
Embedded Ogg Vorbis Decoder
An efficient implementation on the

TMS320C6416 DSP processor

Ogg Vorbis
• Vorbis is an open source lossy audio

compression codec.
– Comparable to other formats used to store and

play digital music, such as MP3, VQF, AAC,
and other digital audio formats

– Ogg is the general purpose media container
format.

– Founded by Xiph.org foundation.

Vorbis Source Code
• Xiph.org provides two reference decoder

source codes;
– libvorbis, a floating-point arithmetic decoder

implementation
– Tremor, fix-point arithmetic decoder

implementation
• Targeted for embedded implementations of the

Vorbis audio compression codec.

Project Outline
• Port Ogg Vorbis Tremor reference decoder

to TMS320C6416DSK.
• Define the performance critical modules

within the design.
• Optimize performance critical modules.
• Examined performance of the optimized

Ogg Vorbis decoder.

Tremor Code Branches

Default Low Mem No Byte *
Processor Requirement Lower Higher Higher
Memory Requirement Higher Lower Lower

Code branch used for this project.

* No byte branch is a version of the low-mem branch created for
processors whose smallest unit is greater than 8 bits.

Tremor Low-Mem Branch
• Tremor default branch allocates memory

dynamically without restriction.

• Tremor low-mem branch improves memory
usage with a slight performance penalty
although memory is still allocated
dynamically without restriction.

• Tremor low-mem branch is better suited for
memory restricted embedded environment.

Porting the Source Code

“Fix” all typedefs
for TMS320C6416

Remove and replace
alloca() statements

Generate front-end C
algorithm to interface
with Tremor

Configure DSP/BIOS
to handle AIC23
Audio Codec

Implement algorithm
to transfer data between
Tremor and AIC23
Audio Codec

Porting Steps
• Create type definitions to match the intended

variable bit width with TMS320C6416 variable
bit width.
– typedef long long ogg_int64_t
– typedef int ogg_int32_t
– typedef unsigned int ogg_uint32t
– typedef short ogg_int16_t

Porting Steps Cont’

• Tremor source code provides a self check
for bitwise operations used for decoding.
– Verify all “assumed” bit width by the source

code is consistent with the actual bit width used
by TMS320C6416

Porting Steps Cont’
• Fix the known issues with the Tremor

source code.
– Add free() statement to appropriate locations to

remove memory leaks.
– Fix all compiler warnings.

• Replace alloca() statement with malloc()
and free() statements.

Porting Steps Cont’
• Create a generic file system to store a

Vorbis audio file.
– Read a Vorbis audio file into on-board SDRAM

in Main() during DSP/BIOS initialization.
– Add file system functions to the Tremor low-

mem source code to access and read Vorbis
the audio file.

• Implement the setup and tear down steps
required for Tremor source code.

Porting Steps Cont’
• Implement ping pong buffers to store

decoded samples.
• Configure DSP/BIOS to output the decode

samples using AIC23 audio codec interrupt
(HW_INT11) while performing decoding in
the background.

Design Block Diagram

SDRAM void decode () void pcm_out () McBSPXINT
HWI_SINT11

Ping Pong
Buffer

Vorbis
Decoder

Output
PCM

to AIC23

Task ISR

PIP Objects
• PIP Module (Pipe Manager) manages block

I/O used for streams of program input and
output.

• Data notification functions are used to
synchronize data transfers.

PIP vs Ping Pong Buffer
• Ping Pong requires more user coding

– Higher chances of mistake
– May not be optimized

• PIP easier to implement and low overhead
– PIP module management functions are

available. Only requires few function calls to
manage buffer.

– Optimized for DSP/BIOS

PIP Module simplifies input and output
data stream implementation.

Design Block Diagram with PIP

SDRAM void decode () McBSPXINT
HWI_SINT11

PIP Module

Vorbis
Decoder

Output
PCM

to AIC23

SWI_ISR HWI_ISR

IOM Driver

Performance Results
Ping Pong Buffer Implementation

Cycles Percentage
IMDCT 75823572 44.40%
Residue Upack 51500363 30.00%
AIC23 Codec + Buffer Overhead 738718 0.40%
Other 42687551 25.20%

PIP Module Implementation
Cycles Percentage

IMDCT 74523681 44.00%
Residue Upack 50243698 30.00%
AIC23 Codec + PIP Overhead 695231 0.40%
Other 43564251 25.60%

Profiled by decoding ~5 second 128kps 44.1Hz stereo clip

Profiling the Results
• IMDCT and residue unpacking takes up the

majority of the available clock cycles.
– A better IMDCT algorithm can provide speed

improvement without writing assembly.
• The difference between ping pong buffer

and PIO module is minimal compared to the
number of cycles taken by the Vorbis
decoder.

DCT and DFT
• MDCT can be rewritten as an odd-time odd-frequency discrete

Fourier transform.
MDCT-IV is defined as shown below,

and K-th coefficient number of odd time odd frequency DFT of
length N is defined as shown below,

Using zero padding,

The relationship between MDCT-IV and DFT is defined as the following,

New O2 DFT Algorithm
• O2 DFT can be calculated using one n/4 point FFT with pre-

rotation and post-rotation.
Taking advantage of built-in symmetry,

New MDCT Algorithm
• MDCT is a special case of the new O2 DFT

algorithm.

• IMDCT is basically a scaled version of
MDCT.

Performance Optimization
• New IMDCT implementation

– The optimized IMDCT algorithm is performed as
follows:

1. Pre-processing
2. N/4-point complex FFT
3. Post-processing

– Uses optimized DSP_fft32x32 function from with built-
in bit reversal from C64X TI DSPLIB

Optimization Block Diagram

Pre-Arrange Pre-Rotation

Complex
FFT N/4

Post-RotationPost-Arrange

Post-Processing

Pre-Processing

Pre-Processing
• Pre-Arrange and Pre-Rotation

for (i = 0; i < n/4; i++)
X'[i] = X[2*i] * rotation factor[i]
X'[i+1] = X[(n/2-1)-2*i] * rotation factor[i+1]

Complex FFT N/4
• Utilize the DSP_fft32x32 from the TI DSPLIB

– Generate twiddle factor with “tw_fft32x32.exe”
from DSPLIB

– Include “dsp_fft32x32.h” header file
– Call DSP_fft32x32 to perform FFT

Post-Processing
• Post-Arrange and Post-Rotation

for (i = 0; i < n/4; i++)
x[i] = x'[i] * rotation factor[i]

Performance Result after
Optimization

MIPS Percent Improvement
Before IMDCT Optimization ~124 N/A
After IMDCT Optimization ~82 35.00%

Profiled by decoding ~75 second 128kps 44.1Hz stereo clip

Future Improvements
• Remove dynamic memory allocation from

the Vorbis Decoder.
• Write pre- and post- processing section

from the new IMDCT algorithm in assembly.
• Write the residue decoding portion in

assembly.
• Make the code 100% RF3 compliant.

References
1) Erik Montnemery and Joannes Sandvall, “Ogg/Vorbis in Embedded Systems”,

February, 2004.
2) R. Gluth, “Regular FFT-Related Transform Kernels for DCT/DST-Based

Polyphase Filter Banks”, In ICASSP, 1991, pp. 2205-8 vol 3.
3) Xiph.org Foundation, “Vorbis I Specification”, www.xiph.org, 2004.
4) Texas Instruments, “TMS320C6000 Programmer's Guide”, SPRU198,

August, 2002.
5) Texas Instruments, “DSP/BIOS User's Guide”, SPRU423, April, 2004.
6) Texas Instruments, “TMS320C64x DSP Library Programmer's Reference”,

SPRU565, April, 2002.

Embedded Ogg Vorbis Decoder
An efficient implementation on the

TMS320C6416 DSP Processor

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using TI components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony
 Video & Imaging www.ti.com/video
 Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/lpw
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

