
Application Note
C2000™ Position Manager PTO API Reference Guide

Ozino Odharo, Subrahmanya Bharath, Peter Luong and Lori Heustess

ABSTRACT

Pulse-train output (PTO) and pulse-train input (PTI) are generic names for describing various forms of signal
pulse streams. The PTO library APIs leverage the C2000 Configurable Logic Block (CLB) to assist in working
with various PTO and PTI signals. This includes generating output signals as well as decoding input signals such
as QEP, CwCCW, pulse and direction.

Table of Contents
1 Introduction...2
2 PTO – PulseGen..3
3 PTO – QepDiv..5
4 PTO – Abs2Qep...10
5 PTO – QepOnClb QEP Decoder...21
6 Example Projects..31
7 Library Source and Projects..37
8 Using the Reference APIs in Projects...50
9 References.. 54
Revision History...54

List of Figures
Figure 2-1. PulseGen Output Diagram.. 3
Figure 2-2. PulseGen Implementation Diagram.. 3
Figure 2-3. PulseGen CLB Tile Diagram... 4
Figure 3-1. QepDiv Input and Output Diagram.. 5
Figure 3-2. QepDiv Interconnect Diagram... 6
Figure 3-3. Implementation Diagram... 6
Figure 3-4. QepDiv CLB Tile Diagram... 7
Figure 4-1. Abs2Qep Implementation Diagram... 10
Figure 4-2. Absolute Position Encoder.. 10
Figure 4-3. Incremental Position Encoder..11
Figure 4-4. Abs2Qep Zero-Cross in the Forward Direction... 14
Figure 4-5. Abs2Qep Zero-Cross in the Reverse Direction... 14
Figure 4-6. Abs2Qep Example System Waveform.. 15
Figure 4-7. Abs2Qep CLB Tile Block Diagram.. 16
Figure 4-8. Abs2Qep PTO State Diagrams... 18
Figure 4-9. Simulation QEP-A and QEP-B Generation... 19
Figure 4-10. Simulation of Halt Latch.. 20
Figure 5-1. QEP on CLB Implementation Diagram..21
Figure 5-2. QEP-A, QEP-B State Diagrams.. 23
Figure 5-3. QepOnClb Waveform Example... 24
Figure 5-4. QepOnClb Tile Block Diagram.. 25
Figure 5-5. QepOnClb Simulation Stimulus...29
Figure 5-6. QepOnClb Forward Direction Simulation Waveform... 30
Figure 5-7. QepOnClb Forward Direction MAXPOS Simulation..30
Figure 5-8. QepOnClb Reverse Direction Simulation Waveform...30
Figure 5-9. QepOnClb Reverse Direction MAXPOS Simulation..31
Figure 5-10. QepOnClb Error Detection Simulation Waveform... 31
Figure 7-1. Abs2Qep Translate Function...45
Figure 8-1. Compiler Include Options for Projects Using PTO Reference APIs.. 51

www.ti.com Table of Contents

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 1

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Figure 8-2. C2000™ Linker Options – PulseGen... 52
Figure 8-3. C2000 Linker Options – QepDiv..52

List of Tables
Table 2-1. PulseGen CLB Tile 1...4
Table 3-1. QepDiv CLB Tile 1.. 8
Table 3-2. QepDiv CLB Tile 2.. 9
Table 4-1. Abs2Qep Relationship Between Lines and QCLK (Forward Direction).. 11
Table 4-2. Abs2Qep Example Calculations... 13
Table 4-3. Abs2Qep CLB Tile 1... 16
Table 4-4. QEP-A (s0) Signal Generation Karnaugh Maps .. 18
Table 4-5. QEP-B (s1) Signal Generation Karnaugh Maps .. 18
Table 4-6. RUN/HALT Output...19
Table 4-7. HALT_LATCH Karnaugh Map ..19
Table 4-8. Abs2Qep HLC Register Usage... 20
Table 4-9. Abs2Qep HLC Programs.. 20
Table 5-1. QepOnClb and eQEP (Type 0) Comparison Overview...22
Table 5-2. Example Mapping Decoder Features to CLB Blocks..24
Table 5-3. QepOnClb Tile 1... 26
Table 5-4. QCLK State Machine Karnaugh Map..28
Table 5-5. Direction Detection Karnaugh Map... 28
Table 5-6. Error Detection Karnaugh Map... 29
Table 6-1. Location of Example Solutions..31
Table 6-2. Hardware ... 32
Table 6-3. PulseGen Output Signal to GPIO Mapping...32
Table 6-4. QepDiv Example Input/Output Signal Routing..33
Table 6-5. F28002x, F28003x, F28004x, F2837x and F2838x QepDiv Output GPIO Mapping.. 33
Table 6-6. QepDiv Test Input Connections.. 33
Table 6-7. Abs2Qep Output Signal Routing...34
Table 6-8. F2838xD Abs2Qep Output GPIO Mapping...34
Table 6-9. F2837xD Abs2Qep Output GPIO Mapping...34
Table 6-10. F280049C Abs2Qep Output GPIO Mapping...35
Table 6-11. F280025C Abs2Qep Output GPIO Mapping...35
Table 6-12. F280039C Abs2Qep Output GPIO Mapping...35
Table 6-13. QepOnClb EPWM to CLB INPUTXBAR Connections.. 36
Table 6-14. QepOnClb EPWM to eQEP Connections... 36
Table 7-1. Location of PTO Libraries... 37
Table 7-2. PTO-PulseGen API Functions.. 38
Table 7-3. PTO-QepDiv API Functions.. 41
Table 7-4. PTO-Abs2Qep API Functions... 43
Table 7-5. PTO-QepOnClb API Functions... 46

Trademarks
Code Composer Studio™ and C2000™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.

1 Introduction
The C2000 Real-Time MCU Pulse Train Output (PTO) APIs leverage the Configurable Logic Block (CLB), Type
1 or later, to generate a specified PTO or to decode a PTI (Pulse Train Input).

Note
Some APIs work with Pulse Train Inputs (PTI) and others with Pulse Train Outputs (PTO). For
simplicity, the examples, libraries, and directory structure make use of the suffix "pto" to identify
content belonging to this library.

This document describes the implementation and associated software for each modules listed below:

PulseGen: Output a simple pulse and a direction-indication signal.

QepDiv: Scale Quadrature Encoded Pulse inputs (QEP-A, QEP-B and QEP-Index) to output reduced frequency
PTO signals.

Abs2Qep: Translate a change in absolute position into equivalent QEP-A/B and QEP-I signals.

Trademarks www.ti.com

2 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

QepOnClb Implements a basic QEP decoder by using the CLB.

There are two categories of software provided:

Example Application Projects: Small applications which configure a C2000 Real-Time MCU, incorporates the
appropriate reference library, and demonstrates the functionality. Section 6 describes how to access the source
code, import the project into CCS, and then build and run the example.

Reference API Libraries: Software implementation of the module. Section 7 includes a description of each API,
how to access the source code, and how to rebuild the libraries. Section 8 explains how to incorporate the API
into your own project.

Note
You will need the appropriate development tools installed to build the CLB-based projects. For more
information, see the CLB Tool User’s Guide.

2 PTO – PulseGen
The PTO-PulseGen function can be used to generate pulse and direction outputs as required by the application.
Figure 2-1 shows the PulseGen output and Figure 2-2 shows the implementation diagram.

PulseGen

Pulse

(Output)

Direction

(Output)

Figure 2-1. PulseGen Output Diagram

OUTPUT

XBAR

CLB

TMS320F28379D

GPIO14

GPIO15

Pulse - Output

Direction - Output

C28xCPU

Figure 2-2. PulseGen Implementation Diagram

Note
Interconnect between the CLB and the MCU boundary may differ between devices or between
examples. For specific interconnect routing information, see Section 6.

2.1 PulseGen Implementation Overview
This section provides an overview of how the PTO-PulseGen interface is implemented. This interface is
achieved by the following components:

• C28x CPU
– Initializes the PulseGen interface, configures the CLB, XBARs, and GPIOs.
– Provides the number of pulses and the duration of each pulse to the CLB.

www.ti.com PTO – PulseGen

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 3

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruir8
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

• Configurable Logic Block (CLB) Type 1 or later
– Generates the pulses and direction as defined by the software interface function.

• Device Interconnect (XBARs)
– Configured for output-signal routing to and from the CLB, as required.

2.2 PulseGen Limitations
The PTO-PulseGen operation has the following usage limitations:

• The minimum number of cycles must be 1000 cycles for the PTO period (at 200-MHz system clock, this
corresponds to 10 µs [for example, 100 KHz]).

• The number of cycles must be between 40% to 60% of the PTO period for the interrupt time to avoid conflicts
with PTO updates.

• The maximum frequency of the PTO-PulseGen output is 5 MHz at a 200-MHz CPU CLK. See the example
provided in C2000Ware MotorControl SDK.

2.3 PulseGen CLB Configuration
The following resources are used inside the CLB tile to achieve the desired function detailed in Section 2.1.

i0
TILE1_OUTLUT_4

out = i0 & i1
i1 out

i2

TILE1_BOUNDARY

out0

out1

out2

out3

out4

out5

out6

out7

e0 TILE1_FSM_0

s0 = ((~s0) & (e0 & (~e1))) | (s0& (~e1))
s1 = s1

out = xe0 | xe1 | e1

e1 s0

xe0 s1

xe1 out
reset

TILE1_COUNTER_0

evAction = None

zero

event match1

mode0 match2

mode1

TILE1_BOUNDARY

in0 :

in1 9

in2 :

in3 :

in4 :

in5 :

in6 :

in7 :

e0 TILE1_FSM_2

s0 = ((~s0) & (e0 & e1)) | (s0 & (e0 | (~e1)))
s1 = s1
out = s0

e1 s0

xe0 s1

xe1 out

i0

TILE1_LUT_0

out = i0 & (i1 | i2)

i1 out

i2

i3

i0

TILE1_LUT_1

out = i0 & i1

i1 out

i2

i3

i0
TILE1_OUTLUT_5

out = i0
i1 out

i2

e0

TILE1_HLC
e1

e2

e3

reset

TILE1_COUNTER_1

evAction = None

zero

event match1

mode0 match2

mode1

e0 TILE1_FSM_1

s0 = ((~s0)&(e0 & (~e1))) | ((s0) & (~e1))
s1 = s0

out = s0 | s1

e1 s0

xe0 s1

xe1 out

reset

TILE1_COUNTER_2

evAction = None

zero

event match1

mode0 match2

mode11

squareWave

Period = 200000, Duty = 100000
out

squareWave

Period = 10000, Duty = 5000
out

squareWave

Period = 10000, Duty = 5000
out

squareWave

Period = 50000, Duty = 25000
out

Figure 2-3. PulseGen CLB Tile Diagram

Note
Section 7 describes how to build the library project in Code Composer Studio™. By building the
project, CCS will regenerate the CLB tile diagram (clb.svg or clb.html). and object (.lib). The CLB tile
diagram will be located in the RELEASE/syscfg directory.

Implementation is described in Table 2-1 and visualized in Figure 2-3.

Table 2-1. PulseGen CLB Tile 1
Resource Function Notes

Inputs
In0 On/Off Control via GPREG Enable CLB

In1 Rising Edge Detect Via EPWM1A

In2 On/Off Control via GPREG Run signal (start/stop of PTO)

In3 Not used Not used

In4 On/Off Control via GPREG Sets the PTO direction

In5 Not used Not used

In6 Not used Not used

In7 Not used Not used

Outputs
Out0 Not used Not used

Out1 Not used Not used

Out2 Not used Not used

PTO – PulseGen www.ti.com

4 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Table 2-1. PulseGen CLB Tile 1 (continued)
Resource Function Notes

Out3 Not used Not used

Out4 Transmit Enable Via OUTPUT XBar; PTO pulse output

Out5 Transmit Enable Via OUTPUT XBar; PTO direction output

Out6 Not used Not used

Out7 Not used Not used

Logic Resources
LUT0 Input for Event0 in HLC Edge detection on encoder input with either in1 or CNT1 match value. Triggers

event in HLC to load new values into HLC registers

LUT1 Mode0 input for CNTs 1,2,3 Logic to determine the selected modes for CNT1, CNT2, and CNT3. Starts all
three counters.

LUT2 Not used Not used

FSM0 Pulse width generation This state machine together with CNT0 will generate a number of hi and low
pulse widths. The output sets the reset value of CNT0.

FSM1 Active and Full Period generation Sets the values for the active and full period based on match1 and match2
outputs of CNT1. Outputs number of pulses in active period duration and none
in between the difference of the full and active periods

FSM2 PTO output direction generation Generates the PTO output direction. The output direction is held until the end
of the full period set by FSM1.

CNT0 Pulse width generation Counter Match1 and Match2 values determine triggers for hi and low pulse
widths. The match values are loaded to FSM0 inputs, e0 and e1.

CNT1 Active and Full Period Clock generation Generates inputs needed for FSM1 and FSM2. Match1 determines trigger for
active period. Match2 determines trigger for full period. Match events are used
by FSM1 to generate active and full periods. Match2 is used as extra external
input in FSM0 to determine how long to hold PTO output direction.

CNT2 Counter for full period Match1 event used to trigger interrupt in HLC. Counter is reset when full period
of signal is reached

High Level Controller
HLC Event0 used to trigger taskEvent1 used to

trigger interrupt
Event0 used to load new options for the PTO from C28 core into CLBEvent1
used to generate an interrupt based on match1 event of CNT2, which
corresponds to the full period. New PTO options take effect after this event.

2.4 PulseGen Input and Output Signals
Chip-level inputs to the PTO-PulseGen interface: none.

Chip-level outputs from the PTO-PulseGen interface: Pulse Output and Direction. In the examples provided,
these outputs are routed through to GPIOs as described in Section 6.

3 PTO – QepDiv
The QepDiv PTO function can be used to generate a divided pulse stream from QEP inputs. Figure 3-1 shows
the QepDiv input and output diagram.

QepDiv

QEPA

(Input)

QEPB

(Input)

QEPI

(Input)

QEPA

(Output)

QEPB

(Output)

QEPI

(Output)

Figure 3-1. QepDiv Input and Output Diagram

www.ti.com PTO – PulseGen

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 5

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Figure 3-2 shows the CLB interconnect diagram.

IN0:6:�RQ/off

IN1:4(3$�,QSXW

IN2:4(3$�,QSXW

Edges only

IN4:4(3%�,QSXW

IN5:4(3%�,QSXW

Edges only

IN7:,QGH[�,QSXW

Pos Edge detect

IN0:6:�RQ/off

IN1:4(3$�,QSXW

IN2:4(3$�,QSXW

Edges only

OUT4:�WR�&/%2

Via CLB-XBAR

IN7:'LUHFWLRQ

IN4:4(3%�,QSXW

Edges Only

OUT5:�WR�*3,2

Via O/P-XBAR

OUT4:�WR�

GPIO

Via O/P-XBAR

OUT0 (QEPA):

EPWM2A

OUT2 (QEPB):

EPWM2A

CLB1 CLB2

QEB Output

Generation

(FSM2/CNT0)

And LUT2

QEB Output

Generation

(FSM1/CNT0)

And LUT1

Bypass Logic

(OUTPUTLUT)

Index Pulse

Generation

FSM2/CNT2

QCLK

Determine

Direction

(FSM0/FSM1)

LUT1

Figure 3-2. QepDiv Interconnect Diagram

Figure 3-3 shows the implementation diagram of the QepDiv interface.

INPUT

XBAR

INPUT

XBAR

INPUT

XBAR

OUTPUT

XBAR

CLB

TMS320F28379D

GPIO2

GPIO3

GPIO14

GPIO10

GPIO11

GPIO9

QEPA - Input

QEPB - Input

QEPI - Input

QEPA - Output

QEPB - Output

QEPI - Output
OUTPUT3

Input 4

Input 5

Input 6

C28xCPU

Figure 3-3. Implementation Diagram

Note
Interconnect between the CLB and the MCU boundary may differ between devices or between
examples. For specific interconnect routing information, see Section 6.

PTO – QepDiv www.ti.com

6 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

3.1 QepDiv Implementation Overview
This section provides an overview of how the PTO QepDiv interface is implemented. This interface is primarily
achieved by using the following components:

• C28x CPU
– The CPU initializes the function and configuration of the CLB, XBARs, and GPIOs as applicable.

• Configurable logic block (CLB) Type 1 or later
– Monitors input signals, QEP-A, QEP-B, and QEP-I, connected to the GPIO
– Detects the direction of the motion and any changes in direction
– Detects the edges of the input signals
– Implements the division function and generates the scaled outputs: PTO-QEP-A, PTO-QEP-B, and PTO-

QEP-I.
• Device interconnect (XBARs)

– Input and output XBARs are used to route signals to and from the CLB as applicable.

3.2 QepDiv Limitations
The PTO-QepDiv operation has the following usage limitations:

• The QepDiv interface implements division factors of /1, /2, /4, /8, ….. up to /1024 and /2048.
• The maximum frequency of the input signals (QEP-A and QEP-B) is limited to 5 MHz.
• The index pulse is generated on the index output when a rising edge is detected on the index input signal.
• The width of the index pulse can be user defined. See the pto_qepdiv_config function and the

corresponding example provided in C2000Ware MotorControl SDK.
• The divider values work as follows:

– The frequency of the output QEP-A or QEP-B = frequency of input QEP-A or QEP-B / (2 × divider)

3.3 QepDiv Divider Settings and Initialization
Divider initialization is done via the function below:

• COUNTER_0 in CLB2 is used for divider*4 for match2 value of the counter.
• COUNTER_0 in CLB2 is used for divider*2 for match1 value of the counter.

Index pulse width is controlled using COUNTER_2 in CLB1 for match1 value setting.

uint16_t
pto_qepdiv_config(uint16_t divider, uint16_t indexWidth)
{
 CLB_writeInterface(CLB2_BASE, CLB_ADDR_COUNTER_0_MATCH2, divider * 4);
 CLB_writeInterface(CLB2_BASE, CLB_ADDR_COUNTER_0_MATCH1, divider * 2);
 CLB_writeInterface(CLB1_BASE, CLB_ADDR_COUNTER_2_MATCH1, indexWidth - 1);
 return(divider);
}

3.4 QepDiv CLB Configuration
The PTO API implementation source files are located under [C2000Ware_MotorControl_SDK]
\libraries\position_sensing\pto\source.

The following resources are used inside the CLB tile to achieve the desired function detailed in Section 3.1.

i0
TILE1_OUTLUT_4

out = i0 & i1
i1 out

i2

TILE1_BOUNDARY

out0

out1

out2

out3

out4

out5

out6

out7

TILE2_BOUNDARY

in0 :

in1 :

in2 =

in3 :

in4 =

in5 :

in6 :

in7 :

e0 TILE1_FSM_1

s0 = ((~s0) & e0 & e1) | (s0 & (~e1) | e0)
s1 = s1

out = s0 & s1

e1 s0

xe0 s1

xe1 out

TILE1_BOUNDARY

in0 :

in1 :

in2 =

in3 :

in4 :

in5 =

in6 :

in7 9

e0 TILE1_FSM_2

s0 = ((~s0) & e0) | (s0 & (~e1))
s1 = s1

out = ~s0

e1 s0

xe0 s1

xe1 out

i0

TILE1_LUT_1

out = (((~i0) & (~i1)) & i3) | (((~i0) & i1) & i2) | ((i0 & (~i1)) & i2) | ((i0 & i1) & i3)

i1 out

i2

i3

e0 TILE1_FSM_0

s0 = e0
s1 = e1

out = s0 | s1

e1 s0

xe0 s1

xe1 out

i0
TILE1_OUTLUT_5

out = i0
i1 out

i2

reset

TILE1_COUNTER_2

evAction = None

zero

event match1

mode0 match2

mode1

reset

TILE1_COUNTER_0

evAction = None

zero

event match1

mode0 match2

mode1
1

reset

TILE1_COUNTER_1

evAction = None

zero

event match1

mode0 match2

mode1

reset

TILE2_COUNTER_0

evAction = None

zero

event match1

mode0 match2

mode1

squareWave

Period = 500, Duty = 250
out

squareWave

Period = 500, Duty = 250
out

squareWave

Period = 500, Duty = 250
out

squareWave

Period = 500, Duty = 250
out

squareWave

Period = 3000, Duty = 1500
out

i0
TILE2_OUTLUT_0

out = i0
i1 out

i2

TILE2_BOUNDARY

out0

out1

out2

out3

out4

out5

out6

out7

e0 TILE2_FSM_1

s0 = ((~s0) & (e0)) | (s0 & (~e0))
s1 = s0

out = s0 | s1

e1 s0

xe0 s1

xe1 out

i0
TILE2_OUTLUT_2

out = i0
i1 out

i2

e0 TILE2_FSM_2

s0 = ((~s0) & (e0)) | (s0 & (~e0))
s1 = s1
out = s0

e1 s0

xe0 s1

xe1 out

i0
TILE2_OUTLUT_4

out = i0
i1 out

i2i0

TILE2_LUT_0

out = i0 & (i1 | i2)

i1 out

i2

i3

i0

TILE2_LUT_1

out = (i2 & i1) | ((~i2) & i0)

i1 out

i2

i3

i0

TILE2_LUT_2

out = (i2 & i0) | ((~i2) & i1)

i1 out

i2

i3

e0 TILE2_FSM_0

s0 = e0
s1 = s1

out = (~s0) & e0

e1 s0

xe0 s1

xe1 out

squareWave

Period = 500, Duty = 250
out

squareWave

Period = 500, Duty = 250
out

squareWave

Period = 500, Duty = 250
out

Figure 3-4. QepDiv CLB Tile Diagram

www.ti.com PTO – QepDiv

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 7

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Note
You can import and build the QepDiv API reference project for each respective device, located
in [C2000Ware_MotorControl_SDK]\libraries\position_sensing\pto\ccs. By rebuilding
the compiled object, it will regenerate the CLB tile diagram (clb.svg or clb.html). and object (.lib) The
CLB tile diagram will be located in the RELEASE/syscfg directory.

Implementation is described in detail, below and visualized in Figure 3-4.

Table 3-1. QepDiv CLB Tile 1
Resource Function Notes

Inputs
In0 On/Off Control via GPREG Enable CLB

In1 On/Off Control via GPREG QEPA via EPWM4A

In2 Edge Detect QEPA via EPWM4A

In3 Not used Not used

In4 On/Off Control via GPREG QEPB via EPWM5A

In5 Edge Detect QEPB via EPWM5A

In6 Not used Not used

In7 Edge Detect QEPI via EPWM4B

Outputs
Out0 Not used Not used

Out1 Not used Not used

Out2 Not used Not used

Out3 Not used Not used

Out4 Transmit Enable PTO Direction Via OUTPUT XBar; Input for CLB 2

Out5 Transmit Enable QEPI output via OUTPUTXBAR3

Out6 Not used Not used

Out7 Not used Not used

Logic Resources
LUT0 Not used Not used

LUT1 Determines QCLK direction in combo
with FSM0 and FSM1

Provides input to FSM1 for external input 0

LUT2 Not used Not used

FSM0 Alternate inputs between QEPA and
QEPB

This state machine checks the QEP signals and alternates between the
different signals

FSM1 Set QCLK direction Uses output of LUT1 and FSM0 to set up the QCLK, which in turn sets the
direction. The output will be routed to CLB2 as the input direction

FSM2 Index pulse generation Takes the QEPI input and uses CNT2 Match2 value to set the QEPI output
period and duty cycle.

CNT0 Set index pulse width value Load indexWidth-1 value set via CLB_writeInterface function

CNT1 Set divider value Load divider*4 value set via CLB_writeInterface function

CNT2 Set divide value Load divider*2 value set via CLB_writeInterface function

High Level Controller
HLC Not used Not used

PTO – QepDiv www.ti.com

8 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Table 3-2. QepDiv CLB Tile 2
Resource Function Notes

Inputs
In0 On/Off Control via GPREG Enable CLB

In1 On/Off Control via GPREG QEPA via EPWM4A

In2 Edge Detect QEPA via EPWM4A

In3 Not used Not used

In4 Edge Detect QEPB via EPWM5A

In5 Not used Not used

In6 Not used Not used

In7 On/Off Control via GPREG PTO direction routed from CLB1 out4

Outputs
Out0 Transmit Enable QEPA Output via EPWM2A

Out1 Not used Not used

Out2 Transmit Enable QEPB Output via EPWM2B

Out3 Not used Not used

Out4 Transmit Enable Bypass Logic

Out5 Not used Not used

Out6 Not used Not used

Out7 Not used Not used

Logic Resources
LUT0 QEPA/QEPB signal input When the tile is on, send the selected QEP signal to CNT0 as mode0 input

LUT1 Generate high and low values for Alternate between high and low

LUT2 Not used Not used

FSM0 QEP Pulse width generation This state machine together with CNT0 will generate a number of hi and low
pulse widths for LUT1 and LUT2.

FSM1 QEPA signal generation Generates QEPA output using CNT0 and LUT1.

FSM2 QEPB signal generation Generates QEPB output using CNT0 and LUT2.

CNT0 Counter for output QEP signal generation Counter Match1 value is the external input for FSM0. Match2 value is the reset
value for the counter. The match2 value is passed to LUT1 and LUT2 .

CNT1 Not used Not used

CNT2 Not used Not used

High Level Controller
HLC Not used Not used

www.ti.com PTO – QepDiv

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 9

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

4 PTO – Abs2Qep
The PTO-Abs2Qep function translates a change in absolute position into a quadrature encoder pulse train
output. Figure 4-1 shows the implementation diagram of the PTO-Abs2Qep interface.

Absolute Position

Encoder

C28x CPU

CLB

eQEP

PTO-QEPA

PTO-QEPB

PTO-QEPI

Loop-back to eQEP

for testing only

Figure 4-1. Abs2Qep Implementation Diagram

4.1 Abs2Qep Chip resources
The Abs2Qep implementation uses the following C2000 resources:

• C28x CPU
– Initializes the Abs2Qep interface, configures the CLB, input/output XBARS and GPIOs.
– Translates the change in absolute position into the equivalent QEP-A/QEP-B and QEP-I pulses.
– Configures the CLB to generate the pulse train output.

• Configurable Logic Block (CLB) type 1 or later
– Generates the PTO-QEP-A/B and QEP-I pulses as defined by the C28x.
– Indicates the pulse train is complete by setting a CLB interrupt tag.

• Device interconnect (XBARs)
– Input and output XBARs are used to route signals to and from the CLB as applicable.

4.2 Abs2Qep Theory of Operation
Encoder Resolution:

Qmax = Q17, Q20 etc..

Absolute

Posi�on Encoder

0
Forward

Incrementing

Position
Reverse

Decrementing

Position Communication Packet

including Absolute Position

Figure 4-2. Absolute Position Encoder

An absolute encoder output represents the exact position of a rotating shaft. If Qmax is the resolution of a single
rotation, then the position will range from 0 to Qmax. Resolutions in the range Q17 = 217 or Q20 = 2 20 are
common. The absolute position increases when the direction is forward (clockwise) and decreases when the
direction is reverse (counter-clockwise).

PTO – Abs2Qep www.ti.com

10 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Incremental

Encoder Disk

Index

0

Forward

QEP-A Leads

QEP-B
Reverse

QEP-A Lags

QEP-B

Lines per

Revolution

QCLK

(Internal

Signal)Each Line

Generates 2 Edges:

One on QEP-A and

One on QEP-B

QEP-A

QEP-B

QEP-I

Forward Reverse

Figure 4-3. Incremental Position Encoder

An incremental encoder output is a quadrature encoder pulse (QEP). This pulse train consists of the following
outputs: QEP-A, QEP-B and QEP-I with the following characteristics:

• The phase between QEP-A and QEP-B indicates the direction of movement. If QEP-A leads by 90°, then
the direction is forward (clockwise). If QEP-A lags by 90° degrees, then the direction is reverse (counter-
clockwise).

• The QEP-A/B frequency is proportional to the disk's velocity.
• The index signal, QEP-I, indicates crossing over absolute zero.

The resolution of the incremental encoder is specified by the number of lines around the disk. As each line
passes a sensor, an edge (falling or rising) is generated on QEP-A as shown in Figure 4-3. A second channel
can be added by second ring of lines, inside and offset from the outer ring. In such a case, this inner ring of lines
generates QEP-B. For example, a 1024 line encoder would have 1024 QEP-A lines and 1024 QEP-B lines for a
total of 2048 QEP state changes in a full rotation.

In Abs2Qep, a configurable parameter in the header file defines how many QEP state transitions are generated
per line. The QEP state transition is controlled by an internal CLB signal called QCLK as shown in Figure 4-3.
The default setting is each line corresponds to two QCLK pulses.

The example in Table 4-1 further clarifies this point.

Table 4-1. Abs2Qep Relationship Between Lines and QCLK (Forward Direction)
Line QCLK QEP-A QEP-B
Line 1 Outer Ring QCLK 1 Rising Edge

Line 1 Inner Ring QCLK 2 Rising Edge

Line 2 Outer Ring QCLK 3 Falling Edge

Line 2 Inner Ring QCLK 4 Falling Edge

4.2.1 Abs2Qep Translation Equations

All of the Abs2Qep translation calculations are handled by the C28x. Based on the results, the CLB tile is then
configured to generate the specific QEP signals. The CLB configuration is detailed in Section 4.3.

Note
The parameters used in the translation equations are configurable in the Abs2Qep library header file.
This includes: absolute encoder resolution, incremental encoder lines per revolution, drive maximum
revolutions per minute.

www.ti.com PTO – Abs2Qep

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 11

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

The Abs2Qep translation uses the ratio ABS_TO_INCR to map a change in absolute position to a corresponding
number of QEP edges. Any fraction of an edge is tracked. If the fractional edge accumulation reaches 1, then an
additional edge is generated.

ABS_TO_INCR = QCLK_PER_LINE x LINES_PER_REVABS_MAX_POSITION = QCLK_PER_REVOLUTIONABS_MAX_POSITION (1)

where
• LINES_PER_REV is the incremental encoder resolution.
• QCLK_PER_LINE is typically 2. One for QEP-A and one for QEP-B.
• ABS_MAX_POSITION = 2ABS_ENCODER_RESOLUTION. For example 220.

The number of QCLKs, or QEP edges, that represent a change in position is:QCLK = ABS_TO_INCR x DELTA_ABS_POSITION (2)

where:

• DELTA_ABS_POSITION = ABS_POSITION(n) - ABS_POSITION(n-1) the change in absolute position
between the current sample (n) and the previous sample (n-1).

• QCLK is the total number of QEP-A + QEP-B edges required to represent the change in position.

Note
This simple translation in Equation 2 assumes absolute zero was not crossed. For zero-cross
detection, see Section 4.2.3

For a given position change, the frequency of QCLK is such that the edges are equally divided across the
position sampling period. This frequency is expressed in terms of CLB clock cycles.

4.2.2 Abs2Qep Translation Example

Given the following parameters:

• CLB clock = 10 nanoseconds
• Position sampling period = 100 microseconds or 10,000 CLB clocks
• Absolute encoder resolution = ABS_MAX_POSITION = Q20 = 1048576
• Incremental encoder resolution = 1024 lines. Therefore QCLK_PER_REV = 2 x 1024 = 2048

The ABS_TO_INCR ratio is:

ABS_TO_INCR = 2 x LinesQmax = 20481048576 = .00195313 (3)

PTO – Abs2Qep www.ti.com

12 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Table 4-2 shows example translations from a change in absolute position to QCLKs generated.

Notice at sample 2 and sample 3, the fractional edge accumulation is greater than 1. When this occurs, an
additional QCLK is generated and one is subtracted from the fractional edge accumulation.

Note
The absolute position samples shown are for illustration only. Actual position change values may be
much larger than shown or may be in the reverse direction.

Table 4-2. Abs2Qep Example Calculations

Sample Position Delta Position (1) QCLKs Fractional Edges
QCLKs

Generated
CLB Clocks per

QCLK (2)

0 0 0 0 0 0 0

1 24000 24000 46.875 .875 46 217

2 53000 29000 56.6406 .875 + .6406 =
1.515 → .515 (3)

56+1 (3) 175

3 62000 9000 17.5781 .515 +.5781 =
1.09375 → .09375
(3)

17+1 (3) 555

(1) Position(n) - Position(n-1). In this example all changes are in the forward direction and zero is not crossed. If this value were negative,
the direction would be reverse.

(2) Number of CLB clocks betweeen each QCLK pulse. This is based on the sampling frequency expressed in CLB clocks. For this
example: 10,000 CLB clocks / QCLKs generated

(3) An additional QCLK is generated and the fractional portion is adjusted by 1.

4.2.3 Abs2Qep Zero Cross Detection

Abs2Qep supports generation of QEP-I to indicate crossing absolute zero. Detection of the zero cross relies
on knowing the maximum revolutions-per-minute (RPM) of the absolute encoder. The RPM combined with the
position sampling frequency determines the maximum possible delta change. If the delta change is larger than
the absolute value of the maximum, then absolute zero has been crossed.

Consider the following example:
• Motor MAX_RPM = 30,000 revolutions per minute = 500 revolutions per second
• Position Sampling Frequency = 100 microseconds
• Absolute encoder resolution = ABS_MAX_POSITION = Q20 = 220= 1048576

The maximum position change is:

500revolutionssecond x 100microsecondssample = .05revolutionssample (4)

Therefore any position change where the magnitude is greater than .05 x Qmax is assumed to be a zero
crossing.

www.ti.com PTO – Abs2Qep

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 13

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Figure 4-4 illustrates crossing zero in the forward direction. Position(n) is a relatively small number and
Position(n-1) is a very large number. Position(n) - Position(n-1) is, therefore, a negative number with a
magnitude greater than ABS_MAX_POSITION.

In this case, Abs2Qep uses the sum of two measurements to determine the equivalent QEP pulses:

• (A) delta between Position(n-1) and Qmax
• (B) delta between 0 and Position(n)

A

Qmax - Posi�on(n-1)

B

Posi�on(n)

A + B

Corresponding Incremental Encoder QEP

0

Position(n)Position(n-1)

A + B

A

Qmax – Posi�on(n-1)

B

Posi�on(n)

Qmax

Absolute Encoder Position Change

PTO-QEP-I

PTO-QEP-A

PTO-QEP-B

Figure 4-4. Abs2Qep Zero-Cross in the Forward Direction

Figure 4-5 illustrates zero crossed in the reverse direction. Position(n) is a large value and Position(n-1)
is relatively small. Therefore Position(n) - Position(n-1) will be positive and have a magnitude >
ABS_MAX_POSITION.

In this case, Abs2Qep uses the sum of measurements:

• (A) delta between Position(n-1) and zero
• (B) delta between Qmax and Position(n)

Notice, in the resulting PTO, QEP-B leads by 90° indicating a reverse direction.

PTO-QEP-I

A

Posi�on(n-1)

B

Qmax - Posi�on(n)

A + B

Corresponding Incremental Encoder QEP

0

Position(n-1)Position(n)

A + B

B

Qmax – Posi�on(n)

A

Posi�on(n-1)

Qmax

Absolute Encoder Position Change

PTO-QEP-A

PTO-QEP-B

Figure 4-5. Abs2Qep Zero-Cross in the Reverse Direction

4.3 Abs2Qep CLB Configuration
After translating the absolute position into QCLK pulses as described in Section 4.2, the C28x loads the PTO
parameters into the HLC's FIFO. When it is time to start the PTO, a command via the GPREG bits will signal
the HLC to pull the parameters from the FIFO, to load them into the counters, and then to start the PTO. Once
started, the CLB generates the PTO-QEP waveform independently.

Once the PTO is complete, the HLC will set a CLB interrupt tag. The C28x can use this to flag to check if the
PTO is complete before loading a new configuration.

PTO – Abs2Qep www.ti.com

14 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Figure 4-6 shows PTO-QEP waveforms and their tie to CLB components. In this example, the position sampling
period is controlled by an ePWM ISR on the C28x.

PTO-QEP-A (FSM_0)

Time Between Edges in CLB CLKs

COUNTER 0 match2 **

...

...

PTO_DONE total edges sent

PTO HALT is latched (FSM_1)

HLC sets INTR tag 2

ISR 2

Start PTO: Previous translation (P0 to P(1))

Sample: P(2)

Translate: P(1) to P(2)

...

...

Position Sampling Period 2

PTO for: Movement from Position (0) to Position (1) Position (1) to Position (2)

ISR 1

Assume: P(0) == 0

Sample: P(1)

Translate: Position change P(0) to P(1) ***

ISR 3

Start PTO: Previous translation

Sample: P(3)

Translate: P(2) to P(3)

PTO-QCLK Edge

(COUNTER 0 match1) *

PTO_DONE

(COUNTER 1 match2)

QEP-I Control

(COUNTER 2)
match1

PTO-QEP-B (FSM_0)

PTO-QEP-I (FSM_2)

...

...

...

...

...

...

...

match2

RUN / HALT

(FSM1)
...

HLC load event clears the halt latch

Position Sampling Period 1

C28x Code

ePWM ISR

Running at the

Position

Sampling Rate

etc...

A. Counter 0 match 1 is initialized to a fixed value and is not changed. This match generates the QCLK pulse. This places QCLK toggle at
the beginning of the count, reducing the time between the previous PTO halt and the next PTO start.

B. The time between QCLK pulses is controlled by the COUNTER 0 match 2. This match resets COUNTER 0.
C. P(n) stands for Absolute Position at sample n.

Figure 4-6. Abs2Qep Example System Waveform

www.ti.com PTO – Abs2Qep

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 15

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

The CLB Tile block diagram is shown in Figure 4-7 and Table 4-3 describes the functionality of each CLB
component in detail.

TILE1_COUNTER_0

Pulse Width Control

Count CLB Clocks

Between QEP Edges

Count Up

reset

event

mode0

mode1

zero

match1

match2

TILE1_FSM_0

QEP-A/QEP-B Signal

Generation

e0

e1

xe0

xe1

s0

s1

out

QCLK

PTO-QEP-A

in1 (GPREG)

DIRECTION

0: Reverse

1: Forward

TILE1_COUNTER_1

Detect end of PTO

Count Sent Edges

Add 1 on Event

reset

event

mode0

mode1

zero

match1

match2

QCLK

TILE1_COUNTER_2

QEP-I Control

Count Sent Edges

Add 1 on Event

reset

event

mode0

mode1

zero

match1

match2

QCLK

1

PTO_DONE

0: HALT

1: RUN

out4

out5

PTO_QEP-I_HIGH

PTO_QEP-I_LOW TILE1_FSM_2

QEP-I Generation

e0

e1

xe0

xe1

s0

s1

out

out2

TILE1_FSM_1

Latch HALT State

When PTO is

Complete

e0

e1

xe0

xe1

s0

s1

out

HALT / CLEAR LATCH *

PTO_DONE

in0 (GPREG)

PTO_DONE

LOAD

TILE1_HLC

e0

e1

e2

e3

Set INTR

Tag == 2

PTO_QEP-I

PTO-QEP-B

HALT / CLEAR LATCH *

0: HALT

1: RUN

WIDTH_CONTROL

PTO_DONE

PTO_DONE

out0 For Testing Only

A. HALT/CLEAR LATCH is controlled directly by HLC during a LOAD event.
B. PTO_DONE is controlled by the COUNTER 1 incrementing and directly by the HLC during a LOAD event.

Figure 4-7. Abs2Qep CLB Tile Block Diagram

Table 4-3. Abs2Qep CLB Tile 1
Resource Function Notes

Inputs
In0 LOAD control Rising edge:

Loads new PTO configuration (HLC).
Connected to GPREG bit 0.
Before loading a new configuration, check that the last PTO is complete
(INTR tag == 2)

In1 DIRECTION control
1: clockwise (forward)
0: counter-clockwise (backward)

Connected to GPREG bit 1.
Change only when the last PTO is complete (Intr Tag 2)

In2 Not used Not used

In3 Not used Not used

In4 Not used Not used

In5 Not used Not used

In6 Not used Not used

In7 Not used Not used

Outputs
Out0 Not used Not used

Out1 Not used Not used

PTO – Abs2Qep www.ti.com

16 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Table 4-3. Abs2Qep CLB Tile 1 (continued)
Resource Function Notes

Out2 PTO_QEP-I
The index transiton from 0 to 1 indicates the
absolute zero position has been crossed.

The index output signal.

Out3 Not used Not used

Out4 PTO_QEP-A PTO quadrature output A

Out5 PTO_QEP-B PTO quadrature output B

Out6 Not used Not used

Out7 Not used Not used

Logic Resources
LUT0 Not used Not used

LUT1 Not used Not used

LUT2 Not used Not used

FSM0 Generate PTO_QEP-A and PTO-QEP-B Generate 1 edge on each QCLK input. The lead/lag of QEP-A/B is
based on the current state and the DIRECTION input signal.

FSM1 Generate HALT/RUN signal Halt the PTO output if either of these conditions is true:
• The PTO completes. This halt is latched and the PTO will remain

halted until the latch is cleared via the HALT/RUN control input
• The HALT/RUN control input is high.

FSM2 Generate PTO_QEP-I signal Force PTO_QEP-I high and low based on the QEP-I control. Enables
the user to configure QEP-I to stay high for more than one QCLK if
desired.

CNT0 Generate QCLK (PTO width control) signal Counts up by 1 each CLB clock.
• match1: fixed value. Generates the QCLK signal near the start of

the count. This placement reduces the time between the last PTO
halt and the next PTO start.

• match2: number of CLB clocks between QEP edges. The counter
is reset every match2 event.

CNT1 PTO edge-count control Increments by 1 every QCLK event to count the total QEP-A + QEP-B
edges sent during a PTO.
• match1: manipulated by the HLC in order to clear a halt latch

condition and start the PTO.
• match2: number of edges to be sent. Once reached, the

PTO_DONE signal is asserted. This latches a halt state and resets
the edge count and resets QEP-I control.

CNT2 PTO_QEP-I control Increments by 1 every QCLK event to count the total QEP-A + QEP-B
edges sent during a PTO.
• match1: Edge where PTO_QEP-I will go high
• match2: Edge where PTO_QEP-I will go low

Note
If PTO-QEP-I should remain low for the whole PTO, then
configure match1 and match2 to be a large number to
avoid a match. (i.e. 0xFFFFFFFF).

High Level Controller
HLC Event 1: LOAD new PTO configuration. Responds to a rising edge on the LOAD input from the C28x. This will

configure and start a new PTO. For all of the steps, refer to the program
description in Section 4.3.3

Event 2: Signal PTO is complete. Responds to the completion of PTO signal by setting Interrupt Tag 2. At
this point, it is safe to load a new PTO counter configuration.

www.ti.com PTO – Abs2Qep

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 17

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

4.3.1 Abs2Qep QEP-A/B Pulse Train Generation

The QEP-A and QEP-B signal are generated by a finite state machine (FSM). The state diagrams are shown in
Figure 4-8 and have the following characteristics:
• A state transition occurs when QCLK = 1.
• The state remains the same when QCLK = 0
• Only one QEP signal changes at a time
• Which signal transitions first depends on the direction input from the C28x.

QCLK = 10,0

1,0

1,1

0,1

QCLK = 1
QCLK = 1

QCLK = 1

QCLK = 0

QCLK = 0

QCLK = 0

QCLK = 0

Direction: Forward

QCLK = 10,0

1,0

1,1

0,1

QCLK = 1
QCLK = 1

QCLK = 1

QCLK = 0

QCLK = 0

QCLK = 0

QCLK = 0

State == QEP-A, QEP-B

Direction: Reverse

Figure 4-8. Abs2Qep PTO State Diagrams

Table 4-4 and Table 4-5 are the corresponding Karnaugh Maps. The resulting equations are determined by
inspecting each "1" within the map or by using a Karnaugh Map solver. x is used to indicate states which are
not valid. Note that there is no need to further simplify the equations; they can be entered into the CLB tool
as shown. Use the OR operator to build up the full equation from the parts as shown in the simulation results
(Figure 4-9).

Table 4-4. QEP-A (s0) Signal Generation Karnaugh Maps
DIRECTION (e0) = 1 (Forward)

Next State
QCLK, QEP-B (e1, s1)

DIRECTION (e0) = 0 (Reverse)
Next State

QCLK, QEP-B (e1, s1)
00 01 11 10 00 01 11 10

C
ur

re
nt

 S
ta

te
s0

, s
1

(Q
EP

-A
, B

) 00 0 0 x (2) 1 (2)

C
ur

re
nt

 S
ta

te
s0

, s
1

(Q
EP

-A
, B

) 00 0 0 0 x

01 0 0 x 0 01 0 0 1 (3) x (3)

11 1 (1) 1 (1) 0 x 11 1 (1) 1 (1) x (3) 1 (3)

10 1 (1) 1 (1) 1(2) x (2) 10 1 (1) 1 (1) x 0

(1) s0_1 = (e0 & s0 & !e1) | (!e0 & s0 & !e1) = s0 & !e1
(2) s0_2 = e0 & !s1 & e1
(3) s0_3 = !e0 & s1 & e1

Table 4-5. QEP-B (s1) Signal Generation Karnaugh Maps
DIRECTION (e0) = 1 (Forward)

Next State
QCLK, QEP-A (e1, s0)

DIRECTION (e0) = 0 (Reverse)
Next State

QCLK, QEP-A (e1, s0)
00 01 11 10 00 01 11 10

C
ur

re
nt

 S
ta

te
s0

, s
1

(Q
EP

-A
, B

) 00 0 0 0 x

C
ur

re
nt

 S
ta

te
s0

, s
1

(Q
EP

-A
, B

) 00 0 0 x (3) 1 (3)

01 1 (1) 1 (1) x 0 01 1 (1) 1 (1) 1 (3) x (3)

11 1 (1) 1 (1) x (2) 1 (2) 11 1 (1) 1 (1) 0 x

10 0 0 1 (2) x (2) 10 0 0 x 0

(1) s1_1 = (e0 & s1 & !e1) | (!e0 & s1 & e1) = s1 & !e1
(2) s1_2 = e0 & s0 & e1
(3) s1_3 = !e0 & !s0 & e1

PTO – Abs2Qep www.ti.com

18 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Figure 4-9 shows the SystemC simulation results.

Figure 4-9. Simulation QEP-A and QEP-B Generation

4.3.2 Abs2Qep Halt Latch

The HALT_LATCH and RUN/HALT output is implemented using a finite state machine. The output signal is
connected to the mode0 input of the counter which generates QCLK. The RUN/HALT output depends only on
the current state of the latch and the HALT signal from the CPU. If the HALT signal is low, and the latch is not
set, then QCLK will be generated (COUNTER mode0 = out = 1). In all other cases QCLK will not be generated
(COUNTER mode0 = out = 0). This is expressed as out = !(s0 | e1).

Table 4-6. RUN/HALT Output
s0

(LATCH)
e1

(HALT/CLEAR LATCH) out = !(s0|e1) QCLK Generation
0 0 1 Run

0 1 0 Halt

1 0 0 Halt

1 1 0 Halt

HALT_LATCH is set on the rising edge of PTO_DONE. It will remain set until cleared by a a rising edge on the
HALT/CLEAR_LATCH signal from the CPU.

Table 4-7. HALT_LATCH Karnaugh Map
PTO_DONE, CLEAR_LATCH (e0, e1)

00 01 11 10

s0
(L

AT
C

H
) 0 0 0 0 1 (2)

1 1 (1) 0 0 1 (1),(2)

(1) s0_1 = s0 & !e1
(2) s0_2 = e0 & !e1

www.ti.com PTO – Abs2Qep

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 19

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

The Halt Latch SystemC simulation is shown in Figure 4-10.

Figure 4-10. Simulation of Halt Latch

4.3.3 Abs2Qep High Level Controller (HLC)

The high level controller is programmed to:
• Start the PTO signal generation
• Modify the HALT / CLEAR_LATCH and PTO_DONE signals
• Load the counter match values required to generate a PTO
• Tag an end of PTO state

Table 4-8. Abs2Qep HLC Register Usage
R0 and R1 Used to PULL data from the FIFO.

R2 Initialized to zero during CLB configuration. Used to load zero to a
match reference in order to manipulate a given signal to a high state.

R3 Initalized to 0xFFFFFFFF during CLB configuration. Used to load
a large value to a match reference in order to manipulate a given
signal to a low state.

Table 4-9. Abs2Qep HLC Programs
LOAD: Event 0, Event 1
Instruction # Opcode(s) Description
Program0: 0 MOV_T1 R2, C1 Assert HALT/CLEAR_LATCH. COUNTER 1

has been reset by PTO_DONE (count == 0).
Loading a match1 reference of zero will force
a rising edge on HALT/CLEAR_LATCH.

Program0: 1 MOV_T2 R3, C1 Force the PTO_DONE signal low.

Program0: 2, 3 PULL R0
MOV_T2 R0, C1

Load the number of QCLKs to be generated.
Note: for a case of zero QCLKs: since
COUNTER_1 count == 0, a QCLK value of
zero will force PTO_DONE back to a high
state.

Program0: 4, 5 PULL R1
MOV_T2 R0, C0

Load the number of CLB clocks between
two QCLKs. When the counter reaches this
value, it will be reset to zero.

Program0: 6, 7
Program1: 0, 1

PULL R0
MOV_T1 R0, C2
PULL R0
MOV_T2 R0, C2

Configure which QCLK edge will force PTO-
QEP-I high and low. A large value will
be passed through the FIFO if PTO-QEP-I
should remain low.

Program1: 2 MOV R1, C0 Set COUNTER_0 to zero. This prevents the
counter from incrementing by 1 when a zero
pulse configuration is loaded.

PTO – Abs2Qep www.ti.com

20 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Table 4-9. Abs2Qep HLC Programs (continued)
LOAD: Event 0, Event 1
Instruction # Opcode(s) Description
Program1: 3 INTR 1 Tag indicates Event 0 plus Event 1 complete.

This is placed next to the last instruction
to keep it from being back-to-back with the
INTR instruction in Event 2.

Program1: 4 MOV_T1 R3, C1 Force the HALT / CLEAR_LATCH signal low.
This will start PTO signal generation if the
PTO_DONE signal is low. If PTO_DONE is
high, then the HALT_LATCH will be set.

PTO_DONE: Event 2
Instruction # Opcode(s) Description
Program2: 0 INTR 2 Tag to indicate Event 2 is complete or that the

PTO has finished.

4.4 Abs2Qep Input and Output Signals
Chip-level inputs to the Abs2Qep interface: For the examples, a simulated absolute position is generated by
a test function and no external input is required. If an absolute encoder is used, then connect it as described in
the absolute encoder interface documentation.

Chip-level outputs from the Abs2Qep interface: The output signals are PTO-QEP-A, PTO-QEP-B and PTO-
QEP-I signals. In the examples provided, these outputs are mapped to GPIOs as described in Section 6

5 PTO – QepOnClb QEP Decoder
The QepOnClb configures the CLB block to implement a simple QEP decoder module. Figure 5-1 shows the
implementation diagram of the QepOnClb.

C28x CPU

CLB

eQEP

QEP-A

Loop-back to eQEP

for testing only

QEP-B

QEP-I

Incremental

Encoder Disk

Index

0

Forward

QEP-A Leads

QEP-B
Reverse

QEP-A Lags

QEP-B

The example provided uses an ePWM to

generate a QEP-A/QEP-B test pattern.

The position counter from the CLB

implementation is compared to that of an

on-chip eQEP peripheral.

Figure 5-1. QEP on CLB Implementation Diagram

www.ti.com PTO – Abs2Qep

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 21

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

5.1 QepOnClb and eQEP Comparison
This decoder implementation is similar to the C2000 eQEP peripheral operating in quadrature-count mode. Table
5-1 provides a high-level comparison of the features supported. In some cases, potential modifications have
been provided. Refer to the device-specific Technical Reference Manual for a detailed description of the eQEP
peripheral.

Table 5-1. QepOnClb and eQEP (Type 0) Comparison Overview
eQEP Feature QepOnClb Support

Quadrature-clock mode (QEP-A/B signals) Detect direction, count, and invalid state
transitions.

Implemented.
The current state of the QEP-A/B signals
is compared to the previous state. The
phase relationship determines the direction
of movement. If both signals change at the
same time, then an invalid state transition is
detected.

An invalid state transition sets a flag or
optionally generates an interrupt.

Implemented.
The CLB will issue an interrupt on an invalid
state transition. If instead a flag is desired,
the CLB interrupt tag can be used and the
interrupt left disabled.

Configure 4x count: both the rising and falling
edge of both QEPA/B

Implemented as:
Both the rising and falling edges of QEPA/B
generate a count.
This behavior can be changed by modifiying
the QCLK state machine.

Reverse count (reverse QEP-A/B inputs) Not implemented.
To implement, modify the CLB configuration
to swap the QCLK state machine inputs.

Direction-count mode (XCLK and DIR
signals)

QEP-A becomes XCLK and QEP-B becomes
DIR.

Not implemented.
To implement, modify the CLB configuration
and (1) disconnect DIR (QEP-B) from the
direction decode LUT and (2) connect DIR
directly to the direction control, mode 1, of the
counter.

QEP-I (index or zero signal) Latch the position counter which can then be
read using a driverlib function. This can be
configured to be rising-edge, falling-edge or
event marker/software index marker based.

Implemented as:
Latch the position counter on the QEP-I
rising-edge. The position counter value can
be read from the HLC FIFO using a provided
library function.
On some devices the HLC can be configured
to respond to a falling-edge instead of rising-
edge.

Initialize the position counter. Not implemented.
To implement, modify the HLC program to
initalize the counter with a value pulled from
the FIFO.

Reset the position counter. Not implemented.
To implement, route the QEP-I signal to the
QEP reset generation LUT and it into the
LUT's equation.

QEP-S (strobe signal) Latch the position counter o reset the position
counter.

Not implemented.
Can be implemented by following the QEP-I
example.

Position counter operating modes Reset on index, maximum position, first index
or unit time-out event.

Implemented as:
Reset on a maximum position
value. This value is configured
through a provided library function
pto_qeponclb_configMaxCounterPos(). Refer
to Section 7.6.

Position compare unit Not implemented.

Edge capture unit Not implemented.

Watchdog Not implemented.

PTO – QepOnClb QEP Decoder www.ti.com

22 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Table 5-1. QepOnClb and eQEP (Type 0) Comparison Overview (continued)
eQEP Feature QepOnClb Support

Unit timer base (QUTMR) Not implemented.

5.2 QepOnClb Chip resources
The QepOnClb implementation uses the following C2000 resources:

• C28x CPU
– Initializes the QepOnClb interface, configures the CLB, input/output XBARs and GPIOs.
– Configures the CLB to implement a basic QEP decoder module in quadrature-count mode.

• Configurable Logic Block (CLB) type 1 or later
– 1 CLB tile. Refer to Section 5.4 for specific CLB blocks used.
– 32-bit QEP position counter with programmable max position.
– QEP direction decode from QEP-A/B
– QEP state transition error detection
– Latch of the position counter on QEP-I

• Device interconnect (XBARs)
– Input and output XBARs are used to route signals to the CLB as applicable.

5.3 QepOnClb Theory of Operation
A QEP decoder intreprets a pulse train output from an incremental encoder. A basic QEP pulse train consists of
the signals QEP-A, QEP-B, and QEP-I as shown in Figure 5-3. These signals have the following characteristics:
• The QEP-A/B phase indicates the direction of movement. If the rising edge of QEP-A leads by 90 degrees,

then the movement is forward (clockwise). If the rising edge of QEP-A lags, then the direction is reverse
(counter-clockwise). This is illustrated in Figure 5-2.

• The QEP-A/B frequency is proportaional to the disk's velocity.
• The index signal, QEP-I, indicates crossing absolute zero.

0,0

1,0

1,1

0,1

Direction: Forward

State == QEP-A, QEP-B

COUNTER

Increments

COUNTER

Increments

COUNTER

Increments

COUNTER

Increments 0,0

1,0

1,1

0,1

COUNTER

Decrements

COUNTER

Decrements

COUNTER

Decrements

COUNTER

Decrements

Direction: Reverse

0,0

1,0

1,1

0,1

Error

0,0

1,0

1,1

0,1

No Movement

Figure 5-2. QEP-A, QEP-B State Diagrams

www.ti.com PTO – QepOnClb QEP Decoder

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 23

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Design approach:
1. Select CLB components that map to the requirements of the decoder. Table 5-2 provides an example of this

mapping.
2. Draw a waveform to help visualize the desired interaction between CLB blocks. Figure 5-3 includes an

example QEP waveform, CLB generated signals, and the corresponding CLB blocks used to implement the
feature.

3. Define the equations for LUTs and FSM modules. A detailed description of each is provided in Section 5.4.

Table 5-2. Example Mapping Decoder Features to CLB Blocks
Decoder Function CLB Block Mapping
32-bit position counter Maps directly to the CLB 32-bit counter module. By connecting

match1 and match2 to reset and an event, a count between 0 and a
maximum position (MAXPOS) can be achieved.

Memory of the past state Detection of a valid state transition, direction and error all depend
on the past state of QEP-A/B. This maps to an FSM which has the
ability to store the past state.

Comparison between past and present state Once the past state is available from an FSM, comparison of the
current and previous state can be accomplished by a LUT. If a LUT
is not available, then an FSM can also provide this functionality.
Making a comparison is required for both direction detection and
error detection.

Interrupt and counter capture Capturing the counter value and interrupting the CPU maps to the
functionality of the HLC.

CPU input to the decoder such as reset and enable Control bits from the CPU route through the GPREG to a LUT and
combined (either OR or AND) with other system signals.

QEP-A (in3)

Forward

QEP-B (in5)

DIRECTION (LUT_0)

No movement

QCLK (FSM_0)

ERROR (FSM_1)

00
10

11

01

00

10 10
11

00QEP State

(QEP-A,B)

Error

01
11

10
00

01
10

Error

11
01

0001

Reverse Forward

10
11

01

Forward

POSITION

(COUNTER_0)
+1+1 +1 +1 +1+1+1 +1 +1 +1+1+1 +1 +1 +1+1 +1 +1 +1 +1+1 -1 -1 -1 -1 +1 +1 +1

Pulses on QCLK, DIRECTION, and ERROR are 1 CLB clock wide

HLC sets INTR tag 5 HLC sets INTR tag 5

QEP-I (in1)

HLC copies current count to FIFO

Sets INTR tag 11

Figure 5-3. QepOnClb Waveform Example

PTO – QepOnClb QEP Decoder www.ti.com

24 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

5.4 QepOnClb CLB Resources
The decoder CLB configuration is shown in Figure 5-4 and further described in Table 5-3.

TILE1_COUNTER_0

QEP Position

Counter

reset

event

mode0

mode1

zero

match1

match2

TILE1_FSM_0

QCLK State Machine

QEP-A/B Previous

Value Storage

e0

e1

xe0

xe1

s0

s1

out

TILE1_LUT_2

QEP Reset

Generation

i0

i1

i2

i3

out

TILE1_HLC

e0

e1

e2

e3

in0 (GPREG)

in1

COUNTER_MAX_REACHED

TILE1_LUT_1

Count Enable Control

(Rising Edge

Detection)

i0

i1

i2

i3

out

ENABLE

COUNTER_MAX_REACHED

COUNTER_RELOAD_MAX

TILE1_LUT_0

Count Direction

Control

(Phase Detection)

i0

i1

i2

i3

out

DIRECTION

QEP_RESET

QEP-A (n)

QEP-B (n)

DIRECTION

1: A leads B

0: B leads A

QCLK

in2 (GPREG) QEP_ENABLE

A

QCLK

QEP-A (n-1)

QEP-B (n-1)
B

C

C

QEP-A (n-1)

QEP-B (n-1)

A

B

Value of QEP-A and QEP-B on

previous CLB clock (n-1)

Used to detect the direction and to

detect an error

QEP-A (n)

QEP-B (n)

Value of QEP-A and QEP-B

on current CLB clock (n)

TILE1_FSM_1

Error Detection

e0

e1

xe0

xe1

s0

s1

out
QEP-A (n)

QEP-B (n)

QEP-A (n-1)

QEP-B (n-1)

A

B

in3

in5

QEP-A

QEP-B

QEP-I

ERROR

1: Error detected:

Both QEP-A and QEP-B changed states

at the same time.

HLC will send an interrupt (TAG 11)

0: No error

COUNTER_RESET

COUNTER_CAPTURE

HLC will copy the position counter value

to the HLC FIFO and then send an

interrupt (TAG 5)

Figure 5-4. QepOnClb Tile Block Diagram

www.ti.com PTO – QepOnClb QEP Decoder

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 25

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Table 5-3. QepOnClb Tile 1
Resource Function Notes

Inputs
In0 QEP_RESET Connected to GPREG bit 0 for software control of the position counter

reset.
• 1: Reset the position counter. The counter will remain in reset until

a 0 is written to this bit.
• 0: Release the counter from reset. The position counter will

increment / decrement as required if QEP_ENABLE is 1.

In1 QEP-I As designed, the rising edge of this signal will prompt the HLC to store
the current position counter in the FIFO. This is similar to the eQEP
latch on rising edge mode.

In2 QEP_ENABLE Connected to GPREG bit 2. Provides an position counter enable/
disable switch from software.
• 1: QEP is enabled. The position counter will increment / decrement

as required if the reset signal, QEP_RESET, is also 0.
• 0: QEP is disabled. The position counter stops incrementing /

decrementing.

In3 QEP-A The state transitions of QEP-A and QEP-B are used to detect
movement, direction of the movement, or an error.

In4 Not used Not used

In5 QEP-B The state transitions of QEP-A and QEP-B are used to detect
movement, direction of the movement, or an error.

In6 Not used Not used

In7 Not used Not used

Outputs
Out0 Not used Not used

Out1 Not used Not used

Out2 Not used Not used

Out3 Not used Not used

Out4 Not used Not used

Out5 Not used Not used

Out6 Not used Not used

Out7 Not used Not used

Logic Resources
LUT0 Count direction control Determines the direction of movement. Decodes the phase by

comparing the current QEP-A, QEP-B state to the previous state. The
output sets the position counter's mode appropriately.
• QEP-A leads (forward): DIRECTION is 1 and the position counter

mode is increment.
• QEP-A lags (reverse): DIRECTION is 0 and the position counter

mode is decrement.

LUT1 Count enable control Enables the position counter to increment, or decrement, by one. This
occurs when both of these conditions are met:
1. QEP_ENABLE is 1 and
2. QCLK is 1

LUT2 QEP reset generation Resets the position counter when either of these conditions are met:
1. QEP_RESET is 1 or
2. The position counter match2 is asserted

PTO – QepOnClb QEP Decoder www.ti.com

26 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Table 5-3. QepOnClb Tile 1 (continued)
Resource Function Notes

FSM0 QCLK state machine This FSM has two functions:
• Monitors the QEP-A/B signals to detect a valid state change. This

change will pull QCLK high which will allow the position counter to
increment or decrement. Refer to LUT1.

• Stores the previous QEP-A/B levels. The previous state is used to
detect the direction of movement or an error. Refer to LUT0 and
FSM1.

FSM1 Error detection Compares the previous QEP-A/B state with the current state. If both
signals changed at the same time, then the internal ERROR signal is
forced high. As designed, the rising-edge of ERROR will trigger the
HLC to send an interrupt with Tag 11.

FSM2 Not used Not used

CNT0 Position counter If enabled (QCLK is 1) increment or decrement by one on each CLB
clock cycle. The position counter's maximum position (MAXPOS) is
specified by the following:
• load: Maximum position minus 1 (MAXPOS - 1). This value is

loaded into the counter when an event is triggered by match2.
• match1: Maximum position (MAXPOS) resets the counter when

reached.
• match2: 0xFFFFFFFF triggers a counter event which loads the

counter with the load value.

CNT1 Not used Not used

CNT2 Not used Not used

High Level Controller
HLC Event 0: Error detected. Sent an error interrupt to the CPU with Tag 11.

Event 3: Counter capture Responds to the QEP-I rising edge by copying the current position
counter to the FIFO. The HLC then interrupts the CPU and Tag 5 is set.

5.4.1 QepOnClb QCLK State Machine

The QCLK state machine has two functions: (1) keep a copy of the previous levels of QEP-A and QEP-B, and
(2) detect a valid QEP state change and enable the position counter to increment or decrement.

To create a copy of the previous QEP-A and QEP-B signals the following state equations are used:
• s0 next = QEP-A (n) = e0
• s1 next = QEP-B (n) = e1

To determine if a valid QEP state change has occurred, the previous QEP-A/B values are compared to the
current values. When a valid QEP state transition is detected, the FSM will pull QCLK high. This signal enables
the position counter allowing it to increment or decrement depending on the DIRECTION signal.

There are four possible cases which are mapped in Table 5-4:
1. Invalid state change, QCLK = 0, position counter does not change
2. No movement, QCLK = 0, position counter does not change
3. Forward movement, QCLK = 1, position counter increments or decrements
4. Reverse movement, QCLK = 1, position counter increments or decrements

www.ti.com PTO – QepOnClb QEP Decoder

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 27

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

The resulting equations, combined by the OR operator, are entered into the CLB tool for the output of the FSM.

Table 5-4. QCLK State Machine Karnaugh Map
Current State

e0, e1
QEP-A(n), B(n)

00 01 11 10

Pr
ev

io
us

 S
ta

te
s0

, s
1

Q
EP

-A
(n

-1
),

B
(n

-1
) 00 0

No movement
1 (2)

Reverse
0

Invalid
1 (4)

Forward

01 1 (1)

Forward
0

No movement
1 (3)

Reverse
0

Invalid

11 0
Invalid

1 (2)

Forward
0

No movement
1 (4)

Reverse

10 1 (1)

Reverse
0

Invalid
1 (3)

Forward
0

No movement

(1) (!s0 & s1 & !e0 & !e1) + (s0 & !s1 & !e0 & !e1)
(2) (!s0 & !s1 & !e0 & e1) + (s0 & s1 & !e0 & e1)
(3) (!s0 & s1 & e0 & e1) + (s0 & !s1 & e0 & e1)
(4) (!s0 & !s1 & e0 & !e1) + (s0 & s1 & e0 & !e1)

5.4.2 QepOnClb Direction Decode

To determine the direction, a LUT compares the current QEP-A/B signals to the previous QEP-A/B signals. The
previous QEP-A/B values are provided by the QCLK state machine (FSM) described in Section 5.4.1.

There are 4 possible cases shown in Table 5-5:
1. Invalid state change: DIRECTION = do-not-care, treat as 0
2. No movement: DIRECTION = do-not-care, treat as 0
3. QEP-A rising edge leads: forward movement, DIRECTION = 1
4. QEP-B rising edge leads: reverse movement, DIRECTION = 0

For case 1 and case 2 the DIRECTION signal does not matter. QCLK is kept low in this case by the QCLK state
machine. A low QCLK disables the position counter and it will not increment nor decrement. For the do-not-care
cases DIRECTION = 0 has been used.

The resulting equations are combined by an OR operator and can be viewed in the CLB tool.

Table 5-5. Direction Detection Karnaugh Map
Current State

i2, i3
QEP-A(n), B(n)

00 01 11 10

Pr
ev

io
us

 S
ta

te
i0

, i
1

Q
EP

-A
(n

-1
),

B
(n

-1
) 00 0

No movement
0

Reverse
0

Invalid
1 (4)

Forward

01 1 (1)

Forward
0

No movement
0

Reverse
0

Invalid

11 0
Invalid

1 (2)

Forward
0

No movement
0

Reverse

10 0
Reverse

0
Invalid

1 (3)

Forward
0

No movement

(1) (!i0 & i1 & !i2 & !i3)
(2) (i0 & i1 & !i2 & i3)
(3) (i0 & !i1 & i2 & i3)
(4) (!i0 & !i1 & i2 & !i3)

PTO – QepOnClb QEP Decoder www.ti.com

28 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

5.4.3 QepOnClb Error Detection

To detect an error, a FSM compares the current QEP-A/B signals to the previous QEP-A/B signals. The previous
QEP-A/B values are provided by the QCLK state machine (FSM) described in Section 5.4.1.

Note
A LUT would have also been appropriate for this logic since the previous state of QEP-A and QEP-B
values are provided by a seperate FSM. All of the LUTs on the tile were already in use, however, so
the output of an unused FSM was leveraged to generate the ERROR signal.

There are three possible cases described in Table 5-6:
1. Valid movement in the forward or reverse direction, ERROR = 0
2. No movement, ERROR = 0
3. Both QEP-A/B change values at the same time, ERROR = 1

Table 5-6. Error Detection Karnaugh Map
Current State

xe0, xe1QEP-A(n), B(n)
00 01 11 10

Pr
ev

io
us

 S
ta

te
e0

, e
1

A
(n

-1
),

B
(n

-1
)

00 0
No movement

0
Reverse

1(3)

Invalid
0

Forward

01 0
Forward

0
No movement

0
Reverse

1(4)

Invalid

11 1 (1)

Invalid
0

Forward
0

No movement
0

Reverse

10 0
Reverse

1 (2)

Invalid
0

Forward
0

No movement

(1) (!xe0 & !xe1 & e0 & e1)
(2) (!xe0 & xe1 & e0 & !e1)
(3) (xe0 & xe1 & !e0 & !e1)
(4) (xe0 & !xe1 & !e0 & e1)

5.4.4 QepOnClb Simulation Waveforms

Simulations for the QEP implementation are provided in this section. For more information on CLB simulations,
refer to the CLB Tool User's Guide SPRUIR8.

Note
1. The QEP-A/B input stimulus was generated by CLB tile 4 using a counter and two FSMs as

shown in Figure 5-5. Each FSM s0 output toggles when its e0 input changes. The outputs from
the FSM modules were connected to the tile 1 simulation inputs in3 and in5.

2. To improve readability, only the last 5 bits of the position counter are shown.
3. The specified maximum position, MAXPOS, for this example is 0xD.

Figure 5-5. QepOnClb Simulation Stimulus

www.ti.com PTO – QepOnClb QEP Decoder

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 29

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUIR8
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Figure 5-6 and Figure 5-7 show the simulation for movement in the forward direction. The match1 (MAXPOS)
output is tied back to the reset (shown in orange) of the counter. When the counter reaches MAXPOS, it is reset
to 0 on the next CLB clock.

Figure 5-6. QepOnClb Forward Direction Simulation Waveform

Figure 5-7. QepOnClb Forward Direction MAXPOS Simulation

Figure 5-8 and Figure 5-9 show the simulation for movement in the reverse direction. The match2 output is tied
back to the event input of the counter. When the counter transitions to less than zero (0xFFFFFFFF), the load
value (MAXPOS -1) is loaded into the counter.

Note
Only the low 5 bits of the position counter are shown for readability. 0x1F corresponds to
0xFFFFFFFF.

Figure 5-8. QepOnClb Reverse Direction Simulation Waveform

PTO – QepOnClb QEP Decoder www.ti.com

30 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Figure 5-9. QepOnClb Reverse Direction MAXPOS Simulation

Figure 5-10 shows the error detection signal is high anytime QEP-A/B transition at the same time.

Figure 5-10. QepOnClb Error Detection Simulation Waveform

6 Example Projects
The example projects can be found in the directory shown in Table 6-1. The example projects use the API library
projects that are described in Section 7.

Note
Some APIs work with Pulse Train Inputs (PTI) and others with Pulse Train Outputs (PTO). For
simplicity, the examples, libraries, and directory structure make use of the suffix "pto" to identify
content belonging to this library.

Table 6-1. Location of Example Solutions
C:\ti\c2000\C2000Ware_MotorControl_SDK_[version]\ Default install location for the SDK. ([SDK])

[SDK]\solutions\boostxl_posmgr\ Device-specific solutions base install directory ([pto_base])

[pto_base]\shared\source Source code that is device independent and used across different
device examples.

[pto_base]\[device]\source Source code for the example projects. Includes both .c and .syscfg
files.

[pto_base]\[device]\include Example-specific header files.
[pto_base]\[device]\ccs\[pto_example] Code Composer Studio (CCS) projectspec files. Used to import the

project into your CCS workspace.
[pto_base]\[device]\cmd Example project linker command files (.cmd).

www.ti.com Example Projects

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 31

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

6.1 Hardware Requirements
Table 6-2 describes the hardware used to run and test the PTO examples.

Table 6-2. Hardware
Device Hardware
TMS320F28388D F28388D controlCARD evaluation module (TMDSCNCD28388D)

and docking station (TMDSHSECDOCK)

TMS320F28379D F28379D LaunchPad development kit (LAUNCHXL-F28379D)

TMS320F280025 F280025C LaunchPad development kit (LAUNCHXL-F280025C)

TMS320F280039C F280039C LaunchPad development kit (LAUNCHXL-F280039C (1))

TMS320F280049 F280049C LaunchPad development kit (LAUNCHXL-F280049C)

(1) The LAUNCHXL-F280039C device is an upcoming LaunchPad that will be released in the second quarter of 2022.

6.2 Installing Code Composer Studio and C2000WARE-MOTORCONTROL-SDK™
Install required software to build and run the PTO examples:

1. Install Code Composer Studio v11.0.0 or later, if it is not already installed on the PC
2. Install C2000WARE-MOTORCONTROL-SDK v4.00.00.00 or later, if it is not already installed on the PC

Note
To build the examples, only the above software is required. To re-build the CLB-based libraries,
the CLB Tool is also required. This tool is included in Code Composer Studio (sysconfig) and the
C2000Ware sub-component of the SDK (support utilities). To run CLB-based simulations requires
installation of additional tools which are documented in the CLB Tool User's Guide.

6.3 Import and Run Example Project
1. In CCS or higher: click 'Project -> Import CCS Projects…'.
2. Navigate to the device-specific PTO solutions CCS directory. The path is shown in Table 6-1.
3. Select the projectspec of choice and click 'Finish'.
4. Build the project:

a. Right-click on the project name in the project manager window
b. Select 'Rebuild Project'
c. Observe the Console window for any errors or successful completion of the build.

5. Once the build completes, without errors, execute the project by selecting 'Run –>Debug'.
6. Run the code by pressing the Run button.
7. Monitor the signals and variables as described in the following, example-specific, sections.

6.4 PulseGen Example
Verify and monitor the output waveform signals. The GPO mapping used is shown in Table 6-3:

Table 6-3. PulseGen Output Signal to GPIO Mapping

Device
Direction
(Routed though OUTPUTXBAR)

Pulse Output
(Routed through OUTPUTXBAR)

TMS320F280025C GPIO15 GPIO45

TMS320F280039C GPIO31 GPIO26

TMS320F280049C GPIO15 GPIO26

TMS320F28379D GPIO15 GPIO14

TMS320F28388D GPIO15 GPIO26

Example Projects www.ti.com

32 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/product/TMS320F28388D
https://www.ti.com/tool/TMDSCNCD28388D
https://www.ti.com/tool/TMDSHSECDOCK
https://www.ti.com/product/TMS320F28379D
https://www.ti.com/tool/LAUNCHXL-F28379D
https://www.ti.com/product/TMS320F280025
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/product/TMS320F280039C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/product/TMS320F280049
https://www.ti.com/tool/LAUNCHXL-F280049C
http://software-dl.ti.com/ccs/esd/documents/ccs_downloads.html
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/lit/pdf/SPRUIR8
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

6.5 QepDiv Example
The test inputs and the PTO outputs are routed internally as shown in the mapping tables. The code that routes
the signals can be found in the functions listed in Table 6-4.

Table 6-4. QepDiv Example Input/Output Signal Routing
Function Location Notes

Input Signal Routing: GPIO to CLB

pto_qepdiv_setup_GPIO() Example application Connect input GPIO to an INPUTXBAR.

pto_qepdiv_initCLBXBAR() Library Route INPUTXBARs to the global CLB
AUXSIGx signals.

pto_qepdiv_setupPeriph() Library Connect tile inputs to the CLB global MUX,
CLB local MUX or the tile's GPREG.

Output Routing: CLB to GPIO

Function Location Notes

pto_qepdiv_initCLBXBAR Library Connect tile's out4 or out5 to OUTPUTXBAR

pto_qepdiv_startOperation() Library Enable CLB output to override peripheral
signals via setOutputMask()

pto_qepdiv_setup_GPIO() Example application Connect GPIO output to a peripheral or an
OUTPUTXBAR

Table 6-5. F28002x, F28003x, F28004x, F2837x and F2838x QepDiv Output GPIO Mapping
QepDiv Input QepDiv Output

Input Signal Connect to for
Demo (1)

Routing to CLB Output Signal Routing From the
CLB

GPIO Pin

QEP-A: GPIO10 EPWM4A/GPIO6
or External Signal

INPUTXBAR4 →
AUXSIG0 →
Tile1 in1, in2 and
Tile2 in1, in2

PTO_QEP-A Override PWM2A GPIO2

QEP-B: GPIO11 EPWM5A/GPIO8
or External Signal

INPUTXBAR5 →
AUXSIG1 →
Tile1 in4, in5 and
Tile2 in4

PTO_QEP-B Override PWM2B GPIO3

QEP-I: GPIO9 EPWM4B/GPIO7
or External Signal

INPUTXBAR6 →
AUXSIG2 →
Tile1 in7

PTO_QEP-I Tile1 out5 →
OUTPUTXBAR3

GPIO5

(1) In the example, spare EPWMs are used to provide QEP inputs. These are for test purposes and do not correspond to real-time usage.
You can choose to connect these EPWM outputs to the QepDiv input signals or you can choose to connect other external signals.

Table 6-6 lists the connections that need to be made to use the EPWMs as inputs to QepDiv.

Table 6-6. QepDiv Test Input Connections
Board EPWM4A to QEP-A EPWM5A to QEP-B EPWM4B to QEP-I
LAUNCHXL-F280025C 78 (IO.6) to 14 (IO.10) 76 (IO.16) to 15 (IO.11) 77 (IO.7) to 7 (IO.9)

LAUNCHXL-F280039C 78 (IO.6) to 36 (IO.10) 76 (IO.16) to 35 (IO.11) 77 (IO.7) to 7 (IO.9)

LAUNCHXL-F280049C 78 to 40 38 to 39 77 to 37

LAUNCHXL-F28379D 80 to 76 78 to 75 79 to 77

TMDSCNCD28388D 54 to 61 57 to 63 56 to 59

6.6 Abs2Qep Example
The example uses a PWM timer to simulate the position sampling rate. The absolute position value is provided
by a test function. The pass/fail criteria assumes the output from the PTO is connected externally to a eQEP
peripheral.

www.ti.com Example Projects

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 33

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

6.6.1 Watch Variables

The following watch variables provide pass/fail information:

• passCount
• failCount
• deltaMax
• EQep1Regs.QPOSCNT

The angle of the absolute position is compared to the angle corresponding to the eQEP position counter
(QPOSCNT). If the difference is less than a specified threshold, then passCount is incremented. If not, then
failCount is incremented. The maximum difference is logged in deltaMax.

6.6.2 Test Signals

Two test signals are provided to aid in viewing waveforms:

• Test signal 1: Toggles at the start of each PWM ISR. Remains high if the PTO direction is forward. Remains
low if the PTO direction is reverse.

• Test signal 2: The HALT/RUN signal internal to Abs2Qep. This signal can be used to visualize exactly where
the PTO halts and when it restarts with respect to the ISR toggle of test signal 1.

6.6.3 Pin Usage and Test Connections

The output from the PTO is internally routed to GPIOs via the OUTPUTXBARs and by overriding PWM1-B. The
code that routes the signals can be found in the functions listed in Table 6-7.

Table 6-7. Abs2Qep Output Signal Routing
Function Location Notes
pto_abs2qep_initCLBXBAR Library Tie Tile out4/5 to OUTPUTXBARs
pto_abs2qep_setupPeriph Library Enable output to override peripheral.
pto_setupGPIO Example application Connect OUTPUTXBARs to GPIO outputs

Table 6-8. F2838xD Abs2Qep Output GPIO Mapping
Abs2Qep Output Test Connections

Abs2Qep Signal Routing From CLB to GPIO GPIO / TMDSHSECDOCK Pin Connect Abs2Qep Output to:
PTO-QEP-A Tile1 out4 to OUTPUTXBAR7 GPIO16 / Pin 67 GPIO20_EQEP1A / Pin 68

PTO-QEP-B Tile1 out5 to OUTPUTXBAR2 GPIO3 / Pin 55 GPIO21_EQEP1B / Pin 70

PTO-QEP-I Tile1 out2, override PWM1-B GPIO1 / Pin 51 GPIO99_EQEP1I / Pin 96

Test signal 1: System PWM ISR /
Direction

None GPIO32 / Pin 85 Monitor with Oscilloscope

Test signal 2: Internal HALT/RUN Tile1 out0, override PWM1-A GPIO0 / Pin 49 Monitor with Oscilloscope

Table 6-9. F2837xD Abs2Qep Output GPIO Mapping
Abs2Qep Output Test Connections

Abs2Qep Signal Routing From CLB to GPIO
GPIO / LAUNCHXL-F28379D
Pin Connect Abs2Qep Output to:

PTO-QEP-A Tile1 OUT4 to OUTPUTXBAR7 GPIO16 / J4-33 GPIO20_EQEP1A / J14-1

PTO-QEP-B Tile1 OUT5 to OUTPUTXBAR2 GPIO3 / J4-37 GPIO21_EQEP1B / J14-2

PTO-QEP-I Tile1 OUT2, override PWM1-B GPIO1 / J4-39 GPIO99_EQEP1I / J14-3

Test signal 1: System PWM ISR /
Direction

None GPIO32 / J1-2 Monitor with Oscilloscope

Test signal 2: Internal HALT/RUN Tile1 OUT0, override PWM1-A GPIO0 / J4-40 Monitor with Oscilloscope

Example Projects www.ti.com

34 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Table 6-10. F280049C Abs2Qep Output GPIO Mapping
Abs2Qep Output Test Connections

Abs2Qep Signal Routing From CLB to GPIO
GPIO / LAUNCHXL-F280049C
Pin (1) Connect Abs2Qep Output to:

PTO-QEP-A Tile1 OUT4 to OUTPUTXBAR1 GPIO24 / J8-55 GPIO10_EQEP1A / J4-40

PTO-QEP-B Tile1 OUT5 to OUTPUTXBAR2 GPIO3 / J6-75 GPIO11_EQEP1A / J4-39

PTO-QEP-I Tile1 OUT2, override PWM1-B GPIO1 / J6-79 GPIO9_EQEPI / J4-37

Test signal 1: PWM ISR /
Direction

- GPIO13 / J1-3 Monitor with Oscilloscope.

Test signal 2: HALT/RUN Tile1 OUT0, override PWM1-A GPIO0 / J6-80 Monitor with Oscilloscope.

(1) J8 and J6 are swapped on the silkscreen of RevA F28004x LaunchPad. J8 and J6 Pin numbers in this table refer to the silkscreen on
Rev A. To confirm whether this applies to your board, see the "known issues" in the revision section of C2000™ Piccolo™ F28004x
Series LaunchPad™ Development Kit.

Table 6-11. F280025C Abs2Qep Output GPIO Mapping
Abs2Qep Output Test Connections

Abs2Qep Signal Routing From CLB to GPIO
GPIO / LAUNCHXL-F280025C
Pin Connect Abs2Qep Output to:

PTO-QEP-A Tile1 OUT4 to OUTPUTXBAR1 GPIO24 / J5-44/45 GPIO10_EQEP1A / J2-14

PTO-QEP-B Tile1 OUT5 to OUTPUTXBAR2 GPIO3 / J4-37 GPIO11_EQEP1A / J2-15

PTO-QEP-I Tile1 OUT2, override PWM1-B GPIO1 / J4-39 GPIO9_EQEPI / J1-7

Test signal 1: PWM ISR /
Direction

- GPIO13 / J8-79 Monitor with Oscilloscope.

Test signal 2: HALT/RUN Tile1 OUT0, override PWM1-A GPIO0 / J4-40 Monitor with Oscilloscope.

Table 6-12. F280039C Abs2Qep Output GPIO Mapping
Abs2Qep Output Test Connections

Abs2Qep Signal Routing From CLB to GPIO
GPIO / LAUNCHXL-F280039C
Pin Connect Abs2Qep Output to:

PTO-QEP-A Tile1 OUT4 to OUTPUTXBAR1 GPIO24 / J1-8 GPIO10_EQEP1A / J4-36

PTO-QEP-B Tile1 OUT5 to OUTPUTXBAR2 GPIO3 / J4-37 GPIO11_EQEP1A / J4-35

PTO-QEP-I Tile1 OUT2, override PWM1-B GPIO1 / J4-39 GPIO9_EQEPI / J1-7

Test signal 1: PWM ISR /
Direction

- GPIO13 / J8-79 Monitor with Oscilloscope.

Test signal 2: HALT/RUN Tile1 OUT0, override PWM1-A GPIO0 / J4-40 Monitor with Oscilloscope.

6.7 QepOnClb Example
This example implements a simple QEP decoder module on the CLB peripheral. The output of this CLB-based
QEP decoder is compared with the output of an eQEP-based QEP decoder. The device generates EPWM
signals, which are used as test inputs to simulate QEP-A and QEP-B signals.

6.7.1 Watch Variables

The following watch variables provide QepOnClb information to compare the performance of the eQEP and
CLBQEP:

• eqepPosition
• clbqepPosition
• deltaPosition
• maxDeltaPosition
• interruptCount
• sendIndex

www.ti.com Example Projects

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 35

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUII7
https://www.ti.com/lit/pdf/SPRUII7
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

During the execution of the example, eqepPosition and clbqepPosition track the position from the eQEP and
CLBQEP, respectively. If eqepPosition and clbqepPosition differ from each other, the difference is displayed
in the deltaPosition variable. The largest deltaPosition found throughout the program execution is stored in
maxDeltaPosition.

6.7.2 Header Pin Connections

In this example, EPWMs are generated by the device and are meant to simulate test QEP signals. These EPWM
signals need to be externally routed to both the CLB INPUTXBARs and the on-board eQEP peripheral. The
following two tables describe the necessary pin connections that need to be made depending on the device
being used.

Note

The EPWM signals serve as test inputs to showcase the functionality of the QepOnClb example. If
desired, users can instead route external QEP-A and QEP-B signals to the INPUTXBARs and eQEP
peripheral.

The CLB-based QEP decoder module is configured to accept three inputs corresponding to QEP-A, QEP-B,
and QEP-I. The QEP-A signal should be routed into INPUTXBAR2, the QEP-B signal should be routed into
INPUTXBAR1, and the QEP-I signal should be routed into INPUTXBAR3.

Table 6-13 lists the connections that need to be made to route the EPWM signals to the CLB X-BARs.
Table 6-13. QepOnClb EPWM to CLB INPUTXBAR Connections

Board
EPWMA to
INPUTXBAR2 (QEP-A)

EPWMB to
INPUTXBAR1 (QEP-B) GPIO to INPUTXBAR3 (QEP-I)

LAUNCHXL-F280025C GPIO0 (J4-40) to GPIO8 (J2-12) GPIO1 (J4-39) to GPIO9 (J1-7) GPIO2 (J4-38) to GPIO27 (J2-11)

LAUNCHXL-F280039C GPIO0 (J4-40) to GPIO8 (J2-15) GPIO1 (J4-39) to GPIO9 (J1-7) GPIO2 (J4-38) to GPIO27 (J6-59)

LAUNCHXL-F280049C GPIO10 (J4-40) to GPIO39
(J2-13)

GPIO11 (J4-39) to GPIO40 (J1-4) GPIO8 (J4-38) to GPIO27 (J6-59)

LAUNCHXL-F28379D GPIO0 (J4-40) to GPIO18 (J1-4) GPIO1 (J4-39) to GPIO40 (J5-50) GPIO2 (J4-38) to GPIO27 (J6-52)

TMDSCNCD28388D GPIO0 (Pin 49) to GPIO18 (Pin
71)

GPIO1 (Pin 51) to GPIO40 (Pin
89)

GPIO2 (Pin 53) to GPIO27 (Pin
81)

The EPWM signals are routed to the eQEP peripheral for loopback testing. This is done in order to provide a
comparison with the CLB-based QEP module.

Table 6-13 lists the connections that need to be made to route the EPWM signals to the eQEP peripheral.

Table 6-14. QepOnClb EPWM to eQEP Connections
Board EPWMA to eQEP-A EPWMB to eQEP-B GPIO to eQEP-I

LAUNCHXL-F280025C GPIO0 (J4-40) to GPIO25 (J4-31) GPIO1 (J4-39) to GPIO29
(J1-4/5)

GPIO2 (J4-38) to GPIO23 (J2-13)

LAUNCHXL-F280039C GPIO0 (J4-40) to GPIO25 (J6-51) GPIO1 (J4-39) to GPIO29
(J1-4/5)

GPIO2 (J4-38) to GPIO23 (J2-11)

LAUNCHXL-F280049C GPIO10 (J4-40) to GPIO35
(J1-10)

GPIO11 (J4-39) to GPIO37 (J1-9) GPIO8 (J4-38) to GPIO59 (J2-11)

LAUNCHXL-F28379D GPIO0
(J4-40) to GPIO20 (QEP1A)

GPIO1 (J4-39) to GPIO21
(QEP1B)

GPIO2 (J4-38) to GPIO23
(QEP1I)

TMDSCNCD28388D GPIO0 (Pin 49) to
GPIO20 (Pin 68)

GPIO1 (Pin 51) to
GPIO21 (Pin 70)

GPIO2 (Pin 53) to
GPIO23 (Pin 74)

Example Projects www.ti.com

36 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

7 Library Source and Projects
This section describes how to import and rebuild the libraries and provides a description of each API function.
Each Code Composer Studio library project includes configuration information for the Configurable Logic Block
(CLB). To learn how to modify the CLB's configuration, see the CLB Tool User's Guide.

Note
Some APIs work with Pulse Train Inputs (PTI) and others with Pulse Train Outputs (PTO). For
simplicity, the examples, libraries, and directory structure make use of the suffix "pto" to identify
content belonging to this library.

7.1 Locating the Library Source Code
The PTO APIs and source code can be found in the location shown in Table 7-1.

Table 7-1. Location of PTO Libraries
C:\ti\c2000\C2000Ware_MotorControl_SDK_[version] Default install location for the SDK. ([SDK])

[SDK]\libraries\position_sensing\pto Library base install directory ([lib_base])

[lib_base]\ccs\[device] Code Composer projectspec file for the reference library. Use these
projects to re-build the library for each device.

[lib_base]\lib Generated library object files (.lib)
[lib_base]\source Library source code (.c) and CLB configuration (.syscfg) files.
[lib_base]\include Library header file. #include this file in the application project that

calls the library.
[lib_build_dir]\RELEASE\syscfg Location of the CLB Tile Diagram. By rebuilding the compiled object,

CCS it will regenerate the CLB tile diagram (clb.svg or clb.html). and
object (.lib). You can access the .svg or html file through CCS Project
Explorer.

7.2 Import and Build the Library Project
To rebuild the API library object, follow this procedure:

1. If not already done, install the required software tools described in Section 6.2.
2. In CCS or higher, click 'Project -> Import CCS Projects…'.
3. Navigate to the Code Composer Studio (CCS) projectspec directory for your device, see Table 7-1.
4. Select the library project of choice and click 'Finish'.
5. In the CCS Project Explorer window, expand the selected project and open the file corresponding SysConfig

file (for example, “pto_pulsegen.syscfg”).
6. Inspect the configuration of the tile(s) and observe the logical expressions in the LUTs and FSMs, and output

LUTs.
7. From the CCS menu, select 'Project -> Build Project'.
8. At this point, an output object (.lib) is generated and located in the [lib_base]\lib folder. This file will be

included in PTO example projects. This object is a compiled object of the PTO source files.
9. [Optional] – for instructions on how to run a simulation of the CLB based project, see the Running the

Simulation section in the CLB Tool User’s Guide.

www.ti.com Library Source and Projects

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 37

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUIR8
http://www.ti.com/lit/spruir8
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

7.3 PTO - PulseGen API
This section details the PulseGen Library functions. For information on locating the source code and rebuilding
the library, see Section 7.

PulseGen include file: pto_pulsegen.h

Table 7-2. PTO-PulseGen API Functions
Name Description Type

pto_pulsegen_reset Used to reset the pulsegen parameters set by earlier configuration and start a fresh setup. This
function needs to be called in case the pulse generation needs to be reset and started again at
a later stage.

Initialization
time

pto_pulsegen
_setupPeriph

Setup for CLB and other interconnect XBARs is performed with this function during system
initialization. This function needed to be called after every system reset. No transactions will be
performed until the setup peripheral function is called.

Initialization
time

pto_pulsegen
_startOperation

This function will initiate the pulse generation on the interface. To be called after
pto_pulsegen_setupPeriph. Performs the transaction set up by earlier function. Note that the
setup up and start operation are separate function calls. You can setup the peripherals when
needed and start the actual pulse generation using this function call, as needed, at a different
time.

Run time

pto_pulsegen
_runPulseGen

A runtime function to be called periodically for dynamically configuring and changing the
pulse generation requirements as needed by the application. This function needs to be called
periodically with appropriate parameters like the number of pulses, period, duration, and so
forth. Details in the later section.

Run time

7.3.1 pto_pulsegen_runPulseGen

Description

A runtime function to be called periodically for dynamically configuring and changing the pulse generation
requirements as required by the application. This function must be called periodically with appropriate
parameters like the number of pulses, period, duration, and more.

Definition

uint16_t pto_pulsegen_runPulseGen(
 uint32_t pulseLo,
 uint32_t pulseHi,
 uint32_t ptoActivePeriod,
 uint32_t ptoFullPeriod,
 uint32_t ptoInterruptTime,
 uint16_t ptoDirection,
 uint16_t run
);

Parameters

Input:

• pulseLo – Low pulse width
• pulseHi – High pulse width
• ptoActivePeriod – Period the pulses are sent out; less than ptoFullPeriod
• ptoFullPeriod – Full PTO period
• ptoInterruptTime – Time when that the interrupt is generated to the CPU
• ptoDirection – Direction output; latched as it is on direction output at the beginning of new period
• run – Value indicting 1-run and 0-stop. Sampled at the beginning of the new period to determine to continue

or halt the pulse generation

Return:

• Val – If the function is executed successfully, the function will return ptoFullPeriod as the return value

Library Source and Projects www.ti.com

38 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Usage

In pto_pulsegen.c, a sample configuration function called pto_setOptions is provided as an example to assist
with the pto_pulsegen_runPulseGen function and to perform the intermediate calculations. See the following
code sample calculation that illustrates how various parameters for this function can be generated. For more
details, see the pto_pulsegen.c and pto_pulsegen.h files.

uint32_t pto_setOptions(
 uint32_t numPulses, //number of pulses needed to be generated in next period
 uint32_t Period, // PTO period in clock cycles
 uint32_t ptoInterruptTime, // Interrupt generation time
 uint16_t ptoDirection, // Direction output
 uint16_t run) //run-stop condition.
{
 uint32_t pulseFreq, reminder;
 uint32_t pulseLo;
 uint32_t pulseHi;
 uint32_t ptoActivePeriod;
 uint32_t ptoFullPeriod;
 pulseFreq = Period / numPulses;
 reminder = Period - (pulseFreq * numPulses);
 pulseLo = (pulseFreq/2);
 pulseHi = pulseFreq;
 ptoActivePeriod = (pulseFreq * numPulses);
 ptoFullPeriod = Period;
 pto_pulsegen_runPulseGen(
 pulseLo,
 pulseHi,
 ptoActivePeriod,
 ptoFullPeriod,
 ptoInterruptTime,
 ptoDirection,
 run);
 return(reminder);
}

7.3.2 pto_startOperation

Description

This function initiates the pulse generation. This function must be called after pto_pulsegen_setupPeriph. Hence,
the pto_pulsegen_startOperation kick starts the pulse generation that was set up earlier.

Note

The setup and start operations are separate function calls. Users can set up the transfer and start the
pulse generation by using this function call, as required, at a different time.

Definition

void pto_pulsegen_startOperation(void);

Parameters

Input: none

Return: none

Usage

Example code:

pto_initPulsegen ();
SysCtl_delay (800L);
pto_pulsegen_startOperation ();
retval1 = pto_pulsegen_runPulseGen (7, 15, 960, 990, 500, 1, 1);

www.ti.com Library Source and Projects

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 39

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

7.3.3 pto_pulsegen_setupPeriph

Description

This function performs the setup for the CLB and other interconnect XBARs during system initialization. This
function must be called after every system reset. No transactions will be performed until the setup peripheral
function is called.

Definition

void pto_pulsegen_setupPeriph (void);

Parameters

Input: none

Return: none

Usage

Example code:

pto_pulsegen_setupPeriph();

7.3.4 pto_pulsegen_reset

Description

This function resets the pulsegen parameters set by the earlier configuration (PulseGen function calls) and starts
a new setup. This function must be called in case the pulse generation must be reset and started again at a later
stage.

Definition

void pto_pulsegen_reset (void);

Parameters

Input: none

Return: none

Usage

Example code:

pto_pulsegen_reset();

Library Source and Projects www.ti.com

40 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

7.4 PTO - QepDiv API
This section details the QepDiv Library functions. For information on locating the source code and rebuilding the
library, see Section 7.

QepDiv include file: pto_qepdiv.h

Table 7-3. PTO-QepDiv API Functions
Name Description Type

pto_qepdiv_reset Used to reset the qepdiv parameters set by earlier configuration and start a fresh setup. This
function needs to be called in case the pulse generation needs to be reset and started again at
a later stage.

Initialization
time

pto_qepdiv
_setupPeriph

Setup for CLB and other interconnect XBARs is performed with this function during system
initialization. This function needed to be called after every system reset. No transactions will be
performed until the setup peripheral function is called.

Initialization
time

pto_qepdiv
_startOperation

This function will initiate the pulse generation on the interface. To be called after
pto_qepdiv_setupPeriph. Performs the transaction set up by earlier function. Note that the
setup up and start operation are separate function calls. User can setup the peripherals when
needed and start the actual pulse generation using this function call, as needed, at a different
time.

Run time

pto_qepdiv_config This function configures the divider, the divider value cannot be changed dynamically. User
needs to reset the module using pto_qepdiv_reset before reconfiguring the functionality.

Run time

7.4.1 pto_qepdiv_config

Description

This function configures the divider. The divider value cannot be changed dynamically. Users must reset the
module using pto_qepdiv_reset before reconfiguring the functionality.

Definition

pto_qepdiv_config(uint16_t divider, uint16_t indexWidth);

Parameters

Input:

• Divider – Value of the divider
• Index width – Number of cycles for which the index pulse output is kept on

Return:

• Val – If the function is executed successfully, it will return ptoFullPeriod as the return value

Usage

Example code:

retval1 = pto_qepdiv_config(4, 10);
 pto_qepdiv_startOperation(1);

www.ti.com Library Source and Projects

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 41

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

7.4.2 pto_startOperation

Description

This function initiates the pulse generation. This function must only be called after pto_qepdiv_setupPeriph.
Hence, the pto_qepdiv_startOperation function kick starts the pulse generation that was set up earlier.

Note

The setup and start operations are separate function calls. Users can set up the transfer and start the
pulse generation by using this function call, as required, at a different time.

Definition

void pto_qepdiv_startOperation(uint16_t run);

Parameters

Input (parameters to be passed to start or stop the function):

• Start = 1
• Stop = 0

Return: none

Usage

Example code:

retval1 = pto_qepdiv_config(4, 10);
 pto_qepdiv_startOperation(1);

7.4.3 pto_qepdiv_setupPeriph

Description

Setup for the CLB and other interconnect XBARs is performed with the pto_qepdiv_setupPeriph function during
system initialization. This function must be called after every system reset. No transactions will be performed
until the setup peripheral function is called.

Definition

void pto_qepdiv_setupPeriph (void);

Parameters

Input: none

Return: none

Usage

Example code:

pto_qepdiv_setupPeriph();

Library Source and Projects www.ti.com

42 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

7.4.4 pto_qepdiv_reset

Description

Used to reset the qepdiv parameters set by earlier configurations and to begin a fresh setup. This function must
be called in case the pulse generation must be reset and started again at a later stage.

Definition

void pto_qepdiv_reset (void);

Parameters

Input: none

Return: none

Usage

Example code:

pto_qepdiv_reset();

7.5 PTO - Abs2Qep API
This section details the Abs2Qep Library functions. For information on locating the source code and rebuilding
the library, see Section 7.

Abs2Qep include file: pto_abs2qep.h

Table 7-4. PTO-Abs2Qep API Functions
Name Description Type

pto_abs2eqep
_setupPeriph

Setup for CLB and other interconnect XBARs is performed with this function during system
initialization. This function to be called after every system reset. No transactions will be
performed until the setup peripheral function is called.

Initialization
time

pto_abs2qep
_translatePosition

Translates a change in absolute position into an equivalent change in incremental position.
This function configures the CLB to generate: the number of QCLKs, the QCLK frequency,
and the QEP-I pulse. The parameters used for the translation can be configured in the library
header file. This function loads the configuration into the HLC FIFO.

Run Time

pto_abs2qep
_runPulseGen

This function will initiate the pulse generation on the interface. To be called after
pto_abs2qep_translatePosition has setup the CLB HLC FIFO. Note that the setup up and start
operation are separate function calls.

Run Time

7.5.1 Abs2Qep API Configuration

The library header file, pto_abs2qep.h, contains parameters which can be modified to configure the library for
different encoders and position sample rates. Parameters include:

• Position sampling period
• Maximum motor revolutions per minute (RPM)
• Absolute encoder resolution
• Incremental encoder lines per revolution

www.ti.com Library Source and Projects

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 43

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

7.5.2 pto_abs2qep_runPulseGen

Description

Function called during runtime to start a new PTO. This function checks that the previous PTO has completed
before starting a new PTO.

Note
The setup and start operations are separate function calls. The setup (pto_abs2qep_translatePosition)
must be called before this function. You can set up the transfer and start the pulse generation by using
this function call, as required, at a different time.

Definition

 void
 pto_abs2qep_runPulseGen(
 uint16_t ptoDirection
);

Parameters

Input:

• ptoDirection: Direction of the PTO. This determines which signal leads QEP-A or QEP-B.

Return: none

Usage

// Call to sample a new absolute position

// Translate change from previous position to PTO configuration
 ptoDirection = pto_abs2qep_translatePosition(absolutePosition);

// Start the last configuration
 pto_abs2qep_runPulseGen(ptoDirection);

7.5.3 pto_abs2qep_setupPeriph

Description

This function performs the setup for the CLB and XBAR interconnect during system initialization. This function
must be called after every system reset. No transactions will be performed until the setup peripheral function is
called.

Definition

void pto_abs2qep_setupPeriph(void);

Parameters

Input: none

Return: none

Usage

pto_abs2qep_setupPeriph();
...
//
// GPIO and other system peripheral configuration
//

Library Source and Projects www.ti.com

44 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

7.5.4 pto_abs2qep_translatePosition

Description

This function translates a change in absolute position into an equivalent PTO configuration to be loaded into the
CLB FIFO. The information includes:

• Number of QCLKs required to generate the QEP-A and QEP-B pulses
• If crossing zero, the QCLK edge where QEP-I should be driven high and low
• The number of CLB clocks between each QCLK
• The direction of the position change.

Archive previous

absolute posi�on

Calculate posi�on change

and index high edge for

reverse zero-cross

Zero-cross? Reverse direc�on?

Calculate posi�on change

and index high edge for

forward zero-cross

Set index high edge to a

large value

(prevents a match)

Set index low edge

(high edge + 1)

Calculate QCLK edges to

send

Calculate new posi�on

change

Total

frac�onal QCLK

>= 1

or <= -1?

Adjust QCLK edges to be

sent by 1

Adjust the frac�onal carry-

over by 1

Determine total

accumulated frac�onal

QCLK pulses to carry over

QCLK to send == 0?

Zero movement detected

Set pulseWidth to a large

value (prevents a match)

Calculate the pulseWidth

(�me between each QCLK

edge in CLB clocks)

Write the con	gura
on to

the HLC PULL FIFO

Return the direc�on of the

posi�on change

Zero-Cross detection details can be

found in the theory of operation section

Yes Yes

No

Yes

No

Configuration includes QCLKs to send, pulseWidth

and Index high/low edge.

These values will be loaded by the HLC when the

pto_abs2qep_runPulseGen function is called.

YesNo

No

Figure 7-1. Abs2Qep Translate Function

Definition

 uint16_t
 pto_abs2qep_translatePosition(
 uint32_t positionNew
);

www.ti.com Library Source and Projects

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 45

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Parameters

Input:

• positionNew - The new absolute position as sampled by the system. The translate function compares this
value to the previous sample to determine the change in position.

Return: ptoDirection - Indicates the direction of the PTO.

• PTO_ABS2QEP_CLOCKWISE_PTO
• PTO_ABS2QEP_COUNTERCLOCKWISE_PTO

Note
This function loads the PTO configuration directly into the HLC PULL FIFO.

Usage

// Call to sample a new absolute position

// Translate change from previous position to PTO configuration
 ptoDirection = pto_abs2qep_translatePosition(absolutePosition);

// Start the last configuration
 pto_abs2qep_runPulseGen(ptoDirection);

7.6 PTO - QepOnClb API
This section details the QepOnClb Library functions. For information on locating the source code and rebuilding
the library, see Section 7.

QepOnClb include file: pto_qeponclb.h

Table 7-5. PTO-QepOnClb API Functions
Name Description Type

pto_qeponclb_setupPeriph Setup for CLB and other interconnect XBARs is performed with this function during system
initialization. This function needs to be called after every system reset. No decoding can be
done until the setup peripheral function is called.

Initialization
Time

pto_qeponclb_initCLBQEP Helper function that initializes the CLB peripheral to simulate a QEP decoder. This function is
used in the pto_qeponclb_setupPeriph function as a part of the CLBQEP system initialization.

Initialization
Time

pto_qeponclb_configMaxCo
unterPos

This function configures the maximum counter value for the CLBQEP and loads it as a
parameter in the CLB tile.

Initialization
Time

pto_qeponclb_enableCLBQ
EP

Used to enable the CLBQEP counter to begin decoding. The CLBQEP counter needs to be
initialized prior to enabling.

Run Time

pto_qeponclb_resetCLBQEP Used to reset the CLBQEP parameters set by earlier configuration. This function needs to be
called in case the counter needs to be reset and started again at a later instance.

Run Time

pto_qeponclb_getCounterVal This function captures the current value of counter 0 from the CLB. Run Time

pto_qeponclb_getCLBQEPP
os

This function is to be called when wanting to capture the current position of the CLB-based
QEP peripheral from the CLB.

Run Time

pto_qeponclb_clearFIFOptr This function is to be called when needing to clear the FIFO pointer from the CLB. This function
needs to be called subsequently after reading a FIFO value pushed by the HLC so that the
next PUSH will be in the correct position.

Run Time

Library Source and Projects www.ti.com

46 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

7.6.1 pto_qeponclb_setupPeriph

Description

This function sets up the CLB and other interconnect XBARs during system initialization to allow for using the
CLBQEP peripheral. This function needs to be called after every system reset. No QEP decoding can be done
until the setup peripheral function is called.

Definition

void pto_qeponclb_setupPeriph(uint32_t maxPosition);

Parameters

Input:

• maxPosition - maximum counter value for the CLBQEP

Return: none

Usage

Example code:

uint32_t max_position;
max_position = 500;
pto_qeponclb_setupPeriph(max_position);

7.6.2 pto_qeponclb_initCLBQEP

Description

This function is a helper function that initializes the CLB peripheral to simulate a QEP decoder. This function is
used in the pto_qeponclb_setupPeriph function as a part of the CLBQEP system initialization.

Definition

void pto_qeponclb_initCLBQEP(uint32_t maxPosition);

Parameters

Input:

• maxPosition - maximum counter value for the CLBQEP

Return: none

Usage

Example code:

uint32_t max_position;
max_position = 500;
pto_qeponclb_initCLBQEP(max_position);

www.ti.com Library Source and Projects

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 47

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

7.6.3 pto_qeponclb_configMaxCounterPos

Description

This function configures the maximum counter value for the CLBQEP and loads this value as a parameter in the
CLB tile.

Definition

void pto_qeponclb_configMaxCounterPos(uint32_t clbBase, uint32_t maxPosition);

Parameters

Input:

• clbBase – Base address of CLB tile
• maxPosition - maximum counter value for the CLBQEP

Return: none

Usage

Example code:

uint32_t max_position;
max_position = 500;
pto_qeponclb_configMaxCounterPos(max_position);

7.6.4 pto_qeponclb_enableCLBQEP

Description

This function is used to enable the CLBQEP counter to begin decoding. The CLBQEP counter needs to be
initialized prior to enabling.

Definition

void pto_qeponclb_enableCLBQEP(uint32_t clbBase, uint32_t enableCapture);

Parameters

Input:

• clbBase – Base address of CLB tile
• enableCapture - GPREG bit corresponding to enable CLBQEP

Return: none

Usage

Example code:

pto_qeponclb_enableCLBQEP(0x00003000, (1 << 2));

Library Source and Projects www.ti.com

48 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

7.6.5 pto_qeponclb_resetCLBQEP

Description

This function is used to reset the CLBQEP parameters set by earlier configuration. This function needs to be
called in case the counter needs to be reset and started again at a later instance.

Definition

void pto_qeponclb_resetCLBQEP(uint32_t clbBase, uint32_t resetCounter);

Parameters

Input:

• clbBase – Base address of CLB tile
• resetCounter - GPREG bit corresponding to reset CLBQEP

Return: none

Usage

Example code:

pto_qeponclb_resetCLBQEP(0x00003000, (1 << 0));

7.6.6 pto_qeponclb_getCounterVal

Description

This function captures the current value of counter 0 from the CLB.

Definition

uint32_t pto_qeponclb_getCounterVal(uint32_t clbBase);

Parameters

Input:

• clbBase – Base address of CLB tile

Return:

• Val - The function will return counterVal as the return value

Usage

Example code:

#Define CLB1_BASE 0x00003000U
uint32_t retVal1;
retVal1 = pto_qeponclb_getCounterVal(CLB1_BASE);

7.6.7 pto_qeponclb_getCLBQEPPos

Description

This function is to be called when wanting to capture the current position of the CLB-based QEP peripheral from
the CLB.

Definition

uint32_t pto_qeponclb_getCLBQEPPos(uint32_t clbBase);

Parameters

Input:

www.ti.com Library Source and Projects

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 49

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

• clbBase – Base address of CLB tile

Return:

• Val - The function will return clbqepPos as the return value

Usage

Example code:

#Define CLB1_BASE 0x00003000U
uint32_t retVal1;
retVal1 = pto_qeponclb_getCLBQEPPos(CLB1_BASE);

7.6.8 pto_qeponclb_clearFIFOptr

Description

This function is to be called when needing to clear the FIFO pointer from the CLB. This function needs to be
called subsequently after reading a FIFO value pushed by the HLC so that the next PUSH will be in the correct
position.

Definition

void pto_qeponclb_clearFIFOptr(uint32_t clbBase);

Parameters

Input:

• clbBase – Base address of CLB tile

Return: none

Usage

Example code:

pto_qeponclb_clearFIFOptr(0x00003000);

8 Using the Reference APIs in Projects
The following sections describe the steps required to include one or more of the libraries into your project. These
include:
• Adding the library header file
• Updating Code Composer Studio options to link in the library
• Modification of the internal routing to, or from, the CLB
• Initialization steps required to invoke the functionality of the API

Note
Some APIs work with Pulse Train Inputs (PTI) and others with Pulse Train Outputs (PTO). For
simplicity, the examples, libraries, and directory structure make use of the suffix "pto" to identify
content belonging to this library.

8.1 Adding PTO Support to a Project
Use the following instructions to add the PTO APIs to a project.

Note
The exact location may vary depending on where C2000Ware_MotorControl_SDK is installed and
which other libraries the project is using.

Library Source and Projects www.ti.com

50 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

1. Include the PTO header file in the application i.e. {ProjectName}.h.

#include "pto_pulsegen.h"
#include "pto_qepdiv.h"
#include "pto_abs2qep.h"
#include "pto_qeponclb.h"

2. In Code Composer Studio (CCS), right click on the project and navigate to Project Properties → Build →
C2000 Compiler → Include Options
a. Add the header file directory to the '#include search path' (see Figure 8-1)

The path for PTO header files is ${SDK_ROOT}\libraries\position_sensing\pto\include.

Note
${SDK_ROOT} is a varaible used by CCS to indicate the install location of the SDK. Its
definition can be viewed under Project Properties → Resource → Linked Resources.

Figure 8-1. Compiler Include Options for Projects Using PTO Reference APIs
3. Add the compiled library file to the project:

a. Right click on the project name in the Project Explorer window
b. Navigate to 'Project Properties → Build → C2000 Linker → File Search Path'
c. Add the library directory to the 'library search path'
d. Add the name of the library to the 'Include library file'
e. Click 'Apply and Close'

The PTO compiled library object files are located at: [C2000Ware_MotorControl_SDK]
\libraries\position_sensing\pto\lib.

An example is shown in Figure 8-2 and Figure 8-3 show the changes to the linker options that are required to
include the PTO APIs compiled object file.

www.ti.com Using the Reference APIs in Projects

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 51

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

Figure 8-2. C2000™ Linker Options – PulseGen

Figure 8-3. C2000 Linker Options – QepDiv

Note
The exact location may vary depending on where C2000Ware_MotorControl_SDK is installed and
which other libraries the project is using.

8.2 Routing To and From the CLB
The next step is to understand the routing to/from the CLB and how it will integrate into your project's
requirements.

The provided examples route signals between the CLB and specific GPIO pins. The input/output routing is
described in the Section 6 Your application may, however, require routing signals to different pins or a different
XBAR or a different peripheral. The specific modifications differ from case-to-case.

In some cases, a simple change to the application code is all that is required.

The routing is through INPUTXBARx to the CLB AUXSIGx global MUX. You want to change the input to a
different GPIO. This can be accomplished by changing which GPIO is connected to INPUTXBARx.

Using the Reference APIs in Projects www.ti.com

52 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

In other cases, the CLB library may need to be changed or the design moved to another tile. For example:

If a Tile output is not able to use the OUTPUTXBAR it may instead override a peripheral output. Which
peripherals are available to each tile differs. For example ePWM1 can be overridden by Tile 1, ePWM2 by Tile2,
and so forth. A change here may require routing the output to a different OUTLUT or to a different tile.

8.3 Initialization Steps
The following section describes the specific initialization steps required to use the PTO library. The examples
should be used as a reference.

8.3.1 PTO-PulseGen API Initalization

The following steps are required for initialization and proper function of the PTO PulseGen API functions.

1. Initialize and set up the peripheral configuration by calling the pto_pulsegen_setupPeriph() function.
2. Set up the GPIOs required for configuration. For more information, see pto_setupGPIO.
3. To set the pulse generation configuration, see the pto_setOptions function.
4. ptoISR is used as the primary interrupt service routine (ISR). To see how to update the PTO configuration,

see this ISR.

8.3.2 PTO-QepDiv API Initialization

The following steps are required for initialization and proper function of the PTO QepDiv API functions.

1. Initialize and set up the peripheral configuration by calling the pto_qepdiv_setupPeriph() function.
2. Set up the GPIOs required for configuration.
3. To set the configuration, see the pto_qepdiv_config() function.
4. Call pto_qepdiv_startOperation() to start the QepDiv configuration.

8.3.3 PTO-Abs2Qep API Initialization

The following steps are required to initialize and configure the PTO Abs2Qep API functions.

1. Review the library headerfile, pto_abs2qep.h, and update any configuration information required to match
your system. If modifications are made, then rebuild the library as described in Section 7. The configuration
includes:
a. Resolution of the drive
b. Max RPM of the drive
c. Lines per revolution of the incremental encoder
d. Position sampling rate

2. Setup the GPIO and routing to/from the CLB as described in Section 8.2.
3. Setup the CLB, see pto_abs2qep_setupPeriph(). Note at the end of this function, a call is made to

setup the CLB with position 0.

 pto_abs2qep_translatePosition(0);
 pto_abs2qep_runPulseGen(PTO_ABS2QEP_CLOCKWISE_PTO);

4. Configure a timer to start an ISR when the absolute position is to be sampled. The example uses ePWM3.
5. In the sampling ISR do the following (see pto_EPWM3ISR):

a. Start the previous PTO translation: pto_abs2qep_runPulseGen(ptoDirection)
b. Sample a new absolute position AbsolutePositionNext = <application dependent

function>()
c. Translate the next PTO. ptoDirection =

pto_abs2qep_translatePosition(absolutePositionNext) This translation will be run the next
time the ISR is run.

www.ti.com Using the Reference APIs in Projects

SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

C2000™ Position Manager PTO API Reference Guide 53

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

8.3.4 PTO-QepOnClb API Initialization

The following steps are required to initialize and configure the PTO QepOnDiv API functions.

1. Initialize and set up the peripheral configuration by calling the pto_qeponclb_setupPeriph() function.
2. Configure the maximum counter position by passing the value as an argument into both the

pto_qeponclb_setupPeriph() and pto_qeponclb_configMaxCounterPos() functions.
3. Set up the GPIOs required for configuration.
4. epwmISR is used as the primary interrupt service routine (ISR). To see how to update the PTO configuration,

see this ISR.
5. Call pto_qeponclb_enableCLBQEP() to enable the CLBQEP for decoding.

9 References
• Texas Instruments: CLB Tool User’s Guide
• Texas Instruments: C2000™ Piccolo™ F28004x Series LaunchPad™ Development Kit

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (May 2021) to Revision D (January 2022) Page
• Added QEP implementation... 2
• Add new Section 5..21
• Added new Section 5.1...22

Using the Reference APIs in Projects www.ti.com

54 C2000™ Position Manager PTO API Reference Guide SPRAC77E – JANUARY 2022 – REVISED FEBRUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruir8
https://www.ti.com/lit/pdf/SPRUII7
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAC77
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAC77E&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 PTO – PulseGen
	2.1 PulseGen Implementation Overview
	2.2 PulseGen Limitations
	2.3 PulseGen CLB Configuration
	2.4 PulseGen Input and Output Signals

	3 PTO – QepDiv
	3.1 QepDiv Implementation Overview
	3.2 QepDiv Limitations
	3.3 QepDiv Divider Settings and Initialization
	3.4 QepDiv CLB Configuration

	4 PTO – Abs2Qep
	4.1 Abs2Qep Chip resources
	4.2 Abs2Qep Theory of Operation
	4.2.1 Abs2Qep Translation Equations
	4.2.2 Abs2Qep Translation Example
	4.2.3 Abs2Qep Zero Cross Detection

	4.3 Abs2Qep CLB Configuration
	4.3.1 Abs2Qep QEP-A/B Pulse Train Generation
	4.3.2 Abs2Qep Halt Latch
	4.3.3 Abs2Qep High Level Controller (HLC)

	4.4 Abs2Qep Input and Output Signals

	5 PTO – QepOnClb QEP Decoder
	5.1 QepOnClb and eQEP Comparison
	5.2 QepOnClb Chip resources
	5.3 QepOnClb Theory of Operation
	5.4 QepOnClb CLB Resources
	5.4.1 QepOnClb QCLK State Machine
	5.4.2 QepOnClb Direction Decode
	5.4.3 QepOnClb Error Detection
	5.4.4 QepOnClb Simulation Waveforms

	6 Example Projects
	6.1 Hardware Requirements
	6.2 Installing Code Composer Studio and C2000WARE-MOTORCONTROL-SDK™
	6.3 Import and Run Example Project
	6.4 PulseGen Example
	6.5 QepDiv Example
	6.6 Abs2Qep Example
	6.6.1 Watch Variables
	6.6.2 Test Signals
	6.6.3 Pin Usage and Test Connections

	6.7 QepOnClb Example
	6.7.1 Watch Variables
	6.7.2 Header Pin Connections

	7 Library Source and Projects
	7.1 Locating the Library Source Code
	7.2 Import and Build the Library Project
	7.3 PTO - PulseGen API
	7.3.1 pto_pulsegen_runPulseGen
	7.3.2 pto_startOperation
	7.3.3 pto_pulsegen_setupPeriph
	7.3.4 pto_pulsegen_reset

	7.4 PTO - QepDiv API
	7.4.1 pto_qepdiv_config
	7.4.2 pto_startOperation
	7.4.3 pto_qepdiv_setupPeriph
	7.4.4 pto_qepdiv_reset

	7.5 PTO - Abs2Qep API
	7.5.1 Abs2Qep API Configuration
	7.5.2 pto_abs2qep_runPulseGen
	7.5.3 pto_abs2qep_setupPeriph
	7.5.4 pto_abs2qep_translatePosition

	7.6 PTO - QepOnClb API
	7.6.1 pto_qeponclb_setupPeriph
	7.6.2 pto_qeponclb_initCLBQEP
	7.6.3 pto_qeponclb_configMaxCounterPos
	7.6.4 pto_qeponclb_enableCLBQEP
	7.6.5 pto_qeponclb_resetCLBQEP
	7.6.6 pto_qeponclb_getCounterVal
	7.6.7 pto_qeponclb_getCLBQEPPos
	7.6.8 pto_qeponclb_clearFIFOptr

	8 Using the Reference APIs in Projects
	8.1 Adding PTO Support to a Project
	8.2 Routing To and From the CLB
	8.3 Initialization Steps
	8.3.1 PTO-PulseGen API Initalization
	8.3.2 PTO-QepDiv API Initialization
	8.3.3 PTO-Abs2Qep API Initialization
	8.3.4 PTO-QepOnClb API Initialization

	9 References
	Revision History

