP ;here is the ISR corresponding to INT3
...

FINT2 and FINT3 are not cleared automatically by the CPU. Consequently, clearing is
done in the interrupt subroutine.

IN TEMP,IC ;capture ICR
OUT TEMP,IC ;clear the flag

TINT

The timer consists of three I/O-mapped registers. The process used to fix the value of
those registers according to the timing rate is described in the TMS320C2xx User’s
Guide, literature number SPRU127B.

q TCR (Timer Control Register)

q PRD (Period Register)

q TIM (Timer Value Register)

The Timer setup is generally done during the initialization using the following steps:

1) Stop the timer (TSS = ‘0’, bit 4 of TCR) and initialize the TDDR value (1st byte of the
TCR).

2) Initialize the PRD value.

3) Load TIM with PRD and PSC with TDDR and start the timer.

It leads to the following code:

Application Report
SPRA495

Setting up TMS320C2xx Interrupts in Assembler or C 8

*Following values have been computed to generate a TINT at a rate of
*16 kHz with a DSP running with an internal cycle time of 25 nsec.
* PRD = 2499d = 9C3h
* PSC = 0d = 0h
TCR_STOP .set 0010h ;stop Timer - load TDDR
TCR_RUN .set 0020h ;load PSC with TDDR (TRB = 0)

;load TIM with PRD (TRB = 0)
;start Timer (TSS = 1)

PRD_VAL .set 09C3h ;Configuration of the Timer Period Register

*The following lines configures the Timer
SPLK #IMR_VAL,IMR ;Mask of interrupts: enables TINT

SPLK TCR_STOP,TEMP ;stop Timer
OUT TEMP,TCR ;initialization of TDDR

SPLK PRD_VAL,TEMP ;initialization of PRD
OUT TEMP,PRD

SPLK TCR_RUN,TEMP ;load TIM with PRD
OUT TEMP,TCR ;load PSC with TDDR

;start Timer
CLRC INTM ;enable all interrupts

Setting Up TMS320C2xx Interrupts in C

Program Developed in C

C Compiler

The TMS320C2x/C2xx/C5x C Compiler is compatible with ANSI C standards and made
up of the preprocessor, parser, optimizer and code generator. The code generator
produces assembly code that can be assembled and linked.

Runtime Support

Some tasks that a C program must perform (e.g., memory allocation, string searches ...)
are not part of the C language. The ANSI C standard defines a complete set of runtime
support functions performing these tasks. The TMS320 fixed-point compiler includes a
library that contains ANSI standard runtime support functions gathered in two libraries:

q rts2xx.lib (TMS320C2xx standard runtime support functions)

q rts.src (source of library functions).

Both files are described in the TMS320C2x/C2xx/C5x Optimizing C Compiler User’s
Guide, literature number SPRU024D.

Application Report
SPRA495

Setting up TMS320C2xx Interrupts in Assembler or C 9

Linker

The user must create a linker command file that specifies precise placement of sections.
The structure linker command files used for C program remains the same as for
assembly program. In fact, when linking C code through, the following two considerations
must be observed :

q Set both stack and heap size using the -stack and -heap options.

q Allocate the seven sections produced by the C-compiler into memory. These include
four initialized sections and three uninitialized sections.

Table 2. Memory Allocation

Directive Type Description Link to

.text initialized executable code program memory

.cinit initialized data tables to initialize global and static variables program memory

.switch initialized tables for switch statements program memory

.const initialized data constants declared by const data memory

.bss uninitialized global and static variables data memory

.stack uninitialized c system stack data memory

.sysmem uninitialized heap (dynamic memory) data memory

Initializing the C Environment

Before running a C program, the C environment has to be created. This can be done
either by using the boot.asm module (in rts2xx.lib) or by writing your own boot routine. In
both cases, this boot routine has to ensure four operations :

q Initialization of the stack (creation of the .stack section and setup) This step performs
the creation of the .stack section and the initialization of both stack and frame
pointers.

q Initialization of the status registers. This allows starting the processor in a known
state.

q Auto-initialization of global variables

q Calling the main function (do not forget that a C program has necessarily a main
function.)

Interrupt initialization

This section describes how to access the involved registers from C. There are three
types of registers:

q Those mapped to I/O space

q Those mapped to data space

q Status registers (ST0 and ST1)

Application Report
SPRA495

Setting up TMS320C2xx Interrupts in Assembler or C 10

I/O-Mapped Registers

The first thing to do is to declare these registers:

For example:

Name Address
#define IC 0xFFEC /*Interrupt Control register*/

To access these registers we can use the writeport and readport functions. These
functions are assembler-coded functions you can find in inout.asm. The address depends
on the used DSP.

Register name Value written to the register
| |

writport ((int *) IC, IC_Value);

Register name Temp variable
| |

readport((int *) IC, &I);

Data-Mapped Registers

First, these registers have to be defined:

unsigned int *IMR = (unsigned int *) 0x0004; /*c203 IMR definition/
unsigned int *IFR = (unsigned int *) 0x0006; /*c203 IFR definition/

To write into these registers follow this statement:
 *IMR = IMR_Value;

This is equivalent to:
asm (” SPLK #IFR_CLR,IFR”);

To read those registers use:
IMR_BUF = *IMR;

Status Registers

The status registers can only be accessed by using asm-statements, such as the one
shown above.

Application Report
SPRA495

Setting up TMS320C2xx Interrupts in Assembler or C 11

Hardware

Figure 1. Circuit Diagram

Hardware

The circuit diagram shown in Figure 1 is not complete. It suggests one method but there
are other options that may offer improved operation.

Comments

q DIV1 and DIV2 are chosen to get an input clock mode of clock mode*1.

q For detailed information on the Reset pin, please consult D/B and D/S.

q We are not booting from the EPROM but just using it as external memory.

Application Report
SPRA495

Setting up TMS320C2xx Interrupts in Assembler or C 12

INTERNET

www.ti.com

Register with TI&ME to build custom information
pages and receive new product updates
automatically via email.

TI Semiconductor Home Page
http://www.ti.com/sc

TI Distributors
http://www.ti.com/sc/docs/distmenu.htm

PRODUCT INFORMATION CENTERS

US TMS320
Hotline (281) 274-2320
Fax (281) 274-2324
BBS (281) 274-2323
email dsph@ti.com

Americas
Phone +1(972) 644-5580
Fax +1(972) 480-7800
Email sc-infomaster@ti.com

Europe, Middle East, and Africa
Phone

Deutsch +49-(0) 8161 80 3311
English +44-(0) 1604 66 3399
Francais +33-(0) 1-30 70 11 64
Italiano +33-(0) 1-30 70 11 67

Fax +33-(0) 1-30-70 10 32
Email epic@ti.com

Japan
Phone

International +81-3-3457-0972
Domestic +0120-81-0026

Fax
International +81-3-3457-1259
Domestic +0120-81-0036

Email pic-japan@ti.com

Asia
Phone

International +886-2-3786800
Domestic

Australia 1-800-881-011

Asia (continued)
TI Number -800-800-1450

China 10811
TI Number -800-800-1450

Hong Kong 800-96-1111
TI Number -800-800-1450

India 000-117
TI Number -800-800-1450

Indonesia 001-801-10
TI Number -800-800-1450

Korea 080-551-2804
Malaysia 1-800-800-011

TI Number -800-800-1450
New Zealand +000-911

TI Number -800-800-1450
Philippines 105-11

TI Number -800-800-1450
Singapore 800-0111-111

TI Number -800-800-1450
Taiwan 080-006800
Thailand 0019-991-1111

TI Number -800-800-1450

IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied on is current and complete. TI warrants performance of its semiconductor products and related
software to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to
support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain application using semiconductor
products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED,
INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of
TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions
concerning potential risk applications should be directed to TI through a local SC sales office. In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated

TI is a trademark of Texas Instruments Incorporated.
Other brands and names are the property of their respective owners.

