
Model-Based Design of
Video Applications for
TI DSPs

Dick Benson
Consultant Application Engineer
dick.benson@mathworks.com

Agenda
•Introduction to Model-Based Design (15 min)

•Basics of Simulink® (15 min)

•Design and Implementation of Video Applications (35 min)
– Edge detection example

•Advanced Video Applications (15 min)
– Video stabilization example

•Next Steps and Discussion (10 min)

• Increasing system complexity and computation demands
• Embedded system resource constraints

– Real-time requirements
• Designing for a target processor

– Micro-controller, GPP, DSP, FPGA
• End-product price, power, size

– Roadmap for adding features, performance
• Testing and validating results

System Design Challenges

Text-based
- Prevents rapid

iteration

Physical
prototypes

- Incomplete and
expensive

Manual coding
- Introduces

human error

Traditional
testing

- Errors found
too late in the
process

Design Implementation Test and
Verification

Requirements and
Specifications

Problems with Traditional Development

Executable models
- Unambiguous
- Only “one truth”

Automatic code
generation
- Minimizes coding

errors

Test with Design
- Detects errors

earlier

Simulation
- Reduces “real” prototypes
- Systematic “what-if”

analysis

Design ImplementationRequirements and
Specifications

Test and
Verification

Model ElaborationContinuous Verification

Advantages of Model-Based Design

JSF Flight Control System

Standard for Powertrain Controls
Production Code Development

W-CDMA Baseband Processors

Specialty Chipsets for DSP
Customers

Real Results Across Industries

Model-Based Design
• Executable specification

• Design with simulation

• Implementation through
code generation

• Continuous test and
verification

Innovation
• Rapid design iterations
• “What-if” studies
• Unique features and differentiators
Quality
• Reduce design errors
• Minimize hand coding errors
• Unambiguous communication

internally and externally
Cost
• Reduce expensive physical

prototypes
• Reduce re-work
• Reduce testing
Time-to-market
• Get it right the first time

The Value of Model-Based Design

Technical Computing

The leading environment for
technical computing

– The de facto industry-standard,
high-level programming language
for algorithm development

– Toolboxes for control system design,
signal and image processing,
statistics, optimization, symbolic
math, and other areas

– Foundation of the
MathWorks product family

Model-Based Design

The leading environment for modeling,
simulating, and implementing
dynamic and embedded systems

– Foundation for model-based design,
including physical-domain
modeling, automatic code generation,
and verification and validation

– Open architecture for integrating
models from other tools

– Applications in controls, signal
processing, communications, and
other system engineering areas

Basics of Simulink

• Simple signal processing
model
– Signal Processing Blockset

• SP Sources: Sine Wave
• SP Sinks: Spectrum Scope
• Filtering: Filter Designs:

Filter Realization Wizard
– Simulink

• Math Operations: Sum

Basics of Simulink

Demo

• Build low-pass filter
• Filter out the high-frequency

tone

Basics of Simulink (continued)

• Design, simulate, test,
and visualize with
Simulink

• Frame-based processing

• Use M-code and filters
designed in MATLAB

Basics of Simulink (continued)

• Drag and drop
• Connect
• Digital

– Fast frame-based
simulation

• Analog
– Variable-step numerical

integration solvers
– Zero-crossing detection

Model Construction

• Group multiple blocks into
subsystem to any level

• Model browser
• Conditionally executed

subsystem
– Enabled and triggered
– If, while, for, switch

• Configurable subsystem
– Swap model components

easily

Sub-Systems and Hierarchy

• Simulink
– Sources
– Sinks
– Continuous
– Discrete
– Nonlinear
– Math

• Simulink Fixed Point

• Signal Processing Blockset
• Video and Image Processing

Blockset

• Communications Blockset
• RF Blockset
• Others

The Block Libraries

Signal Processing Blockset
• Streaming data
• Multi-rate systems
• Transforms, filters, estimators
• Enables frames in Simulink
• Fixed- and floating-point support

Data Types • Default double
• C data types in Simulink
• Simulink Fixed Point

– Specify word length
– Integer, fixed, fractional,

and custom float types
– Trap overflow and

saturation
– Auto-scaling
– Round-off options
– Include own bit-true code

• Created from
– Other blocks
– C Code
– MATLAB Code

• User-defined:
– Parameter GUIs

“masks”
– Icons
– Libraries

User Defined Blocks and Libraries

• Change parameters and run
Simulink simulations from
MATLAB
>> for EbNo = 2:.1:6,
sim(‘system’), end

• MATLAB S-functions
• Embedded MATLAB Function

– Integration of Embedded
MATLAB Functions in
Simulink

Co-Develop with MATLAB

• Complex timing
– Feedback
– Asynchronous edge

triggered blocks
– Multirate digital with

arbitrary sample rates
• Concurrency

– True expression of
parallelism

– Important for whole
system or hardware
subsystem design

– Not possible with
programming language
such as C

Complex Timing and Concurrency

• Debug
– Single step blocks and

look at inputs, state, and
outputs

– Stop on block or at
specific time

• Profile
– Generate report
– Show elapsed time on

every block
– Optimize model simulation

time
• Accelerate

– Compile to C Code and run
on host

Debug, Profile, and Accelerate Models

Design and Implementation
of Video Applications

– Video and Image Processing Blockset

– Provides over 50 components and 100’s of algorithms
focused on implementation of embedded systems

Streaming
video in/out

Detection,
Thresholding

Tracking,
Counting

Background
Estimation

Modeling Video Applications

• Basic primitives
– Padding, correlation, statistics,

thresholding
– Block processing
– 2-D filtering, 2-D transforms

• Geometric transformations
– Rotation, translation, resize, shear
– Interpolation: nearest neighbor,

bi-linear, bi-cubic
• Edge detection

– Sobel, Prewitt, Roberts
• Morphological operations

– Erode, dilate, open, close
– Labeling of connected-components

Video and Image Processing Blockset
Libraries

• Analysis and Enhancement
– Edge detection, median filtering,

motion vector estimation (SAD)

• Superimposing images and graphics
– On-screen text overlays, Picture-

in-picture

• Conversions
– Color-space conversions (RGB,

YCbCr, etc)
– Chrominance re-sampling (4:2:2,

4:2:0, etc)

Libraries (continued)

Simulating Video Applications
• Simulink, Signal Processing Blockset,

Video and Image Processing Blockset*

• Fixed-Point considerations

• Avoid inaccurate results due to finite
word effects

• Built in tools for scaling and modeling
finite word effects

• Easy to change parameters to simulate
impact of rounding, overflow, etc.

*Requires Simulink Fixed-Point for integer and fixed point data types

Design an Edge Detection System

Edge Detection
• Fundamental component of many applications

– Object tracking and recognition
– Biomedical signal processing
– Unmanned vehicle technology
– Segmentation for video compression

Demo

Building Edge Detection Model
• What you will do…

– Find edges
– Overlay it onto original input
– Convert the model to fixed-point

• What you will learn about …
– Video sources and sinks
– Data type and interpretation of color and intensity
– Integer processing as a special case of fixed-point
– Accelerator mode and fixed-point models

Edge Detection and Video Compositing

Configuring Parameters

Choice of threshold
computation

Turn on
Edge thinning

Overlay Original and Detected Edge

Integrating the Final System

Model Summary Easy to import streaming
video into the simulation

Handy viewers for
inspecting video at any
point in the algorithm

Double, single, fixed-pointOptions important to embedded
system designers

Implementation of the
Edge Detection System on TI DSP

Generating Target-Independent Code

Demo

Code generated for
edge detection

block

Target-Independent Code (continued)

C6000™ DSP

Compile
& Link

CCS Project
C/ASM code

Code Composer
Studio

Down
load

Debug

MATLAB® Stateflow®Simulink®

Algorithm
Development

System Design

C5000™ DSP

DSP Hardware

C2000™ DSP

Embedded Target
for TI TMS320C6000™ DSP

Link for
Code Composer Studio™ IDE

Run

CCS Project
C/ASM code

Embedded Target for TI C6000

Tour of Device-Driver Libraries

Optimized Block Libraries

Creating Target-Specific Model

Generating Code for Target

Code generated
for edge detection

block

Analyzing Generated Code

Generated DSP/BIOS
configuration file

Model base rate is
tied to Timer 1 INT

ISR is assigned to
HW_INT15 (Timer 1)

Taking a Closer Look

RTDX block
generates target
code for reading
data from host

RTDX block
generates target
code for writing

data to host

Verifying Target Code

Click to run
previously built
DSP application

Running Target Code Click here to halt
demo and display

profile report

Profiling Real-time Execution

Make the subsystem
atomic

Getting Further Insight

Execution statistics
for atomic

subsystems

Execution statistics
for overall model

Link to the profiled
subsystem

Examining Profile Report

Advanced
Video Applications

Track and remove
motion in a video
sequence

Video Stabilization

Video Stabilization (continued)

Demo

Image Input Template
Tracking

Motion
Compensation Motion Estim.

Model Overview

• Steps to Stabilize Motion
– Estimate target position from template
– Compute inter-frame motion
– Compensate motion
– Update matching template

Frame (n-1):
Origin=(100,100)

Frame n:
Origin=(80,80)

∆ x, ∆ y

Algorithm Overview

Video Image, V Motion estimate
(xo,yo)

∑ −−−=
T

oo
S

yyxxTyxVE |),(),(|min

Computational Cost
= 2 * N2 (over T: NxN)

* L2 (over S: LxL)
* fps

Ex:
32x32 template
64x64 search

30 frames/sec
>250 million adds

per second

Estimate Target Position
(Computationally expensive)

Search for best fit
(minimum SAD)

Video Image, V
Template
Image, T

∑ −−−=
T

oo
S

yyxxTyxVE |),(),(|min

Search for Target Position
Sum of Absolute Differences (SAD)

Refine coarse motion estimates
– Find minimum of a quadratic surface over 3x3 neighborhood

E(x0,y0)

→ Solve Ax=B
for minimum

→ Sub-pixel
estimate×

×

Estimated
minimum

22 fyexdxycybxaz −++++=

Sub-Pixel Estimation of Target Motion

Image Input Template
Tracking

Motion
Compensation Motion Estim.

Integrating Video Stabilization System

Stabilization
algorithm designed

in simulation

Video Stabilization on TI DM642 EVM

Next Steps

More Information
• Products

– www.mathworks.com/dsp

• Example models available for download on MATLAB
Central
– www.mathworks.com/matlabcentral/
– Click on “File Exchange”

• Upcoming seminars, Webinars, and more…
– www.mathworks.com/dsp_events

• View a recorded Webinar (more than 50 available)
– www.mathworks.com/ webinar

Next Steps
– Arrange for a live online demo and discussion

– Arrange for an onsite visit by MathWorks Applications Engineer

– Request an evaluation license and try it out

– Attend a MathWorks training course

– Contact Rob Segal, your account manager:
• 508-647-7615
• Robert.Segal@mathworks.com

– Thank you for your interest!

