
TMS320C5x Simulator
Getting Started Guide

Printed on Recycled Paper

Literature Number: SPRU124C
Reprinted November 1997

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright  1996, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

This manual describes how to install the TMS320C5x simulator and the C
source debugger on PC� systems running MS-DOS� or PC-DOS�; on a
SPARCstation running SunOS� or Solaris�; and on a HP9000 series 700�
PA-RISC� system running HP-UX�.

This manual also contains release notes for the TMS320C5x simulator.

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Here is an example of a system prompt and a command that you might
enter:

C: csr –a /user/ti/simuboard/utilities

Notational Conventions

iv

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect ” section name”, address

.asect is the directive. This directive has two parameters, indicated by sec-
tion name and address. When you use .asect, the first parameter must be
an actual section name, enclosed in double quotes; the second parameter
must be an address.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of an instruction
that has an optional parameter:

LALK 16-bit constant [, shift]

The LALK instruction has two parameters. The first parameter, 16-bit con-
stant, is required. The second parameter, shift, is optional. As this syntax
shows, if you use the optional second parameter, you must precede it with
a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the path-
name (they are not optional).

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

{ * | *+ | *– }

This provides three choices: * , *+ , or *– .

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this di-
rective is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

 Related Documentation From Texas Instruments

v Read This First

Related Documentation From Texas Instruments

The following books describe the TMS320C5x and related support tools. To
obtain a copy of any of these TI documents, call the Texas Instruments Litera-
ture Response Center at (800) 477–8924. When ordering, please identify the
book by its title and literature number.

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide (lit-
erature number SPRU018) describes the assembly language tools (as-
sembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the ’C1x, ’C2x, ’C2xx, and ’C5x gen-
erations of devices.

TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide (literature
number SPRU024) describes the ’C2x/’C2xx/’C5x C compiler. This C
compiler accepts ANSI standard C source code and produces TMS320
assembly language source code for the ’C2x, ’C2xx, and ’C5x genera-
tions of devices.

TMS320C5x C Source Debugger User’s Guide (literature number
SPRU055) tells you how to invoke the ’C5x emulator, EVM, and simulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints, and includes a tutorial that introduces basic debugger
functionality.

TMS320C5x User’s Guide (literature number SPRU056) describes the ’C5x
16-bit, fixed-point, general-purpose digital signal processors. Covered
are its architecture, internal register structure, instruction set, pipeline,
specifications, DMA, I/O ports, and on-chip peripherals.

If You Need Assistance . . .

vi

If You Need Assistance . . .

If you want to . . . Contact Texas Instruments at . . .

Visit TI online, including TI&ME�, your
own customized web page

World Wide Web: http://www.ti.com

Receive general information or
assistance

World Wide Web: http://www.ti.com/sc/docs/pic/home.htm
North America and South America (English): (214) 644–5580
Europe, Middle East, and Africa:

Dutch: 33–130–70–1166
English: 33–130–70–1165
French: 33–130–70–1164
Italian: 33–130–70–1167
German: 33–130–70–1168

Japan (Japanese or English):
Domestic toll-free: 0120–81–0026
International: 81–3–3457–0972 or 81–3–3457–0976

Korea (Korean or English): 82–2–551–2804
Taiwan (Chinese or English): 886–2–3771450

Ask questions about Digital Signal
Processor (DSP) product operation or
report suspected problems

(713) 274–2320 Fax: (713) 274–2324
Fax Europe: +33–1–3070–1032
Email: 4389750@mcimail.com
World Wide Web: http://www.ti.com/sc/docs/dsps/expsys.htm
BBS North America: (713) 274–2323 8–N–1
BBS Europe: +44–2–3422–3248
320 BBS Online: ftp.ti.com:/mirrors/tms320bbs (192.94.94.33)

Request tool updates Software: (214) 638–0333 Fax: (214) 638–7742
Hardware: (713) 274–2285

Order Texas Instruments documentation
(a literature number is required)

(800) 477–8924

Make suggestions about or report
mistakes in documentation (please
mention the full title of the book, the
literature number, and the publication
date from the spine or front cover)

Email: comments@books.sc.ti.com

Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251–1443

 Trademarks

vii Read This First

Trademarks

HP 9000 Series 700, HP-UX, and PA-RISC are trademarks of
Hewlett-Packard Company.

MS-DOS and Windows are registered trademarks of Microsoft Corp.

OpenWindows, Solaris, and SunOS are trademarks of Sun Microsystems, Inc.

PC and PC-DOS are trademarks of International Business Machines Corp.

SPARC is a trademark of SPARC International, Inc.

SPARCstation is licensed exclusively to Sun Microsystems, Inc.

TI&ME is a trademark of Texas Instruments Incorporated.

X Window System is a trademark of the Massachusetts Institute of Technology.

viii

 Contents

ix

Contents

1 Installing the Simulator and C Source Debugger With DOS 1-1.
Lists the hardware and software you need to install the simulator and C source debugger; pro-
vides installation instructions for PC systems running MS-DOS or PC-DOS.

1.1 What You Need 1-2.
Hardware checklist 1-2.
Software checklist 1-3.

1.2 Step 1: Installing the Simulator and Debugger Software 1-4.
1.3 Step 2: Setting Up the Debugger Environment 1-5.

Defining an initialization batch file 1-6.
Changing the autoexec.bat file 1-7.

1.4 Step 3: Verifying the Installation 1-8.
1.5 Using the Debugger With Windows 1-9.

2 Installing the Simulator and C Source Debugger With SunOS 2-1.
Lists the hardware and software you need to install the simulator and C source debugger; pro-
vides installation instructions for SPARCstations running SunOS or Solaris.

2.1 What You Need 2-2.
Hardware checklist 2-2.
Software checklist 2-3.

2.2 Step 1: Installing the Simulator and Debugger Software 2-4.
Mounting the CD-ROM 2-4.
Copying the files 2-5.
Unmounting the CD-ROM 2-5.

2.3 Step 2: Setting Up the Debugger Environment 2-6.
Reinitializing your shell 2-7.

2.4 Step 3: Verifying the Installation 2-8.
2.5 Using the Debugger With the X Window System 2-9.

Using the keyboard’s special keys 2-9.
Changing the debugger font 2-10.
Color mappings on monochrome screens 2-10.

Contents

x

3 Installing the Simulator and C Source Debugger With HP-UX 3-1.
Lists the hardware and software you need to install the simulator and C source debugger; pro-
vides installation instructions for HP systems running HP-UX.

3.1 What You Need 3-2.
Hardware checklist 3-2.
Software checklist 3-3.

3.2 Step 1: Installing the Simulator and Debugger Software 3-4.
Mounting the CD-ROM 3-4.
Copying the files 3-4.
Unmounting the CD-ROM 3-5.

3.3 Step 2: Setting Up the Debugger Environment 3-6.
Reinitializing your shell 3-7.

3.4 Step 3: Verifying the Installation 3-8.
3.5 Using the Debugger With the X Window System 3-9.

Using the keyboard’s special keys 3-9.
Changing the debugger font 3-10.
Color mappings on monochrome screens 3-10.

4 Release Notes 4-1.
Describes changes to the simulator version of the TMS320C5x C source debugger.

4.1 Changes to the Options Used to Invoke the C Source Debugger 4-2.
4.2 Changes to Defining a Memory Map 4-2.
4.3 Known Problem 4-2.

5 Defining a Memory Map 5-1.
Contains instructions for setting up a memory map that enables the debugger to correctly ac-
cess target memory. Includes hints about using batch files, and tells you how to simulate I/O
ports for use with the simulator version of the debugger.

5.1 The Memory Map: What It Is and Why You Must Define It 5-2.
Defining the memory map in a batch file 5-2.
Potential memory map problems 5-3.

5.2 A Sample Memory Map 5-4.
5.3 Identifying Usable Memory Ranges 5-6.

Memory mapping with the simulator (PC version) 5-7.
5.4 Enabling Memory Mapping 5-8.
5.5 Checking the Memory Map 5-9.
5.6 Modifying the Memory Map During a Debugging Session 5-10.

Returning to the original memory map 5-11.
5.7 Using Multiple Memory Maps for Multiple Target Systems 5-11.
5.8 Simulating I/O Space (Simulator Only) 5-12.

Connecting an I/O port 5-12.
Disconnecting an I/O port 5-13.

 Contents

xi Contents

5.9 Simulating External Interrupts (Simulator Only) 5-14.
Setting up your input file 5-14.
Programming the simulator 5-16.

5.10 Simulating Peripherals (Simulator Only) 5-18.
5.11 Simulating Standard Serial Ports (Simulator Only) 5-19.

Setting up your transmit and receive operations 5-20.
Connecting input/output files 5-21.
Programming the simulator 5-21.

5.12 Simulating Buffered Serial Ports (Simulator Only) 5-22.
Setting up your transmit and receive operations 5-23.
Connecting input/output files 5-24.
Programming the simulator 5-24.

5.13 Simulating TDM Serial Ports (Simulator Only) 5-25.
Setting up your transmit and receive operations 5-26.
Connecting input/output files 5-27.
Programming the simulator 5-27.

Running Title—Attribute Reference

xii

Figures

1–1 Sample Initialization Batch File 1-6.
1–2 Sample autoexec.bat File 1-7.
2–1 Sample Shell Configuration File for an X Window System 2-7.
3–1 Sample Shell Configuration File for an X Window System 3-7.
5–1 Memory Map Commands in the Sample Initialization Batch File for the EVM 5-4.
5–2 Sample Memory Map for Use With a ’C5x EVM 5-5.

1-1 Chapter Title—Attribute Reference

Installing the Simulator
and C Source Debugger With DOS

This chapter describes how to install the TMS320C5x simulator and the C
source debugger on PC systems running MS-DOS or PC-DOS. You can also
use the debugger with Windows�. When you complete the installation, turn
to the TMS320C5x C Source Debugger User’s Guide.

Topic Page

1.1 What You Need 1-2.

1.2 Step 1: Installing the Simulator and Debugger Software 1-4.

1.3 Step 2: Setting Up the Debugger Environment 1-5.

1.4 Step 3: Verifying the Installation 1-8.

1.5 Using the Debugger With Windows 1-9.

Chapter 1

What You Need

 1-2

1.1 What You Need

To install the ’C5x C source debugger and simulator, you need the items in the
following hardware and software checklists.

Hardware checklist

Host An IBM PC/AT or 100%-compatible ISA/EISA-based PC with a
hard-disk system and a 1.2M floppy-disk drive; a 386 or higher is
highly recommended

Memory Minimum of 640K bytes; in addition, if you are running under Win-
dows, you need at least 256K bytes of extended memory

Display Monochrome or color monitor (color recommended)

Optional hardware A Microsoft-compatible mouse

An EGA- or VGA-compatible graphics display card and a large mon-
itor. The debugger has several options that allow you to change the
overall size of the debugger display. If you have an EGA or
VGA-compatible graphics card, you can take advantage of the larg-
er screen sizes. The larger screen sizes are most effective when
used with a large (17” or 19”) monitor. (To use a larger screen size,
you must invoke the debugger with an appropriate option. For more
information about options, refer to the invocation information in the
TMS320C5x C Source Debugger User’s Guide.)

Miscellaneous
materials

Blank, formatted disks

 What You Need

1-3 Installing the Simulator and C Source Debugger With DOS

Software checklist

Operating system MS-DOS or PC-DOS (version 3.0 or later)
Optional: Windows (version 3.0 or later)

Software tools TMS320C1x/’C2x/’C2xx/’C5x assembler and linker
Optional: TMS320C2x/’C2xx/’C5x C compiler

Optional files
included with the
debugger package

siminit.cmd is a general-purpose batch file that contains debugger
commands. This batch file, shipped with the debugger, defines a
’C5x memory map. When you first start using the debugger, this
memory map should be sufficient for your needs. Later, you may
want to define your own memory map. For information about defin-
ing your own memory map, refer to the defining a memory map
chapter in the TMS320C5x C Source Debugger User’s Guide. If a
memory map batch file isn’t present when you invoke the debugger,
all memory is invalid initially.

init.clr is a general-purpose screen configuration file. If init.clr isn’t
present when you invoke the debugger, the debugger uses the
default screen configuration.

init.25, init.43, and init.50 have been provided for basic 80 x 25,
80 x 43, and 80 x 50 screen sizes, respectively. The init.clr file
brings up the debugger in 80 x 25 mode. To bring the debugger up
in another mode, copy one of the init.xx files to the init.clr file. When
you first invoke the debugger, the default screen configuration
should be sufficient for your needs. Later, you may want to define
your own custom configuration.

The default configuration is for color monitors; an additional file,
mono.clr, can be used for monochrome monitors. When you first
start to use the debugger, the default screen configuration should be
sufficient for your needs. Later, you may want to define your own
custom configuration.

For information about these files and about setting up your own
screen configuration, refer to customizing the debugger display sec-
tion in the TMS320C5x C Source Debugger User’s Guide.

Step 1: Installing the Simulator and Debugger Software

 1-4

1.2 Step 1: Installing the Simulator and Debugger Software

This section explains how to install the simulator and debugger on a hard-disk
system.

1) Make a backup copy of the product disk(s). The product disk(s) include
both a DOS and a Windows version of the debugger and simulator.

2) On your hard disk, create a directory named sim5x. This directory will con-
tain the ’C5x software.

MD C:\sim5x

3) Insert the product disk(s) into drive A. Copy the contents of the disk(s).

COPY A:*.* C:\sim5x*.* /V

The DOS version of the debugger is named sim5x.exe. The Windows
version of the debugger is named sim5xw.exe. Throughout this document,
the debugger is referred to simply as sim5x.

 Step 2: Setting Up the Debugger Environment

1-5 Installing the Simulator and C Source Debugger With DOS

1.3 Step 2: Setting Up the Debugger Environment

To ensure that your debugger works correctly, you must identify the items that
are listed in Table 1–1. You can specify this information either in an initializa-
tion batch file (see page 1-6) or in your autoexec.bat file (see page 1-7).

Table 1–1.Debugger Environment Variables

To identify . . . Use a statement with this format . . .

Directory with executable files for
the C source debugger

PATH=drive :\ directory

Directory with debugger data files,
such as init.cmd and init.clr

SET D_DIR=drive :\ directory

Directory with the program source
files that you want to debug

SET D_SRC=drive :\ directory

Address of the emulator port on
your PC and other options that you

SET D_OPTIONS= [object filename] [options]
your PC and other options that you
want to use every time that you
invoke the debugger

[object filename] Names the file that you want to load every time that
you invoke the debugger.invoke the debugger

[options] Indicates the port address and other options; for
more information, see the TMS320C5x C Source
Debugger User’s Guide.

–p port address Identifies the emulator port on your PC:

378 default port address for the XDS510PP (LPT1
on most PCs); to verify the address of the
printer port where you connected the
XDS510PP, see your PC documentation.

240 default port address for the XDS510; for more
information, see the XDS51x Emulator Instal-
lation Guide.

–b Selects a screen size of 80 characters by 43 lines
(EGA or VGA)

–bb Selects a screen size of 80 characters by 50 lines
(VGA only)

–font height Uses the Windows Terminal font closest in point
size to the specified height

–i pathname Identifies additional directories

–mv version Specifies the memory map to use with the simulator

–profile Allows you to enter the profiling environment

–s Loads only the symbol table for a named object file

–t filename Identifies a new initialization file

–v Loads the object code with a minimal symbol table

Note: When you invoke the debugger, you can include –x on the command line to override any D_OPTIONS in the initialization
file or in your autoexec.bat file.

Step 2: Setting Up the Debugger Environment

 1-6

Defining an initialization batch file

To create an initialization file named initdb.bat, follow these steps using a text
editor; be careful that no spaces precede the equal (=) sign wherever it ap-
pears.

1) To specify the location of the C source debugger executable files and to
ensure that this statement does not overwrite PATH statements in other
batch files, type:

PATH=C:\sim5x;%PATH%

2) To specify the directory with the C source debugger data files, type:

SET D_DIR=C:\sim5x

3) To specify directories that contain the program source files that you want
to debug, use the following format to set the D_SRC environment variable:

SET D_SRC=pathname 1[;pathname 2...]

4) To specify the emulator port address and other options, use the following
format to define the D_OPTIONS environment variable:

SET D_OPTIONS=[–p port_address] [options]

5) To add the emulator-reset command to the file, type:

EMURST

6) Save the file as initdb.bat, and then exit the text editor.

7) Before you start Windows and any time that you power up or reboot your
PC, invoke this file from a DOS prompt by entering:

INITDB

Figure 1–1 shows a sample initialization file that contains the required path,
environment variables, and emulator-reset statement.

Figure 1–1. Sample Initialization Batch File

PATH=C:\sim5x;%PATH%

SET D_DIR=C:\sim5x

SET D_SRC=C:\C5xcode

SET D_OPTIONS=–b

EMURST

PATH statement

Environment
variables

Reset the emulator

 Step 2: Setting Up the Debugger Environment

1-7 Installing the Simulator and C Source Debugger With DOS

Changing the autoexec.bat file

If you are sure that no programs will be affected by changing your autoexec.bat
file, you can specify the debugger environment in that file. To change your
autoexec.bat file, follow these steps using a text editor; be careful that no
spaces precede the equal (=) sign wherever it appears.

1) At the end of the PATH statement in your autoexec.bat file, type:

;C:\sim5x;

2) To specify the directory that contains the C source debugger files, type:

SET D_DIR=C:\sim5x

3) To specify directories that contain the program source files that you want
to debug, use the following format to set the D_SRC environment variable:

SET D_SRC=pathname 1[;pathname 2...]

4) To specify the emulator port address and other options, use the following
format to define the D_OPTIONS environment variable:

SET D_OPTIONS=[–p port_address] [options]

5) To add the emulator-reset command to the file, type:

EMURST

6) Save the file, and then exit the text editor.

7) Before you invoke the debugger for the first time, invoke the autoexec.bat
file from an DOS prompt by entering:

AUTOEXEC

Figure 1–2 shows a portion of the autoexec.bat file with the required path, en-
vironment variables, and emulator-reset statement.

Figure 1–2. Sample autoexec.bat File

PATH statement

Environment
variables

Reset the emulator

.

.

.

PATH=C:\DOS;C:\C5xtool;C:\sim5x;

SET D_DIR=C:\sim5x

SET D_SRC=C:\C5xtool

SET D_OPTIONS=–b

EMURST

.

.

.

Step 3: Verifying the Installation

 1-8

1.4 Step 3: Verifying the Installation

To ensure that you have correctly installed the simulator and debugger soft-
ware, enter this command at the system prompt:

sim5x c:\sim5x\sample

You should see a display similar to this one:

DISASSEMBLY

MEMORYCOMMAND

>>>

TMS320C5x Revision 1

Loading sample.out

 34 Symbols loaded

Done

ACC 0000005f

ACCB 01ff01ff

PREG 00000005

PC 20cf TOS 005d

AR0 08ab AR1 08ac

AR2 08a5 AR3 00a3

AR4 00a4 AR5 0807

AR6 08a4 AR7 00a7

ST0 2610 ST1 cdfc

PMST 0038 TIM 249d

IMR 01ff IFR 0008

DBMR 0000 BMAR 5555

INDX 08ab TRG0 0001

TRG1 ffe1 TRG2 fff1

SPCR 0800 TCR 0000

20cf bf08 c_int0: LAR AR0,#08a1h

20d1 bf09 LAR AR1,#00a1h

20d3 bf00 SPM 0

20d4 be47 SETC SXM

20d5 bf80 LACC #2143h

20d7 b801 ADD #1

20d8 e388 BCND 20dch,EQ

20da 7a89 CALL 20e0h,*,AR1

20dc 7a89 CALL main,*,AR1

20de 7a89 CALL abort,*,AR1

20e0 bf80 LACC #2143h

20e2 8bc00 LDP #0

20e3 a680 TBLR *

20e4 b801 ADD #1

20e5 028a LAR AR2,*,AR2

0000 0000 0000 0000 0000 01ff ff00 0008 0038

0008 0000 0000 20f1 20f3 0001 ffe1 fff1 0000

0010 08ab 08ac 08a5 00a3 0004 0807 08a4 00a7

0018 08ab 08ab 0000 0000 0000 0000 ff77 5555

0020 0000 0000 0000 0000 249d ffff 0000 0000

0028 ffff ffff 000f 0000 0000 0000 0000 0000

CPU

Load Break Watch Memory Color MoD e Run=F5 Step=F8 Next=F10PinAnalyis

� If you see a display similar to this one, you have correctly installed your
simulator and debugger.

� If you don’t see a similar display, your debugger or simulator may not be
installed properly. Go back through the installation instructions and be
sure that you have followed each step correctly; then reenter the com-
mand above.

 Using the Debugger With Windows

1-9 Installing the Simulator and C Source Debugger With DOS

1.5 Using the Debugger With Windows

If you’re using Windows, you can freely move or resize the debugger display
on the screen. If the resized display is bigger than the debugger requires, the
extra space is not used. If the resized display is smaller than required, the
display is clipped. Note that when the display is clipped, it can’t be scrolled.

You may want to create an icon to make it easier to invoke the debugger from
within the Windows environment. Refer to your Windows manual for details.

You should run Windows in either the standard mode or the 386-enhanced
mode to get the best results.

 1-10

2-1 Chapter Title—Attribute Reference

Installing the Simulator and C
Source Debugger With SunOS

This chapter describes how to install the ’C5x simulator and the C source de-
bugger on a SPARCstation running SunOS� or Solaris�. When you complete
the installation, turn to the TMS320C5x C Source Debugger User’s Guide.

Topic Page

2.1 What You Need 2-2.

2.2 Step 1: Installing the Simulator and Debugger Software 2-4.

2.3 Step 2: Setting Up the Debugger Environment 2-6.

2.4 Step 3: Verifying the Installation 2-8.

2.5 Using the Debugger With the X Window System 2-9.

Chapter 2

What You Need

 2-2

2.1 What You Need

To install the ’C5x C source debugger and simulator, you need the items in the
following hardware and software checklists.

Hardware checklist

Host A SPARCstation or a system that is100% compatible with a
SPARCstation 2 class or higher

Display Monochrome or color monitor (color recommended)

Disk space 2M bytes of disk space

Required hardware CD-ROM drive

Optional hardware Mouse

 What You Need

2-3 Installing the Simulator and C Source Debugger With SunOS

Software checklist

Operating system OpenWindows� version 3.0 (or higher) running under SunOS ver-
sion 4.1.3 (or higher) or SunOS version 5.x (also known as Solaris
2.x).

Root privileges If you are running SunOS 4.1.x, 5.0, or 5.1, you must have root privi-
leges to mount and unmount the CD-ROM. If you don’t, get help from
your system administrator.

Software tools TMS320C1x/’C2x/’C2xx/’C5x assembler and linker
Optional: TMS320C2x/’C2xx/’C5x C compiler

Optional files
included with the
debugger package

siminit.cmd is a general-purpose batch file that contains debugger
commands. This batch file, shipped with the debugger, defines a
’C5x memory map. When you first start using the debugger, this
memory map should be sufficient for your needs. Later, you may
want to define your own memory map. For information about defin-
ing your own memory map, refer to the defining a memory map
chapter in the TMS320C5x C Source Debugger User’s Guide. If this
memory map batch file isn’t present when you invoke the debugger,
all memory is invalid initially.

init.clr is a general-purpose screen configuration file. If init.clr isn’t
present when you invoke the debugger, the debugger uses the de-
fault screen configuration.

init.25, init.43, and init.50 have been provided for basic 80 x 25,
80 x 43, and 80 x 50 screen sizes, respectively. The init.clr file
brings up the debugger in 80 x 25 mode. To bring the debugger up
in another mode, copy one of the init.xx files to the init.clr file.

The default configuration is for color monitors; an additional file,
mono.clr, can be used for monochrome monitors. When you first
start to use the debugger, the default screen configuration should be
sufficient for your needs. Later, you may want to define your own
custom configuration.

For information about these files and about setting up your own
screen configuration, refer to the customization information in the
TMS320C5x C Source Debugger User’s Guide.

Step 1: Installing the Simulator and Debugger Software

 2-4

2.2 Step 1: Installing the Simulator and Debugger Software

This section explains how to install the simulator and debugger software on
your hard-disk system. The software package is shipped on a CD-ROM. To
install the software, you must mount the CD-ROM, copy the files, and unmount
the CD-ROM.

Mounting the CD-ROM

Note: Root Privileges

If you are running SunOS 4.1.x, 5.0, or 5.1, you must have root privileges to
mount the CD-ROM. If you don’t, get help from your system administrator.

The steps to mount the CD-ROM vary according to your operating-system ver-
sion. Follow the appropriate steps below:

� If you have SunOS 4.1.x, load the CD-ROM into the drive and enter the
following from a command shell:

mount –rt hsfs /dev/sr0 /cdrom
exit
cd /cdrom/sparc

� If you have SunOS 5.0 or 5.1, load the CD-ROM into the drive and enter
the following from a command shell:

mount –rF hsfs /dev/sr0 /cdrom
exit
cd /cdrom/cdrom0/sparc

� If you have SunOS 5.2 or higher:

� If your CD-ROM drive is already attached, load the CD-ROM into the
drive and enter the following from a command shell:

cd /cdrom/cdrom0/sparc

� If you do not have a CD-ROM drive attached, you must shut down your
system to the PROM level, attach the CD-ROM drive, and enter the
following:

boot –r

After you log into your system, load the CD-ROM into the drive and
enter the following from a command shell:

cd /cdrom/cdrom0/sparc

 Step 1: Installing the Simulator and Debugger Software

2-5 Installing the Simulator and C Source Debugger With SunOS

Copying the files

After you mount the CD-ROM, you must create the directory that will contain
the debugger software and copy the software to that directory.

1) Create a directory named sim5x on your hard disk. To create this directory,
enter:

mkdir / your_pathname /sim5x

2) Copy the files from the CD-ROM to your hard-disk system:

cp –r * / your_pathname /sim5x

Unmounting the CD-ROM

Note: Root Privileges

If you are running SunOS 4.1.x, 5.0, or 5.1, you must have root privileges to
unmount the CD-ROM. If you don’t, get help from your system administrator.

You must unmount the CD-ROM after copying the files.

� If you have SunOS 4.1.x, 5.0, or 5.1, enter the following from a command
shell:

cd
umount /cdrom
eject /dev/sr0
exit

� If you have SunOS 5.2 or higher, enter the following from a command
shell:

cd
eject

Step 2: Setting Up the Debugger Environment

 2-6

2.3 Step 2: Setting Up the Debugger Environment

To ensure that your debugger works correctly, you must identify the items that
are listed in Table 2–1. You specify this information in your shell configuration
file in your home directory (for example, the .cshrc file for a C shell). After modi-
fying your shell configuration file, you must reinitialize it.

Table 2–1.Debugger Environment Variables

To identify . . . Use a statement with this format . . .

Directory with executable files for
the C source debugger

set path = (. / directory)

Directory with debugger data files,
such as init.cmd and init.clr

setenv D_DIR ”/ directory”

Directory with the program source
files that you want to debug

setenv D_SRC ”/ directory”

For an X Window system, display
the debugger on a different ma-
chine (see Section 2.5, Using the
Debugger With the X Window Sys-
tem, on page 2-9)

setenv DISPLAY ” machinename”

Address of the emulator port on
your PC and other options that you

setenv D_OPTIONS [object filename] [options]
your PC and other options that you
want to use every time that you
invoke the debugger

[object filename] Names the file that you want to load every time that
you invoke the debugger.gg

[options] Indicates the port address and other options; for
more information, see the TMS320C5x C Source
Debugger User’s Guide.

–b Selects a screen size of 80 characters by 43 lines
(EGA or VGA)

–bb Selects a screen size of 80 characters by 50 lines
(VGA only)

–d machine For an X Window system, display the debugger on
a different machine. Use instead of the DISPLAY
environment variable.

–i pathname Identifies additional directories

–mv version Specifies the memory map to use with the simulator

–profile Allows you to enter the profiling environment

–s Loads only the symbol table for a named object file

–t filename Identifies a new initialization file

–v Loads the object code with a minimal symbol table

Note: When you invoke the debugger, you can include –x on the command line to override any D_OPTIONS in the initialization
file or in your autoexec.bat file.

 Step 2: Setting Up the Debugger Environment

2-7 Installing the Simulator and C Source Debugger With SunOS

Figure 2–1. Sample Shell Configuration File for an X Window System

set path = (. /bin /usr/ucb /usr/contrib/bin /usr/bin \

/usr/openwin/bin /user/fred/sim5x)

setenv D_DIR ”/user/fred/sim5x”

setenv D_SRC ”/user/fred/C5xsource”

setenv DISPLAY ”barney:0”

setenv D_OPTIONS ”–b”

emurst

set path statement

Environment
variables

Reset the emulator

Reinitializing your shell

When you modify your shell configuration file, you must ensure that the
changes are made to your current session. For example, if you are using a C
shell, use this command to reread the .cshrc file:

source ~/.cshrc

Step 3: Verifying the Installation

 2-8

2.4 Step 3: Verifying the Installation

To ensure that you have correctly installed the simulator and debugger soft-
ware, enter this command at the system prompt:

sim5x sample

You should see a display similar to this one:

DISASSEMBLY

MEMORYCOMMAND

>>>

TMS320C5x Revision 1

Loading sample.out

 34 Symbols loaded

Done

ACC 0000005f

ACCB 01ff01ff

PREG 00000005

PC 20cf TOS 005d

AR0 08ab AR1 08ac

AR2 08a5 AR3 00a3

AR4 00a4 AR5 0807

AR6 08a4 AR7 00a7

ST0 2610 ST1 cdfc

PMST 0038 TIM 249d

IMR 01ff IFR 0008

DBMR 0000 BMAR 5555

INDX 08ab TRG0 0001

TRG1 ffe1 TRG2 fff1

SPCR 0800 TCR 0000

20cf bf08 c_int0: LAR AR0,#08a1h

20d1 bf09 LAR AR1,#00a1h

20d3 bf00 SPM 0

20d4 be47 SETC SXM

20d5 bf80 LACC #2143h

20d7 b801 ADD #1

20d8 e388 BCND 20dch,EQ

20da 7a89 CALL 20e0h,*,AR1

20dc 7a89 CALL main,*,AR1

20de 7a89 CALL abort,*,AR1

20e0 bf80 LACC #2143h

20e2 8bc00 LDP #0

20e3 a680 TBLR *

20e4 b801 ADD #1

20e5 028a LAR AR2,*,AR2

0000 0000 0000 0000 0000 01ff ff00 0008 0038

0008 0000 0000 20f1 20f3 0001 ffe1 fff1 0000

0010 08ab 08ac 08a5 00a3 0004 0807 08a4 00a7

0018 08ab 08ab 0000 0000 0000 0000 ff77 5555

0020 0000 0000 0000 0000 249d ffff 0000 0000

0028 ffff ffff 000f 0000 0000 0000 0000 0000

CPU

Load Break Watch Memory Color MoD e Run=F5 Step=F8 Next=F10PinAnalyis

� If you see a display similar to this one, you have correctly installed your
simulator and debugger.

� If you don’t see a similar display, then your debugger or simulator may not
be installed properly. Go back through the installation instructions and be
sure that you have followed each step correctly; then reenter the com-
mand above.

 Using the Debugger With the X Window System

2-9 Installing the Simulator and C Source Debugger With SunOS

2.5 Using the Debugger With the X Window System
If you’re using the X Window System to run the ’C5x debugger, you need to
know about the keyboard’s special keys, the debugger fonts, and using the de-
bugger on a monochrome monitor.

Using the keyboard’s special keys

The debugger uses some special keys that you can map differently from your
particular keyboard. Some keyboards, such as the Sun Type 5 keyboard, may
have these special symbols on separate keys. Other keyboards, such as the
Sun Type 4 keyboard, do not have the special keys.

The special keys that the debugger uses are shown in the following table with
their corresponding keysym. A keysym is a label that interprets a keystroke;
it allows you to modify the action of a key on the keyboard.

Key Keysym

F1 to F10 F1 to F10

PAGE UP Prior

PAGE DOWN Next

HOME Home

END End

INSERT Insert

→ Right

← Left

↑ Up

↓ Down

Use the X utility xev to check the keysyms that are associated with your key-
board. If you need to change the keysym definitions, use the xmodmap utility.
For example, you could create a file that contains the following commands and
use that file with xmodmap to change a Sun Type 4 keyboard to match the keys
listed above:

keysym R13 = End
keysym Down = Down
keysym F35 = Next
keysym Left = Left
keysym Right = Right
keysym F27 = Home
keysym Up = Up
keysym F29 = Prior
keysym Insert = Insert

Refer to your X Window System documentation for more information about
using xev and xmodmap.

Using the Debugger With the X Window System

 2-10

Changing the debugger font

You can change the font of the debugger screen by using the xrdb utility and
modifying the .Xdefaults file in your root directory. For example, to change the
’C5x debugger fonts to Courier, add the following line to the .Xdefaults file:

sim5x*font:courier

For more information about using xrdb to change the font, refer to your X
Window System documentation.

Color mappings on monochrome screens

Although a color monitor is recommended, the following table shows the color
mappings for monochrome screens:

Color Appearance on Monochrome Screen

black black

blue black

green white

cyan white

red black

magenta black

yellow white

white white

3-1 Chapter Title—Attribute Reference

Installing the Simulator and C
Source Debugger With HP-UX

This chapter describes how to install the ’C5x simulator and the C source de-
bugger on a HP9000 series 700� PA-RISC� system running HP-UX�. When
you complete the installation, turn to the TMS320C5x C Source Debugger
User’s Guide.

Topic Page

3.1 What You Need 3-2.

3.2 Step 1: Installing the Simulator and Debugger Software 3-4.

3.3 Step 2: Setting Up the Debugger Environment 3-6.

3.4 Step 3: Verifying the Installation 3-8.

3.5 Using the Debugger With the X Window System 3-9.

Chapter 3

What You Need

 3-2

3.1 What You Need

To install the ’C5x C source debugger and simulator you need the items in the
following hardware and software checklists.

Hardware checklist

Host An HP9000 Series 700 PA-RISC system

Display Monochrome or color (color recommended)

Disk space 2M bytes of disk space

Required hardware CD-ROM drive

Optional hardware Mouse

 What You Need

3-3 Installing the Simulator and C Source Debugger With HP-UX

Software checklist

Operating system HP-UX 9.x or higher.

Root privileges You must have root privileges to mount and unmount the CD-ROM.
If you don’t, get help from your system administrator.

Software tools TMS320C1x/’C2x/’C2xx/’C5x assembler and linker
Optional: TMS320C2x/’C2xx/’C5x C compiler

Optional files
included with the
debugger package

siminit.cmd is a general-purpose batch file that contains debugger
commands. This batch file, shipped with the debugger, defines a
’C5x memory map. When you first start using the debugger, this
memory map should be sufficient for your needs. Later, you may
want to define your own memory map. For information about defin-
ing your own memory map, refer to the defining a memory map
chapter in the TMS320C5x C Source Debugger User’s Guide. If a
memory map batch file isn’t present when you invoke the debugger,
all memory is invalid initially.

init.clr is a general-purpose screen configuration file. If init.clr isn’t
present when you invoke the debugger, the debugger uses the de-
fault screen configuration.

init.25, init.43, and init.50 have been provided for basic 80�25,
80�43, and 80�50 screen sizes, respectively. The init.clr file
brings up the debugger in 80�25 mode. To bring the debugger up
in another mode, copy one of the init.xx files to the init.clr file.

The default configuration is for color monitors; an additional file,
mono.clr, can be used for monochrome monitors. When you first
start to use the debugger, the default screen configuration should be
sufficient for your needs. Later, you may want to define your own
custom configuration.

For information about these files and about setting up your own
screen configuration, refer to the customization information in the
TMS320C5x C Source Debugger User’s Guide.

Step 1: Installing the Simulator and Debugger Software

 3-4

3.2 Step 1: Installing the Simulator and Debugger Software

This section explains how to install the simulator and debugger software on
your hard-disk system. The software package is shipped on a CD-ROM. To
install the software, you must mount the CD-ROM, copy the files, and unmount
the CD-ROM.

Mounting the CD-ROM

Note: Root Privileges

You must have root privileges to mount the CD-ROM. If you don’t, get help
from your system administrator.

You can mount the CD-ROM using the UNIX mount command or the SAM
(system administration manager):

� To use the UNIX mount command, follow these steps:

1) To mount the CD-ROM, enter:

mount –rt cdfs /dev/dsk/ your_cdrom_device /cdrom
exit

2) Make the hp700 directory on the CD-ROM the current directory. For
example, if the CD-ROM is mounted at /cdrom, enter:

cd /cdrom/hp700

� To use SAM to mount the CD-ROM, see System Administration Tasks, the
HP documentation about SAM, for instructions.

Copying the files

After you mount the CD-ROM, you must create the directory that will contain
the debugger software and copy the software to that directory.

1) Create a directory named sim5x on your hard disk. To create this directory,
enter:

mkdir / your_pathname /sim5x

2) Copy the files from the CD-ROM to your hard-disk system:

cp –r * / your_pathname /sim5x

 Step 1: Installing the Simulator and Debugger Software

3-5 Installing the Simulator and C Source Debugger With HP-UX

Unmounting the CD-ROM

Note: Root Privileges

You must have root privileges to unmount the CD-ROM. If you don’t, get help
from your system administrator.

You must unmount the CD-ROM after copying the files. Enter:

cd
umount /cdrom
exit

Step 2: Setting Up the Debugger Environment

 3-6

3.3 Step 2: Setting Up the Debugger Environment

To ensure that your debugger works correctly, you must identify the items that
are listed in Table 3–1. You specify this information in your shell configuration
file in your home directory (for example, the .cshrc file for a C shell). After modi-
fying your shell configuration file, you must reinitialize it.

Table 3–1.Debugger Environment Variables

To identify . . . Use a statement with this format . . .

Directory with executable files for
the C source debugger

set path = (. / directory)

Directory with debugger data files,
such as init.cmd and init.clr

setenv D_DIR ”/ directory”

Directory with the program source
files that you want to debug

setenv D_SRC ”/ directory”

For an X Window system, display
the debugger on a different ma-
chine (see Section 3.5, Using the
Debugger With the X Window Sys-
tem, on page 3-9)

setenv DISPLAY ” machinename”

Address of the emulator port on
your PC and other options that you

setenv D_OPTIONS [object filename] [options]
your PC and other options that you
want to use every time that you
invoke the debugger

[object filename] Names the file that you want to load every time that
you invoke the debugger.gg

[options] Indicates the port address and other options; for
more information, see the TMS320C5x C Source
Debugger User’s Guide.

–b Selects a screen size of 80 characters by 43 lines
(EGA or VGA)

–bb Selects a screen size of 80 characters by 50 lines
(VGA only)

–d machine For an X Window system, display the debugger on
a different machine. Use instead of the DISPLAY
environment variable.

–i pathname Identifies additional directories

–mv version Specifies the memory map to use with the simulator

–profile Allows you to enter the profiling environment

–s Loads only the symbol table for a named object file

–t filename Identifies a new initialization file

–v Loads the object code with a minimal symbol table

Note: When you invoke the debugger, you can include –x on the command line to override any D_OPTIONS in the initialization
file or in your autoexec.bat file.

 Step 2: Setting Up the Debugger Environment

3-7 Installing the Simulator and C Source Debugger With HP-UX

Figure 3–1. Sample Shell Configuration File for an X Window System

set path = (. /bin /usr/ucb /usr/contrib/bin /usr/bin \

/usr/openwin/bin /user/fred/sim5x)

setenv D_DIR ”/user/fred/sim5x”

setenv D_SRC ”/user/fred/C5xsource”

setenv DISPLAY ”barney:0”

setenv D_OPTIONS ”–b”

emurst

set path statement

Environment
variables

Reset the emulator

Reinitializing your shell

When you modify your shell configuration file, you must ensure that the
changes are made to your current session. For example, if you are using a C
shell, use this command to reread the .cshrc file:

source ~/.cshrc

Step 3: Verifying the Installation

 3-8

3.4 Step 3: Verifying the Installation

To ensure that you have correctly installed the simulator and debugger soft-
ware, enter this command at the system prompt:

sim5x sample

You should see a display similar to this one:

DISASSEMBLY

MEMORYCOMMAND

>>>

TMS320C5x Revision 1

Loading sample.out

 34 Symbols loaded

Done

ACC 0000005f

ACCB 01ff01ff

PREG 00000005

PC 20cf TOS 005d

AR0 08ab AR1 08ac

AR2 08a5 AR3 00a3

AR4 00a4 AR5 0807

AR6 08a4 AR7 00a7

ST0 2610 ST1 cdfc

PMST 0038 TIM 249d

IMR 01ff IFR 0008

DBMR 0000 BMAR 5555

INDX 08ab TRG0 0001

TRG1 ffe1 TRG2 fff1

SPCR 0800 TCR 0000

20cf bf08 c_int0: LAR AR0,#08a1h

20d1 bf09 LAR AR1,#00a1h

20d3 bf00 SPM 0

20d4 be47 SETC SXM

20d5 bf80 LACC #2143h

20d7 b801 ADD #1

20d8 e388 BCND 20dch,EQ

20da 7a89 CALL 20e0h,*,AR1

20dc 7a89 CALL main,*,AR1

20de 7a89 CALL abort,*,AR1

20e0 bf80 LACC #2143h

20e2 8bc00 LDP #0

20e3 a680 TBLR *

20e4 b801 ADD #1

20e5 028a LAR AR2,*,AR2

0000 0000 0000 0000 0000 01ff ff00 0008 0038

0008 0000 0000 20f1 20f3 0001 ffe1 fff1 0000

0010 08ab 08ac 08a5 00a3 0004 0807 08a4 00a7

0018 08ab 08ab 0000 0000 0000 0000 ff77 5555

0020 0000 0000 0000 0000 249d ffff 0000 0000

0028 ffff ffff 000f 0000 0000 0000 0000 0000

CPU

Load Break Watch Memory Color MoD e Run=F5 Step=F8 Next=F10PinAnalyis

� If you see a display similar to this one, you have correctly installed your
simulator and debugger.

� If you don’t see a similar display, then your debugger or simulator may not
be installed properly. Go back through the installation instructions and be
sure that you have followed each step correctly; then reenter the com-
mand above.

 Using the Debugger With the X Window System

3-9 Installing the Simulator and C Source Debugger With HP-UX

3.5 Using the Debugger With the X Window System

If you’re using the X Window System to run the ’C5x debugger, you need to
know about the keyboard’s special keys, the debugger fonts, and using the de-
bugger on a monochrome monitor.

Using the keyboard’s special keys

The debugger uses some special keys that you can map differently from your
particular keyboard. Some keyboards may have these special symbols on
separate keys. Other keyboards do not have the special keys.

The special keys that the debugger uses are shown in the following table with
their corresponding keysym. A keysym is a label that interprets a keystroke;
it allows you to modify the action of a key on the keyboard.

Key Keysym

F1 to F10 F1 to F10

PAGE UP Prior

PAGE DOWN Next

HOME Home

END End

INSERT Insert

→ Right

← Left

↑ Up

↓ Down

Use the X utility xev to check the keysyms that are associated with your key-
board. If you need to change the keysym definitions, use the xmodmap utility.
For example, you could create a file that contains the following commands and
use that file with xmodmap to change a keyboard to match the keys listed
above:

keysym R13 = End
keysym Down = Down
keysym F35 = Next
keysym Left = Left
keysym Right = Right
keysym F27 = Home
keysym Up = Up
keysym F29 = Prior
keysym Insert = Insert

Refer to your X Window System documentation for more information about
using xev and xmodmap.

Using the Debugger With the X Window System

 3-10

Changing the debugger font

You can change the font of the debugger screen by using the xrdb utility and
modifying the .Xdefaults file in your root directory. For example, to change the
fonts of the ’C5x debugger to Courier, add the following line to the .Xdefaults
file:

sim5x*font:courier

For more information about using xrdb to change the font, refer to your X
Window System documentation.

Color mappings on monochrome screens

Although a color monitor is recommended, the following table shows the color
mappings for monochrome screens:

Color Appearance on Monochrome Screen

black black

blue black

green white

cyan white

red black

magenta black

yellow white

white white

4-1

Release Notes

This chapter contains information that has changed for the simulator version
of the TMS320C5x C source debugger. This information became available af-
ter the release of the TMS320C5x C Source Debugger User’s Guide.

Topic Page

4.1 Changes to the Options Used to Invoke the C Source Debugger 4-2. .

4.2 Changes to Defining a Memory Map 4-2.

4.3 Known Problem 4-2.

Chapter 4

Changes to the Options / Changes to Defining a Memory Map / Known Problem

 4-2

4.1 Changes to the Options Used to Invoke the C Source Debugger

In the TMS320C5x C Source Debugger User’s Guide, Section 1.8, Debugger
Options, describes the options that you can use to invoke the C source debug-
ger. The –mv option has been modified for the simulator version of the debug-
ger.

The –mv option tells the simulator which memory map to use as described in
the following table:

Option Device Simulated Peripherals Simulated

–mv50 ’C50 Serial port and TDM serial port

–mv51 ’C51 Serial port and TDM serial port

–mv53 ’C53 Serial port and TDM serial port

–mv56 ’C56 Serial port and buffered serial port

–mv57 ’C57 Serial port and buffered serial port

4.2 Changes to Defining a Memory Map

In the TMS320C5x C Source Debugger User’s Guide, Chapter 6, Defining a
Memory Map, explains how to define a memory map. The current version of
the simulator has enhanced features for simulating peripherals and serial
ports. Due to these enhancements to the simulator version of the C source de-
bugger, Chapter 6 required many modifications and additions.

Chapter 5, Defining a Memory Map, in this manual entirely replaces Chapter
6 in the TMS320C5x C Source Debugger User’s Guide.

4.3 Known Problem

For all systems, the following instructions move the BPT pseudoinstruction
(opcode 0xbeb3) if a breakpoint is set at the program memory address oper-
and of these instructions:

� TBLR—table read
� BLPD—block move from program memory to data memory

5-1

Defining a Memory Map

Before you begin a debugging session, you must supply the debugger with a
memory map. the memory map tells the debugger which areas of memory it
can and can’t access. Note that the commands described in this chapter can
also be entered by using the Memory pulldown menu.

Topic Page

5.1 The Memory Map: What It Is and Why You Must Define It 5-2.

5.2 A Sample Memory Map 5-4.

5.3 Identifying Usable Memory Ranges 5-6.

5.4 Enabling Memory Mapping 5-8.

5.5 Checking the Memory Map 5-9.

5.6 Modifying the Memory Map During a Debugging Session 5-10.

5.7 Using Multiple Memory Maps for Multiple Target Systems 5-11.

5.8 Simulating I/O Space (Simulator Only) 5-12.

5.9 Simulating External Interrupts (Simulator Only) 5-14.

5.10 Simulating Peripherals (Simulator Only) 5-18.

5.11 Simulating Standard Serial Ports (Simulator Only) 5-19.

5.12 Simulating Buffered Serial Ports (Simulator Only) 5-22.

5.13 Simulating TDM Serial Ports (Simulator Only) 5-25.

Chapter 5

The Memory Map: What It Is and Why You Must Define It

 5-2

5.1 The Memory Map: What It Is and Why You Must Define It

A memory map tells the debugger which areas of memory it can and can’t
access. Memory maps vary, depending on the application. Typically, the map
matches the MEMORY definition in your linker command file.

Note:

When the debugger compares memory accesses against the memory map,
it performs this checking in software, not hardware. The debugger can’t
prevent your program from attempting to access nonexistent memory.

A special default initialization batch file included with the debugger package
defines a memory map for your version of the debugger. This memory map
may be sufficient when you first begin using the debugger. However, the de-
bugger provides a complete set of memory-mapping commands that let you
modify the default memory map or define a new memory map.

You can define the memory map interactively by entering the memory-map-
ping commands while you’re using the debugger. This can be inconvenient be-
cause, in most cases, you set up one memory map before you begin debug-
ging and use this map for all of your debugging sessions. The easiest method
for defining a memory map is to put the memory-mapping commands in a
batch file.

Defining the memory map in a batch file

There are two methods for defining the memory map in a batch file:

� Redefine the memory map defined in the initialization batch file.
� Define a memory map in a separate batch file of your own.

When you invoke the debugger, it follows these steps to find the batch file that
defines your memory map:

1) The debugger checks if you’ve used the –t debugger option. If the debug-
ger finds the –t option, it executes the specified file. (Use the –t option to
specify a batch file other than the initialization batch file shipped with the
debugger.)

2) If you don’t use the –t option, the debugger looks for the default initializa-
tion batch file called init.cmd. The debugger reads and executes the com-
mands in the file.

 The Memory Map: What It Is and Why You Must Define It

5-3 Defining a Memory Map

Potential memory map problems

You may experience these problems if the memory map isn’t correctly defined
and enabled:

� Accessing invalid memory addresses. If you don’t supply a batch file
containing memory-map commands, then the debugger is initially unable
to access any target memory locations. Invalid memory addresses and
their contents are highlighted in the data-display windows. (On color moni-
tors, invalid memory locations, by default, are displayed in red.)

� Accessing an undefined or protected area. When memory mapping is
enabled, the debugger checks each of its memory accesses against the
memory map. If you attempt to access an undefined or protected area, the
debugger displays an error message. For specific error messages, see
Appendix D, Debugger and PDM Messages.

� Loading a COFF file with sections that cross a memory range. Be sure
that the map ranges you specify in a COFF file match those that you define
with the MA command (described on page 5-6). Alternatively, you can
turn memory mapping off during a load by using the MAP OFF command
(see page 5-8).

A Sample Memory Map

 5-4

5.2 A Sample Memory Map

Because you must define a memory map before you can run any programs,
it’s convenient to define the memory map in the initialization batch files.
Figure 5–1 shows the memory map commands that are defined in the initial-
ization batch file that accompanies the EVM. If you are using the EVM, you can
use the file as is, edit it, or create your own memory map batch file. The files
shipped with the simulator and emulator are similar to that of the EVM.

Figure 5–1. Memory Map Commands in the Sample Initialization Batch File for the EVM

MA 0x0000, 0, 0x0800, RAM
MA 0x0800, 0, 0x2400, RAM
MA 0x2c00, 0, 0x5400, RAM
MA 0x0004, 1, 0x001f, RAM
MA 0x0024, 1, 0x0003, RAM
MA 0x0028, 1, 0x0003, RAM
MA 0x0030, 1, 0x0006, RAM
MA 0x0050, 1, 0x0010, RAM
MA 0x0060, 1, 0x0020, RAM
MA 0x0300, 1, 0x0200, RAM
MA 0x0800, 1, 0x2400, RAM
MA 0x8000, 1, 0x8000, RAM

The MA (map add) commands define valid memory ranges and identify the
read/write characteristics of the memory ranges. Figure 5–2 illustrates the
memory map defined by the default initialization batch file.

 A Sample Memory Map

5-5 Defining a Memory Map

Figure 5–2. Sample Memory Map for Use With a ’C5x EVM

Page 1—Data Memory

0x0000
to 0x0003

0x0800
to 0x2BFF

0x2C00
to 0x7FFF

0x0004
to 0x0022

0x0023

0x0024
to 0x0026

0x0027

0x0028
to 0x002A

0x002B
to 0x002F

0x0030
to 0x0035

0x0036
to 0x004F

0x0050
to 0x005F

0x0060
to 0x007F

0x0080
to 0x02FF

0x0300
to 0x04FF

0x0500
to 0x07FF

0x8000
to 0xFFFF

Page 0—Program Memory

0x0000
to 0x07FF

0x0800
to 0x2BFF

0x2C00
to 0x7FFF

External RAM

Internal RAM

External RAM

External RAM

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

reserved

Internal RAM

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

reserved

Memory map
registers 4–31

Memory map
registers 36–38ÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

reserved

Memory map
registers 40–42

Memory map
registers 48–53

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

reserved

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

reserved

Memory map reg.
80–95; I/O Ports

On-Chip RAM B2

On-Chip RAM B1

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

reserved

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

reserved

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

reserved

Identifying Usable Memory Ranges

 5-6

5.3 Identifying Usable Memory Ranges

ma The debugger’s MA (memory add) command identifies valid ranges of target
memory. The syntax for this command is:

ma address, page, length, type

� address—defines the starting address of a range. This parameter is an ab-
solute address, any C expression, the name of a C function, or an assem-
bly language label.

A new memory map must not overlap an existing entry. If you define a
range that overlaps an existing range, the debugger ignores the new
range and displays this error message in the COMMAND window display
area:

Conflicting map range

� page—a one-digit number that identifies the type of memory (program,
data, or I/O) that the range occupies:

To identify this page,
Use this value as the page
parameter

Program memory 0
Data memory 1
I/O space 2

� length—defines the length of the range. This parameter can be any C ex-
pression.

� type—identifies the read/write characteristics of the memory range. The
type must be one of these keywords:

To identify this kind of memory,
Use this keyword as the type
parameter

Read-only memory R or ROM
Write-only memory W or WOM
Read/write memory R|W or RAM
No-access memory PROTECT
Input port IPORT
Output port OPORT
Input/output port IOPORT

 Identifying Usable Memory Ranges

5-7 Defining a Memory Map

Notes:

� The debugger caches memory that is not defined as a port type (IPORT,
OPORT, or IOPORT). For ranges that you don’t want cached, be sure
to map them as ports.

� When you are using the simulator, you can use the parameter values
IPORT, OPORT, and IOPORT to simulate I/O ports. See Section 5.8,
Simulating I/O Space, on page 5-12.

� Be sure that the map ranges that you specify in a COFF file match those
that you define with the MA command. Moreover, a command sequence
such as:

ma x,0,y,ram; ma x+y,0,z,ram

doesn’t equal

ma x,0,y+z,ram

If you plan to load a COFF block that spans the length of y + z, you
should use the second MA command example. Alternatively, you can
turn memory mapping off during a load by using the MAP OFF command
(see Section 5.4, Enabling Memory Mapping, on page 5-8).

Memory mapping with the simulator (PC version)

The ’C5x simulator has memory-cache capabilities that allow you to allocate
as much memory as you need. However, to use memory cache capabilities
effectively with the ’C5x, do not allocate more than 20K words of memory in
your memory map. For example, the memory map shown in Example 5–1 allo-
cates 64K words of ’C5x program memory.

Example 5–1.Sample Memory Map for the TMS320C5x Using Memory-Cache Capabilities

MA 0,0,0x5000,R|W
MA 0x5000,0,0x5000,R|W
MA 0xa000,0,0x5000,R|W
MA 0xf000,0,0x1000,R|W

The simulator creates temporary files in a separate directory on your disk. For
example, when you enter an MA (memory add) command, the simulator
creates a temporary file in the root directory of your current disk. Therefore,
if you are currently running your simulator on the C drive, temporary files are
placed in the C:\ directory. This prevents the processor from running out of
memory space while you are executing the simulator.

Identifying Usable Memory Ranges / Enabling Memory Mapping

 5-8

Note:

If you execute the simulator from a floppy drive (for example, drive A), the
temporary files created in the A:\ directory.

All temporary files are deleted when you exit the simulator using the QUIT
command. If, however, you exit the simulator with a soft reboot of your comput-
er, the temporary files are deleted; you must delete these files manually. (Tem-
porary files usually have numbers for names.)

With the memory-cache capabilities of the simulator, your memory map is now
restricted only by your PC’s capabilities. As a result, there should be sufficient
free space on your disk to run any memory map you want to use. If you use
the MA command to allocate 20K words (40K bytes) of memory in your
memory map, then your disk should have at least 40K bytes of free space
available. To do this, you can enter:

ma 0x0, 0, 0x5000, ram

Note:

You can also use the memory-cache capability feature for the data memory.

5.4 Enabling Memory Mapping

map By default, mapping is enabled when you invoke the debugger. In some
instances, you may want to explicitly enable or disable memory. You can use
the MAP command to do this; the syntax for this command is:

map on
or map off

Note that disabling memory mapping can cause bus fault problems in the
target because the debugger may attempt to access nonexistent memory.

Note:

When memory mapping is enabled, you cannot:

� Access memory locations that are not defined by an MA command
� Modify memory areas that are defined as read only or protected

If you attempt to access memory in these situations, the debugger displays
this message in the COMMAND window display area:

Error in expression

 Checking the Memory Map

5-9 Defining a Memory Map

5.5 Checking the Memory Map

ml If you want to see which memory ranges are defined, use the ML command.
The syntax for this command is:

ml

The ML command lists the page, starting address, ending address, and read/
write characteristics of each defined memory range.

For example, if you’re using the EVM default memory map and you enter the
ML command, the debugger displays this:

Page 0 = program memory

Page Memory range Attributes
0 0000 – 07ff READ WRITE
0 0800 – 2bff READ WRITE
0 2c00 – 7fff READ WRITE
1 0004 – 0022 READ WRITE
1 0024 – 0026 READ WRITE
1 0028 – 002a READ WRITE
1 0030 – 0035 READ WRITE
1 0050 – 005f READ WRITE
1 0060 – 007f READ WRITE
1 0300 – 04ff READ WRITE
1 0800 – 2bff READ WRITE
1 8000 – ffff READ WRITE

ending addressstarting addressPage 1 = data memory

Modifying the Memory Map During a Debugging Session

 5-10

5.6 Modifying the Memory Map During a Debugging Session

If you need to modify the memory map during a debugging session, use these
commands.

md To delete a range of memory from the memory map, use the MD (memory
delete) command. The syntax for this command is:

md address, page

� address—identifies the starting address of the range of program, data, or
I/O memory. If you supply an address that is not the starting address of a
range, the debugger displays this error message in the COMMAND win-
dow display area:

Specified map not found

� page—a one-digit number that identifies the type of memory (program,
data, or I/O) that the range occupies:

To identify this page,
Use this value as the page
parameter

Program memory 0

Data memory 1

I/O space 2

Note:

If you are using the simulator and want to use the MD command to remove
a simulated I/O port, you must first disconnect the port with the MI command.
Refer to Section 5.8, Simulating I/O Space (Simulator Only), on page 5-12.

mr If you want to delete all defined memory ranges from the memory map, use
the MR (memory reset) command. The syntax for this command is:

mr

This resets the debugger memory map.

ma If you want to add a memory range to the memory map, use the MA (memory
add) command. The syntax for this command is:

ma address, page, length, type

The MA command is described in detail on page 5-6.

 Modifying the Memory Map / Using Multiple Memory Maps for Multiple Target Systems

5-11 Defining a Memory Map

Returning to the original memory map

If you modify the memory map, you may want to go back to the original memory
map without quitting and reinvoking the debugger. You can do this by resetting
the memory map and then using the TAKE command to read in your original
memory map from a batch file.

Suppose, for example, that you had set up your memory map in a batch file
named mem.map. You could enter these commands to go back to this map:

mr Reset the memory map
take mem.map Reread the default memory map

The MR command resets the memory map. (Note that you could put the MR
command in the batch file, preceding the commands that define the memory
map.) The TAKE command tells the debugger to execute commands from the
specified batch file.

5.7 Using Multiple Memory Maps for Multiple Target Systems

If you’re debugging multiple applications, you may need a memory map for
each target system. Here’s the simplest method for handling this situation.

Step 1: Let the initialization batch file define the memory map for one of your
applications.

Step 2: Create a separate batch file that defines the memory map for the
additional target system. The filename is unimportant, but for this ex-
ample, assume that the file is named filename.x. The general format
of this file’s contents should be:

mr Reset the memory map
MA commands Define the new memory map
map on Enable mapping

(Of course, you can include any other appropriate commands in this
batch file.)

Step 3: Invoke the debugger as usual.

Step 4: The debugger reads the initialization batch file during invocation. Be-
fore you begin debugging, read in the commands from the new batch
file:

take filename.x

This redefines the memory map for the current debugging session.

You can also use the –t option instead of the TAKE command when
you invoke the debugger. The –t option allows you to specify a new
batch file to be used instead of the default initialization batch file.

Simulating I/O Space (Simulator Only)

 5-12

5.8 Simulating I/O Space (Simulator Only)

In addition to adding memory ranges to the memory map, you can use the MA
command to add I/O ports to the memory map. To do this, use IPORT (input
port), OPORT (output port), or IOPORT (input/output port) as the memory
type. Use page 1 to simulate serial ports, and use page 2 to simulate parallel
ports. Then, you can use the MC command to connect a port to an input or out-
put file. This simulates external I/O cycle reads and writes by allowing you to
read data in from a file and/or write data out to a file.

Connecting an I/O port

mc The MC (memory connect) command connects IPORT, OPORT, or IOPORT
to an input or output file. The syntax for this command is:

mc port address, page, filename, fileaccess

� port address—defines the address of the I/O port. This parameter is an ab-
solute address, any C expression, the name of a C function, or an assem-
bly-language label.

� page—a one-digit number that identifies the page that the port occupies.
Parallel ports are on page 2 (the I/O space), and serial ports are on page
1 (data space).

� filename—any filename. If you connect a port to read from a file, the file
must exist, or the MC command will fail.

� fileaccess—identifies the access characteristics of the I/O memory and
data memory. Use one of the following keywords to indicate the type of file
access you want:

� R or READ—Input port file access. Execution continues. You are not
notified when the EOF is read. When an EOF is read, the input file re-
winds and the simulator resumes reading from the file.

� R|NR or READ|NR—Simulator halt at EOF of the input space file ac-
cess. The simulator halts execution when it reads an EOF. The debug-
ger displays the following message in the COMMAND window:

address EOF reached – connected at port:

At this point, you can disconnect the file using the ML command and
attach a new file using the MC command. If you do nothing, the file re-
winds automatically and execution continues until an EOF is read.

� W or WRITE—Output port file access.

 Simulating I/O Space (Simulator Only)

5-13 Defining a Memory Map

The file is accessed during an IN or OUT instruction to the associated port
address. Any port in I/O space can be connected to a file. A maximum of one
input and one output file can be connected to a single port; multiple ports can
be connected to a single file. Memory-mapped ports can be connected to files;
any instruction that reads from or writes to the memory-mapped port reads
from or writes to the associated file. Example 5–2 shows how to connect an
input port to an input file.

Example 5–2.Connecting an Input Port to an Input File

Assume that the file in.dat contains words of data in hexadecimal format,
one per line, like this:

0A00
1000
2000

.

.

.

These two debugger instructions set up and connect an input port:

MA 0x50,1,0x1,IPORT Configure port address 50h
as an input port

MC 0x50,1,in.dat,READ Open file in.dat and
connect to port address 50h

Assume that these two ’C5x instructions are part of your ’C5x program.
They read from the file in.dat.

IN 00h,50h IN instruction reads from file
LAMM 50h Memory reference load

used to read from file

Disconnecting an I/O port

Before you can use the MD command to delete a port from the memory map,
you must use the MI command to disconnect the port.

mi The MI (memory disconnect) command disconnects a file from an I/O port. The
syntax for this command is:

mi port address, page, {READ | WRITE}

The port address and page identify the port that will be closed. The read/write
characteristics must match the parameter used when the port was connected.

Simulating External Interrupts (Simulator Only)

 5-14

5.9 Simulating External Interrupts (Simulator Only)

The ’C5x simulator allows you to simulate the external interrupt signals
INT1 to INT4 and to select the clock cycle where you want an interrupt to
occur. To do this, you create a data file and connect it to one of the four interrupt
pins, INT1 to INT4 or the BIO pin.

Note:

The time interval is expressed as a function of CPU clock cycles. Simulation
begins at the first clock cycle.

Setting up your input file

In order to simulate interrupts, you must first set up an input file that lists inter-
rupt intervals. Your file must contain a clock cycle in the following format:

[clock cycle, logic value] rpt {n | EOS}

Note that the square brackets are used only with logic values for the BIO pin.

� clock cycle—represents the CPU clock cycle where you want an interrupt
to occur.

You can have two types of CPU clock cycles:

� Absolute—To use an absolute clock cycle, your cycle value must rep-
resent the actual CPU clock cycle in which you want to simulate an
interrupt. For example:

12 34 56

Interrupts are simulated at the 12th, 34th, and 56th CPU clock cycles.
No operation is performed on the clock cycle value; the interrupt oc-
curs exactly as the clock cycle value is written.

� Relative—You can also select a clock cycle that is relative to the time
at which the last event occurred. For example:

12 +34 55

In this example, a total of three interrupts are simulated at the 12th,
46th (12+34), and 55th CPU clock cycles. A plus sign (+) before a
clock cycle adds that value to the total clock cycles preceding it. You
can mix both relative and absolute values in your input file.

 Simulating External Interrupts (Simulator Only)

5-15 Defining a Memory Map

� logic value—only for the BIO pin. You must use a value to force the signal
to go high or low at the corresponding clock cycle. A value of 1 forces the
signal to go high, and a value of 0 forces the signal to go low. For example:

[12,1] [23,0] [45,1]

This causes the BIO pin to go high at the 12th cycle, low at the 23rd cycle,
and high again at the 45th cycle.

� rpt {n | EOS}—optional and represents a repetition value.

Two forms of repetition simulate interrupts:

� Repetition on a fixed number of times—You can format your input file
to repeat a particular pattern a fixed number of times. For example:

5 (+10 +20) rpt 2

The values inside of the parentheses represent the portion that is
repeated. Therefore, an interrupt is simulated at the 5th CPU cycle,
then the15th (5+10), 35th (15+20), 45th (35+10), and 65th (45+20)
CPU clock cycles.

Note that n is a positive integer value.

� Repetition to the end of simulation—To repeat the same pattern
throughout the simulation, add the string EOS to the line. For example:

10 (+5 +20) rpt EOS

Interrupts are simulated at the 10th CPU cycle, then the 15th (10+5),
35th (15+20), 40th (35+5), 60th (40+20), 65th (60+5), and 85th
(65+20) CPU cycles, continuing in that pattern until the end of
simulation.

Simulating External Interrupts (Simulator Only)

 5-16

Programming the simulator

After creating your input file, you can use debugger commands to connect, list,
and disconnect the interrupt pin to your input file. Use these commands as de-
scribed below, or use them from the PIN pulldown menu.

pinc To connect your input file to the pin, use the following command:

pinc pinname, filename

� pinname—identifies the pin and must be one of four simulated pins (INT1–
INT4) or the BIO pin.

� filename—name of your input file.

Example 5–3 shows you how to connect your input file using the PINC com-
mand.

Example 5–3.Connecting the Input File With the PINC Command

Suppose you want to generate an INT2 external interrupt at the 12th, 34th,
56th, and 89th clock cycles.

First, create a data file with an arbitrary name such as myfile:

12 34 56 89

Then use the PINC command in the pin pulldown menu to connect the in-
put file to the INT2 pin.

pinc myfile, int2 Connects your data file
to the specific interrupt pin

This command connects myfile to the INT2 pin. As a result, the simulator
generates an INT2 external interrupt at the 12th, 34th, 56th, and 89th clock
cycles.

 Simulating External Interrupts (Simulator Only)

5-17 Defining a Memory Map

pinl To verify that your input file is connected to the correct pin, use the PINL
command. The syntax for this command is:

pinl

The PINL command displays all of the unconnected pins first, followed by the
connected pins. For a pin that has been connected, it displays the name of the
pin and the absolute pathname of the file in the COMMAND window.

COMMAND

>>>

INT1 NULL

INT3 NULL

INT4 NULL

BIO NULL

INT2 /320hll/myfile

PIN FILENAME
~~~~~~~~~~~~~~~~~~~~~~~~~~~

pind To end the interrupt simulation, disconnect the pin. You can do this with the
following command:

pind pinname

The pinname parameter identifies the interrupt pin and must be one of the ex-
ternal interrupt  pins (INT1–INT4) or the BIO pin. The PIND command de-
taches the file from the input pin. After executing this command, you can con-
nect another file to the same pin.



Simulating Peripherals (Simulator Only)

 5-18

5.10 Simulating Peripherals (Simulator Only)

With the ’C5x simulator, you can simulate the timer, standard serial port, buff-
ered serial port, and TDM serial port. The peripherals simulated depend upon
the device that you simulate. You simulate a device by starting the simulator
(sim5x command) with the appropriate option. Table 5–1 summarizes the op-
tions used to simulate the peripherals for each device.

Table 5–1.Debugger Options for the Simulator

Option Device Simulated Peripherals Simulated

–mv50 ’C50 Serial port, TDM serial port

–mv51 ’C51 Serial port, TDM serial port

–mv53 ’C53 Serial port, TDM serial port

–mv56 ’C56 Serial port, buffered serial port

–mv57 ’C57 Serial port, buffered serial port

Detailed information about simulating the different types of serial ports is dis-
cussed in the following sections:

Type of Serial Port See Section . . .

Standard 5.11 on page 5-19

Buffered 5.12 on page 5-22

TDM 5.13 on page 5-25



 Simulating Standard Serial Ports (Simulator Only)

5-19  Defining a Memory Map

5.11 Simulating Standard Serial Ports (Simulator Only)

The ’C5x simulator supports standard serial port transmission and reception
by reading data from, and writing data to, the files associated with the DXR/
TDXR and DRR/TRCV registers, respectively.

The simulator also provides limited support for the simulation of the serial port
control pins (frame synchronization pins) with the help of external event simu-
lation capability. Frame synchronization pin values for receive and transmit op-
erations at various instants of time are fed through the files associated with the
pins.

The ’C5x simulator supports the following operations in the standard serial port
simulation:

� Internal clocks (1/4 CPU clock) and external clocks for the transmit and
receive operations. External clocks are simulated by using the DIVIDE
command (described on page 5-20) in the files connected to the FSX/
TFSX and FSR/TFSR pins.

� External frame synchronization pulses (FSX/TFSX transmit and FSR/
TFSR receive frame synchronization pulses). Transmit and receive op-
erations are initiated when the signals for these values go high.

� The operations associated with the following memory-mapped registers:

Register Memory Bits Used Description

SPC 0x22 FO Format specifier (8/16 bits)

TSPC 0x32 MCM
XRST/RRST
XRDY/RRDY
XSREMPTY
RSRFULL

Internal/external clock
Transmit/receive reset
Transmit/receive ready
Transmit register empty flag
Receive register full flag

DXR
TDXR

0x21
0x31

All bits are used Transmit data register

DRR
TRCV

0x20
0x30

All bits are used Receive data register



Simulating Standard Serial Ports (Simulator Only)

 5-20

Setting up your transmit and receive operations

The ’C5x simulator supports the simulation of the following pins using external
event simulation. The pulses occurring on the FSX and FSR pins initiate the
standard serial port transmit and receive operations, respectively.

� FSR/TFSR—Frame synchronization pulses for the receive operation

� FSX/TFSX—Frame synchronization pulses for the transmit operation

Connect the files to the pins using the PINC (pin connect) command (de-
scribed on page 5-16). Use the following command syntax, selecting the ap-
propriate command for the pin you want:

pinc FSX ,filename
pinc TFSX ,filename
pinc FSR ,filename
pinc TFSR ,filename

filename is the name of the file that contains the CPU cycles at which the pin
value goes high. Use the following syntax in the files to define clock cycles:

[clock cycle] rpt {n | EOS}

Note that the square brackets are used only with logic values for the BIO pin.
For more information about defining clock cycles, see Section 5.9, Simulating
External Interrupts (Simulator Only), on page 5-14.

Additionally, you can use the DIVIDE command to specify the clock divide ratio
for the device. Use the following syntax in the files for the DIVIDE command:

DIVIDE r

r is a real number or integer specifying the ratio of serial port clock versus the
CPU clock. Use the divide ratio when the serial port is configured to use the
external clock. When you use the DIVIDE command, it must be the first com-
mand in the file.

The following example specifies the clock ratio of the transmit clock and the
clock cycles for the occurrence of TFSX pulses (if this file is connected to the
TFSX pin):

DIVIDE 5
100  +200  +100

The DIVIDE command specifies the divide-down ratio of the clock against the
CPU clock. That is, the CLKX frequency is 1/5 of the CPU clock. The second
line indicates that the TFSX should go high at the 100th, 300th (100 + 200),
and 400th (300 + 100) CPU cycles. The TFSX pin goes high in the 500th,
1500th, and 2000th cycles of the serial port clock.



 Simulating Standard Serial Ports (Simulator Only)

5-21  Defining a Memory Map

Connecting input/output files

Input and output files are connected to DRR/TRCV and DXR/TDXR registers
for receive and transmit operations, respectively. To simulate the transmit op-
eration, data is written to the file that is connected to the DXR/TDXR register.
To simulate the receive operation, data is read from the file that is connected
to the DRR/TRCV register. The input and output file formats for the standard
serial port operation requires at least one line containing a hexadecimal num-
ber. The following is an acceptable format for an input file:

0055
aa55
efef
dead

Note:

To simulate the standard serial port 0, use the DXR and DRR registers and
the FSX and FSR pins. To simulate the standard serial port 1, use the TDXR
and TRCV registers and the TFSX and TFSR pins.

Programming the simulator

To simulate the standard serial port, configure the DXR/TDXR and DRR/TRCV
registers as the output port (OPORT) and the input port (IPORT), respectively.
Connect these ports to an output file and an input file. Also, connect files to the
TFSX/FSX and TFSR/FSR pins to specify the clock cycles during which the
frame synchronization pins go high. To make these connections, use the fol-
lowing commands in the simulator initialization batch file (siminit.cmd):

ma DRR,1,1,IPORT
ma DXR,1,1,OPORT

mc DRR,1,1, receive filename ,READ
mc DXR,1,1, transmit filename ,WRITE

pinc FSX, fsx timing filename
pinc FSR, fsr timing filename

Variable Description

receive filename The file to read data from, which simulates the input port

transmit filename The file to write data to, which simulates the output port

fsx timing filename The file that contains the CPU cycles at which the FSX
frame synchronization pin goes high

fsr timing filename The file that contains the CPU cycles at which the FSR
frame synchronization pin goes high



Simulating Buffered Serial Ports (Simulator Only)

 5-22

5.12 Simulating Buffered Serial Ports (Simulator Only)

The ’C5x simulator supports buffered serial port transmission and reception
by reading data from and writing data to the files associated with the DXR and
DRR registers, respectively. The simulator provides limited support for the se-
rial port control pins (frame synchronization pins) using external event simula-
tion capability. Pin values for receive and transmit operations at various
instants of time are fed through the files associated with the pins. The simulator
supports the following operations in the buffered serial port simulation:

� Automatic buffering and standard serial port modes

� Internal clocks (1/(CLKDV + 1) CPU clock) and external clocks for the
transmit and receive operations

� External frame synchronization pulses (FSX transmit and FSR receive
frame synchronization pulses). Transmit and receive operations are initi-
ated when the signals for these values go high.

� The operations associated with the following memory-mapped registers:

Register Memory Bits Used Description

SPC 0x22 FO
MCM
XRST/RRST
XRDY/RRDY
XSREMPTY
RSRFULL

Format specifier (8/16 bits)
Internal/external clock
Transmit/receive reset
Transmit/receive ready
Transmit register empty flag
Receive register full flag

DXR 0x31 All bits are used Transmit data register

DRR 0x30 All bits are used Receive data register

SPCE 0x33 CLKDV
FE
RH/TH
BXE/BRE
HALTX/HALTR

Clock divide ratio
Extended format specifier
Buffer half received or transmitted
Enable/disable automatic buffering
Switch to standalone mode after the
current half is transmitted/received

AXR 0x34 All bits are used Address register for transmit

ARR 0x36 All bits are used Address register for receive

BKX 0x35 All bits are used Block size register for the transmit

BKR 0x37 All bits are used Block size register for the receive

Note:

In the simulator, the address of the buffered serial port registers and the TDM
serial port registers are the same. You can simulate one or the other but not
both at the same time.



 Simulating Buffered Serial Ports (Simulator Only)

5-23  Defining a Memory Map

Setting up your transmit and receive operations

The ’C5x simulator supports the simulation of the following pins using external
event simulation. The pulses occurring on the FSX and FSR pins initiate the
buffered serial port transmit and receive operations, respectively.

� FSR—Frame synchronization pulses for the receive operation
� FSX—Frame synchronization pulses for the transmit operation

Connect the files to the pins using the PINC (pin connect) command (de-
scribed on page 5-16). Use the following command syntax, selecting the ap-
propriate command for the pin you want:

pinc FSX ,filename
pinc FSR ,filename

filename is the name of the file that contains the CPU cycles at which the pin
value goes high. Use the following syntax in the files to define clock cycles:

[clock cycle] rpt {n | EOS}

Note that the square brackets are used only with logic values for the BIO pin.
For more information about defining clock cycles, see Section 5.9, Simulating
External Interrupts (Simulator Only), on page 5-14.

Additionally, you can use the DIVIDE command to specify the clock divide ratio
for the device. Use the following syntax in the files for the DIVIDE command:

DIVIDE r

r is a real number or integer specifying the ratio of serial port clock versus the
CPU clock. Use the divide ratio when the serial port is configured to use the
external clock. When you use the DIVIDE command, it must be the first com-
mand in the file.

The following example specifies the clock ratio of the transmit clock and the
clock cycles for the occurrence of TFSX pulses (if this file is connected to the
TFSX pin):

DIVIDE 5
100  +200  +100

The DIVIDE command specifies the divide-down ratio of the clock against the
CPU clock. That is, the CLKX frequency is 1/5 of the CPU clock. The second
line indicates that the TFSX should go high at the 100th, 300th (100 + 200),
and 400th (300 + 100) CPU cycles. The TFSX pin goes high in the 500th,
1500th, and 2000th cycles of the serial port clock.



Simulating Buffered Serial Ports (Simulator Only)

 5-24

Connecting input/output files

Input and output files are connected to DRR and DXR registers for receive and
transmit operations respectively. To simulate the transmit operation, data is
written to the file that is connected to the DXR register. To simulate the receive
operation, data is read from the file that is connected to the DRR register.

The input and output file formats for the buffered serial port operation requires
at least one line containing a hexadecimal number. The following example
shows an acceptable format for an input file:

0055
aa55
efef
dead

Programming the simulator

To simulate the buffered serial port, configure the DXR and DRR registers as
the output port (OPORT) and the input port (IPORT), respectively. Connect
these ports to an output file and an input file. Also, connect files to the TFSX/
FSX and TFSR/FSR pins to specify the clock cycles during which the frame
synchronization pins go high.

To make these connections, use the following commands in the simulator ini-
tialization batch file (siminit.cmd):

ma DRR,1,1,IPORT
ma DXR,1,1,OPORT

mc DRR,1,1, receive filename ,READ
mc DXR,1,1, transmit filename ,WRITE

pinc FSX, fsx timing filename
pinc  FSR,fsr timing filename

Variable Description

receive filename The file to read data from, which simulates the input port

transmit filename The file to write data to, which simulates the output port

fsx timing filename The file that contains the CPU cycles at which the FSX
frame synchronization pin goes high

fsr timing filename The file that contains the CPU cycles at which the FSR
frame synchronization pin goes high



 Simulating TDM Serial Ports (Simulator Only)

5-25  Defining a Memory Map

5.13 Simulating TDM Serial Ports (Simulator Only)

The ’C5x simulator supports TDM serial port transmission and reception by
reading data from and writing data to the files associated with the TDXR and
TRCV registers, respectively.

The simulator also provides limited support for the simulation of the TDM port
control pins (frame synchronization pins) with the help of external event simu-
lation capability. Frame synchronization pin values for receive and transmit op-
erations at various instants of time are fed through the files associated with the
pins.

The ’C5x simulator supports the following operations in the TDM serial port
simulation:

� TDM and standard serial port modes

� Internal clocks (1/4 CPU clock) and external clocks for the transmit and
receive operations. External clocks are simulated by using the DIVIDE
command in the files connected to the TFSX and TFSR pins.

� External frame synchronization pulses (TFSX transmit and TFSR receive
frame synchronization pulses). Transmit and receive operations are initi-
ated when the signals for these values go high.

� The operations associated with the following memory-mapped registers:

Register Memory Bits Used Description

TSPC 0x32 TDM Multiprocessor/normal mode

MCM Internal/external clock

XRST/RRST Transmit/receive reset

XRDY/RRDY Transmit/receive ready

XSREMPTY Transmit register empty flag

RSRFULL Receive register full flag

TCSR 0x33 All bits are used Channel select register

TRTA 0x34 All bits are used Receive/transmit address reg-
ister

TRAD 0x35 All bits are used Receive address register

TDXR 0x31 All bits are used Transmit data register

TRCV 0x30 All bits are used Receive data register



Simulating TDM Serial Ports (Simulator Only)

 5-26

Setting up your transmit and receive operations

The ’C5x simulator supports the simulation of the following pins using external
event simulation. The pulses occurring on the TFSX and TFSR pins initiate the
TDM serial port transmit and receive operations, respectively.

� TFSR—Frame synchronization pulses for the receive operation

� TFSX—Frame synchronization pulses for the transmit operation

Connect the files to the pins using the PINC (pin connect) command (de-
scribed on page 5-16). Use the following command syntax, selecting the ap-
propriate command for the pin you want:

pinc TFSX ,filename
pinc TFSR ,filename

filename is the name of the file that contains the CPU cycles at which the pin
value goes high. Use the following syntax in the files to define clock cycles:

[clock cycle] rpt {n | EOS}

Note that the square brackets are used only with logic values for the BIO pin.
For more information about defining clock cycles, see Section 5.9, Simulating
External Interrupts (Simulator Only), on page 5-14.

Additionally, you can use the DIVIDE command to specify the clock divide ratio
for the device. Use the following syntax in the files for the DIVIDE command:

DIVIDE r

r is a real number or integer specifying the ratio of serial port clock versus the
CPU clock. Use the divide ratio when the serial port is configured to use the
external clock. When you use the DIVIDE command, it must be the first com-
mand in the file.

The following example specifies the clock ratio of the transmit clock and the
clock cycles for the occurrence of TFSX pulses (if this file is connected to the
TFSX pin):

DIVIDE 5
100  +200  +100

The DIVIDE command specifies the divide-down ratio of the clock against the
CPU clock. That is, the CLKX frequency is 1/5 of the CPU clock. The second
line indicates that the TFSX should go high at the 100th, 300th (100 + 200),
and 400th (300 + 100) CPU cycles. The TFSX pin goes high in the 500th,
1500th, and 2000th cycles of the serial port clock.



 Simulating TDM Serial Ports (Simulator Only)

5-27  Defining a Memory Map

Connecting input/output files

Input and output files are connected to TRCV and TDXR registers for receive
and transmit operations, respectively. To simulate the transmit operation, data
is written to the file that is connected to the TDXR register. To simulate the re-
ceive operation, data is read from the file that is connected to the TRCV regis-
ter. Use the following syntax to create the files:

channel-address  data

channel-address specifies the TDM channel in which transmission/reception
takes place. data specifies the value that is written or read from the file. Each
field is in hexadecimal format separated by spaces. The following is an accept-
able format for an input file:

10  0055
34  aa55
80  efef
01  dead

Programming the simulator

To simulate the TDM serial port, configure the TDXR and TRCV registers as
the output port (OPORT) and the input port (IPORT), respectively. Connect
these ports to an output file and an input file. Also, connect files to the TFSX/
FSX and TFSR/FSR registers to specify the clock cycles during which the
frame synchronization pins go high.

To make these connections, use the following commands in the simulator ini-
tialization batch file (siminit.cmd):

ma TRCV,1,1,IPORT
ma TDXR,1,1,OPORT

mc TRCV,1,1, receive filename ,READ
mc TDXR,1,1, transmit filename ,WRITE

pinc TFSX, fsx timing filename
pinc TFSR, fsr timing filename

Variable Description

receive filename The file to read data from, which simulates the input port

transmit filename The file to write data to, which simulates the output port

fsx timing filename The file that contains the CPU cycles at which the FSX
frame synchronization pin goes high

fsr timing filename The file that contains the CPU cycles at which the FSR
frame synchronization pin goes high



 5-28



 Index

Index-1

Index

A
addresses

accessible locations 5-2
I/O address space

simulator 5-10, 5-12 to 5-13
invalid memory 5-3
nonexistent memory locations 5-2
protected areas 5-3, 5-8
undefined areas 5-3, 5-8

arrow keys
HP systems 3-9
SPARC systems 2-9

assembler
HP systems 3-3
PC systems 1-3
SPARC systems 2-3

autoexec.bat file
environment variables 1-5
sample 1-7

B
–b debugger option

HP systems 3-6
PC systems 1-5
SPARC systems 2-6

batch files
autoexec.bat 1-7
.cshrc

HP systems 3-6 to 3-7
SPARC systems 2-6 to 2-7

emuinit.cmd 5-11
init.clr

HP systems 3-3
PC systems 1-3
SPARC systems 2-3

init.cmd 5-2

batch files (continued)
initdb.bat 1-6
initialization 5-2, 5-4
mem.map 5-11
memory maps 5-11
mono.clr

HP systems 3-3
PC systems 1-3
SPARC systems 2-3

siminit.cmd
HP systems 3-3
PC systems 1-3
SPARC systems 2-3

TAKE command 5-11

–bb debugger option
HP systems 3-6
PC systems 1-5
SPARC systems 2-6

BIO pseudoregister 5-14 to 5-17

BLPD instruction 4-2

BPT pseudoinstruction 4-2

C
CD-ROM

mounting
HP systems 3-4
SPARC systems 2-4

requirements
HP systems 3-2
SPARC systems 2-2

retrieving files from
HP systems 3-4
SPARC systems 2-5

unmounting
HP systems 3-5
SPARC systems 2-5

COFF files 5-3



Index

Index-2  

color mapping
HP systems 3-10
SPARC systems 2-10

commands
memory commands 5-6 to 5-27

compiler
HP systems 3-3
PC systems 1-3
SPARC systems 2-3

contacting TI vi
.cshrc file

contents
HP systems 3-6 to 3-7
SPARC systems 2-6 to 2-7

invoking
HP systems 3-7
SPARC systems 2-7

sample
HP systems 3-7
SPARC systems 2-7

customizing the display
HP systems 3-3, 3-10
PC systems 1-2, 1-3
SPARC systems 2-3, 2-10

D
D_DIR environment variable

HP systems 3-6
PC systems 1-5
SPARC systems 2-6

D_OPTIONS environment variable
HP systems 3-6
PC systems 1-5
SPARC systems 2-6

D_SRC environment variable
HP systems 3-6
PC systems 1-5
SPARC systems 2-6

data memory
adding to memory map 5-6
deleting from memory map 5-10

debugger
environment setup

HP systems 3-6 to 3-7
PC systems 1-5 to 1-7
SPARC systems 2-6 to 2-7

debugger (continued)
font changes

HP systems 3-10
SPARC systems 2-10

installation
procedure

HP systems 3-4
PC systems 1-4
SPARC systems 2-4

verification
HP systems 3-8
PC systems 1-8
SPARC systems 2-8

Windows 1-4, 1-9
X Window System

HP systems 3-9 to 3-10
SPARC systems 2-9 to 2-10

default
memory map 5-4

HP systems 3-3
PC systems 1-3
SPARC systems 2-3

screen configuration file
HP systems 3-3
PC systems 1-3
SPARC systems 2-3

directories
auxiliary files

HP systems 3-6
PC systems 1-5
SPARC systems 2-6

debugger software
HP systems 3-4, 3-6
PC systems 1-4, 1-5
SPARC systems 2-5, 2-6

identifying additional source directories
HP systems 3-6
PC systems 1-5
SPARC systems 2-6

sim5x
HP systems 3-4, 3-6
PC systems 1-4, 1-5
SPARC systems 2-5, 2-6

disk space requirements
HP systems 3-2
SPARC systems 2-2



 Index

Index-3

display
font changes

HP systems 3-10
SPARC systems 2-10

requirements
HP systems 3-2
PC systems 1-2
SPARC systems 2-2

DISPLAY environment variable
HP systems 3-6
SPARC systems 2-6

E
end key

HP systems 3-9
SPARC systems 2-9

environment variables
HP systems 3-6
PC systems 1-5
SPARC systems 2-6

external interrupts
connect input file 5-16
disconnect pins 5-17
list pins 5-17
PINC command 5-16
PIND command 5-17
PINL command 5-17
programming simulator 5-16
setting up input file

absolute clock cycle 5-14
relative clock cycle 5-14
repetition 5-15

simulating 5-14

F
files

connecting to
buffered serial ports 5-24
I/O ports 5-12
standard serial ports 5-21
TDM serial ports 5-27

disconnecting from I/O ports 5-13

font changes
HP systems 3-10
SPARC systems 2-10

–font debugger option 1-5

frame synchronization pins
buffered serial port 5-23
standard serial port 5-20
TDM serial port 5-26

function key mapping
HP systems 3-9
SPARC systems 2-9

G
graphics card requirements 1-2

H
hardware checklist

HP systems 3-2
PC systems 1-2
SPARC systems 2-2

home key
HP systems 3-9
SPARC systems 2-9

host
HP systems 3-2
PC systems 1-2
SPARC systems 2-2

I
–i debugger option

HP systems 3-6
PC systems 1-5
SPARC systems 2-6

I/O memory
adding to memory map 5-6
deleting from memory map 5-10
simulating 5-10, 5-12 to 5-13

init.clr file
HP systems 3-3
PC systems 1-3
SPARC systems 2-3

init.cmd file 5-2
initdb.bat file

sample 1-6
initialization batch files 5-2, 5-4

HP systems 3-3
init.cmd 5-2
PC systems 1-3
SPARC systems 2-3



Index

Index-4  

insert key
HP systems 3-9
SPARC systems 2-9

installation
debugger

HP systems 3-4
PC systems 1-4
SPARC systems 2-4

simulator
HP systems 3-4
PC systems 1-4
SPARC systems 2-4

verifying
HP systems 3-8
PC systems 1-8
SPARC systems 2-8

interrupt pins 5-14
invalid memory addresses 5-3, 5-8

K
keyboard mapping

HP systems 3-9
SPARC systems 2-9

keysym label
HP systems 3-9
SPARC systems 2-9

L
linker

command files
MEMORY definition 5-2

HP systems 3-3
PC systems 1-3
SPARC systems 2-3

M
MA command 5-4, 5-6, 5-10
machine to display on

HP systems 3-6
SPARC systems 2-6

MAP command 5-8
mapping keys

HP systems 3-9
SPARC systems 2-9

MC command 5-12

MD command 5-10

memory
batch file search order 5-2
default map 5-4

HP systems 3-3
PC systems 1-3
SPARC systems 2-3

invalid addresses 5-3
invalid locations 5-8
map

defining 5-2
in a batch file 5-2
interactively 5-2

modifying 5-2
potential problems 5-3

mapping
adding ranges 5-6
commands

MA command 5-4, 5-6, 5-10
MAP command 5-8
MD command 5-10
ML command 5-9
MR command 5-10

deleting ranges 5-10
disabling 5-8
HP systems 3-3
listing current map 5-9
modifying 5-10
multiple maps 5-11
PC systems 1-3
resetting 5-10
returning to default 5-11
simulating I/O ports 5-12, 5-13
SPARC systems 2-3

nonexistent locations 5-2
protected areas 5-3, 5-8
requirements 1-2
simulating

I/O memory 5-10, 5-12 to 5-13
ports

MC command 5-12
MI command 5-13

undefined areas 5-3, 5-8
valid types 5-6

MI command 5-13

ML command 5-9

modifying
memory map 5-2, 5-10



 Index

Index-5

mono.clr file
HP systems 3-3
PC systems 1-3
SPARC systems 2-3

monochrome monitors color mapping
HP systems 3-10
SPARC systems 2-10

mouse requirements
HP systems 3-2
PC systems 1-2
SPARC systems 2-2

MR command 5-10
–mv debugger option

PC systems 1-5
SPARC systems 2-6

N
nonexistent memory locations 5-2

O
operating system

HP systems 3-3
PC systems 1-3
SPARC systems 2-3

optional files
HP systems 3-3
PC systems 1-3
SPARC systems 2-3

P
–p debugger option 1-5
page-down key

HP systems 3-9
SPARC systems 2-9

page-up key
HP systems 3-9
SPARC systems 2-9

PATH statement 1-5
peripherals

simulating 5-18
permissions

HP systems 3-3
SPARC systems 2-3

PINC command 5-16

PIND command 5-17
PINL command 5-17
port address

simulator 5-10, 5-12 to 5-13
ports

simulating 5-12 to 5-13
–profile debugger option

HP systems 3-6
PC systems 1-5
SPARC systems 2-6

program memory
adding to memory map 5-6
deleting from memory map 5-10

R
receive operation

buffered serial port simulation 5-23
standard serial port simulation 5-20
TDM serial port simulation 5-26

retrieving files from CD-ROM
HP systems 3-4
SPARC systems 2-5

root  privileges
HP systems 3-3
SPARC systems 2-3

S
–s debugger option

HP systems 3-6
PC systems 1-5
SPARC systems 2-6

screen configurations
HP systems 3-3
PC systems 1-3
SPARC systems 2-3

serial port simulation
buffered 5-22 to 5-24
standard 5-19 to 5-21
TDM 5-25 to 5-28

serial ports
buffered

programming simulator 5-24
simulation 5-12 to 5-13
standard

programming simulator 5-21
TDM

programming simulator 5-27



Index

Index-6  

setpath statement
HP systems 3-6
SPARC systems 2-6

sim5x
command options

HP systems 3-6
PC systems 1-5
SPARC systems 2-6

directory
HP systems 3-4, 3-6
PC systems 1-4, 1-5
SPARC systems 2-5, 2-6

verifying the installation
HP systems 3-8
PC systems 1-8
SPARC systems 2-8

siminit.cmd file
HP systems 3-3
PC systems 1-3
SPARC systems 2-3

simulating
buffered serial ports 5-22 to 5-24
interrupts 5-14
peripherals 5-18
standard serial ports 5-19 to 5-21
TDM serial ports 5-25 to 5-28

simulator
environment setup

HP systems 3-6 to 3-7
PC systems 1-5 to 1-7
SPARC systems 2-6 to 2-7

I/O memory 5-10, 5-12 to 5-13
installation

procedure
HP systems 3-4
PC systems 1-4
SPARC systems 2-4

verification
HP systems 3-8
PC systems 1-8
SPARC systems 2-8

simulator programming
buffered serial ports 5-24
standard serial ports 5-21
TDM serial ports 5-27

software
checklist

HP systems 3-3
PC systems 1-3
SPARC systems 2-3

tools
HP systems 3-3
PC systems 1-3
SPARC systems 2-3

special keys
HP systems 3-9
SPARC systems 2-9

T
–t debugger option

during debugger invocation 5-2
HP systems 3-6
PC systems 1-5
SPARC systems 2-6

TAKE command 5-11
TBLR instruction 4-2
transmit operation

buffered serial port simulation 5-23
standard serial port simulation 5-20
TDM serial port simulation 5-26

U
utilities

xev
HP systems 3-9
SPARC systems 2-9

xmodmap
HP systems 3-9
SPARC systems 2-9

xrdb
HP systems 3-10
SPARC systems 2-10

V
–v debugger option

HP systems 3-6
PC systems 1-5
SPARC systems 2-6



 Index

Index-7

verifying the installation
HP systems 3-8
PC systems 1-8
SPARC systems 2-8

W
Windows 1-9

X
–x debugger option

HP systems 3-6
PC systems 1-5
SPARC systems 2-6

X Window System
HP systems 3-9 to 3-10
SPARC systems 2-9 to 2-10

.Xdefaults file
HP systems 3-10
SPARC systems 2-10

xev utility
HP systems 3-9
SPARC systems 2-9

xmodmap utility
HP systems 3-9
SPARC systems 2-9

xrdb utility
HP systems 3-10
SPARC systems 2-10



Index-8  


