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Using the –edma_warnN Compiler Switch to
Detect a CPU L2 EDMA Lockout

Ivan Garcia, Vineet Ganju C6000 Hardware Applications

ABSTRACT

This document discusses the use of the –edma_warnN compiler switch (where N is the
deadline in CPU clock cycles that the EDMA must meet) for detecting potential scenarios on
which EDMA accesses are blocked by the CPU from accessing L2.

Contents

1 Description and Use 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.1 Criterion One 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.2 Criterion Two 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 Analyzing Potential Problems 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

List of Figures

Figure 1. Pseudo Code Example With Parallel Instructions (Criterion 2) 2. . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2. Pseudo Code Example Parallel Stores (Criterion 2) 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3. Criterion Two 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 Description and Use

The –edma_warnN compiler switch is used to find potential EDMA lockouts by the CPU. Details
for this problem can be found in the Silicon Errata  for C671x devices. This switch generates a
warning only when the following two criteria are met:

1. Criterion One. For a given sequence of code: If the total number of stores (including
single and parallel stores) is greater than or equal to the total number of cycles that
contain no stores then the first criterion is met.

2. Criterion Two. For a given sequence of code: If the EDMA must service a peripheral in N
CPU clock cycles to meet a hard deadline, but there is also a loop of at least N CPU clock
cycles, then the second criterion is met. For example, if there is a hard deadline of 586
cycles that the EDMA must meet to service a peripheral, the –edma_warn586 switch is
used.

An example of the warning issue when both criteria have been met:

Trademarks are the property of their respective owners.
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“source_file.c”, line 274: WARNING: An EDMA lockout problem may exist

NOTE: In some cases the compiler may not be able to determine the number of iterations a
loop will run. Therefore it won’t be able to guarantee the duration of the loop will be less than N
cycles. In this case the compiler will be conservative and issue a warning. The warning contains
the source code location that produced the potential problem loop as noted on the example.

A detailed description of these two criteria now follows.

1.1 Criterion One

To meet Criterion One, in a given sequence of code, the total number of stores must be greater
than or equal to the number of cycles on which no store occurs. In the case of looped code, in
one iteration of a loop, the total number of stores must be greater than or equal to the number of
cycles on which no store occurs, or, in other words, the length of one iteration in cycles is less
than or equal to twice the number of stores.

Here are a few examples of instruction sequences that outline this criterion:
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Figure 1. Pseudo Code Example With Parallel Instructions (Criterion 2)
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STW

II STW

II ADD

Cycle 1

Cycle 2

II SUB

II ADD

ADD

Cycle 3
II MV

II B

ADD

II ADD

Cycle 3

II ADD

II B

ADD

Cycle 2

ADD

II MV

II SUB

II ADD

Cycle 1 II STW

II ADD

STW

ADD

II MPY

II SUB

Cycle 4

II SUB

II MPY

II ADD

Cycle 4

Cycle 3

ADD

II B

ADD

II ADD

II SUB

II MV

Cycle 2

ADD

II ADD

II STWCycle 1

STW

Cycle 5

II ADD

MPY

II ADD

Total Cycles: 3
Total Stores: 2

Total Cycles: 4
Total Stores: 2 Total Stores: 2

Total Cycles: 5

Meets Criterion One Meets Criterion One
Does Not Meet
Criterion One

Figure 2. Pseudo Code Example Parallel Stores (Criterion 2)

Note the following to meet Criterion One:

• The order of the store instructions does not matter

• When two store instructions are performed in parallel (instructions performed in parallel are
denoted by the || symbol), each store must be counted individually. That is, even though both
stores occur on the same cycle, they still must be counted as two stores

• It does not matter if the store is storing a 32-bit word (STW), 16-bit word (STH), or 8-bit word
(STB)
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1.2 Criterion Two

The second criterion can be viewed pictorially using a timeline.

Problem Blocking Loop

2.6 µs

Figure 3. Criterion Two

There is a hard deadline, say 2.6us, during which time the EDMA must access L2. If the DSP
system clock is running at 225MHz, having a hard deadline of 2.6us translates to 586 CPU
cycles. The criteria is met when the CPU has a loop of at least 586 (N = 586) clock cycles, the
length of the EDMA hard deadline. The switch used for this particular hard deadline would then
be –edma_warn586.

NOTE: In some cases the compiler may not be able to determine the number of iterations a
loop will run. Therefore it won’t be able to guarantee the duration of the loop will be less than N
cycles. In this case the compiler will be conservative and issue a warning. The warning contains
the source code location that produced the potential problem loop.

2 Analyzing Potential Problems

Once a list of potential problem loops is generated by the –edma_warnN compiler flag, the
programmer must now examine each of these potential problem loops to eliminate the
compiler’s warnings due to not being able to guarantee the number of iterations. Furthermore,
the programmer should also examine each potential problem loop to see if they meet the two
additional criteria for blocking the EDMA from accessing L2. This is accomplished by closely
examining the source code and assembly output of that source code. The assembly output of
source files are retained by using the compiler option –k.

The following checklist should be used to qualify a loop as a problem loop. If the potential
problem loop fails any of these checks, it is not a problem loop and the EDMA will not be
blocked from accessing L2.

1. Examine the source code to determine the number of iterations of a loop. The compiler
switch does its best to determine the number of iterations of a loop, but it cannot always
determine this. If a programmer knows that a potential problem loop will only run for a few
iterations, then it can be eliminated as a potential problem. However, if the loop runs a
number of times close to or greater than the hard deadline, then it can still be a potential
problem.

2. Check to see if the loop contains stores to the same bank in L2. This can be done by
checking the source code to see if the index increment is a factor of 8, or some factor that
would cause all the stores to be in the same bank.

For example, this loop would likely cause a problem, because the stores are striding by 8
elements at a time (hitting the same bank of L2):

int buffer[];
for (i=0; i< 1000; i++)

buffer[i*8] = 0;
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But this loop would not cause a problem since it is only striding by one element at a time:
int buffer[];
for (i=0; i<1000; i++)

buffer[i] = 0;

3. Check to see if the loop has any misses in L1. This is done by examining the assembled
output of the source. Find the particular loop of interest in the assembly file associated
with the source file containing the potential problem loop. Examine the kernel of that loop
to see if there are any loads performed in the kernel. Any load which misses L1
immediately disqualifies the loop from being a problem loop.

All these criteria would typically occur in a loop that is filling or clearing a buffer. Even then, it is
only filling/clearing a certain section of a buffer (every eighth element). For this reason, a
problem loop is rarely found in a typical post-processing routine.

After performing these steps, the list of potential problem loops should be reduced when using
the –edma_warnN compiler switch.

For more details on this problem please refer to the corresponding C621x/C671x Silicon Errata.
Please contact your local customer support to obtain the tools that support the –edma_warnN
compiler switch.
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