
Application Report
SPRA750D - September 2003

1

Using TMS320C6416 Coprocessors:
Viterbi Coprocessor (VCP)

Jelena Nikolic-Popovic Digital Signal Processing Solutions

ABSTRACT

Viterbi Coprocessor (VCP) is a programmable peripheral for decoding of convolutional
codes, integrated into Texas Instruments’ TMS320C6416 DSP device. The VCP is controlled
via memory mapped control registers and data buffers. Control registers can be accessed
directly by the CPU, whereas data buffers are typically accessed using the EDMA controller.
This application note describes the relationship between the theory of Viterbi decoding and
VCP implementation, outlines VCP programming procedure, and provides examples. The
examples demonstrate how to program VCP for typical 3GPP/IS2000 parameters.

Contents

1 Introduction 3.
2 Background on Viterbi Decoding Algorithm 3.

2.1 Branch Metrics Computation 4.
2.2 State Metric Computation 5.
2.3 Yamamoto Bit 5.
2.4 Traceback 6.
2.5 Sliding Window Processing 7.

3 Relationship Between Viterbi Decoding Theory and VCP Implementation 8.
3.1 Code Parameters 8.
3.2 Branch Metrics 9.
3.3 State Metrics 9.

3.3.1 State Metric Accumulation 9.
3.3.2 State Metric Initialization 9.

3.4 Yamamoto Bit 9.
3.5 Traceback 9.
3.6 Sliding Window Processing 9.

4 VCP Programming Procedure 11.
4.1 Initialize Input Buffers 11.
4.2 Allocate Output Buffers 11.
4.3 Prepare VCP Input Configuration Word 11.
4.4 Prepare EDMA Links 11.

4.4.1 Special VCP EDMA Programming Considerations 12.
4.5 Start EDMA 13.
4.6 Start VCP 13.
4.7 Service EDMA Interrupt from VCP Channel at the End of Decoding 13.

5 VCP/EDMA Configuration Examples 13.

Trademarks are the property of their respective owners.

SPRA750D

2 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

5.1 Hard Decision Outputs 13.
5.1.1 3GPP 12.2kbps – Class A 13.
5.1.2 32kbps 15.
5.1.3 IS2000 RC3 Voice 16.
5.1.4 GSM/EDGE AFS Frames 18.

5.2 Soft Decision Outputs 19.
5.2.1 GSM/EDGE AFS Frames 19.

6 Multichannel Operation Considerations 21.
6.1 Method 1: paRAM-Efficient 21.
6.2 Method 2: Continuous Decoding 22.
6.3 Method 3: Lowest CPU Interrupt Rate 23.

7 References 24.

List of Figures

Figure 1. K=9, R=1/2 Convolutional Encoder 3.
Figure 2. Trellis for a K=5 Convolutional Code 4.
Figure 3. State Metric Accumulation 5.
Figure 4. Yamamoto Bit Accumulation 6.
Figure 5. Example of Survivor Path and Associated Decoded Sequence 7.
Figure 6. Sliding Window Processing 7.
Figure 7. Method 1: paRAM Entries 22.
Figure 8. Method 2: paRAM Entries 23.
Figure 9. Method 3: paRAM Entries 24.

List of Tables

Table 1. Programmable VCP Parameters 8.
Table 2. Maximum Frame Length for Non-Sliding Window Processing 10.
Table 3. Hard Decisions and Soft Decisions with Mixed/Convergent Modes 10.
Table 4. EDMA Links 12.
Table 5. VCP/EDMA Configuration for 3GPP 12.2kbps (AMR Speech Frame – Class A) 15.
Table 6. VCP/EDMA Configuration for 3GPP 32kbps Frame 16.
Table 7. VCP/EDMA Configuration for IS2000 RC3 Full Rate 18.
Table 8. VCP/EDMA Configuration for GSM − HD 19.
Table 9. VCP/EDMA Configuration for GSM − SD 20.

SPRA750D

3 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

1 Introduction

Viterbi Coprocessor (VCP) is a programmable peripheral for decoding of convolutional codes,
integrated into Texas Instruments’ TMS320C6416 DSP device. The inputs into the coprocessor
are 7-bit branch metrics, obtained by combining channel soft decisions. The outputs are
bit-packed hard decisions, or 16-bit soft decisions. The VCP also computes the Yamamoto bit.

VCP programmable parameters are:

• Constraint length K (5, 6, 7, 8 or 9)

• Code rate (1/2, 1/3 or 1/4)

• Polynomials

• Frame length and termination (with or without tail bits)

• Initial conditions for state metric computation

• Threshold for Yamamoto bit generation

2 Background on Viterbi Decoding Algorithm

We are interested in the application of Viterbi algorithm application to decoding of convolutional
codes.

Convolutional encoder can be thought of as a delay line with (K−1) elements. Parameter K is
referred to as constraint length. Input to the delay line is a binary information sequence {un} of
length N. The sequence is shifted through a delay line, one bit at a time. For each input bit un,
there are R=1/r output bits x1n ,x2n ,...,xRn . Parameter r is referred to as the code rate. The output
is formed by adding (modulo 2) outputs of delay line elements, according to binary polynomials
G1={g11,g12,...,g1K}; G2={g21,g22,...,g2K};..., GR={gR1,gR2,...,gRK}. The polynomials are usually
specified in octal notation. For example, Figure 1 shows a K=9, R=1/2 convolutional encoder
with polynomials G1G2={561,753}.

To facilitate the decoding process, the initial state of delay elements is the all-zero state. In
addition, by appending (K−1) zeros (tail bits) at the end of the N-bit input sequence, it is also
ensured that the final state is the all-zero state.

D D D D D D D D{un}

�x1n
�

�x2n
�

Figure 1. K=9, R=1/2 Convolutional Encoder

Viterbi algorithm is an efficient implementation of a maximum likelihood sequence detector. It
produces the most likely transmitted sequence {un,est }, given received noisy sequence {yn}.
Throughout this document, it is assumed that values {yn} represent real, quantized analog
values. This is referred to as soft-decision input.

In its application to decoding of convolutional codes, the received sequence {yn} is the noisy
version of the encoded sequence {xn}, and the algorithm estimates the most likely sequence at
the input to the convolutional encoder {un}.

SPRA750D

4 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

The most likely sequence is found by traversing (in forward and backward directions) a trellis
whose structure is determined by convolutional code parameters. An example of a trellis for K=5
is shown in Figure 2.

The trellis consists of nodes (states) that are connected by branches. The total number of stages
in the trellis, for a terminated frame, is (N+K−1), i.e., it represents the length N of the input data
sequence, followed by (K−1) tail bits. At each stage, there are 2(K−1) states. The state is the
decimal representation of the contents of encoder’s memory elements. Two branches are
originated in each state (corresponding to binary inputs un=0 and un=1), and two branches are
terminated in each state. Each branch is labeled with 1-bit input label (“0” or “1”), and R-bit
output label. For example, on the branch connecting state 1 to state 0, the input label is i=0,
indicating the bit that is shifted into the left-most delay element, and the output label is, for the
encoder shown in Figure 1, i=11, indicating bits which are produced at the output of the encoder
when bit 0 is present at the input, and encoder state is 1.

The entire trellis can be constructed from Viterbi butterflies, a structure consisting of two states
at stage n, connected by two branches each to two states at stage n+1. One such butterfly is
highlighted in Figure 2.

state 0
state 1
state 2
state 3

state 14
state 15

stage 1 stage 2 stage N+K−1

...

...

...

...

...

...

...

...

...

...

...

...

...

Figure 2. Trellis for a K=5 Convolutional Code

The main steps in the Viterbi algorithm are described in the following sections.

2.1 Branch Metrics Computation

Associated with each branch in the trellis is a branch metric. The branch metric is a measure of
how “close” the received noisy values yn={y1n,y2n,...,yRn} are to the output branch label
o={o1,o2,...,oR}.

For a rate r=1/R code, 2R different branch output labels o are possible. Therefore, for each
stage n, we need to compute 2R branch metrics.

Branch metric bo is computed as a Euclidean distance between the received noisy sample and
branch label. This expression can be simplified as follows:

SPRA750D

5 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

bon = y1n(−1)o1+ y2n(−1)o2+...+ yRn(−1)oR

Due to symmetry, b00n=−b11n, and b01n=−b10n. It therefore suffices to compute 2R−1 branch
metrics for each trellis stage n.

2.2 State Metric Computation

The trellis is traversed in the forward direction in order to accumulate branch metrics along paths
through the trellis.

Viterbi algorithm is based on the fact that it is sufficient to accumulate state metrics sm[k],
k=0,...,2K−1−1. We have seen that two branches (corresponding to two paths) merge in each
state. At each state, the path with the larger accumulated metric is chosen as the survivor and
the other path is discarded. The path metric associated with the survivor path becomes state
metric for the state and stage in which the two paths have merged.

The process of accumulating path metrics and selecting the survivor is graphically represented
in Figure 3.

sm[i][n−1]

sm[j][n−1]

pm1=sm[i][n−1]+b1[n]

pm2=sm[j][n−1]+b2[n]

sm[k][n]=max(pm1,pm2)

hard decision:
if (max(pm1,pm2)==pm1)
 transition[k][n] = 0
else
 transition[k][n] = 1
soft decision:
transition[k][n] = pm1−pm2

Figure 3. State Metric Accumulation

As will be seen in the next section, it is necessary to “remember” the input label of the branch
belonging to the survivor path. This information is referred to as transition bit and is denoted as
transition[k][n] in Figure 3. Therefore, one transition bit per state per stage needs to be
saved for the next step in the algorithm.

At stage 0, state metrics need to be initialized. One of the choices is to initialize them all to zero.
However, in order to take advantage of the fact that the initial state is zero, the state 0 can be
“favored” by giving it a higher initial metric than the remaining states. For example, state zero
could be initialized to 0 and remaining states to the smallest negative number.

2.3 Yamamoto Bit

In addition to the state metric sm[k], associated with each state k is a Yamamoto bit Y[k]. The
idea behind the Yamamoto bit is to “remember” if, at any stage in the trellis, the distance
between the survivor path and the discarded path was smaller than the Yamamoto threshold. If
this was the case, it is concluded that the decoding is not reliable and a higher layer in the
network may decide to discard the entire frame. For a terminated trellis, the Yamamoto bit
associated with state 0 of the last stage, Y[0][N+K-1], is used as a binary frame quality
indicator.

SPRA750D

6 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

The Yamamoto bit is accumulated, as the trellis is traversed, as shown in Figure 4. Path metrics
are computed for both paths merging in state k, as done for state metric accumulation. The
absolute difference between the two path metrics is computed and compared to the Yamamoto
threshold. If the difference is smaller than the threshold, Yamamoto bit is set to zero. If the
difference is larger than the threshold, then the Yamamoto bit is set to the Yamamoto bit of the
state through which the survivor path passed. Therefore, the Yamamoto bit is propagated along
the survivor path.

Y[i][n−1]

Y[j][n−1]

if |pm1−pm2| > Threshold

 if pm1 = max(pm1,pm2)

 Y[k][n]=Y[i][n−1]

 else

 Y[k][n]=Y[j][n−1]

else

 Y[k][n] = 0;

pm1= sm [i][n−1]+b1[n]

pm2= sm [j][n−1]+b2[n]

Figure 4. Yamamoto Bit Accumulation

Note: The Yamamoto Bit may be falsely set to 0 when the number of symbols to be processed
is not a multiple of 4 when (FL + (K−1)%4 = 1, 2, 3 for the last set of symbols to be processed is
1, 2, or 3. The extra (3, 2, 1) symbol stages of the Branch Metrics are automatically being
inserted by the VCP as 0’s. Automatically inserting the zeroed BM stages can cause the
Yamamoto Bit to be falsely set to 0, thus falsely setting the Yamamoto Bit to 0. The user should
always choose frame length such that FL + (K−1)%4 equals zero when using Yamamoto Bit to
avoid this issue.

2.4 Traceback

At the start of the traceback, we first exploit the fact that the encoder terminates in state zero.
The traceback therefore starts from state 0 at the last trellis stage, i.e., stage (N+K−2).

We then exploit the transition bits saved during state metric accumulation process. The
transition bit associated with state 0 at stage (N+K−2), denoted transition[0][N+K−2] , gives
information on the origin for the path which terminated in state 0 at stage (N+K−2). If the
transition bit is 0, the origin is state 0 at stage (N+K−2), otherwise the origin is state 1 (see
Figure 5).

By following the transition bits while traversing the trellis in the backward direction, we are
effectively choosing the overall survivor path that corresponds to a particular input sequence.
The sequence of input labels of branches along the survivor path is the decoded maximum likely
sequence. In , the decoded sequence is uest = {0,1,1,1}. The last four zeros in the path are tail
bits and are not part of the information frame.

SPRA750D

7 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

0
1
2
3

...

...

...
0
0
0
0
0
0
0

...
14
15

1

0
0

0

0

0
1

1

Figure 5. Example of Survivor Path and Associated Decoded Sequence

2.5 Sliding Window Processing

As seen in section 2.2, during state metric accumulation, the transition bits for all states and all
stages need to be saved in order to perform traceback. In order to reduce storage requirements,
Viterbi decoding can be split into blocks, which are referred to as sliding windows.

The sliding window concept is shown in Figure 6. The state metric accumulation starts at stage
0, and is performed continuously for the entire frame, over (N+K−1) stages. After state metrics
(and transition bits) have been accumulated for the first window W1 of (R+C) stages, the
traceback starts from the state which has the maximum accumulated metric at the last
processed stage. In order to improve reliability of the decisions, the decisions for last C stages
will not be used, only the first R. R is called reliability length, i.e., it is the portion of the window
for which the decoding is reliable. C is called convergence length, i.e., it is the portion of the
window for which the decoding is converging.

stage N+K−2

W1

W2
W3

W4

stage 0

C C C

R R R R_last

Figure 6. Sliding Window Processing

After the state metrics have been accumulated for additional R stages, the traceback for the
second window starts from the state which has the maximum accumulated metric at the last
processed stage.

Since the last C stages from the first window were discarded, the reliability portion R of the
second window W2 overlaps with convergence portion of window W1.

If the overlap between windows is sufficiently large (Fourney’s rule states that the overlap should
be up to 5*(K−1)), then there will be no noticeable degradation in the BER (Bit Error Rate)
performance of the algorithm.

SPRA750D

8 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

Note that the last window does not require convergence portion since the final state at stage
(N+K−2) is known to be zero.

3 Relationship Between Viterbi Decoding Theory and VCP
Implementation

In this section, we establish the relationship between the theory of Viterbi decoding and the VCP
implementation, describing the significance of programmable VCP parameters which affect VCP
algorithm. Those parameters are described in [2] and are reviewed in Table 1.

Table 1. Programmable VCP Parameters

Parameter Name Parameter Description Register Size (bits)

F Frame Length (excluding tail bits) VCPIC2 16

R Reliability length VCPIC2 16

C Convergence length VCPIC3 16

TB Traceback mode (tailed, mixed, convergent) VCPIC5 2

YAMEN Yamamoto bit computation enable bit VCPIC1 1

YAMT Yamamoto threshold VCPIC1 12

IMAXS Maximum state metric VCPIC4 12

IMINS Minimum state metric VCPIC4 12

IMAXI Maximum State Index VCPIC5 8

SDHD Soft decisions or hard decisions VCPIC5 1

POLY[0:3] Encoder polynomials VCPIC0 4 x 8

SYMX Determines number of symbols transferred per VCPXEVT VCPIC5 4

SYMR Determines number of symbols transferred per VCPREVT VCPIC5 4

OUTF Output parameter read flag VCPIC5 1

NOTE: The parameters shown in gray in Table 1 are related to EDMA operation and do not affect the Viterbi algorithm functionality.

3.1 Code Parameters

VCP supports single shift register, rate 1/2, 1/3 or 1/4 convolutional codes with constraint length
5,6,7,8 and 9. Polynomials are programmable as 4x 8-bit values (POLY[0:3]), representing
binary polynomial coefficients. The code rate and constraint length are not programmed directly,
but are computed inside the VCP based on polynomials.

Frame length F is programmable. A frame can be terminated with tail bits (TB = tailed or mixed)
or non-terminated (TB =convergent). If the frame is terminated with tail bits, the branch metrics
for (K−1) tail bits are also required by the VCP.

SPRA750D

9 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

3.2 Branch Metrics

For a rate r code, there is a total of 21/r−1 different branch metrics which are formed by
combining 1/r soft decisions. Branch metrics at the input to the VCP are 7-bit signed values.
Additional limitation on the dynamic range of soft decisions comes from state metrics
accumulation and is discussed in the section 3.3.1.

3.3 State Metrics

3.3.1 State Metric Accumulation

State metrics are accumulated modulo−212 (the size of accumulated state metric registers is 12
bit). According to a literature result published in [1], modulo−2C truncation of state metrics can
be performed without loss of decoding performance if the branch metrics satisfy the following
bound:

2C�1 � 1 � (2(K � 1) � 2)B

where K is constraint length and B is upper bound for branch metrics.

For example, for C=12 and K=9, the branch metric bound is B≤113.7 which is slightly smaller
than the available 7-bit input range. Since branch metric is a combination of 1/r soft decisions,
assuming that soft decisions have the same upper bound, the corresponding bound for soft
decisions is 56.8 for rate 1/2, 37.9 for rate 1/3, and 28.4 for rate 1/4 codes.

3.3.2 State Metric Initialization

At the beginning of each frame, state metrics are initialized in the following manner: the state at
index IMAXI (user input) is set to value IMAXS (user input). All other states are set to value
IMINS (user input). IMAXS and IMINS are 12-bit signed values. Typically, initial state is known to
be zero, IMAXI=0.

3.4 Yamamoto Bit

As seen in section 2.3, the computation of the Yamamoto bit requires a threshold, YAMT. The
threshold is input to the VCP on a per-frame basis. It is a 12-bit value. If Yamamoto bit
computation is enabled, i.e., YAMEN bit is set, the Yamamoto bit is reported for each frame in
VCP’s output register VCPOUT1.

3.5 Traceback

For non-sliding window processing, or for the last window in sliding window processing mode for
terminated frames (TB = tailed, mixed) , the traceback starts from state 0.

For all intermediate sliding windows, as well as the final window for non-terminated frames (TB
= convergent), the traceback starts from the state with the largest accumulated state metric.

3.6 Sliding Window Processing

Frame decoding is split into sliding windows, as discussed in section 2.5 , due to the finite size
of traceback memory. The traceback memory, internal to the VCP, accommodates
128*256/2(K−1) stages for hard decision decoding, or 32*256/2(K−1) trellis stages for soft decision
decoding.

SPRA750D

10 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

Frame processing does not need to be split into sliding windows if the frame length (not
including tail bits) observes bounds shown in Table 2.

Table 2. Maximum Frame Length for Non-Sliding Window Processing

Maximum Frame Length for Non-Sliding Window Processing
(TB = tailed)

Constraint Length K Hard Decisions Soft Decisions

K=9 120 24

K=8 217 49

K=7 378 90

K=6 635 155

K=5 2044 508

If the length of the frame to be decoded does not satisfy bounds from Table 2, sliding window
processing is used, and reliability length R and convergence length C need to be programmed.
Some restrictions apply to the selection of R and C and are listed in Table 3. Note that, for soft
decisions, the only choices of C are 3(K−1) and 6(K−1), and R is fixed given the constraint
length K.

The correct operation of VCP is not guaranteed if these conditions on R and C are not satisfied.

Table 3. Hard Decisions and Soft Decisions with Mixed/Convergent Modes

Hard Decisions Soft Decisions

Traceback mode Tradeback mode

Tailed Mixed*/Convergent Tailed Mixed)/Convergent

Fmax
R+C

C possible values Fmax R, C=3(K-1)
non-punctured
code

R, =6(K-1)
(punctured
code)

K=9 120 124 3,6,9,12,15 * (K-1) 24 R=4, C=24 not allowed

K=8 217 217 3,6,9,12,15,18 *(K-1) 49 R=28, C=21 R=7, C=42

K=7 378 372 3,6,9,12,15,18 *(K-1) 90 R=60, C=18 R=54, C=36

K=6 635 605 3,6,9,12,15,18 *(K-1) 155 R=60, C=15 R=60, C=30

K=5 2044 1020 3,6,9,12,15,18 *(K-1) 508 R=60, C=12 R=60, C=24

*Mixed mode is not allowed for frame sizes that can be handled in tailed mode

Note: Additional configurations that are valid for F, R, and C are R=192, C=96, Rate=1/3, K=7,
Convergent mode, Hard decision, and Frame lengths = 278, 310, 342, 358, 480, 482, 486, 624,
626, 768, 770, and 802.

SPRA750D

11 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

4 VCP Programming Procedure

This section outlines steps required to decode a single frame of data using the VCP. For
possible approaches to decoding of multiple frames of the same or different user channels, see
section 6.

4.1 Initialize Input Buffers

The user computes branch metrics and stores them in DSP internal or external memory. For a
terminated frame with F information bits, and code with constraint length K, the total number of
symbols is Ntot=F+K−1. For non-terminated frame, i.e., no tail bits, the total number of input
symbols is Ntot=F.

For rate r, constraint length K code, there will be Ntot*(21/r−1) 7-bit branch metrics. Branch
metrics are organized as described in [].

The DSP memory address of the beginning of the pre-computed branch metrics array will be
referred to as &bm[0]. The beginning of the branch metric array should be aligned on a 64-bit
boundary.

4.2 Allocate Output Buffers

Hard decisions are transferred from the VCP in 64-bit words, stored in a bit-packed manner.
Therefore, for a frame with F information bits, the size of the allocated output buffer should be
ceil[F/64]*8 bytes.

Soft decisions are transferred from the VCP also in 64-bit words, but each soft decision is 16
bits. Therefore, for a frame with F information bits, the size of the allocated output buffer should
be ceil[F/4]*8 bytes.

If the output parameter read flag is set (OUTF=1), two additional 64-bit words should be
allocated for the output parameter word.

The DSP memory addresses of the beginning of the allocated buffers for VCP decisions and
output parameters will be referred to as &sdhd[0] and &output_p[0], respectively. All buffers
should be aligned on an 64-bit boundary.

4.3 Prepare VCP Input Configuration Word

For each frame, VCP input configuration registers VCPIC0−VCPIC5 are programmed as shown
in []. The register configuration is first prepared in the DSP memory (internal or external). It is
transferred to the VCP via EDMA once the VCP is started. The DSP memory address of the
beginning of the prepared input configuration is denoted &input_config[0].

4.4 Prepare EDMA Links

When the VCP is ready to process a frame of data, it sends a series of synchronization events
(VCPXEVT) to the EDMA, indicating that VCP is ready to receive data. Similarly, once decoding
of one frame is completed, the VCP sends another series of synchronization events (VCPREVT)
to the EDMA, indicating that data is ready.

SPRA750D

12 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

For each EDMA transfer, programmable parameters are: (1) transfer options, (2) source
address, (3) destination address, (4) frame and element count, (5) frame and element index, (6)
reload count and link address. These parameters are described in detail in [3].

The EDMA transfer parameters are summarized in Table 4 and described in detail in [2].

The third row of the table represents the address in the paRAM. Link 0 of each VCPXEVT and
VCPREVT have to be programmed at fixed locations in the paRAM, denoted as
ADDR_VCPXEVT and ADDR_VCPREVT, respectively. Other links could be programmed
anywhere in the paRAM. These additional locations in the paRAM are denoted RELOAD1,
RELOAD2, etc.

Element count ELECNT and frame count FRMCNT for VCPXEVT Link 1 and VCPREVT Link 0
are computed from formulas given in [2].

The LINK entry in each parameter set represents the paRAM address of the next linked transfer.
LINK=NULL indicates that the next transfer is the NULL transfer used for termination (see [3]).

Table 4. EDMA Links

VCPXEVT Links VCPREVT Links

Link 0 Link 1 Link 0 Link 1 (optional)

paRAM address =
ADDR_VCPXEVT

paRAM address =
RELOAD1

paRAM address =
ADDR_VCPREVT

paRAM address =
RELOAD2

OPT: SUM=DUM=INC OPT: SUM=INC,
DUM=FIXED

OPT: SUM=FIXED,
DUM=INC (TB=mixed),
DUM=DEC(TB=tailed)

OPT: SUM=DUM=INC
TCINT=1,
TCC = VCPREVT

SRC= &input_config[0] SRC= &bm[0] SRC=VCPDECS SRC=VCPOUT0

FRMCNT= 0 ELECNT= 6 FRMCNT ELECNT FRMCNT ELECNT FRMCNT= 0 ELECNT= 2

DST=VCPIC0 DST=VCPWBM DST= &sdhd[] DST= &output_p[0]

FRMIDX=
N/A

ELEIDX=
N/A

FRMIDX=
N/A

ELEIDX =
N/A

FRMIDX =
N/A

ELEIDX =
N/A

FRMIDX =
N/A

ELEIDX =
N/A

ELERLD=
N/A

LINK
=RELOAD1

ELERLD
= N/A

LINK
= NULL

ELERLD=
N/A

LINK
= RELOAD2
 (OUTF=1)
=NULL
 (OUTF=0)

ELERLD
= N/A

LINK=
NULL

4.4.1 Special VCP EDMA Programming Considerations

The EDMA parameters consist of six words as illustrated in Table 4. All EDMA transfers, in the
context of the VCP, must be done using 32-bit word elements, must contain an even number of
words, and must and have source and destination addresses double-word aligned.

Note: All EDMA transfers must be double-word aligned and the element count for the VCP
EDMA transfer must be a multiple of two. Single-word transfers that are not double-word aligned
will cause errors in TCP/VCP memory.

SPRA750D

13 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

4.5 Start EDMA

The EDMA channels corresponding to VCPREVT and VCPXEVT are enabled in the EDMA
Event Enable Register (EER), and these channels are also allowed to generate CPU interrupts
by setting appropriate bits in the Channel Interrupt Enable Register (CIER). The EDMA control
registers are described in detail in [3].

4.6 Start VCP

CPU writes a “START” command into VCP’s execution word register VCPEXE. This causes the
VCP to generate the first VCPXEVT expecting input control. This in turn triggers the EDMA
transfer which is programmed into the Event paRAM location corresponding to VCPXEVT.

4.7 Service EDMA Interrupt from VCP Channel at the End of Decoding

The EDMA link associated with the last VCPREVT is configured to generate a CPU interrupt. In
the CPU interrupt service routine, the output decision buffer for the completed frame can be
processed and decoding of next frame can be initiated.

5 VCP/EDMA Configuration Examples
In this section we show how to program VCP to decode a single frame of data, with typical 3G
wireless decoding parameters.

For each example, we will discuss how to determine the VCP/EDMA configuration parameters.
Settings of F,R, C , and SYMX and SYMR will be discussed in detail.

State metric initialization will be set assuming that state 0 is the known start state, so IMAXI = 0.
This state will be given preference by setting the initial value to IMAXS=0x400 (i.e., � of the
maximum absolute value), and keeping the initial value of the remaining states to IMINS= 0x0.

EDMA link configuration for VCPXEVT Link 0 (write to VCP input configuration) and VCPREVT
Link 1 (read from VCP output parameters) are constant in all cases and are shown in Table 4.
They will not be repeated in the examples, but it is understood that they need to be
programmed.

5.1 Hard Decision Outputs

5.1.1 3GPP 12.2kbps – Class A

Using an example from [4], one 20msec AMR speech frame, with output data rate of 12.2kbps,
is split into three transport channels. The first transport channel carries 81 class A bits and 12
CRC bits, for a total of 93 bits and is encoded using rate 1/3 convolutional code with constraint
length K=9 and polynomials {0x6F, 0xB3, 0xC9, 0x00}.

The branch metric buffer consists of (93 information bits + 8 tail bits)*4 branch metrics/bit = 404
bytes. The output hard decision buffer is ceil[93/64]*8 = 16 bytes. The VCP/EDMA configuration
is determined as follows:

1. F/R/C: F=93. Since F < 120, TB mode is tailed, i.e., the processing is not split into sliding
windows (see Table 2). R and C are therefore not used. In tailed TB mode, the hard
decisions are written in reverse order, i.e., last 64-bit first, so the EDMA destination
address should be initialized to the end of the decision buffer, and destination address
mode should be “decrement”.

SPRA750D

14 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

2. SYMX, ELECNT/FRMCNT, for VCPXEVT link 1:

Since RATE=3, SYMXmax � 8 � 1 � 7. One possibility is to let SYMX � SYMXmax � 7
which results in:

ELECNT� 2RATE�1 � min�SYMX � 1, FL � K � 1
4

	
� 2RATE�1 � (SYMX � 1) � 22 � 8 � 32

and

FRMCNT � ceil� FL � K � 1
4(SYMX � 1

	� 1 � ceil 93 � 9 � 1
4 * 8

� 1 � ceil 101
32

� 1 � 3

The total number of branch metrics transferred in this case is
ELECNT * (FRMCNT � 1) * 4 � 32 * 4 * 4 � 512, whereas the actual number of branch
metrics needed is (FL � K � 1) * 2RATE�1 � 101 * 4 � 404.

Although the VCP will work correctly, the EDMA bandwidth can be optimized by setting
SYMX = 6, which results in ELECNT = 28 and FRMCNT = 3 . In the latter case, the total
number of transmitted branch metrics is 448.

3. SYMR, ELECNT/FRMCNT, for VCPREVT link 0:

For hard decisions, SYMR � min�SYMRmax, ceil�FL
64
	� 1	 � min(15, 2 � 1) � 1. Then,

ELECNT � 2 * ceil
min((SYMR � 1) * 64, FL)

64
� 2 * ceil FL

64
� 4

and

FRMCNT � ceil FL
(SYMR � 1) * 64

� 1 � 0

4. POLY: POLY[0] = 0x6F (corresponds to 557), POLY[1] = 0xB3 (corresponds to 663),
POLY[2]= 0xC9 (corresponds to 771), POLY[3]=0;

We assume that the output parameters will not be read (OUTF=0), so that only one link is
programmed for the VCPREVT. The resulting VCP/EDMA configuration is shown in Table 5.

SPRA750D

15 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

Table 5. VCP/EDMA Configuration for 3GPP 12.2kbps (AMR Speech Frame – Class A)

Input Configuration

F = 93 R = N/A C = N/A TB = Tailed

YAMT=0 (YAMEN=0) IMAXS = 0x400 IMINS = 0 IMAXI = 0

SDHD = HD SYMX = 6 SYMR = 1 OUTF = 0

POLY[0] = 0x6F POLY[1] = 0xB3 POLY[2] = 0xC9 POLY[3] = 0x0

VCPXEVT Links VCPREVT links

Link 1 Link 0

OPT: SUM = INC, DUM = FIXED OPT: SUM = FIXED, DUM = DEC,
 TCINT = 1, TCC = VCPREVT

SRC= &bm[0] SRC =VCPDECS

FRMCNT= 3 ELECNT= 28 FRMCNT= 0 ELECNT= 4

DST=VCPWBM DST= &sdhd[3]

FRMIDX= N/A ELEIDX= N/A FRMIDX= N/A ELEIDX= N/A

ELERLD= N/A LINK= NULL ELERLD= N/A LINK= NULL

5.1.2 32kbps

For 32kbps data rate, with 10msec frames, the frame length (without tail bits) is 320 bits. The
frame is encoded using rate �, K=9 convolutional code with polynomials {0x71,0xEB, 0x00,
0x00}.

1. F/R/C: F=320. Since F > 120, TB mode is mixed, i.e., the processing is split into sliding
windows). A common selection for C is 3(K−1)=24. With (R+C) < 124 and R%4=0, we can
select R=80. In mixed TB mode, the hard decisions are written first 64-bit first, so the
EDMA destination address should be initialized to the start of the decision buffer, and
destination address mode should be “increment”.

2. SYMX, ELECNT/FRMCNT, for VCPXEVT link 1:

Since RATE = 2, SYMXmax � 16 � 1 � 15. One possibility is to let
SYMX � SYMXmax � 15 which results in:

ELECNT� 2RATE�1 � min�SYMX � 1, FL � K � 1
4

	
� 2RATE�1 � (SYMX � 1) � 21 � 16 � 32

and

FRMCNT � ceil� FL � K � 1
4(SYMX � 1

	� 1 � ceil 320 � 9 � 1
4 * 16

� 1 � ceil 328
64

� 1 � 5

The total number of branch metrics transferred in this case is
ELECNT * (FRMCNT � 1) * 4 � 32 * 6 * 4 � 768, whereas the actual number of branch
metrics needed is (FL � K � 1) * 2RATE�1 � 328 * 2 � 656.

SPRA750D

16 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

Although the VCP will work correctly, the EDMA bandwidth can be optimized by setting
SYMX = 13, which results in ELECNT = 28 and FRMCNT = 5. In the latter case, the total
number of transmitted branch metrics is 672.

3. SYMR, ELECNT/FRMCNT, for VCPREVT link 0:

For hard decisions, SYMR � min�SYMRmax, ceil�FL
64
	� 1	 � min(15, 5 � 1) � 4. Then,

ELECNT � 2 * ceil
min((SYMR � 1) * 64, FL)

64
� 2 * ceil FL

64
� 10

and

FRMCNT � ceil FL
(SYMR � 1) * 64

� 1 � 0

4. POLY: POLY[0] = 0x71 (corresponds to 561), POLY[1] = 0xEB (corresponds to 753) and
POLY[2]=0, POLY[3]=0;

We assume that the output parameters will not be read (OUTF=0), so that only one link is
programmed for the VCPREVT. The resulting VCP/EDMA configuration is shown in Table 6.

Table 6. VCP/EDMA Configuration for 3GPP 32kbps Frame

Input Configuration

F = 320 R = 80 C = 24 TB = Mixed

YAMT=0 (YAMEN=0) IMAXS = 0x400 IMINS = 0 IMAXI = 0

SDHD = HD SYMX= 13 SYMR= 4 OUTF = 0

POLY[0] = 0x71 POLY[1] = 0xEB POLY[2] = 0x0 POLY[3] = 0x0

VCPXEVT Links VCPREVT links

Link 1 Link 0

OPT: SUM = INC, DUM = FIXED OPT: SUM = FIXED, DUM = INC,
 TCINT = 1, TCC = VCPREVT

SRC= &bm[0] SRC =VCPDECS

FRMCNT= 5 ELECNT= 28 FRMCNT= 0 ELECNT= 10

DST= VCPWBM DST= &sdhd[0]

FRMIDX= N/A ELEIDX= N/A FRMIDX= N/A ELEIDX= N/A

ELERLD= N/A LINK= NULL ELERLD= N/A LINK= NULL

5.1.3 IS2000 RC3 Voice

In this example we consider the channel structure for the reverse fundamental and supplemental
channel, and for radio configuration 3 (see [5]), 9.6kbps data rate. In this case, rate �, K=9
convolutional coding is used with polynomials {0xF5,0xB9,0x4B, 0x3B}. There are 184
bits/frame, including frame quality bits (excluding 8 tail bits).

5. F/R/C: F=184. Since F > 120, TB mode is mixed, i.e., the processing is split into sliding
windows. A common selection for C is 3(K−1)=24. With (R+C) < 124, and R%4=0, we can

SPRA750D

17 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

select R=92. In mixed TB mode, the hard decisions are written first 64-bit first, so the
EDMA destination address should be initialized to the start of the decision buffer, and
destination address mode should be “increment”.

6. SYMX, ELECNT/FRMCNT, for VCPXEVT link 1:

Since RATE = 4, SYMXmax � 4 � 1 � 3. One possibility is to let SYMX � SYMXmax � 3
which results in:

ELECNT� 2RATE�1 � min�SYMX � 1, FL � K � 1
4

	
� 2RATE�1 � (SYMX � 1) � 23 � 4 � 32

and

FRMCNT � ceil� FL � K � 1
4(SYMX � 1

	� 1 � ceil 184 � 9 � 1
4 * 4

� 1 � ceil 192
16

� 1 � 11

The total number of branch metrics transferred in this case is
ELECNT * (FRMCNT � 1) * 4 � 32 * 12 * 4 � 1536, whereas the actual number of branch
metrics needed is (FL � K � 1) * 2RATE�1 � 192 * 8 � 1536, so no extra branch metrics
are transferred and the above choice provides an optimal use of the EDMA bandwidth.

7. SYMR, ELECNT/FRMCNT, for VCPREVT link 0:

For hard decisions, SYMR � min�SYMRmax, ceil�FL
64
	� 1	 � min(15, 3 � 1) � 2. Then,

ELECNT � 2 * ceil
min((SYMR � 1) * 64, FL)

64
� 2 * ceil FL

64
� 6

and

FRMCNT � ceil FL
(SYMR � 1) * 64

� 1 � 0

8. POLY: POLY[0] =0xF5 (corresponds to 561), POLY[1] = 0xB9 (corresponds to 753) and
POLY[2]= 0x4B, POLY[3]= 0x3B

In this case, we assume that the output parameters will be read (OUTF=1), the primary reason
is to read the Yamamoto bit. We will set the Yamamoto threshold to YAMT = 0x10 (this is a
relatively low value compared to the available 11-bit range). The VCPREVT Link 1 is therefore
required. The resulting VCP/EDMA configuration is shown in Table 7.

SPRA750D

18 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

Table 7. VCP/EDMA Configuration for IS2000 RC3 Full Rate

Input Configuration

F = 184 R = 92 C = 24 TB = Mixed

YAMT = 0x10 (YAMEN=1) IMAXS = 0x400 IMINS = 0 IMAXI = 0

SDHD = HD SYMX = 3 SYMR = 2 OUTF = 1

POLY[0] = 0xF5 POLY[1] = 0xB9 POLY[2] = 0x4B POLY[3] = 0x3B

VCPXEVT Links VCPREVT links

Link 1 Link 0

OPT: SUM = INC, DUM = FIXED OPT: SUM = FIXED, DUM = INC,
 TCINT = 1, TCC = VCPREVT

SRC= &bm[0] SRC =VCPDECS

FRMCNT= 11 ELECNT= 32 FRMCNT= 0 ELECNT= 6

DST=VCPWBM DST= &sdhd[0]

FRMIDX= N/A ELEIDX= N/A FRMIDX= N/A ELEIDX= N/A

ELERLD= N/A LINK= NULL ELERLD= N/A LINK= 1

5.1.4 GSM/EDGE AFS Frames

For one 10msec frame of AFS-coded 12.2kbps voice channel, the frame length is 250 bits, code
rate is �� and constraint length K=5. The actual polynomials are recursive, {G0/G0,G1/G0}, with
G0 = 1 + D3 + D4 and G1 = 1 + D + D3 + D4. The VCP does not natively support recursive
codes. It should be configured for feed-forward polynomials, {G0,G1}, and the output hard
decisions should be followed by re-encoding using the feedback polynomial G0 to obtain the
final hard decisions. Therefore, the VCP polynomials are {0x30, 0xB0, 0x00, 0x00}.

1. F/R/C: F=250. Since F < 2044, TB mode is tailed, i.e., the processing is not split into
sliding windows (see Table 2). R and C are therefore not used. In tailed TB mode, the
hard decisions are written in reverse order, i.e., last 64-bit first, so the EDMA destination
address should be initialized to the end of the decision buffer, and destination address
mode should be “decrement”.

2. SYMX_ACT, ELECNT/FRMCNT, for VCPXEVT link 1:

Since RATE = 2, SYMXmax � 16 � 1 � 15. One possibility is to let
SYMX � SYMXmax � 15 which results in:

ELECNT� 2RATE�1 � min�SYMX � 1, FL � K � 1
4

	
� 2RATE�1 � (SYMX � 1) � 21 � 16 � 32

and

FRMCNT � ceil� FL � K � 1
4(SYMX � 1

	� 1 � ceil 250 � 5 � 1
4 * 16

� 1 � ceil 254
64

� 1 � 3

The total number of branch metrics transferred in this case is
ELECNT * (FRMCNT � 1) * 4 � 32 * 4 * 4 � 512, whereas the actual number of branch

SPRA750D

19 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

metrics needed is (FL � K � 1) * 2RATE�1 � 254 * 2 � 508. Therefore, the above selection
provides the optimal use of EDMA bandwidth.

3. SYMR_ACT, ELECNT/FRMCNT, for VCPREVT link 0:

For hard decisions, SYMR � min�SYMRmax, ceil�FL
64
	� 1	 � min(15, 4 � 1) � 3. Then,

ELECNT � 2 * ceil
min((SYMR � 1) * 64, FL)

64
� 2 * ceil FL

64
� 8

and

FRMCNT � ceil FL
(SYMR � 1) * 64

� 1 � 0

4. POLY: POLY[0] =0x30 (corresponds to G0=1 + D3 + D4), POLY[1] = 0xB0 (corresponds
to G1=1 + D + D3 + D4) and POLY[2]=0xC9 POLY[3]=0x0;

We assume that the output parameters will not be read (OUTF=0), so that only one link is
programmed for the VCPREVT. The resulting VCP/EDMA configuration is shown in Table 8.

Table 8. VCP/EDMA Configuration for GSM − HD

Input Configuration

F = 250 R = N/A C = N/A TB = Tailed

YAMT=0 (YAMEN=0) IMAXS = 0x400 IMINS = 0 IMAXI = 0

SDHD = HD SYMX = 15 SYMR = 3

POLY[0] = 0x30 POLY[1] = 0xB0 POLY[2] = 0x00 POLY[3] = 0x00

VCPXEVT Links VCPREVT links

Link 1 Link 0

OPT: SUM = INC, DUM = FIXED OPT: SUM = FIXED, DUM = DEC,
 TCINT = 1, TCC = VCPREVT

SRC= &bm[0] SRC =VCPDECS

FRMCNT= 3 ELECNT= 32 FRMCNT= 0 ELECNT= 8

DST=VCPWBM DST= &sdhd[7]

FRMIDX= N/A ELEIDX= N/A FRMIDX= N/A ELEIDX= N/A

ELERLD= N/A LINK= NULL ELERLD= N/A LINK= NULL

5.2 Soft Decision Outputs

5.2.1 GSM/EDGE AFS Frames

For this example, we consider same coding parameters as in section 5.1.4. Only R,C and
SYMR_ACT parameters need to be recomputed:

1. F,R,C: F=250. Since F < 508, TB mode is tailed, i.e., the processing is not split into sliding
windows (see Table 2). R and C are therefore not used. In tailed TB mode, the soft

SPRA750D

20 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

decisions are written in reverse order, i.e., last 64-bit value first, so the EDMA destination
address should be initialized to the end of the decision buffer, and destination address
mode should be “decrement”.

2. SYMX, ELECNT/FRMCNT, for VCPXEVT link 1:

The branch metric transfer is the same for hard decision and soft decision outputs, so the
selections for SYMX, ELECNT and FRMCNT are those previously computed in
section 5.1.4.

3. SYMR, ELECNT/FRMCNT, for VCPREVT link 0:

For soft decisions, SYMR � min�SYMRmax, ceil�FL
4
	� 1	 � min(15, 63 � 1) � 15. Then,

ELECNT � 2 * ceil
min((SYMR � 1) * 4, FL)

4
� 2 * ceil

(SYMR � 1) * 4
4

� 32

and

FRMCNT � ceil FL
(SYMR � 1) * 4

� 1 � 3

The total number of soft decisions transferred is
ELECNT * (FRMCNT � 1) * 2 � 32 * 4 * 2 � 256, whereas the actual number soft decisions
needed is FL = 250. Therefore, the above selection provides the optimal use of EDMA
bandwidth.

VCP and EDMA configuration is shown in Table 9.

Table 9. VCP/EDMA Configuration for GSM − SD

Input Configuration

F = 250 R = N/A C = N/A TB = Tailed

YAMT=0 (YAMEN=0) IMAXS = 0x400 IMINS = 0 IMAXI = 0

SDHD = SD SYMX = 15 SYMR = 15

POLY[0] = 0x0C POLY[1] = 0x0D POLY[2] = 0x0 POLY[3] = 0x0

VCPXEVT Links VCPREVT links

Link 1 Link 0

OPT: SUM = INC, DUM = FIXED OPT: SUM = FIXED, DUM = DEC,
 TCINT = 1, TCC = VCPREVT

SRC= &bm[0] SRC = VCPDECS

FRMCNT= 3 ELECNT= 32 FRMCNT= 3 ELECNT= 32

DST=VCPWBM DST= &sdhd[4*32−1]

FRMIDX= N/A ELEIDX= N/A FRMIDX= N/A ELEIDX= N/A

ELERLD= N/A LINK= NULL ELERLD= N/A LINK= NULL

SPRA750D

21 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

6 Multichannel Operation Considerations

The coprocessor will typically be used in an operating environment where a series of frames is
to be decoded in a most efficient manner. The efficiency could be with respect to one or more of
the following parameters:

• EDMA paRAM space: Each frame of data requires a certain number of links in the paRAM,
and due to the limited size of the paRAM, it may not be feasible to pre-program into paRAM
all EDMA links for all frames to be decoded.

• CPU interrupt rate: The CPU intervention may be required to initialize input buffers for new
frames to be decoded, process decoded frames, and program new EDMA links.

• Percentage of coprocessor capabilities required: If the coprocessor is used at maximum
processing power, then frame decoding should be scheduled in such a manner as to keep
the coprocessor constantly active, i.e., not let it wait for new input data to be transferred in,
or decoded data to be transferred out.

In this section, we discuss several approaches to scheduling decoding for a series of frames.
Each method optimizes one of the above mentioned parameters.

6.1 Method 1: paRAM-Efficient

This method is simple to program and requires the least number of links in the EDMA paRAM.

The paRAM usage and EDMA linking is shown Figure 7 .

Assuming that the coprocessor is initially idle (i.e., in “RESET” state), and appropriate EDMA
channels and CPU interrupts are enabled, the suggested procedure is as follows:

1. CPU programs Link 0 for VCPXEVT and Link 0 for VCPREVT into the paRAM location
corresponding to VCPXEVT and VCPREVT, respectively. The remaining links are
programmed anywhere in the paRAM space. The transfers are terminated as follows:

− The last link for VCPXEVT is linked to a NULL transfer, and does not generate CPU
interrupt.

− The last link for VCPREVT is also linked to a NULL transfer, and it generates CPU
interrupt with TCC which correspond to VCPREVT.

2. The CPU sends “START” command to the VCP and continues any non-interfering
processing.

3. When CPU receives EDMA interrupt, with TCC=VCPREVT, the CPU performs necessary
input/output buffer management and repeats steps (1)−(2) for the next frame.

SPRA750D

22 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

Parameters for Event 0

Parameters for Event VCP REVT
Parameters for Event VCP XEVT

Reload parameters

Reload parameters

Reload parameters

Reload parameters

Input config

Branch metrics

NULL

Decisions

NULL

Output params (optional)

VCPXEVT Links VCPREVT Links

interrupt

Figure 7. Method 1: paRAM Entries

6.2 Method 2: Continuous Decoding

The main problem with the approach outlined in section 6.1 is that the coprocessor is kept
waiting for input data, i.e., decoding of a new frame does not start as soon as the coprocessor is
ready for it.

This problem could be remedied by keeping EDMA links for two frames in the paRAM. The CPU
is interrupted once frame #n has been decoded, in order to program links for frame #(n+2).
Meanwhile, the coprocessor is processing frame #(n+1). This assumes that the TCP processing
delay for frame #(n+1) is sufficiently large such that the CPU has enough time to respond to
interrupt and write links for frame #(n+2) into the paRAM.

This concept is illustrated in Figure 8. The procedure is as follows:

1. The CPU programs all links for the first two frames. Note that the first VCPREVT and first
VCPXEVT link for frame #1 are written into Event parameters.

2. The CPU sends “START” command to the VCP and continues any non-interfering
processing

3. Once the transfer associated with link called “Output Params (optional) # 1,3,5,..” is
completed, the CPU interrupt is generated. The CPU overwrites links associated with
channel #1 with those associated with channel #3. Note that that the first VCPREVT and
first VCPXEVT link for frame #3 are written into Reload parameters, since the Event
parameter space is used by the link currently in progress.

4. Once the transfer associated with link called “Output Params (optional) # 2,4,6..” is
completed, the CPU interrupt is generated. The CPU overwrites links associated with
channel #2 with those associated with channel #4.

5. Steps (4) and (5) are repeated as long as there are frames to be processed. If the CPU
gets interrupted and there are no additional frames to be processed, the last previously
programmed link for both REVT and XEVT should be relinked to the NULL parameter set
to terminate the transfer.

SPRA750D

23 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

Parameters for Event 0

Parameters for Event VCPREVT
Parameters for Event VCPXEVT

Reload parameters

Input config #1

Branch metrics #1,3,5,...

Reload parameters

Reload parametersNULL

Reload parameters

Input config #2,4,6,...
Branch metrics #2,4,6,...

Input config #3,5,...

Reload parameters
Reload parameters
Reload parameters

Reload parameters

Reload parameters
Reload parameters

Reload parameters

Decisions #1

NULL

Output params (opt.) #1,3,5,...

Decisions #2,4,6,...
Output params (opt.) #2,4,6,...

Decisions #3,5,...

VCPXEVT Links VCPREVT Links

interrupt

interrupt

Figure 8. Method 2: paRAM Entries

The method could be expanded to more than two preprogrammed frames, provided there is
space for additional links.

6.3 Method 3: Lowest CPU Interrupt Rate

In this method, we build on the idea of keeping the coprocessor continuously running. In addition
to that, the process of EDMA link programming into paRAM is automated: instead of CPU
pre−programming a small number of frames into paRAM, the CPU could program a large
number of links and temporarily store them in L2 memory. The EDMA is then responsible for
transferring preprogrammed links into paRAM.

For this scenario, two additional transfer parameters in the paRAM are required: one which
copies links for even frames from L2 memory to paRAM (even copy), and another one which
copies odd frames from L2 memory to paRAM (odd copy).

The “odd copy” #(2n-1) transfer is chained to the output parameter transfer for an odd frame
#(2n-1). The transfer will be initiated immediately upon completion of output parameter #(2n-1)
transfer. The output parameter #(2n−1) transfer will also link to decision #(2n) transfer, but the
link will not be initiated until the synchronization event VCPREVT occurs, while the odd copy
transfer, which is chained, will proceed without waiting for synchronization. The odd copy
transfer will copy, into the paRAM reload zone, prepared transfer parameters for frame #(2n+1)
and even copy #(2n) transfer. The even copy transfer should be copied into the paRAM location
corresponding to Event K2. The above mentioned transfer parameters are copied as a part of
the same EDMA transfer, as separate frames, and therefore it is required that the difference
between the starting memory addresses of two consecutive frames be the same. For example,
parameters for frame #(2n+1) and even copy #(2n) could be at consecutive locations in the
paRAM. The odd copy transfer #(2n-1) needs to complete before the completion of output
parameters #(2n) transfer. The first copied transfer which will be needed is even copy transfer

SPRA750D

24 Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP)

#(2n). To guarantee this, the copy transfer should be given a higher priority than the remaining
transfers.

Similarly, the even copy #(2n) transfer is chained to the output parameter transfer for an even
frame #(2n). The even copy transfer will copy prepared transfer parameters for frame #(2n+2)
and odd copy #(2n+1). The odd copy transfer should be copied into the paRAM location
corresponding to Event K1. The even copy transfer #(2n) needs to complete before the
completion of output parameters #(2n). The first copied transfer which will be needed is odd
copy transfer #(2n+1).

The scenario is illustrated in Figure 9.

Output parameters #2,4,6,...

Output parameters #1,3,5,...

Branch metrics #1

Input config #1

Parameters for event 0

Parameters for event VCP REVT
Parameters for event VCP XEVT

Reload parameters
Reload parameters
Reload parameters

Oarameters for event K2
Reload parametersInput config #3,5,...

NULL

Input config #2,4,6,...
Branch metrics #2,4,6,...

Reload parameters

Reload parameters
Reload parameters

Oarameters for event K1
Reload parameters
Reload parameters

Decision #1

Decision #3,5,

Even copy (#3,5,...odd copy)

NULL

Decision #2,4,6,...

Odd copy (#3,5,...even copy)

VCP XEVT links VCP REVT links

Figure 9. Method 3: paRAM Entries

7 References
1. A. P. Hekstra, “An alternative to Metric Rescaling in Viterbi Decoders,” IEEE Transactions on

Communications, vol 37, no 11, November 1989 , pp. 1220−1222.

2. Viterbi Decoder Coprocessor User’s Guide − Literature number SPRU533

3. TMS320C6000 Peripherals User’s Guide − Literature number SPRU190D

4. 3G TS 25 212 V3.1.0 (1999−12), Multiplexing and channel coding (FDD)

5. “Physical Layer Standard for cdma2000 Spread Spectrum Systems,” TIA/EIA/IS-2000-2,
prepared by TR45.5.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2003, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

