
Application Report
SPRA775 - August 2001

1

Moving a TMS320C54x DSP/BIOS Application
to the TMS320C55x DSP/BIOS Application

Stephen Lau, Vijaya Sarathy

ABSTRACT

The TMS320C54x processor is upwardly compatible to the TMS320C55x . Although
compatible, there are several differences that a DSP/BIOS application developer should
be aware of. This document is intended to describe the different aspects that need to be
considered when transitioning a C54x DSP/BIOS application to the C55x DSP/BIOS
application.

Contents

1 Overview 3.
1.1 Code Composer Studio Versions 3.
1.2 Architectural Differences 3.

2 Application Environment 4.
2.1 C Environment 4.

2.1.1 C54x C Environment 5.
2.1.2 C55x C Environment 5.

2.2 Generic Arguments 6.
2.2.1 Example 6.

2.3 Memory 7.
2.3.1 Memory Access Sizes 7.
2.3.2 Stack 8.
2.3.3 Memory Model 11.

2.4 Status Registers 12.

3 DSP/BIOS Implementation 13.
3.1 Initialization/Startup Sequence Differences 13.
3.2 Real-Time Data Exchange (RTDX) 14.

4 Conclusion 14.

Appendix A Example: Migrating a 54x Code Composer Studio v2.0 DSP/BIOS Project 15.
A.1 Introduction 15.
A.2 Project Migration 19.
A.3 DSP/BIOS Migration 19.

A.3.1 Hardware Interrupt Manager (HWI) 21.
A.3.2 MEM 21.
A.3.3 Scheduling 21.
A.3.4 RTDX 21.
A.3.5 Generic Arguments 21.

Trademarks are the property of their respective owners.

SPRA775

2 Moving a TMS320C54x DSP/BIOS Application to the TMS320C55x DSP/BIOS Application

A.4 Code Issues 25.
A.5 Conclusion 25.

Appendix B Migrating a 54x Code Composer Studio v1.2 DSP/BIOS Project 26.
B.1 Stage 1: Migration from Code Composer Studio v1.2 to Code Composer Studio v2.0 26.
B.2 Stage 2: Migration from C54x DSP/BIOS to C55x DSP/BIOS 26.

List of Figures

Figure 1. DSP/BIOS Mininum Addressable Data Unit 8.
Figure 2. Memory Section from Generated Linker Command File 8.
Figure 3. HWI Manager Dialog 10.
Figure 4. Task Stack Size Dialog 10.
Figure 5. Small Memory Model Data Memory Placement 11.
Figure A–1. copySwi and Host Pipe Notify Functions 16.
Figure A–2. Figure 1 copySwi software interrupt object 16.
Figure A–3. Input Host Pipe Object 17.
Figure A–4. Output Host Pipe Object 18.
Figure A–5. Configuration Tool Target Selection 20.
Figure A–6. RTDX Properties 21.
Figure A–7. inputReady Stub Function 22.
Figure A–8. outputReady Stub Function 22.
Figure A–9. 55x HST Input Object 23.
Figure A–10. 55x HST Output Object 24.

List of Tables

Table 1. CCStudio Versions Supported 3.
Table 2. C54x/C55x Comparison 4.
Table 3. Function Argument Categories 5.
Table 4. DSP/BIOS Modules Utilzing Generic Arguments 6.
Table 5. DSP/BIOS Provided Argument Type Converter 6.
Table 6. Specialized DSP/BIOS API for Generic Arguments 7.
Table 7. Stack Modes and Reset Vector 9.
Table 8. Assembly Macros for Register Context Manipulation 12.
Table 9. DSP/BIOS Initialization and Startup Sequence 13.
Table A–1. Pre-build Checklist 25.
Table B–1. Migration Items 26.

SPRA775

3 Moving a TMS320C54x DSP/BIOS Application to the TMS320C55x DSP/BIOS Application

1 Overview

The TMS320C54x DSPBIOS application is upwardly compatible with the TMS320C55x
DSP/BIOS application. The C55x DSP implements a superset of the C54x instruction set.
DSP/BIOS for the C55x device implements the same application program interfaces (API) as
DSP/BIOS for the C54x device. Though functionally equivalent, DSP/BIOS for the C55x has
been coded as efficiently as possible for that architecture.

Thus, though compatible at the API level, there are several differences that a BIOS application
developer should be aware of when moving from the C54x device to the C55x device. These
differences are a result of:

• Hardware architecture

• Codegen tools (compiler and assembler)

• DSP/BIOS implementation

This document describes the different aspects that need to be considered when migrating a
C54x DSP/BIOS application to the C55x DSP/BIOS application. Appendix A includes examples
to illustrate this procedure.

1.1 Code Composer Studio Versions

Table 1 lists the different versions of Code Composer Studio (CCStudio) for the C5000 DSP
platform, the DSP/BIOS version, and processor support.

Table 1. CCStudio Versions Supported

Code Composer Studio Version DSP/BIOS Processor Support

Code Composer Studio C5000 v1.2 C54x

Code Composer Studio C5000 v2 C54x, C 55x

This document discusses migrating C54x DSP/BIOS assembly code to C55x DSP/BIOS
assembly code; please refer to the TMS320C55x Assembly Language Tools User’s Guide
(SPRU280). Appendix B explains migrating a C54x application developed in Code Composer
Studio v1.2 to the C55x application developed in Code Composer Studio v2. For migration
between Code Composer Studio C5000 v1.1 to V1.2, please refer to SPRA675, Upgrading
Applications to DSP/BIOS II.

Besides DSP/BIOS support for the C55x DSP, Code Composer Studio v2 contains new features
such as: Code Maestro, configuration management interoperability, and C++ support.
DSP/BIOS now integrates the Chip Support Library for easier configuration and usage of device
specific peripherals.

1.2 Architectural Differences

Fundamentally, the C55x device architecture is an extension of the C54x device architecture. It
has been designed to improve efficiency and to maintain backward compatibility as well. Table 2
compares the two architectures.

SPRA775

4 Moving a TMS320C54x DSP/BIOS Application to the TMS320C55x DSP/BIOS Application

Table 2. C54x/C55x Comparison

C54x C55x

MACs 1 2

Accumulators 2 4

Read buses 2 3

Write buses 1 2

Program fetch bus 1 1

Address buses 4 6

Program word size 16 bits 8/16/24/32/40/48

Data word size 16 bits 16 bits

Auxiliary Register ALUs 2 (16-bit each) 3 (16-bit each)

ALU 1 (40-bit) 1 (40-bit) 1 (16-bit)

Auxiliary Registers 8 8

Data Registers 0 4

Memory Space Separate Program/Data Unified space

It should also be noted that the C55x DSP has a fully-protected pipeline and the capability to do
full 32-bit memory write in a single cycle. The multiple memory and stack modes will be
discussed elsewhere in this document. For further information on the C55x DSP, please refer to
the DSP CPU Reference Manual (SPRU371).

2 Application Environment

2.1 C Environment

With Code Composer Studio V2 , the C compiler has new features such as C++ support and
more efficient optimization. With Code Composer Studio V2, the C54x device and Code
Composer Studio V2 55x C environments are constructed differently. The C compiler register
conventions dictate how the compiler uses registers and how values are preserved across
function calls. The parent function is the calling function (caller). The child function is the called
function.

DSP/BIOS fully complies with the C compiler conventions. More specificaly, the prescribed
“function caller/callee” norms are strictly obeyed. This includes the proper usage of processor
registers for passing arguments, handling stack alignment nuances, etc.

Only caller-preserved registers are used by DSP/BIOS. Asynchronous context switch preserves
all caller-function preserved registers. Multi-tasking (TSK) context switches preserve only the
called-function preserved registers, as per the C specification.

A list of utility macros is shown in Table 8 and are provided in \bios\include\c55.h55 to work with
register context. They are useful when an application needs to alter the C environment as they
provide a method to conveniently save and restore context.

SPRA775

5 Moving a TMS320C54x DSP/BIOS Application to the TMS320C55x DSP/BIOS Application

The function structure and calling conventions of 55x differs from that of the 54x. Please refer to
the TMS320C55x Optimizing C Compiler User’s Guide (SPRU281) and the TMS320C54x
Optimizing C Compiler User’s Guide (SPRU103) for details.

2.1.1 C54x C Environment

The C54x C Compiler does not strongly typify function arguments in terms of which registers are
used to pass them fromthe calling function to the called function. The C54x C environment uses
a generic parameter/register binding where the first parameter is always passed in accumulator
A. The remaining arguments are passed onto the stack with the top of the stack holding the
left-most remaining argument.

In case of functions with variable number of arguments (ellipsis), the last explicitly declared
argument onwards is placed on the stack. This means that for ellipsis functions, even if there is
only one explicitly declared argument, it must go on the stack and not the accumulator A.

If the function returns a structure, the caller allocates space for the structure and then passes
the address of the return space to the called function in accumulator A. All returns are passed
via the accumulator A.

2.1.2 C55x C Environment

The C55x C Compiler strictly binds function arguments to processor registers. This allows the
compiler to optimally utilize the data address, generation unit resources for improved efficiency.

Function arguments are classified into three broad categories: pointers, 16-bit quantities, and
32-bit quantities. A close look at Table 3 and the register/argument association reveals the dual
role of the AR0, AR1 registers.

The (X)AR0 and (X)AR1 registers are specialized to carry data pointers, but are also used to
pass 16-bit (non-pointer type) quantities as well, based on availability.

Note: Because of the binding order, care must be taken when interfacing assembly functions to
C code.

Table 3. Function Argument Categories

Category Register Binding Order

Specialized Data Pointers (int*, long*, etc.) (X)AR0, (X)AR1, (X)AR2, (X)AR3, (X)AR4

16-bit quantities (char, short, int) T0, T1, AR0, AR1, AR2, AR3, AR4

32-bit quantities (long, float, double, function pointer) AC0, AC1, AC2, AC3

For efficiency, the allocation strategy on the C55x DSP attempts to maximize the utilization of
hardware registers. If the first argument is a data pointer, it will be assigned the first unallocated
auxiliary register, (X)AR register. If all (X)AR registers (XAR0–XAR4) are used, then the pointer
is passed onto the stack. If the first argument is a 16-bit, non-pointer type quantity, the compiler
will check the temporary registers T0 and T1. If T0 or T1 are free, then the 16-bit value is
assigned the first one that is free. If neither T0 nor T1 is free, then the compiler finds the first
free auxiliary register (AR0 to AR4) register in order to pass the integer argument. If there are
no free auxiliary registers, then the integer will be passed onto the stack.

SPRA775

6 Moving a TMS320C54x DSP/BIOS Application to the TMS320C55x DSP/BIOS Application

The C54x device does not make a distinction between an integer and a data pointer; if the first
argument were an integer, it would be passed in accumulator A. Because the allocation strategy
of the C55x device utilizes more registers than the C54x device, stack usage for argument
frames is optimized.

2.2 Generic Arguments

Many DSP/BIOS objects call functions with a generic argument prototype. Table 4 lists the
various DSP/BIOS modules that utilize generic arguments. An issue may arise when the
DSP/BIOS object calls a function or DSP/BIOS API that does not match the generic argument
prototype.

On the C54x DSP, a generic argument (of type Arg or Void *) is acceptable because a 16-bit
passed value of type Uns could not be distinguished from a value of type Arg, and the location of
the passed parameters remains constant.

On the C55x DSP, generic arguments (of type Arg or Void *) are treated as pointer quantities
and are thus placed into the (X)ARx registers, as per the compiler conventions. These pointer
quantities can be either 16-bit or 23 bit. This increases hardware resource utilization, but
complicates the writing of called functions.

Table 4. DSP/BIOS Modules Utilzing Generic Arguments

Module Uses Generic Arguments?

HST Yes

PIP Yes

PRD Yes

SWI Yes

TSK Yes

As with DSP/BIOS objects, C55x DSP application code that uses 16-bit quantities passed as
function arguments of type (Void*) or Arg will need to be modified to account for the more
efficient register usage. Two potential methods, stub function or function modification, are shown
below.

To ease the burden of dealing with type conversion, C55x DSP/BIOS provides type converters
as specified in Table 5. The prototypes for these type converters are specified in the DSP/BIOS
include file std.h, as found in bios/include.

Table 5. DSP/BIOS Provided Argument Type Converter

API Description

ArgToInt(A) Converts Arg A into an Integer

ArgToPtr(A) Converts Arg A into a Pointer data type

2.2.1 Example

Consider the DSP/BIOS PIP object notifier function prototype Fxn(Arg, Arg). If we choose to
use the DSP/BIOS function SWI_andn as the notifier function, the API does not match the
generic prototype: SWI_andn(SWI_Handle swiPtr, Uns key).

SPRA775

7 Moving a TMS320C54x DSP/BIOS Application to the TMS320C55x DSP/BIOS Application

On the C54x device, this is acceptable, as the parameters are exactly where the called function
expects them. On the C55x device, SWI_andn() is expecting the second argument to be of type
Uns, and per compiler convention this second parameter will be in T0 (not XAR1). However, the
compiler has interpreted the second argument to be of type Arg and placed the variable into the
XAR register.

On the C55x device, there are two solutions:

1. Stub Function – Create a small function prototype that has a generic argument prototype.
This stub function can then either reference objects directly or cast the passed Arg to an
appropriate type when calling a function. For example:

pipNotifierStub(Arg value1, Arg value2){
 SWI_andn(value1, (ArgToInt)(value2))
}

The stub function utilizes the ArgToInt type conversion macro as detailed in Table 5.

2. Modify Function – Create a new function that can access the arguments in the expected
register locations. Table 6 lists the specific DSP/BIOS APIs designed for use with generic
arguments. Although not essential for the C54x device, the equivalent API is available to
ease application portability.

Note: On the C54x and C6xx DSPs, the SWI_andnHook and SWI_orHook functions do not
incur any code size or performance penalties. On the c55x DSP, the SWI_andnHook and
SWI_orHook functions incur an overhead of one word.

Table 6. Specialized DSP/BIOS API for Generic Arguments

API Note

SWI_andnHook SWI_andnHook is a specialized version of SWI_andn. Typically used for configured DSP/BIOS
objects which pass information as type Arg.

SWI_orHook SWI_orHook is a specialized version of SWI_or. Typically used for configured DSP/BIOS objects
which pass information as type Arg.

2.3 Memory

The C55x DSP can address up to 16M bytes of memory. When the CPU uses program space to
read program code from memory, it uses 24-bit addresses to reference bytes. When your
program accesses data space, it uses 23-bit addresses to reference 16-bit words. In both cases,
the address buses carry 24-bit values, but during a data-space access, the least significant bit
on the address bus is forced to 0. Data space is divided into 128 main data pages (0 through
127). Each main data page has 64K addresses.

2.3.1 Memory Access Sizes

The C54x DSP accesses both program and data as 16-bit words. On the C55x DSP, program is
addressed as 8-bit bytes, while data is addressed as 16-bit words. DSP/BIOS standardizes on
using minimum addressable units (MAU).

The MAU is the smallest unit of data storage that can be read or written by the CPU in data
memory. The number of bits in an MAU varies with different DSP devices; for example, the
MAU for the C54x and the C55x DSPs is a 16-bit word, and the MAU for the C6000 platform is
an 8-bit byte.

SPRA775

8 Moving a TMS320C54x DSP/BIOS Application to the TMS320C55x DSP/BIOS Application

DSP/BIOS handles all required words/bytes unit conversions in order to agree with the compiler,
assembler, and linker requirements. DSP/BIOS application developers do not need to make any
special accommodations to take advantage of this.

Figure 1. DSP/BIOS Mininum Addressable Data Unit

On the C55x device, all addresses and sizes supplied in the linker command file should be byte
addresses. This is true for both code as well as data sections. In contrast to this, the C55x
Assembler treats data as 16-bit units (words), whereas program code is treated in terms of 8-bit
units (bytes). DSP/BIOS helps deal with this delicate difference by always allowing the user to
supply size-related information in terms of 16-bit quantities (MAUs) and appropriately translates
it based on whether this information is fed to the Linker (via generated Linker command file) or
fed to the Assembler (via generated Assembly source files). An example of this can be seen in
Figure 1 and Figure 2. In Figure 1, the user has input the DARAM memory segment length as
0x7f00 MAUs (i.e., 16-bit quantities). When the DSP/BIOS Configuration database is saved, the
resulting Linker command file will contain the DARAM size information in terms of 8-bit bytes.
This is seen in Figure 2.

Figure 2. Memory Section from Generated Linker Command File

2.3.2 Stack

The C55x DSP supports two 16-bit software stacks known as the stack and the system stack.
SPH holds the 7-bit main data page of memory, and SP points to the specific word on that page.

SPRA775

9 Moving a TMS320C54x DSP/BIOS Application to the TMS320C55x DSP/BIOS Application

For an access to the stack, the CPU concatenates SPH with SP to form the XSP. The XSP
contains the 23-bit address of the value last pushed onto the data stack. The CPU decrements
SP before pushing a value onto the stack and increments SP after popping a value off the stack.

When accessing the system stack, the CPU concatenates SPH with SSP to form XSSP. XSSP
contains the address of the value last pushed onto the system stack. The CPU decrements SSP
before pushing a value onto the system stack and increments SSP after popping a value off the
system stack. SPH is not modified during system stack operations.

The C54x DSP has a single stack mode and one stack pointer, SP. As can be seen in Table 7,
the C55x stack has three modes of operation. Please refer to the TMS320C55x DSP CPU
Reference Guide (SPRU371), for additional information.

Table 7. Stack Modes and Reset Vector

Mode Description Vector DSP/BIOS Stack Mode

Dual 16-bit stack with
fast return

Data stack and the system stack are independent. SP
and SSP are not synchronized. The registers RETA
and CFCT are used to implement a fast return.

XX00–XXXX USE_RETA

Dual 16-bit stack with
slow return

Data stack and the system stack are independent. SP
and SSP are not synchronized. The registers RETA
and CFCT are NOT used for program counter
save/restore.

XX01–XXXX NO_RETA

32-bit stack with slow
return (default)

The data stack and the system stack act as a single
32-bit stack. Both SP and SSP are
increment/decremented by the same amount to keep
them synchronized. The registers RETA and CFCT are
NOT used.

XX10–XXXX 54X_STK

Regarding the C55x stack, the RESET vector also holds the Processor Stack configuration
setting. The first byte in the reset vector is interpreted as listed in Table 7 by the processor.

Note: Use of either of the dual 16-bit stack modes in CCStudio v2 requires the use of the reset
command from the debug menu.

For the C55x version of DSP/BIOS, it is possible to select the stack mode from the HWI
manager properties dialog. Figure 3 illustrates the dialog box. The three stack modes are
transparently handled by the DSP/BIOS Kernel scheduler.

Note: Dual 16-bit mode stack operations are distinct from the dual 16-bit mode
Arithmatic-Logic Unit (ALU) operations.

SPRA775

10 Moving a TMS320C54x DSP/BIOS Application to the TMS320C55x DSP/BIOS Application

Figure 3. HWI Manager Dialog

In the DSP/BIOS memory manager, it is possible to independently specify the size of the stack
and the system stack in MAU. The memory manager also allows specification of the memory
segment for placement of the data stack and the system stack. The size and location of the
stacks, as illustrated in Figure 4, can also be specified for individual tasks in the TASK
properties.

The stack pointers are aligned to an even address boundary to comply with C requirements.
This ensures that 32 bit quantities can be accessed in true Most Significant Word:Least
Significant Word (MSW:LSW) form. For more details on the C55x stack architecture and its
implications please refer to the TMS320C55x CPU Reference Guide (SPRU371).

Figure 4. Task Stack Size Dialog

SPRA775

11 Moving a TMS320C54x DSP/BIOS Application to the TMS320C55x DSP/BIOS Application

2.3.3 Memory Model

The C55x significantly increased the amount of addressable data memory. This section looks at
the details for each memory model on the C55x.

2.3.3.1 Small

On the C55x device, small memory model, data, stack, and dynamic memory heap(s) are
constrained to a single page of 64k words size, and can be on any one of the 128 pages
available. This also applies to the heap(s).

There is no restriction on the size or placement of program code. The C compiler uses 16-bit
data pointers to access data. Code pointers are always 24 bits and occupy two words when
stored in memory.

The extended auxiliary registers, XARn[23:16], are initialized to point to the page that contains
the .bss section. In the small model, these extended auxiliary registers should not be changed
throughout the execution of the program.

Care should be exercised when placing the data sections or heaps in memory to reduce the
likelihood of the XARn registers wrapping around. As illustrated in Figure 5, wraparound occurs
in the small memory model because the XARn[23:16] registers are not incremented when
crossing the 64K boundary. Thus, only the ARn[15:0] registers are used, which only allows for
64K of addressing. Thus, in the small memory model, one must be prevent data, stack and
heaps from straddling 64k pages.

Figure 5. Small Memory Model Data Memory Placement

SPRA775

12 Moving a TMS320C54x DSP/BIOS Application to the TMS320C55x DSP/BIOS Application

2.3.3.2 Large

The large memory model supports an unrestricted placement of data and memory heap(s) over
all of the 128 pages. There is no restriction on the size or placement of program code. Use of
the large memory model requires the use of the –ml compiler shell option.

Program builds must also use the appropriate large memory model libraries. It is not possible to
use both small and large memory model libraries in a single executable.

Data pointers are 23 bits and occupy two words when stored in memory. Code pointers are 24
bits and occupy two words when stored in memory.

As with the small memory model, care should be exercised when placing the data section and
heaps in memory to reduce the likelihood of having the XARn registers wrap around. Unlike the
small memory model, it is possible to have different 64K pages holding different data sections or
heaps at the same time.

2.4 Status Registers

The C54x device has two status registers (ST0 and ST1) and a single processor mode status
register (PMST). The C55x device has four status registers (ST0_55, ST1_55, ST2_55, and
ST3_55). The C55x device maintains compatibility with the C54x device by having some status
registers available in two locations. One location is native to the C55x device, while the other
maintains compatibility with the C54x device. Please refer to the TMS320C55x DSP CPU
Reference Guide (SPRU371) for more information on the status registers.

DSP/BIOS does have some requirements for the status register bits, details of which can be
found in the DSP/BIOS API Guide (SPRU404). A macro, C55_setBiosSTbits has been included
to simplify setting of the status registers to the DSP/BIOS defaults. Table 8 is a list of utility
macros that are provided for register context manipulation (please see the c55.h55 file which is
typically found in C:\ti\c5500\bios\include)

Table 8. Assembly Macros for Register Context Manipulation

DSP/BIOS API Description

C55_setBiosSTbits This macro sets processor Status register bits as required by DSP/BIOS.

C55_saveBiosContext This macro saves on the stack all registers declared as Preserved in the DSP/BIOS
multi-threading context.

C55_restoreBiosContext This macro restores from the stack all registers declared as Preserved in the DSP/BIOS
multi-threading context.

C55_saveCcontext This macro saves on the stack all registers declared as caller preserved in the C compiler
conventions.

C55_restoreCcontext This macro restores from the stack all registers declared as caller preserved in the C compiler
conventions.

Note: DSP/BIOS does not modify the Global status bits. Global status bits are those options that
can change the environment of the entire system (ex: ST3_HINT).

SPRA775

13 Moving a TMS320C54x DSP/BIOS Application to the TMS320C55x DSP/BIOS Application

3 DSP/BIOS Implementation

3.1 Initialization/Startup Sequence Differences

Table 9 summarizes the DSP/BIOS initialization steps on C54x and C55x DSPs following
recognition of processor RESET. The _c_int00 label denotes the start of this boot procedure in
DSP/BIOS. This label denotes the target address in the processor RESET vector.

Table 9. DSP/BIOS Initialization and Startup Sequence

No. C54x DSP/BIOS C55x DSP/BIOS

1 Disable Maskable interrupts globally .
INTM=1

Similiar to C54x

2 Clear individual interrupt mask bits
Clear IMR

Clear individual interrupt mask bits
Clear IER0 and IER1

3 Initialize Stack Pointer
Set SP to bottom of user stack.
Align SP to even address boundary

Initialize User and System Stack pointers
Set XSP to bottom of user stack.
Set XSSP to bottom of system stack.
Align both XSP, XSSP to even address boundaries.
Note: SPH is shared across XSP, XSSP

4 Initialize Processor Status Register
ST: SXM=1, CPL=1, ARP=0, OVM=0, C16=0,
CMPT=0, FRCT=0

Initialize Processor Status Registers
ST1: CPL=1, M40=0, SATD=0, SXMD=1, C16=0, FRCT=0,
C54CM=0
ST2: ARMS=1, RDM=0, CDPLC=0, AR[0–7], LC=0
ST3: SATA=0, SMUL=0, SST=0

5 Initialize Interrupt Vector Segment Register
Set PMST to desired value.

Initialize Interrupt Vector Table Pointers
Set IVPD, IVPH to desired value. Since RTDX initialization can
trigger interrupts, its necessary that IVPD, IVPH are setup ahead of
(step #9) PINIT processing.

6 nil Initialize Extended Auxiliary Address Registers
Setup XAR[0–7], XCDP, XDP to point to start of .bss section

7 If CINIT table exists, process it.
Similiar to C54x

8 Initialize DSP/BIOS Modules Initialize DSP/BIOS Modules

9 If PINIT table exists, process it.
This involves calling the C++ global object
constructors. Therefore, the Compiler
prescribed Caller/Called function
responsibilities are strictly obeyed.

Similiar to C54x

10 Setup arguments for main(argc, argv, envp)
function.

Int argc: accumulator A
Char* argv[]: *SP(#0)
Char* envp[]: *SP(#1)

Setup arguments for main(argc, argv, envp) function.

Int argc: T0
Char* argv[]: (X)AR0
Char* envp[]: (X)AR1

11 Call main(argc, argv, envp) Call main(argc, argv, envp)

SPRA775

14 Moving a TMS320C54x DSP/BIOS Application to the TMS320C55x DSP/BIOS Application

Table 9. DSP/BIOS Initialization and Startup Sequence (Continued)

No. C55x DSP/BIOSC54x DSP/BIOS

12 Startup DSP/BIOS Modules similar to C54x

13 Drop into DSP/BIOS IDL_loop. similar to C54x

DSP/BIOS now includes the Chip Support Libraries (CSL). The CSL is a collection of convenient
modules that work with various on-chip peripheral resources. If CSL is configured, then the timer
is configured through the CSL module. If CSL is not configured, the CLK module configures the
timer.

At reset, the C55x DSP is placed in the programmed stack configuration. A listing of available
stack modes can be found in Table 7.

The C55x DSP has two sets of interrupts: DSP and Host based interrupts. The DSP interrupts
use IVPD register to point to the start of the vector table for them, while the Host interrupts use
the IVPH register.

The C55x DSP supports 32 interrupts by making use of the mask bits in IER0 and IER1. The
C54x DSP only had one mask register, the IMR.

3.2 Real-Time Data Exchange (RTDX)

RTDX allows the transfer of data between the target to the Host without halting the processor.
This is extremely useful for non-intrusive debugging of real time events.

On the C54x device, DSP/BIOS determines if there is new information coming through from the
RTDX channel by polling the communication buffers while inside DSP/BIOS IDL loop. On the
C55x device, RTDX is interrupt driven. The HWI_INT25 (DATALOG ISR) is used for RTDX on
the C55x DSP.

4 Conclusion

Migration of a DSP/BIOS C54x application to DSP/BIOS C55x is possible with a minimum of
effort. The C54x and C55x DSP/BIOS APIs are virtually identical, making application portability
convenient. Differences essential to DSP/BIOS application developer were discussed and an
example is included in Appendix A to highlight the migration methodology.

SPRA775

15 Moving a TMS320C54x BIOS Application to the TMS320C55x

Appendix A
Example: Migrating a C54x Code Composer Studio v2.0 DSP/BIOS Project

A.1 Introduction

Through the use of an example, this application note will step through the process of migrating a
C54x DSP/BIOS Code Composer V2 project to the C55x. The chosen example has been
installed with Code Composer Studio. The example chosen is the DSP/BIOS copy example
found in c:\ti\examples\sim54xx\bios\copy.

This example will highlight:

• Project migration

• CDB file modifications

• API similarities between processors

• Migration from C54x simulator to C55x simulator

This example assumes that the reader has a thorough understanding of:

• C54x and C55x code generation tools and their respective C environments

• DSP/BIOS objects

• Code Composer Studio projects

• C54x simulator and C55x simulator

Hardware specific portions of the application will not, in general be easily portable. The chip
support library (CSL) is designed to provide a level of abstraction between the architectures, but
care should be taken when migrating hardware specific code sections. Please check the
TMS320C6000 Chip Support Library API Reference Guide (SPRU401).

When performing this migration, there are three categories of issues:

• Architecture specific (C54x code to C55x code migration)

• Device specific (5402, 5510, etc.)

• DSP/BIOS specific (CDB, etc.)

In this example, we will move the copy example from the C54x simulator to the C55x simulator.
In this example, there are two DSP/BIOS host pipe objects, an input pipe and an output pipe.
Data is copied from the input pipe to the output pipe inside the software interrupt (SWI). This
SWI is called copySwi and only runs when the two pipes are ready for transfer. Both host pipes
will be ready for a transfer when there is at least one filled frame on the input pipe and there is at
least one empty frame on the output pipe.

This is implemented by making use of the DSP/BIOS SWI_andn() API to conditionally post the
copySwi via the pipe reader notifier function on the pipe inputPipe and write notifier function on
the pipe outputPipe. Each notifier call to SWI_andn() will clear a different bit in the mailbox. The
software interrupt copySWI will be posted to run when the mailbox value becomes zero. Thus,
the copySWI will only run when the input pipe has a valid frame and the output pipe has an
empty frame.

SPRA775

16 Moving a TMS320C54x BIOS Application to the TMS320C55x

Figure A–1. copySwi and Host Pipe Notify Functions

The software interrupt is setup as illustrated in Figure A–2. As can be seen in Figure A–3 and
Figure A–4, the notifier functions are setup as follows:

• input: reader notifier function is SWI_andn(©Swi, 1)

• output: writer notifier function is SWI_andn(©Swi, 2)

Note: Included with Code Composer Studio is a utility called CDBprint which produces a text-file
suitable for documentation of DSP/BIOS object configuration.

Figure A–2. Figure 1 copySwi software interrupt object

SPRA775

17 Moving a TMS320C54x BIOS Application to the TMS320C55x

Figure A–3. Input Host Pipe Object

SPRA775

18 Moving a TMS320C54x BIOS Application to the TMS320C55x

Figure A–4. Output Host Pipe Object

SPRA775

19 Moving a TMS320C54x BIOS Application to the TMS320C55x

A.2 Project Migration

We begin the project migration by creating a new directory that will be used to store the new
C55x project.

The existing essential project files consists of:

• Copy.pjt

• Copy.c

• Copy.cdb

• Copycfg.s54

• Copycfg.h54

• Copycfg.cmd

• Copycfg_c.c

Create a new directory for the C55x project. Copy the following source files into a new directory:

• Copy.c

Note: If there are custom libraries or object code, they should be migrated to the C55x
before being added to the project.

Create a new project in Code Composer Studio. Copy the relevant project options and defines
into the new project. When creating a new Code Composer Studio 2 project, the target setup in
Code Composer Setup determines which platform the project will utilize. Before creating a
project for this example, make sure Code Composer Studio is configured for the c55x Simulator.

For additional information on migrating a Code Composer Studio 1.0 or 1.2 project to Code
Composer Studio 2, please refer to the application report Migrating CCS 1.20/CCS 1.0 Projects
to CCS 2.0 (SPRA745). For further information on upgrading from Code Composer V1, please
refer to the application report Upgrading to DSP/BIOS II (SPRA675).

A.3 DSP/BIOS Migration

As can be seen in Figure A–5, when you create a new DSP/BIOS configuration database files
(CDB) file, the configuration tool prompts the user for information on the target. This information
is used to select a generic DSP/BIOS CDB file that is customized by the user for their
application.

SPRA775

20 Moving a TMS320C54x BIOS Application to the TMS320C55x

Figure A–5. Configuration Tool Target Selection

In addition to the DSP/BIOS application configuration, this configuration database file contains
target specific information. Because the CDB file contains target specific information, the one
from the existing CDB file cannot be used.

Create a new DSP/BIOS CDB for the appropriate target file and create DSP/BIOS objects with
parameters similar to the ones in the existing C54x CDB file. In this example, the example will
be migrated to the C55x simulator, so the C55x simulator template (sim55.cdb) should be
chosen.

Note: The existing parameters are obtainable by either opening the existing CDB file, or by using
the CDBprint utility to obtain the configuration parameters.

After saving the new C55x DSP/BIOS CDB file five files should result:

• Copy.cdb

• Copycfg.s54

• Copycfg.h54

• Copycfg.cmd

• Copycfg_c.c

Note: The five files resulting from the configuration tool can be checked into a configuration
management system if one is used. Only the configuration tool should modify the CDB file. The
other files should not be directly modified as any changes will be automatically overwritten if the
CDB file is updated.

SPRA775

21 Moving a TMS320C54x BIOS Application to the TMS320C55x

Particular DSP/BIOS modules should be checked to ensure proper migration.

A.3.1 Hardware Interrupt Manager (HWI)

Start by selecting the appropriate stack model. As can be seen in , the 32-bit stack model is
initially selected. DSP/BIOS supports all of the different stack modes, and the application
developer only needs to fill in the appropriate interrupt service routine.

A.3.2 MEM

Check to confirm that the memory sections are configured appropriately for the intended target.

A.3.3 Scheduling

Check to confirm that all scheduling objects are at the correct priority levels.

A.3.4 RTDX

Check to confirm that the RTDX mode is appropriate for the target. Since this example is based
on the simulator, the simulator should already be selected.

Figure A–6. RTDX Properties

A.3.5 Generic Arguments

In the copy example program, there are only two places where generic arguments are used: the
HST and SWI modules. As explained earlier the Host notifier expects functions to be of the form
Fxn(Arg, Arg). But, SWI_andn(SWI_Handle swiPtr, Uns key) is used to post the software
interrupt copySwi. As mentioned in previous sections, on the C54x this does not cause any
problems. On the C55x, the generic arguments are treated as 16-bit pointer quantities and are
placed into locations different from those expected by the called function.

SPRA775

22 Moving a TMS320C54x BIOS Application to the TMS320C55x

On the C55x, the HST pipe object’s notifier is invoked by placing the two Arg type parameters in
(X)AR0 and (X)AR1 registers per the compiler conventions. SWI_andn() is expecting the second
argument to be Uns, and the compiler convention dictates that the second parameter should be
in T0.

There are two possible solutions. One solution is to use stub functions that conform to the
expected interface and call the DSP/BIOS API. The other solution is to use a new API that is
designed for use with generic arguments.

A.3.5.1 Stub Function

A stub function can be called as the HST notify function. It should conform to the Fxn(Arg, Arg)
prototype and it should, in turn, post the copySwi. If necessary, type conversion can be
performed. Type conversion functions provided with DSP/BIOS can be found in Table 5.

The example application already utilizes stub functions and implements notify functions by
calling the inputReady(Void) and outputReady(Void) functions. The source code for these
functions can be seen in Figure A–7 and Figure A–8.

Void inputReady(Void)

{

 SWI_andn(©Swi, 1); /* clear swi mbx bit position 0 */

}

Figure A–7. inputReady Stub Function

Void outputReady(Void)

{

 SWI_andn(©Swi, 2); /* clear swi mbx bit position 1 */

}

Figure A–8. outputReady Stub Function

A.3.5.2 Alternate API

An alternate approach is to use variants of function APIs that compensate for the difference in
parameter placement.

DSP/BIOS provides special variations of 2 frequently used SWI APIs, as listed in Table 6. These
2 new DSP/BIOS APIs are equivalent in functionality to SWI_andn and SWI_or.

In the “Copy” example, it is possible to use SWI_andnHook() instead of SWI_andn() as the HST
pipe notifier function. No modifications are necessary to the SWI object. The HST input object
and HST output object are listed in Figure A–9 and Figure A–10.

SPRA775

23 Moving a TMS320C54x BIOS Application to the TMS320C55x

Figure A–9. C55x HST Input Object

SPRA775

24 Moving a TMS320C54x BIOS Application to the TMS320C55x

Figure A–10. C55x HST Output Object

SPRA775

25 Moving a TMS320C54x BIOS Application to the TMS320C55x

A.4 Code Issues

After saving the DSP/BIOS CDB file, add the copy.cdb, and copycfg.cmd files to the project.

Table A–1 is a checklist of things that could be checked before building the program. This is only
a guide.

Table A–1. Pre-build Checklist

Item Note

Stack Check to see if migrated code is compatible with selected stack mode.

Memory Model Make sure source code is compatible with selected memory model. If in small memory model,
check to ensure all data is contained inside a single 64k page.

Vector Table Check to see if proper user interrupts are installed in DSP/BIOS HWI manager.

C interface to ASM code Make sure the proper #pragma statements are used when calling assembly code from C. (Refer
to the TMS320C55x Optimizing C Compiler User’s Guide, literature number SPRU281, for
details.)

Assembly code Ensure that all C54x assembly code has been properly migrated to the C55x and assembles
correctly. Separate functional verification eases project migration.

Generic Arguments Check all function prototypes in user code that may rely on the function parameter passing
model of the C54x C compiler. Also check for function prototype mismatches for all DSP/BIOS
modules that utilize generic arguments, as listed in .

DSP/BIOS configuration Make sure the DSP/BIOS configuration selected matches the intended target.

RTDX mode Ensure that the operating mode of RTDX matches the target and the capabilities of the
development platform.

After running through the checklist, re-build the project.

For large projects, configuration management is highly advisable. Migration of a large
applications should be functionally incremental. Begin with the smallest subset of functionality
and after verification incrementally add functions. Coupled to a successful configuration
management strategy, this should enable successful problem resolution.

A.5 Conclusion

As seen in this example, migration of a DSP/BIOS C54x application to DSP/BIOS is possible
with a minimum of effort. The example has also highlighted the similarities between the C54x
and C55x DSP/BIOS API. This illustrates the ability to create a level of code common between
the two platforms.

SPRA775

26 Moving a TMS320C54x BIOS Application to the TMS320C55x

Appendix B
Migrating a C54x Code Composer Studio v1.2 DSP/BIOS Project

Code Composer Studio v2.0 features DSP/BIOS with some added functionality. For example,
the Chip Support Library has been integrated with DSP/BIOS in Code Composer Studio 2. This
section will discuss some additional issues specific to the migration of C54x projects from Code
Composer Studio 1.2 to Code Composer Studio 2 on the C55x device.

It is highly recommend that a migration directly from Code Composer Studio 1.2 for the C54x be
attempted in stages. The first stage should consist of migrating the Code Composer Studio
project to Code Composer Studio 2. The second stage should then follow the procedures
outlined in this application note for migrating the application from the C54x to C55x.

As mentioned in the introductory paragraph, there is a large amount of applications material
available from Texas Instruments to expedite this process. Please refer to dspvillage.ti.com for
more information.

B.1 Stage 1: Migration from Code Composer Studio v1.2 to Code Composer
Studio v2.0

Migration from Code Composer Studio 1.2 to Code Composer Studio 2 requires examination of
the items illustrated in Table B–1. After this stage, success should result in a successful program
build of the C54x code.

Table B–1. Migration Items

Item Notes

Project and build environment Existing project files must be migrated to Code Composer Studio 2. Care must be taken to
ensure the build environment (defines, compiler options, etc.) are preserved.

Code Generation Code Composer Studio 2 contains a newer version of the code generation tools.
Successful compilation of existing program files is essential to successful project migration.

DSP/BIOS Code Composer Studio 2 contains a newer version of DSP/BIOS. Migrate the CDB file by
opening the CDB file in the configuration tool. Menus will appear to guide the migration
process. Once migration is complete, saving of the updated CDB is essential to cause the
creation of new DSP/BIOS generated files (.s54, .cmd, etc.) Without the new generated
files, a program re-build will fail.

B.2 Stage 2: Migration from C54x DSP/BIOS to C55x DSP/BIOS

After a successful re-build of the C54x code using the Code Composer Studio 2 components
(code generation and DSP/BIOS libraries), the migration process from the C54x to the C55x can
begin. A suitable process is outlined in Appendix A contained in this application report.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products
or services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service,
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2001, Texas Instruments Incorporated

