TI Developer Conference March 7-9, 2007 • Dallas, TX

Minds in Motion

A Look at the Algorithms and Tuning that Enable the DaVinci™ Technology Image Pipeline

Jianping Zhou
Member of Technical Staff
Texas Instruments
jianping@ti.com

Outline

- DaVinci Image Pipeline
- DaVinci Image Pipeline Algorithms
- DaVinci Image Pipeline Tuning
- Conclusions

Digital Imaging

DaVinci VPSS

- Implemented in VPSS Preview Engine
 - Fast for real-time video processing
- DaVinci Image Pipeline Driver
 - Refer to Session S285113, "The New and Enhanced DaVinci VPSS Drivers"

Outline

- DaVinci Image Pipeline
- DaVinci Image Pipeline Algorithms
- DaVinci Image Pipeline Tuning
- Conclusions

Why Black Level Adjustment

- Black level leads to the whitening of image dark region and perceived loss of overall contrast
- Dark current from the sensor and lens flare from the lens are the main reasons

Why Noise Filter

- Noise is everywhere
 - Optical signal
 - Electrical signal
 - Digital signal

Noise Filter

- Goal: Remove noise
- Method
 - Searching the similar neighbor pixels (Similarity is defined by Threshold)
 - Averaging similar neighbors
 - Weighted sum with original pixels

Why White Balance

Incandescent Light

Fluorescent Light

Daylight

Human Perception

White Balance

- Goal: Make white to be white
 - Automatically compensate color differences
- Model

$$egin{bmatrix} R' \ G' \ B' \end{bmatrix} = egin{bmatrix} R imes W_R \ G imes W_G \ B imes W_B \end{bmatrix}$$

Why CFA Interpolation

- Cameras have only one sensor
- Three components are needed to represent color
- Color Filter Array (CFA) is applied to a CCD or CMOS sensor

Obtain one color component at each pixel

CFA Interpolation

Goal: Interpolate 2 missing colors for each location

Why RGB Blending

- Different sensors have different RGB values for a same color
- We need to convert the sensor RGB color space to a standard RGB color space

RGB Blending

- Goal: Make the right color
 - Use Rec709 RGB color space
- Model

$$\begin{bmatrix} R' \\ G' \\ B' \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Gamma Correction

Goal: Compensate the nonlinearity of the output

device

Model:

$$R'=R^{1/\gamma}$$
 $G'=G^{1/\gamma}$ $B'=B^{1/\gamma}$

 Use standard Gamma, for example, Rec709 and SMPTE 240M

0.7

0.6 0.5

Minds in Motion

Frame buffer value

Why RGB-to-YCC Conversion

- Human eyes are more sensitive to luminance than color information
- We need to separate luminance component (Y) from color components (Cb, Cr) for different processing using different precisions
- Also needed for video encoder

RGB-to-YCC Conversion

Goal: Convert RGB to YCbCr based on standard formula

$$\begin{pmatrix} Y \\ C_b \\ C_r \end{pmatrix} = \begin{bmatrix} 0.2989 & 0.5866 & 0.1145 \\ -0.1687 & -0.3312 & 0.5000 \\ 0.5000 & -0.4183 & -0.0816 \end{bmatrix} \times \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

Contrast Enhancement

Contrast: Increasing or decreasing the range

Brightness: Increasing or decreasing the level

Outline

- DaVinci Image Pipeline
- DaVinci Image Pipeline Algorithms
- DaVinci Image Pipeline Tuning
- Conclusions

DaVinci Image Pipeline Tuning

- Tune parameters to achieve high-quality images and videos
- Sensors
 - Different sensors have different quality
 - Different sensors have different characteristics
- Image pipelines
 - Balance different image processing functions
- Customers
 - Different image and video quality preferences

Image Pipeline Tuning Challenges

- Must tune for each image sensor module
- Must tune based on customer image and video quality preferences
- No standard tuning methodology or quality metric
- Tuning each new camera takes time to achieve best image and video quality

Tuning Equipment

- Sensor module
- Light box
 - Provide different color temperatures
 - Tune white balancing
- Flash meter
 - Measure light intensity (Lux)
- Uniform light sources
 - Provide uniform lighting
 - Tune noise filtering

Test Charts

- ColorChecker
 - Tune white balancing
 - Tune RGB blending
- ISO OECF Chart (ISO-14524)
 - Tune noise filtering

Black Level Adjustment

- Goal: Make black to be black
- Model:

$$R'_{i,j} = R_{i,j} - O^{R}_{i,j}$$

$$G'_{i,j} = G_{i,j} - O^{G}_{i,j}$$

$$B'_{i,j} = B_{i,j} - O^{B}_{i,j}$$

- Methods
 - Characterize the dark current and lens flare
 - Store these values, image-independent or imagedependent
 - Subtract these values from the raw sensor image

Noise Characterization

- Goal: Characterizes white noise in the Bayer data
- Method
 - 1. Capture an OECF chart image using a uniform lighting source
 - 2. Obtain Bayer raw data for 12 uniform gray patches
 - 3. Compute the mean and std of the intensities for each patch
 - 4. The std value is the noise std for the luminance level at the mean value
- Noise Models
 - Linear model: N~S
 - Square-root model: N~sqrt(S)
 - Depends on the sensor

DaVinci Image Pipeline

White Balance Tuning

- Goal: Make white to be white
- Source: Raw Bayer data without auto-whitebalancing or white balancing tuning
- Model

$$\begin{bmatrix} R' \\ G' \\ B' \end{bmatrix} = \begin{bmatrix} R \times W_R \\ G \times W_G \\ B \times W_B \end{bmatrix}$$

White Balance Tuning Steps

- 1. Use the ColorChecker chart to collect data
- 2. Obtain average RGB values of 6 gray patches
- 3. Mean square error minimization

min
$$f_R(W_R) = \sum_{n=1}^{6} (W_R \times R_n - G_n)^2$$

min
$$f_B(W_B) = \sum_{n=1}^{6} (W_B \times B_n - G_n)^2$$

4. Set green gain to be 1

White Balance Tuning Example

After White Balance

DaVinci Image Pipeline

RGB Blending Tuning

- Goal: Make the right color
- Source: Bayer data after white balancing tuning
- Model

$$\begin{bmatrix} R' \\ G' \\ B' \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

- Sum of each row equals 1
- Reference: Finlayson, G.D. and Drew M.S.,
 "Constrained least-squares regression in color spaces,"
 Journal of Electronic Imaging 6(4), 1997

 Minds in Motion

RGB Blending Tuning Steps

- 1. Use a ColorChecker chart to collect data
- Obtain average RGB values of 18 color patches of raw data after white balancing and reference images
- 3. Do inverse Gamma correction on reference RGB values
- 4. Constrained minimization

$$\min f(\mathbf{M}) = \sum_{n=1}^{18} \sum_{i=1}^{3} \left(\sum_{j=1}^{3} M_{i,j} \times RGB_{j,n} - RGB_{i,n}^{ref} \right)^{2}$$

$$subject \ to \ \sum_{i=1}^{3} M_{i,j} = 1$$

RGB Blending Tuning Example

Before RGB Blending

After RGB Blending

Outline

- DaVinci Image Pipeline
- DaVinci Image Pipeline Algorithms
- DaVinci Image Pipeline Tuning
- Conclusions

Conclusions

- DaVinci Image Pipeline
 - Provides both baseline and enhancement image processing functions
 - Fast for real-time video processing
- DaVinci Image Pipeline Tuning
 - Sensor characteristics
 - Customer preference
- DaVinci Image Pipeline Driver
 - Refer to Session S285113, "The New and Enhanced DaVinci VPSS Drivers"

TI Developer Conference March 7-9, 2007 • Dallas, TX

A Look at the Algorithms and Tuning that Enable the DaVinciTM Technology Image Pipeline

Q & A

Jianping Zhou jianping@ti.com

