
Embedded Ogg Vorbis Decoder
An efficient implementation on the 

TMS320C6416 DSP processor



Ogg Vorbis 
• Vorbis is an open source lossy audio 

compression codec.
– Comparable to other formats used to store and 

play digital music, such as MP3, VQF, AAC, 
and other digital audio formats

– Ogg is the general purpose media container 
format.

– Founded by Xiph.org foundation.



Vorbis Source Code
• Xiph.org provides two reference decoder 

source codes;
– libvorbis, a floating-point arithmetic decoder 

implementation
– Tremor, fix-point arithmetic decoder 

implementation
• Targeted for embedded implementations of the 

Vorbis audio compression codec. 



Project Outline
• Port Ogg Vorbis Tremor reference decoder 

to TMS320C6416DSK.
• Define the performance critical modules 

within the design.
• Optimize performance critical modules.
• Examined performance of the optimized 

Ogg Vorbis decoder.



Tremor Code Branches

Default Low Mem No Byte *
Processor Requirement Lower Higher Higher
Memory Requirement Higher Lower Lower

Code branch used for this project.

* No byte branch is a version of the low-mem branch created for 
processors whose smallest unit is greater than 8 bits.



Tremor Low-Mem Branch
• Tremor default branch allocates memory 

dynamically without restriction.

• Tremor low-mem branch improves memory 
usage with a slight performance penalty 
although memory is still allocated 
dynamically without restriction.

• Tremor low-mem branch is better suited for 
memory restricted embedded environment.



Porting the Source Code

“Fix” all typedefs 
for TMS320C6416

Remove and replace 
alloca() statements

Generate front-end C 
algorithm to interface 
with Tremor

Configure DSP/BIOS 
to handle AIC23 
Audio Codec

Implement algorithm 
to transfer data between 
Tremor and AIC23 
Audio Codec



Porting Steps 
• Create type definitions to match the intended 

variable bit width with TMS320C6416 variable 
bit width.
– typedef long long ogg_int64_t
– typedef int ogg_int32_t
– typedef unsigned int ogg_uint32t
– typedef short ogg_int16_t



Porting Steps Cont’

• Tremor source code provides a self check 
for bitwise operations used for decoding.
– Verify all “assumed” bit width by the source 

code is consistent with the actual bit width used 
by TMS320C6416



Porting Steps Cont’
• Fix the known issues with the Tremor

source code.
– Add free() statement to appropriate locations to 

remove memory leaks. 
– Fix all compiler warnings.

• Replace alloca() statement with malloc() 
and free() statements.



Porting Steps Cont’
• Create a generic file system to store a 

Vorbis audio file.
– Read a Vorbis audio file into on-board SDRAM 

in Main() during DSP/BIOS initialization.
– Add file system functions to the Tremor low-

mem source code to access and read Vorbis 
the audio file.

• Implement the setup and tear down steps 
required for Tremor source code.



Porting Steps Cont’
• Implement ping pong buffers to store 

decoded samples.
• Configure DSP/BIOS to output the decode 

samples using AIC23 audio codec interrupt 
(HW_INT11) while performing decoding in 
the background.



Design Block Diagram

SDRAM void decode () void pcm_out () McBSPXINT
HWI_SINT11

Ping Pong 
Buffer

Vorbis
Decoder 

Output 
PCM 

to AIC23 

Task ISR



PIP Objects
• PIP Module (Pipe Manager) manages block 

I/O used for streams of program input and 
output.

• Data notification functions are used to 
synchronize data transfers.



PIP vs Ping Pong Buffer
• Ping Pong requires more user coding

– Higher chances of mistake
– May not be optimized

• PIP easier to implement and low overhead
– PIP module management functions are 

available. Only requires few function calls to 
manage buffer.

– Optimized for DSP/BIOS

PIP Module simplifies input and output 
data stream implementation.



Design Block Diagram with PIP

SDRAM void decode () McBSPXINT
HWI_SINT11

PIP Module

Vorbis
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Output 
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SWI_ISR HWI_ISR

IOM Driver



Performance Results
Ping Pong Buffer Implementation

Cycles Percentage
IMDCT 75823572 44.40%
Residue Upack 51500363 30.00%
AIC23 Codec + Buffer Overhead 738718 0.40%
Other 42687551 25.20%

PIP Module Implementation
Cycles Percentage

IMDCT 74523681 44.00%
Residue Upack 50243698 30.00%
AIC23 Codec + PIP Overhead 695231 0.40%
Other 43564251 25.60%

Profiled by decoding ~5 second 128kps 44.1Hz stereo clip 



Profiling the Results
• IMDCT and residue unpacking takes up the 

majority of the available clock cycles.
– A better IMDCT algorithm can provide speed 

improvement without writing assembly.
• The difference between ping pong buffer 

and PIO module is minimal compared to the 
number of cycles taken by the Vorbis 
decoder.



DCT and DFT
• MDCT can be rewritten as an odd-time odd-frequency discrete 

Fourier transform.
MDCT-IV is defined as shown below,

and K-th coefficient number of odd time odd frequency DFT of 
length N is defined as shown below,

Using zero padding,

The relationship between MDCT-IV and DFT is defined as the following,



New O2 DFT Algorithm
• O2 DFT can be calculated using one n/4 point FFT with pre-

rotation and post-rotation.
Taking advantage of built-in symmetry,



New MDCT Algorithm
• MDCT is a special case of the new O2 DFT 

algorithm.

• IMDCT is basically a scaled version of 
MDCT.



Performance Optimization
• New IMDCT implementation

– The optimized IMDCT algorithm is performed as 
follows:

1. Pre-processing
2. N/4-point complex FFT
3. Post-processing

– Uses optimized DSP_fft32x32 function from with built-
in bit reversal from C64X TI DSPLIB



Optimization Block Diagram

Pre-Arrange Pre-Rotation

Complex 
FFT N/4

Post-RotationPost-Arrange

Post-Processing

Pre-Processing



Pre-Processing
• Pre-Arrange and Pre-Rotation

for (i = 0; i < n/4; i++)
X'[i] = X[2*i] * rotation factor[i]
X'[i+1] = X[(n/2-1)-2*i] * rotation factor[i+1]



Complex FFT N/4
• Utilize the DSP_fft32x32 from the TI DSPLIB

– Generate twiddle factor with “tw_fft32x32.exe”
from DSPLIB

– Include “dsp_fft32x32.h” header file
– Call DSP_fft32x32 to perform FFT



Post-Processing
• Post-Arrange and Post-Rotation

for (i = 0; i < n/4; i++)
x[i] = x'[i] * rotation factor[i]



Performance Result after 
Optimization

MIPS Percent Improvement
Before IMDCT Optimization ~124 N/A
After IMDCT Optimization ~82 35.00%

Profiled by decoding ~75 second 128kps 44.1Hz stereo clip



Future Improvements
• Remove dynamic memory allocation from 

the Vorbis Decoder.
• Write pre- and post- processing section 

from the new IMDCT algorithm in assembly.
• Write the residue decoding portion in 

assembly.
• Make the code 100% RF3 compliant.
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