
Application Report
SPRA566B - February 2000

1

IS-127 Enhanced Variable Rate Speech Coder:
Multichannel TMS320C62x Implementation

Min Wang
Xiangdong Fu

C6000 Applications

ABSTRACT

This application report provides a detailed description of the implementation of the IS-127
enhanced variable rate speech codec (EVRC) on the Texas Instruments (TI) TMS320C62x
digital signal processor (DSP). Topics include program structure, code writing rules,
data/program memory requirements, and performance evaluation. Issues on multichannel
implementation and interrupts are also addressed.

Contents

1 Introduction 2.

2 Multichannel System 3.

3 Algorithm Description 4.
3.1 Encoder Structure 4.
3.2 Decoder Structure 5.
3.3 Main Program 5.

4 Coding Guidelines 5.
4.1 Variable, Array, and Pointer Names 5.
4.2 Math Operations 6.
4.3 Tables and Functions 6.
4.4 Interrupt Issues 6.

4.4.1 Interrupts at the Frame Boundary 6.
4.4.2 Interrupts at the Submodule Boundary 7.

5 Memory Requirements 7.
5.1 Memory for Context Data 7.
5.2 Memory for Tables 10.
5.3 Memory for Local Variables and Arrays 12.
5.4 Program Memory 12.

6 Performance Results 13.

7 References 13.

List of Figures

Figure 1. File Tree of the EVRC Speech Coder Software Package 5.

TI is a trademark of Texas Instruments Incorporated.

SPRA566B

2 IS-127 Enhanced Variable Rate Speech Coder: Multichannel TMS320C62x Implementation

List of Tables

Table 1. Bit Allocation of the Traffic Packet Types of EVRC 3.
Table 2. EVRC Encoder Context Data Structure (EVRC_Sta_Encoder) 8.
Table 3. EVRC Decoder Context Data Structure (EVRC_Sta_Decoder) 10.
Table 4. List of EVRC Tables 11.
Table 5. Program and Data Memory Requirements of EVRC 13.
Table 6. Performance Estimation of EVRC With C62x DSP Compiler Version 2.1 13.

1 Introduction

This application report provides a detailed description of the implementation of the IS-127
enhanced variable rate speech codec (EVRC) on the TMS320C6000 DSP. Issues on
multichannel implementation and interrupts are also addressed.

The EVRC is a standard for the “Speech Service Option 3 for Wideband Spread Spectrum
Digital System,” which has been employed in both IS-95 cellular systems and ANSI J-STC-008
PCS (personal communications systems). The EVRC algorithm is specified in IS-127. A
bit-exact reference C program is also provided in IS-127, along with a set of testing sequences.
The code implemented on the TMS320C62x is fully bit compatible with the bit-exact reference
code on all testing sequences.

The EVRC uses the relaxed code excited linear prediction (RCELP) algorithm, an
analysis-by-synthesis algorithm that belongs to the class of speech coding algorithms knows as
code excited linear prediction (CELP). Unlike most existing CELP-type codecs, RCELP extracts
pitch information once for every 20-ms speech frame, which results in larger algebraic codebook
for prediction residuals and robustness under impairment channel conditions. The EVRC
processes every 20-ms speech frame using three of the four primary traffic packet types
permitted by IS-95 Multiplex Option 1:

• Rate 1 (171 bits/packet)
• Rate 1/2 (80 bits/packet)
• Rate 1/8 (16 bits/packet)

The rate is determined by the contents of the current speech frame and the history of the
characteristics of the previous frames, as well as the command from the high level of the traffic
controller. Table 1 summarizes the bit allocations of the traffic packets.

SPRA566B

3 IS-127 Enhanced Variable Rate Speech Coder: Multichannel TMS320C62x Implementation

Table 1. Bit Allocation of the Traffic Packet Types of EVRC

Field Rate1 Rate 1/2 Rate 1/8

Spectral transition indicator 1

LSP 28 22 8

Pitch delay 7 7

Delta delay 5

ACB gain 9 9

FCB shape 105 30

FCB gain 15 12

Frame energy 8

(unused) 1

Total 171 80 16

Every 20-ms speech frame is divided into three subframes of lengths 53, 53, and 54 speech
samples. Because rates 1 and 1/2 use similar speech coding algorithms, their bit allocations are
very similar, except for the spectral transition indicator and delay difference parameters.
However, rate 1/8 usually applies to background noise rather than speech, only allocating bits
for LSP and frame energy estimation.

Refer to IS-127 [1] for a detailed description of the EVRC vocoder.

2 Multichannel System

The multichannel system can run more than one algorithm at the same time. Any algorithm
compliant with the eXpress DSP Algorithm Standard[5][6][7][8][9] is capable of multichannel
processing. An XDAIS compliant algorithm requires three functional modules; initialization,
freeing and kernel. The kernel module performs the algorithm processing and the initialization
and freeing module initializes/frees the algorithm context data[2].

The XDAIS application programming interface (API) for the initialization is defined as

Int (*algInit)(IALG_Handle, const IALG_MemRec *, IALG_Handle, const
IALG_Params *);

The XDAIS application programming interface (API) for freeing is defined as

Int (*algFree)(IALG_Handle, const IALG_MemRec *);

where the first parameter of type IALG_Handle is a pointer that contains the current context data
memory location. During framework initialization, the framework calls the algorithm initialization
functions. All the initialization functions perform the same tasks: initialize context data and store
to the desired memory location, After the initialization function is completed, the system
repeatedly calls an algorithm(s) until all the frames have been processed.

SPRA566B

4 IS-127 Enhanced Variable Rate Speech Coder: Multichannel TMS320C62x Implementation

The system may need to call the algFree() function to free the algorithm instance after all
processing is done.

The APIs for the called algorithm, encoder and decoder, are defined as

extern DAIS_Int8 EVRC_TI_encode(IEVRCENC_Handle handle, DAIS_Int16* in,
DAIS_Uint16* out);
extern DAIS_Int8 EVRCD_TI_decode(IEVRCDEC_Handle handle, DAIS_Uint6*
in, DAIS_Int16 out[]);

where handle points to the start address of the context data which contains the start address of
the constant tables of the algorithm. The pointers in and out point to the input and output data.
Since XDAIS does not specify standard APIs for algorithm processing, these two APIs are
algorithm specific.

3 Algorithm Description

The complete speech codec is implemented in mixed C and TMS320C62x assembler, with the
majority of the code in C (TMS320C62x optimized C). Each basic math operation defined in
mathevrc.c either is replaced by its corresponding TMS320C62x intrinsic or is static inlined. The
two 32-bit multiply functions in mathdp31.c are expressed in intrinsics and are static inlined.

The codec is multichannel enabled. After processing one frame of one channel, the codec can
process one frame of another channel. Additional effort is needed to make the codec
interruptible within a frame processing to allow the decoder higher priority than the encoder.

Features are implemented, including input signal preprocessing, determining the data rate, and
adaptive post-filter.

TI’s implementation of this algorithm is fully bit compatible with the bit-exact Reference C code,
version 1.21 (program date April 11, 1997) on all testing sequences.

3.1 Encoder Structure

The EVRC speech encoder is divided into submodules common for all of the rates and
submodules unique to each rate. The common submodules include submodule 1 to submodule
3 and are executed once per frame:

• Submodule 1 contains the input signal preprocessing and all the subroutines associate with
noise suppression.

• Submodule 2 conducts pre-encoding which includes LPC analysis, conversion between LPC
coefficients and LSP, computing weighted residual signal and determining the frame pitch
period, and rate selection.

• Submodule 3 performs LSP quantization for all rates, quantizes pitch period for rate 1 and
rate 1/2, and computes delta delay for rate 1.

The submodules unique to each rate include submodule 4_8 for rate 1/8 and submodule 4_12
for rate 1 and rate 1/2:

• Submodule 4_8 generates the random excitations of all three subframes and estimates the
energy of the excitation.

SPRA566B

5 IS-127 Enhanced Variable Rate Speech Coder: Multichannel TMS320C62x Implementation

• Submodule 4_12 performs the innovative codebook search and filter memory update and
should be repeated three times per frame.

3.2 Decoder Structure

The EVRC speech decoder is divided into two submodules.

• Submodule 1 deals with frame parameter recovering, which should be done once per frame.

• Submodule 2 contains subframe parameter recovering, speech synthesizing, and
post-filtering. Submodule 2 should be repeated three times per frame.

3.3 Main Program

Figure 1 shows the file tree of the EVRC speech codec software package.

main --------- code --------- common ---------------- functions
| | |

| |----- encoder |------ intrinsics, inlined math
| | tables & constants
| |----- decoder
|
|----- test --------- enc

|---- dec
|---- run_evm

Figure 1. File Tree of the EVRC Speech Coder Software Package

The code directory contains the codec.c file that is the top file of the whole codec; the linker
command file, codeclnk.cmd; the make file, makefile; and the simulator initialization file,
siminit.cmd.

The common directory contains the include files *.h; the table files, *.tab; and the source files
(in *.c or *.asm) common to both the encoder and the decoder.

The encoder directory contains the encoder top file, encoder.c, and the include files, *.h, used
only in the encoder. The program follows the structure of the encoder described above. The files
specific to one submodule are stored in the corresponding subdirectory.

The decoder directory contains all of the files used in the decoder only.

The test directory contains test files to run the encoder and decoder with a simulator or an EVM
(evaluation module).

4 Coding Guidelines

This program is a mixed C and assembly implementation.

4.1 Variable, Array, and Pointer Names

We use the same name conventions for variables, arrays, and pointers as in the reference
C code.

SPRA566B

6 IS-127 Enhanced Variable Rate Speech Coder: Multichannel TMS320C62x Implementation

4.2 Math Operations

All math operations defined in mathevrc.c and mathdp31.c in the reference C program are
expressed with TMS320C62x intrinsics, if possible. In addition to using intrinsics, basic
operations divide_s and negate and all of the two multiply functions defined in mathdp31.c are
inlined. Their expressions in intrinsics or inlined versions reside in mathevrc.h and mathdp31.h,
respectively. For a description and usage of the TMS320C62x intrinsics, see the
TMS320C62x/67x Programmer’s Guide (SPRU198) [10].

4.3 Tables and Functions

The names of tables are the same as in the reference C program, except for the tables used in
the routines Interpol and Interpol_delay. Each of these two routines contains two look-up tables
with the same names, frac and shft_frac, but different elements. To eliminate such ambiguity and
to help the memory management and accessibility of these tables, we reserve such names for
the tables in the Interpol routine and append delay to each of the tables for those in
Interpol_delay. Refer to Table 4 for a list of all tables in this codec.

The functions are sorted in three categories based on their functionality in the vocoder: encoder,
decoder, and common functions.

• All functions belonging to the encoder only are located in the encoder directory.

• All functions belonging to the decoder only are located in the decoder directory.

• All functions used by both the encoder and the decoder are placed in the common directory.

• Each function is either in C or assembly. The name of a function closely matches its name in
the reference C program. For a function named * in the reference C program,

– If it is in C, this function will be named *.c in this implementation.

– If it is in hand-optimized assembly, this function will be named *_ho.asm in this
implementation.

4.4 Interrupt Issues

The codec is multichannel enabled in the sense that after the processing of one frame of one
channel, the code can process one frame of another channel. That is, the codec is interruptible
at the frame process boundary. Additional study is required to make the codec interruptible
within a frame process.

4.4.1 Interrupts at the Frame Boundary

To ensure the access to the right memory of each channel, the static variables and arrays whose
values have to be kept from one frame to the next are sorted into one of the two structures,
EVRC_Sta_Encoder for the encoder and EVRC_Sta_Decoder for the decoder. Both of these
two structures are defined in EVRC_StaMem.h. The static variables and arrays of the codec of
each channel are initialized with standard IALG initialization functions evrceInit() and evrcdInit(),
respectively.

http://www-s.ti.com/sc/techlit/spru198

SPRA566B

7 IS-127 Enhanced Variable Rate Speech Coder: Multichannel TMS320C62x Implementation

To start an encoding process of a channel, the API is

DAIS_Int8 EVRCE_TI_encode(IEVRCENC_Handle handle,DAIS_Int16* in,
DAIS_UInt8* out)

where the pointer handle denotes the start address of the context memory block that containes
the structure defined as EVRC_Sta_Encoder of that particular channel, the pointer in points to
the start address of the input speech buffer of the frame to be processed, and the pointer out
points to the start address of the encoded bit stream buffer.

Similarly, to start a decoding process of a channel, the API is

DAIS_Int8 EVRCD_TI_decode(IEVRCDEC_Handle handle,DAIS_UInt8* in,
DAIS_Int* out)

where the pointer handle denotes the start address of the context memory blcok that contains
the structure defined as EVRC_Sta_Decoder of that particular channel, the pointer in points to
the start address of the input bit stream buffer, and the pointer out points to the start address of
the synthesized speech buffer.

4.4.2 Interrupts at the Submodule Boundary

You can interrupt the codec at any place other than software pipelined loops. Of course, you
can even choose not to interrupt the codec until the end of a frame process as long as the
overall system design requirement is met. If interrupts are necessary, we suggest that, in
general, interrupts occur in certain places, like the end of each submodule, so that the
increases in data memory and cycle counts are kept minimal.

5 Memory Requirements

The data memory is divided into three groups:

• Context data

• Tables

• Local variables and arrays

5.1 Memory for Context Data

The context data are the static variables and arrays with values that must be kept from one
frame to the next. Table 2 and Table 3 summarize the encoder/decoder context data names and
their sizes. The context data for the EVRC codec are sorted into one of the two structures,
EVRC_Sta_Encoder and EVRC_Sta_Decoder.

SPRA566B

8 IS-127 Enhanced Variable Rate Speech Coder: Multichannel TMS320C62x Implementation

Table 2. EVRC Encoder Context Data Structure (EVRC_Sta_Encoder)

Array/Variable
Size

(B t)
Submodule

Array/Variable (Bytes)
1 2 3 4

bq_xsave 36 x

bq_ysave 72 x

first 2 x

pre_emp_mem 2 x

de_emp_mem 2 x

update_count 2 x

hster_count 2 x

last_update_cnt 2 x

frame_cnt 2 x

last_normb_shift 2 x

ch_enrg 64 x

ch_noise 64 x

ch_enrg_long_db 32 x

overlap 96 x

window_overlap 48 x

ConstHPspeech 320 x

Oldlsp_nq 20 x x

SynMemoryM 20 x

WFmemFIR 20 x

WFmemIIR 20 x

residual 660 x x

OldlspE 20 x

Excitation 384 x

residualm 128 x

memA 20 x

memA1 20 x

memA2 20 x

LPCgain 2 x

accshift 2 x

pdelay 2 x

dpm 2 x

shiftSTATE 2 x

DECbuf 80 x

lastgoodpitch 2 x

lastbeta 2 x

memory 6 x

iset 2 x

gset 4 x

SPRA566B

9 IS-127 Enhanced Variable Rate Speech Coder: Multichannel TMS320C62x Implementation

Table 2. EVRC Encoder Context Data Structure (EVRC_Sta_Encoder) (Continued)

Array/Variable
Size

(B t)
Submodule

Array/Variable (Bytes)
1 2 3 4

Sum 6 x

Seed 2 x

buffer 384 x

a1 16 x

a2 16 x

a3 16 x

band_noise_sm 8 x

last_rate 2 x

last_rate_1st_stage 2 x

last_rate_2nd_stage 2 x

num_full_frame 2 x

hangover 2 x

hangover_in_progress 2 x

signal_energy 4 x

adaptcount 2 x

pitchrun 2 x

band_power_last 4 x

snr_map 4 x

snr_stat_once 2 x

max_rate 2 x

min_rate 2 x

noise_suppression 2 x

Total 2670

SPRA566B

10 IS-127 Enhanced Variable Rate Speech Coder: Multichannel TMS320C62x Implementation

Table 3. EVRC Decoder Context Data Structure (EVRC_Sta_Decoder)

Array/Variable
Size

(B t)
Submodule

Array/Variable (Bytes)
1 2

iset 2 x

gset 4 x

FIRmem 20 x

IIRmem 20 x

OldlspD 20 x x

SynMemory 20 x

PitchMemoryD 384 x

PtichMemoryD_back 256 x

Residual 364 x

last 2 x

Seed 2 x

Sum 6 x

PrevBest 2 x

erasureFlag 2 x

errorFlag 2 x

pdelayD 2 x x

fer_counter 2 x x

FadeScale 2 x

ave_acb_gain 2 x

ave_fcb_gain 2 x

last_valid_rate 2 x

last_fer_flag 2 x

post_filter 2 x

Total 1124

5.2 Memory for Tables

Table 4 summarizes the tables in the EVRC codec. Tables common to both the encoder and
decoder require 10920 bytes of data memory. Running encoder only requires 13924 bytes of
data memory for tables. Running decoder only requires 10980 bytes of data memory for tables.
Running both encoder and decoder on the same C62x chip requires 13974 bytes of data
memory for tables.

SPRA566B

11 IS-127 Enhanced Variable Rate Speech Coder: Multichannel TMS320C62x Implementation

Notice that the memory for tables is independent of the number of channels running on the chip.

Table 4. List of EVRC Tables

Table
Size

(Bytes) Encoder Decoder

ppvq 16 x x

ppvq_mid 14 x

gnvq_4 32 x x

gnvq_8 64 x x

nsize8 4 x x

lognsize8 4 x x

nsub8 4 x x

rnd_delay 10 x

nsize22 6 x x

nsub22 6 x x

lognsize22 6 x x

nsize28 8 x x

lognsize28 8 x x

nsub28 8 x x

lsptab8 320 x x

lsptab22 3580 x x

lsptab28 4352 x x

Logqtb 1536 x

Powqtbl 1536 x x

wfac_GAMMA1 20 x

wfac_GAMMA2 20 x x

wfac_Gamma_4 20 x

wfac_ALPHA 20 x

wfac_BETA 20 x

bq_w 32 x

ch_tbl 64 x

ch_tbl_sh 64 x

vm_tbl 180 x

window 208 x

SPRA566B

12 IS-127 Enhanced Variable Rate Speech Coder: Multichannel TMS320C62x Implementation

Table 4. List of EVRC Tables (Continued)

Table
Size

(Bytes) Encoder Decoder

hamm_table 320 x

w_long 68 x

Table 112 x x

Table1 272 x x

LSTEPS 16 x

cos129_table 258 x x

sin129_table 258 x x

frac 8 x x

shft_fctr 8 x x

frac_delay 10 x x

shft_fctr_delay 10 x x

A 6 x

t_inv_sqrt 98 x

r_filt_x2 68 x

Ipos 22 x

PswPCoef 6 x

phs_tbl 256 x

Index 16 x

Total 13974 13924 10980

5.3 Memory for Local Variables and Arrays

The local variables and arrays are stored in the stacks and consume about 13924 bytes and
10984 bytes of data memory space for the encoder and decoder, respectively.

5.4 Program Memory

The codec is mixed C and assembly. The overall hand coded assembly routines, total of 15
routines, require 7744 bytes of program memory. All of these 15 routines are called in the
encoder and only 5 of them, requiring 1824 bytes, are called in the decoder. With 2.10 compiler,
the overall code sizes of the rest C routines of the encoder and the decoder takes 60970 bytes
and 18076 bytes of program memory respectively. And the overall code size of the EVRC codec
with the compiler version 2.10 release, is 81690 bytes.

Table 5 summarizes the estimated number of bytes required for the GSM EFR vocoder program
memory and data memory. All of the numbers are in bytes. The N in the table represents the
number of channels running on the same device.

SPRA566B

13 IS-127 Enhanced Variable Rate Speech Coder: Multichannel TMS320C62x Implementation

Table 5. Program and Data Memory Requirements of EVRC

Function
Static RAM

(Bytes)
Dynamic RAM

(Bytes)
ROM Table

(Bytes)
Program Memory

(Bytes)

Encoder 2670 x N 4780 13924 68714

Decoder 1124 x N 1558 10984 19900

Total 3794 x N 4780 13924 81690

6 Performance Results

Table 6 gives the worst-case cycle count of one EVRC channel for all operating rates with the
compiler version 2.10 release . The testing sequence is vec_01 with both noise suppression and
post-filter enabled. The cycle count presented in is obtained by adding the worst-case cycle
count with the version 2.00 fast simulator and 10% overhead because of possible memory bank
hits. (Because the EVRC is intended to run on the C6202 with 256 Kbytes of on-chip program
memory, and the EVRC code size is ~80Kbytes, the EVRC program can fit into the C6202
on-chip program memory. Therefore, there is no need to consider the extra cycle count from
external program memory access.)

Table 6. Performance Estimation of EVRC With C62x DSP Compiler Version 2.1

Function
Rate 1
(MHz)

Rate 1/2
(MHz)

Rate 1/8
(MHz)

Encoder 22.30 17.04 10.65

Decoder 2.31 2.23 2.32

Total 24.61 19.27 12.97

The worst case for full duplex operation is encoder worst case + decoder worst case. For the
current implemented codec, the worst-case cycle count is 22.30 + 2.32 = 24.64 MHz. If the
codec is completely in hand-coded assembly, each EVRC channel will take no more than
12.5 MHz.

7 References
1. Enhanced Variable Rate Codec, Speech Service Option 3 for Wideband Spread Spectrum

Digital Systems, January 1997, IA/EIA/IS-127.
2. Xiangdong Fu and Zhaohong Zhang, A Multichannel/Algorithm Implementation on the

TMS320C6000, SPRA556.
3. Xiangdong Fu and Zhaohong Zhang, TMS320C6000 Multichannel Vocoder Technology

Demonstration Kit Host Side Design, SPRA558.
4. Xiangdong Fu, TMS320C6000 Multichannel Vocoder Technology Demonstration Kit Target

Side Design, SPRA560.
5. eXpressDSP Algorithm Standard (Rules & Guidelines), SPRU352.
6. eXpressDSP Algorithm Standard (API Reference), SPRU360.
7. Stig Torud, Making DSP Algorithms Compliant to the eXpressDSP Algorithm Standard,

SPRA579.

http://www-s.ti.com/sc/techlit/spra558
http://www-s.ti.com/sc/techlit/spra560
http://www-s.ti.com/sc/techlit/spru352
http://www-s.ti.com/sc/techlit/spru360
http://www-s.ti.com/sc/techlit/spra579

SPRA566B

14 IS-127 Enhanced Variable Rate Speech Coder: Multichannel TMS320C62x Implementation

8. Carl Bergman, Using the eXpressDSP Algorithm Standard in a Static DSP System,
SPRA577.

9. Carl Bergman, Using the eXpressDSP Algorithm Standard in a Dynamic DSP System,
SPRA580.

10. TMS320C62x/67x Programmer’s Guide, SPRU198.

http://www-s.ti.com/sc/techlit/spra577
http://www-s.ti.com/sc/techlit/spra580
http://www-s.ti.com/sc/techlit/spru198

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

	ABSTRACT
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Multichannel System
	3 Algorithm Description
	3.1 Encoder Structure
	3.2 Decoder Structure
	3.3 Main Program

	4 Coding Guidelines
	4.1 Variable, Array, and Pointer Names
	4.2 Math Operations
	4.3 Tables and Functions
	4.4 Interrupt Issues
	4.4.1 Interrupts at the Frame Boundary
	4.4.2 Interrupts at the Submodule Boundary

	5 Memory Requirements
	5.1 Memory for Context Data
	5.2 Memory for Tables
	5.3 Memory for Local Variables and Arrays
	5.4 Program Memory

	6 Performance Results
	7 References
	IMPORTANT NOTICE

