
Application Report
SPRA845A – June 2003

1

A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs
Software Development Systems

ABSTRACT

This application report describes the implementation of a DSP/BIOS device driver for the
TMS320C64xx DSP’s PCI peripheral. This driver was written in conformance to the
DSP/BIOS IOM device driver model and APIs. More information about IOM can be found in
documents listed in section 4.

The features of this device driver are:

• it allows applications to flexibly bind channels to either a high priority or low priority queue,
and

• it is implemented as a re-entrant driver so that it can simultaneously serve multiple PCI
devices.

Contents
1 Driver Usage 2.

1.1 Configuration 3.
1.2 Device Parameters 3.
1.3 Channel Parameters 4.
1.4 Control Commands 4.
1.5 Error Interrupt Processing 6.

2 Architecture 6.
2.1 Data Structures 6.

2.1.1 PCI Request Block 6.
2.1.2 Queue Objects 7.
2.1.3 Device Object 7.
2.1.4 Channel Object 8.

2.2 Events 8.
2.2.1 Packet Submissions 8.
2.2.2 Interrupt Processing 11.

3 Driver Design Constraints 15.
4 References 15.
Appendix A Device Driver Data Sheet 16.

A.1 DSP/BIOS Modules Used 16.
A.2 DSP/BIOS Objects To Be Configured 16.
A.3 CSL Modules Used 16.
A.4 CPU Interrupts Used 16.
A.5 Peripherals Used 16.
A.6 Interrupt Disable Time 16.
A.7 Memory Usage 16.

Trademarks are the property of their respective owners.

SPRA845A

2 A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs

List of Figures

Figure 1 DSP/BIOS Device Driver Model 2.
Figure 2 I/O Packet Data Structure Extension 7.
Figure 3 IOM_FLUSH/ABORT Channel X to Queue A 9.
Figure 4 Process Flush and Process Abort in Queue A 10.
Figure 5 IOM_READ/WRITE Submit 11.
Figure 6 IOM_READ/WRITE ISR 12.
Figure 7 Process Queue 13.
Figure 8 IOM_FLUSH/ABORT ISR 14.

List of Tables

Table 1 Device Driver Control Commands 5.
Table A–1 Device Driver Memory Usage 16.

1 Driver Usage

The device driver described here is part of an IOM mini-driver, i.e., it is implemented as the
lower layer of a two-layer device driver model. The upper layer is called the class driver and can
be either the DSP/BIOS GIO, SIO, or PIP module. The class driver provides an independent and
generic set of APIs and services for a wide variety of mini-drivers and allows the application to
use a common interface for I/O requests. Figure 1 shows the overall DPS/BIOS device driver
architecture. For more information about the IOM device driver model as well as the GIO, SIO,
and PIP modules, see the DSP/BIOS Device Driver Developer’s Guide (SPRU616).

Application / Framework

SIO APIsPIP APIs

PIO Adapter DIO Adapter

GIO APIs

IOM Mini-Driver(s)

Device
Driver

Chip Support Library (CSL)

Class
Driver

Mini-
Driver

On-Chip Peripheral Hardware Off-Chip Peripheral Hardware

Figure 1. DSP/BIOS Device Driver Model

SPRA845A

3 A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs

This device driver is a mini-driver that performs master transfers of data between the DSP and
other devices or memory on the PCI bus.

This implementation is an example of a “port driver,” in which the driver will not provide a
random access window space mapping on behalf of a client device, but rather acts as a port to
the PCI bus that provides PCI bus mastering capability. This PCI port driver will service the C64x
PCI peripheral on behalf of other device drivers needing PCI access to their device(s) that are
connected to the PCI bus.

This in analogous to a DMA device where the client driver submits data transfer requests (i.e.,
source address, destination address and data size) to the DMA driver, and the DMA driver
provides asynchronous notification and status back to the requester via a completion interrupt.

1.1 Configuration

To add this device driver to the DSP/BIOS Configuration Tool, open the Configuration Tool,
right-click on the User-Defined Devices icon under the Device Drivers section and select Insert
UDEV. From the Objects menu (or by right-clicking on the object), rename the object from UDEV
to a unique name for the device driver. Open the Properties dialog for the device you created by
right-clicking on the object and modify its properties as follows.

• Init function: C64XX_PCI_init

• Function Table Ptr: C64XX_PCI_FXNS

• Function Table Type: IOM_Fxns

• Device ID: N/A; not used by this driver

• Device params ptr: An optional pointer to an object of type C64XX_PCI_DevParams as
defined in the header file c64xx_pci.h. If not specified, the driver will use a default device
callback of NULL. Default values are interrupt ID = 4, Error handler = NULL.

• Device global data ptr: N/A; not used by this driver

1.2 Device Parameters

The driver parameters structure allows you to specify, in the DSP/BIOS Configuration Tool, the
driver specific parameters when the driver is initialized. The device driver’s parameters are
defined as follows:

typedef struct C64XX_PCI_DevParams
{
 Int versionId; /* Version number, set by the app */
 Int pciIntrId; /* interrupt id for normal pci interrupt */
 Int pciErrIntrId; /* interrupt id for pci parity/system error interrupt */
 C64XX_PCI_ErrCallback *errCallback;
 Uns intrMask;
} C64XX_PCI_DevParams;

• versionId: Version number of the driver.

• pciIntrId: The ID for the standard PCI peripheral’s interrupt that lets you specify an interrupt
ID different than the default.

SPRA845A

4 A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs

• pciErrIntrId: The ID for an error interrupt (if implemented).

• errCallback: A pointer to a callback function that will be executed for the
C64XX_PCI_TEST_ERROR_HANDLER control function. There is also a parameters
structure that allows you to specify channel-specific parameters when the channel is
created.

• intrMask: Interrupt mask, set in the ISR.

1.3 Channel Parameters

The user can pass a pointer to a channel parameters structure through the optArgs argument to
the GIO_create call. This device driver’s channel parameter structure is defined as follows:

typedef struct C64XX_PCI_Attrs
{
 Uns queuePriority;
} C64XX_PCI_Attrs

• queuePriority: This structure member specifies whether the channel is bound to the low
priority queue or the high priority queue. The default queue priority is low.

1.4 Control Commands

The mini-driver interface function, mdControlChan, is called by the GIO class driver’s
GIO_control function to:

• program the PCI peripheral’s EEPROM device,

• set or clear the DSP-to-PCI host interrupt request bit,

• reset the device driver channel, and

• reset the peripheral device.

Table 1 contains all of the control commands that are implemented by the mini-driver. Most of
these are passed through calls to the chip support library. Return values are passed back from
the mdControlChan call in the in-out parameter eeData, which is a member of the
C64XX_PCI_EEPROMData data structure that is passed in the arg argument.

SPRA845A

5 A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs

Table 1. Device Driver Control Commands

Command Arg Function

C64XX_PCI_EEPROM_ERASE EEPROM address to operate on Erases the 16-bit data at the specified
address

C64Xx_PCI_EEPROM_ERASE_ALL Ignored Erases the entire EEPROM

C64XX_PCI_EEPROM_IS_AUTO_CFG Ignored Tests if the PCI will read configuration
values from the EEPROM. Places the
value of the PCI peripheral’s EEAI field of
the EECTL register in the location
pointed to by arg.

C64XX_PCI_EEPROM_READ EEPROM address to operate on Reads the 16-bit data at the specified
address

C64XX_PCI_EEPROM_SIZE Ignored Returns the code associated with the
size of the EEPROM
0x0: No EEPROM present
0x1: 1K_EEPROM
0x2: 2K_EEPROM
0x3: 4K_EEPROM†

0x4: 16K_EEPROM

C64XX_PCI_EEPROM_TEST Ignored Tests if EEPROM is present

C64XX_PCI_EEPROM_WRITE EEPROM address to operate on Writes the 16-bit data at the specified
address

C64XX_PCI_EEPROM_WRITE_ALL Data to be written Writes the 16-bit data in to the entire
EEPROM

C64XX_PCI_DSP_INT_REQ_SET Ignored Sets the DSP-to-PCI interrupt request bit
of the PCI peripheral’s RSTSRC register

C64XX_PCI_DSP_INT_REQ_CLEAR Ignored Clears the DSP-to-PCI interrupt request
bit of the PCI peripheral’s RSTSRC
register

C64XX_PCI_RESET_CHANNEL Ignored Resets the specified channel by causing
the callback function of the current PCI
job and removing any pending packets

C64XX_PCI_RESET_ALL_CHANNELS Ignored Does the same as above, but for all
opened channels

C64XX_PCI_TEST_ERROR_HANDLER Error type
C64XX_PCI_EVT_SYSTEM_ERR
or
C64XX_PCI_EVT_PARITY_ERR

Fills in the error status block and calls the
bus error handler callback function

† 6415/6416 devices support the 4K_EEPROM only.

SPRA845A

6 A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs

1.5 Error Interrupt Processing

This driver has code that implements processing of special PCI error interrupts, such as those
raised by bus error and parity error conditions. The error interrupt processing code will not be
compiled into the driver unless the preprocessor variable, PCI_ERROR_ISR_IMPL, is defined.

A data structure specific to error interrupt processing is defined in the driver header file,
c64xx_pci.h, and is implemented as follows:

typedef struct C64XX_PCI_ErrInfo
{
 Ptr statusReg; /* pointer of the status register */
 Ptr inprogressDstAddr; /* dst addr caused err */
 Ptr inprogressSrcAddr; /* src addr caused err */
} C64XX_PCI_ErrInfo

• statusReg: A pointer to the PCI peripheral’s status register

• inprogressDstAddr: The destination address of the packet that caused the error while the
DSP was mastering the PCI bus.

• inprogressSrcAddr: The source address of the packet that caused the error while the DSP
was mastering the PCI bus.

If a bus error interrupt is asserted, this code will examine the source of the interrupt and then fill
in information about the packet currently being processed into the driver’s object structure. The
bus error callback is then called so that this packet information can be exported back to the
application and acted on in an implementation-specific manner.

2 Architecture

This section describes the overall implementation and design of the C6416 PCI device driver.
You should also refer to the documentation in the References section for more details on the
DSP/BIOS real time operating system, and the PCI Chip Support Library (CSL).

2.1 Data Structures

2.1.1 PCI Request Block

Class drivers communicate with mini-drivers through the I/O packet (IOP), which describes the
request to be carried out and supplies the data necessary to do so. The addr field of the I/O
packet can either be used to hold the address of the buffer (that holds the data to be written out
or read in), or it can be used to point to a structure that holds driver-specific information and
serves as an extension to the I/O packet.

The PCI driver has been implemented to use a driver-specific data structure extension to the I/O
packet and is shown in Figure 2.

SPRA845A

7 A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs

srcAddr

dstAddr

byteCnt

options

reserved

Figure 2. I/O Packet Data Structure Extension

2.1.2 Queue Objects

The PCI driver maintains two queues that hold lists for packets that have been submitted to the
driver for reading or writing: one for high priority submissions and one for low priority
submissions. A channel is bound to one of the two queues at creation time. It will be attached to
the low priority queue by default, if no value is passed in the channels parameters structure –
that is, a value of one of the following:

• C64XX_PCI_QUEUE_PRIORITY_HIGH

• C64XX_PCI_QUEUE_PRIORITY_LOW

By implementing this device driver with two queues instead of one, more flexibility is afforded to
applications that have more than one device on the PC bus, or to applications that need to
prioritize certain channels over others.

2.1.3 Device Object

The device driver’s device object is a single instance object that maintains the overall state of
the driver’s variables. The device object is shown below

typedef struct PCIDeviceObj
{
 IOM_Packet *curPacket;
 QUE_Obj highPrioQue;
 QUE_Obj lowPrioQue;
 C64XX_PCI_TerrCallback errCallback;
 Uns evtMask;
 C64XX_PCI_ErrInfo *errInfo;
 Int openCount;
} PCIDeviceObj, PCIDeviceHandle;

• curPacket: Pointer to the I/O packet that is currently in process – that is, a packet that has
been submitted for I/O (e.g., reading, writing, flush or abort) but has not yet been completed.

• highPrioQue/lowPrioQue: Pointers to the two queue objects that hold the submitted I/O
packets.

SPRA845A

8 A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs

• errCallback/errInfo: Used as an optional extension to the PCI driver for boards that
generate interrupts when bus error and parity error occur. These object members will store
the callback function that runs and will hold information so that the application can get
access to more detailed information on why the error occurred.

• evtMask: Event mask for error codes asserted by the error interrupt handler.

• openCount: Stores the total number of channels that have been opened in the driver.

2.1.4 Channel Object

The device driver’s channel object is used to hold and maintain the state of each driver channel.
Therefore, a separate object will be created by the mini-driver’s mdCreateChan function for each
channel. The channel object is shown below

typedef struct ChanObj
{
 QUE_Handle queue;
 Uns writeCount;
 IOM_Packet *flushAbortIop;
 IOM_TiomCallback callback;
 Ptr callbackArg;
} ChanObj, *ChanHandle;

• queue: used to hold the handle (i.e., the address) of the high or low priority queue. This
address is assigned to the channel which holds the I/O packets submitted to the driver.

• writeCount: used to hold the count of the number of I/O packets that are pending to be
written out.

• flushAbortIop: used to hold the I/O packet specified to flush/abort the channel.

• callback/callbackArg: points to the callback function and the callback function argument
that is called when the PCI peripheral fires an interrupt.

2.2 Events

2.2.1 Packet Submissions

The mini-driver interface function, mdSubmitchan, will be called by the class driver with a
command embedded in the PCI request packet to perform a read, a write, channel flush, or
channel abort. Hardware interrupts will then be disabled for the duration of the processing of the
packet.

For the case of a request to read or write, the PCI request packet will be put on the queue that
was attached to the channel on which the request was made. If there are no other packets in
process, then the new request will be processed immediately – otherwise, the request will
remain on the queue until the request packets ahead of it are processed. Packets are processed
in sequence by simply taking them off the queue one by one, and setting up a PCI transfer with
the packet’s source and destination addresses and its byte count.

When packets are submitted to the driver with a command of Flush, all pending input jobs are to
be completed with a status of IOM_FLUSHED and all output jobs are to be completed routinely.
When packets are submitted to the driver with a command of Abort, all pending calls are
completed with a status of IOM_ABORTED.

SPRA845A

9 A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs

Figure 3 through Figure 5 illustrate the sequence of operations for Channel Flush/Abort
commands.

Submit

Get cmd packet
(IOM_FLUSH/IOM_ABORT)

Disable HWI

Store the cmd packet

PCI
transfer in
progress?

cmd =
IOM_FLUSH?

Transferring
packet channel

channel X?

Restore HWI

Return
IOM_PENDING

Process abort
in queue A

Process flush
in queue A

Pending
write packet

counter

Return IOM_COMPLETED

zero?

Return IOM_PENDING

NoNo

Yes Yes

Yes

No

NoYes

Figure 3. IOM_FLUSH/ABORT Channel X to Queue A

SPRA845A

10 A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs

Process flush in queue A Process abort in queue A

Check next packet
in queue A

Is
packet command

IOM_WRITE?

Increment channel X
pending writepacket

counter

Remove packet
from queue A

Callback:
Return packet

status =
IOM_FLUSHED

Check next packet
in queue A

Packet channel =
channel X?

Remove packet
from queue A

Callback:
Return packet

status =
IOM_ABORTED

Packet channel =
channel X?

Yes Yes

Yes No

No No

Figure 4. Process Flush and Process Abort in Queue A

SPRA845A

11 A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs

Submit

Get packet
(IOM_READ/IOM_WRITE

Disable HWI

Put packet in queue A

PCI transfer
in progress?

Process queue

Restore HWI

Return IOM_PENDING

Yes

No

Figure 5. IOM_READ/WRITE Submit

2.2.2 Interrupt Processing

When this driver’s interrupt service routine is called, it first checks to see what type of interrupt
was asserted (e.g., either a PCI master abort, a PCI target abort, or most commonly, a PCI
transfer complete). The corresponding interrupt bit is in the PCI peripheral’s interrupt source
register (ISR).

The ISR then checks to see if a PCI packet request has been in progress. If so, the channel
object’s flushAbortIop member is checked to see if a Flush or Abort command has been issued
(see discussion in section 2.2.1). If no Flush or Abort has been issued, then the ISR was
asserted because the current packet being processed has completed. And so, the next PCI
request packet will be taken off of the queue to be processed and the callback function will then
be called.

If a channel Flush or Abort has been called, the ISR will perform a callback for the PCI packet
request that is in progress, and decrement the writeCount member of the channel structure
accordingly.

SPRA845A

12 A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs

Figure 6 through Figure 8 illustrate interrupt processing.

Submit

Set return status

Was transfer
started?

Process queue

Callback:

Check interrupt source

Registered
interrupt?

Process queue

Return

Return finished packet

Return

Yes

No

Clear interrupt return

Yes

No

Figure 6. IOM_READ/WRITE ISR

SPRA845A

13 A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs

Get first packet in

Process queue

Is high-priority
queue empty?

Return

Return

No

Yes

Is low-priority
queue empty?

No

Yes

high-priority queue

Get first packet in
low-priority queue

Parse PCI request

Start transfer

Figure 7. Process Queue

SPRA845A

14 A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs

Process abort in

cmd =
IOM_FLUSH?

Return

No Yes

Processed flush
in queue A?

No

Yes

Process flush in
queue A

ISR

Callback status = IOM_COMPLETED
Return finished packet

queue A

Process queue

Decrement channel X
pending writepacket

counter

Pending
writecounter =

Yes

No

Process queue

zero?

Callback:
Return cmd packet

Status =
IOM_FLUSHED
IOM_ABORTED

Return

Figure 8. IOM_FLUSH/ABORT ISR

SPRA845A

15 A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs

3 Driver Design Constraints
• This mini-driver can only be used with the IOM class driver. It is not designed to be used with

the PIO or DIO class drivers, because this driver is to be used in tandem with one or more
other drivers and not directly from the application using the DSP/BIOS SIO or PIP APIs.

• PCI data transfers are limited to 64 Kbytes.

• The PCI host side driver software must configure the PCI bus.

4 References
1. TMS320C6000 DSP/BIOS Application Programming Interface (API) Reference Guide

(SPRU403)

2. DSP/BIOS Device Driver Developer’s Guide (SPRU616)

3. TMS320C6000 Peripherals Reference Guide (SPRU190)

4. TMS320C6000 Chip Support Library API User’s Guide (SPRU401)

5. PCI Local Bus Specification, Revision 2.2. PCI Special Interest Group, http://www.pcisig.com

6. VT1420 Dual C64x DSP PMC Module User’s Guide, Valley Technologies Document Number
560-000-039, Version 2.0, June 14, 2002

SPRA845A

16 A DSP/BIOS PCI Device Driver for TMS320C64xx DSPs

Appendix A Device Driver Data Sheet

A.1 DSP/BIOS Modules Used

• HWI – Hardware Interrupt Manager

• MEM – Memory Manager

• QUE – Queue Manager

• SYS – System Services Manager

A.2 DSP/BIOS Objects To Be Configured

None

A.3 CSL Modules Used

• PCI Module

• IRQ Module

A.4 CPU Interrupts Used

Default interrupt used is HWI interrupt vector #4

A.5 Peripherals Used

PCI peripheral

A.6 Interrupt Disable Time

Maximum time that hardware interrupts can be disabled by the driver: 333 cycles. This
measurement is taken using the compiler option –O3.

A.7 Memory Usage

Table A–1. Device Driver Memory Usage

Uninitialized Memory Initialized Memory

CODE 4160 (8-bit bytes)

DATA 60 (8-bit bytes) 32 (8-bit bytes)

NOTE: This data was gathered using the sectti command utility.
Uninitialized data: .bss
Initialized data: .cinit + .const
Initialized code: .text + .text:init

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2003, Texas Instruments Incorporated

