{9 TeEXAS
INSTRUMENTS

TMS320C80 to TMS320C82
Software Compatibility

1995 Digital Signal Processing Products

‘? TEXAS
INSTRUMENTS

Printed in U.S.A., November, 1995 SPRU154
M418017-9741 revision

TMS320C80 to TMS320C82
Software Compatibility
User’s Guide

SPRU154
November 1995

&

........... b TEXAS

SOY INK|_ INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tlwarrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
representthatany license, either express orimplied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 0 1995, Texas Instruments Incorporated

Preface

Read This First

About This Manual

The TMS320C80 and the TMS320C82 are the first two members
of the 'C8x family of high-performance DSP devices. This guide
explains how to port software developed for one of these devices
to the other. It also presents a set of software compatibility guide-
lines for developing software that will run on either device.

How to Use This Manual

This document contains three chapters that deal with different is-
sues related to compatibility:

[[] Chapter 1 discusses software-related differences between
the 'C80 and the 'C82.

] Chapter 2 discusses guidelines and techniques for develop-
ing software that can run on both the 'C80 and the 'C82.

] Chapter 3 discusses guidelines and techniques for prototyp-
ing 'C82 software using a 'C80.

If you need background information about the differences be-
tween the 'C80 and the 'C82, read Chapter 1 before going on to
Chapter 2 and Chapter 3.

If you already understand the differences between the 'C80 and
the 'C82, then you can go directly to Chapter 2 and use Chapter 1
as reference material.

This user’s guide contains information at a general level to guide
you in completing programs. It does not discuss all issues related
to the 'C80 and the 'C82; use your best judgement in applying the
methods discussed in Chapter 2 and Chapter 3 to your applica-
tion.

Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

iv

The following books describe the TMS320C8x and related support
tools. To obtain a copy of any of these Tl documents, call the Tex-
as Instruments Literature Response Center at (800) 477-8924.
When ordering, please identify the book by its title and literature
number.

TMS320C80 Multimedia Video Processor Data Sheet
(literature number SPRS023) describes the features of the
'C80 device and provides pinouts, electrical specifications,
and timings for the device.

TMS320C8x System-Level Synopsis (literature number
SPRU113) describes the ’'C8x features, development
environment, architecture, memory organization, and
communication network (the crossbar).

TMS320C80 C Source Debugger User’s Guide (literature
number SPRU107) describes the 'C8x master processor
and parallel processor C source debuggers. This manual
provides information about the features and operation of the
debuggers and the parallel debug manager; it also includes
basic information about C expressions and a description of
progress and error messages.

TMS320C80 Code Generation Tools User’s Guide (literature
number SPRU108) describes the 'C8x code generation
tools. This manual provides information about the features
and operation of the linker, the master processor (MP) C
compiler and assembler, and the parallel processor (PP) C
compiler and assembler. It also describes the common
object file format (COFF) and shows you how to link MP and
PP code.

TMS320C80 Master Processor User’s Guide (literature
number SPRU109) describes the 'C8x master processor
(MP). This manual provides information about the MP
features, architecture, operation, and assembly language
instruction set; it also includes sample applications that
illustrate various MP operations.

TMS320C80 Multitasking Executive User’s Guide (literature
number SPRU112) describes the 'C8x multitasking execu-
tive software. This manual provides information about the
multitasking executive’s software features, operation, and
interprocessor communications. It also includes a list of task
error codes.

TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Related Documentation From Texas Instruments / If You Need Assistance

TMS320C80 Parallel Processor User’s Guide (literature num-
ber SPRU110) describes the 'C8x parallel processor (PP).
This manual provides information about the PP features, ar-
chitecture, operation, and assembly language instruction
set. It also includes software applications and optimizations.

TMS320C80 Transfer Controller User’s Guide (literature num-
ber SPRU105) describes the 'C80 transfer controller (TC).
This manual provides information about the TC features,
functional blocks, and operation. It also includes examples
of block-write operations for big- and little-endian modes.

TMS320C80 Video Controller User’s Guide (literature number
SPRU111) describes the 'C80 video controller (VC). This
manual provides information about the VC features, archi-
tecture, and operation. It also includes procedures and ex-
amples for programming the serial register transfer (SRT)
controller and the frame timer registers.

If You Need Assistance. . .

If you want to. . .

Do this. . .

Request more information
about Texas Instruments
Digital Signal Processing
(DSP) products

Call the CRCT hotline:
(800) 336—5236

Or write to:

Texas Instruments Incorporated

Market Communications Manager, MS 736
P.O. Box 1443

Houston, Texas 77251-1443

Order Texas Instruments
documentation

Call the CRCT hotline:
(800) 336-5236

Ask questions about product
operation or report suspected
problems

Call the DSP hotline:
(713) 274-2320

Report mistakes in this
document or any other Tl
documentation

Fill out and return the reader response
card at the end of this book, or send your
comments to:

Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443

Houston, Texas 77251-1443

TTexas Instruments Customer Response Center

Read This First

vi TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Contents

1 Comparisonofthe’C80and 'C82t 1-1
Describes differences between the 'C80 and 'C82 that affect software compatibility.
1.1 Overview of 'C80 and'C82 Featurescovuiiiinnnnn.. 1-2
1.2 Parallel Processor Differences ..., 1-3
1.3 Transfer Controller Differences 1-4

1.3.1 Number of Externally Initiated Packet Transfer Requests ... 1-4
1.3.2 RAM Bank Configuration Mechanisms 1-4
1.4 Video Controller Differencesiiiiiiiiiininnn.n. 1-5
1.5 Memory Differenceso i 1-6
151 DataRAMS .. 1-6
1.5.2 Parameter RAMS 1-8
153 Cacheso 1-13

2 Programming for Compatibility 2-1
Provides techniques for programming 'C80/'C82-compatible software.

2.1 Programming Considerations 2-2
2.2 Obtaining Device-Specific Information 2-3

2.2.1 Determining the Device that is Executing your Software (MP) . 2-3
2.2.2 Determining the Device that is Executing your Software (PP) .. 2-3

2.2.3 Initializing a PP’s Stack Pointer 2-4
2.2.4 Counting the Numberof PPs 2-5
2.3 Technique #1: Using Only Common RAMt 2-6
2.3.1 Advantages of Technique #1 cooun... 2-6
2.3.2 Disadvantages of Technique #1 2-6
2.3.3 Implementing Technique #1, 2-6
2.3.4 Considerations When Using Technique #1 2-7
2.4 Technique #2: Using Pointers to Allocate RAM 2-8
2.4.1 Advantages of Technique #2 2-8
2.4.2 Disadvantages of Technique #2c.cc..... 2-8
2.4.3 Implementing Technique #2 i, 2-8
2.4.4 Considerations When Using Technique #2 2-9

vii

Contents

3 Prototyping 'C82 Code onthe’'C80 3-1
Describes techniques for emulating the 'C82’s RAM with the 'C80’s RAM.
Bl OVEIVIBW .ttt 3-2
3.2 Emulatingthe’'C82'sDataRAMS 3-3

3.2.1 Emulating the 'C82's PPO Data RAM 0 and PP1 Data RAM 0 . 3-3
3.2.2 Emulating the 'C82’s PPO Data RAM 1 and PP1 Data RAM 1 . 3-3

3.3 Emulating the 'C82’'s Parameter RAMScvunn. 3-4
3.3.1 Emulating the PP Parameter RAMS 3-4
3.3.2 Emulating the MP Parameter RAM 3-5
3.4 Prototyping Code Using Linker Command Files 3-6
3.4.1 PP-Relative ADdressing ..., 3-6
342 MapFiles ... 3-7
3.4.3 Linking Your 'C82 Code for Prototypingona’'C80 3-7
3.4.4 LinkingyourCodefora’C82 3-11
3.45 MP Linker Command Files 3-14
3.4.6 Considerations when Using Linker Command Files 3-15
A The’'C80and’'C82 Memory Mapscouiriuiiiiiii e A-1

Provides 'C80 and 'C82 memory maps.

viii TMS320C80 to TMS320C82 Software Compatibility User’'s Guide

R A P A
A OWN P

NNNNR R R R
W N P g

Zf>)>
N P

Figures

'C80 and 'C82 Data RAMs inthe Memory Map 1-7
'C80 and 'C82 Parameter RAMs inthe MemoryMap 1-9
'C80 and 'C82 MP Parameter RAM Block Diagram 1-10
'C80 and 'C82 PP Parameter RAM Block Diagram 1-11
PP State Information on the Stack atReset 1-12
The Type Field in the MP config Register 2-3
The PP’s comm RegiSter 2-3
Structure of a PP Command Buffer 2-9
TMS320C80 Memory Mapt A-2
TMS320C82 Memory Map A-4

Contents ix

Examples

2-1 |Initializing a PP’s Stack Pointer and Comm registers 2-4
2—2 MP C Function for Counting the Number of PPs 2-5
3—1 Sample PP C Programt e 3-8
3—-2 ’'C80 PP Linker Command File for example.c 3-10
3—-3 ’'C80 Map File Lines for Vector Aand VectorB 3-11
3—4 'C82 PP LinkerCommand File 3-12
3-5 ’'C82 Map File Lines for Vector Aand VectorB 3-13
3-6 'C80 MP Linker Command File 3-14
3—7 'C82 MP Linker Command File i, 3-15
3-8 Sample PP C Program With an Assembly Language Function........ 3-17
3-9 Assembly Language Function to Calculate the Dot Productof 3-18

Two Vectors

X TMS320C80 to TMS320C82 Software Compatibility User’'s Guide

Contents

4 Comparison of the’'C80and’'C82t 1-1
Describes differences that affect compatibility in the 'C80 and 'C82.
1.1 Overview of 'C80 and'C82 Featurescovuiiiiinnnn.n. 1-2
1.2 Parallel Processor Differencescc ... 1-3
1.3 Transfer Controller Differences 1-4
1.3.1 Eumber of Externally Initiated Packet Transfer (XPT) Requests 1-
1.3.2 RAM Bank Configuration Mechanisms 1-4
1.4 Video Controller Differencesc.c ... 1-5
1.5 Memory Differences i 1-6
151 DataRAMS ...t 1-6
1.5.2 Parameter RAMS 1-8
153 Caches ... 1-13
5 Programming for Compatibility — 2-1
Provides techniques for programming 'C80/'C82-compatible software.
2.1 Programming Considerations, 2-2
2.2 Obtaining Device-Specific Information 2-3
2.2.1 Determining the Device that is Executing your Software (MP) 2-3
2.2.2 Determining the Device that is Executing your Software (PP) 2-3
2.2.3 Initializing a PP's Stack Pointer 2-4
2.2.4 Counting the Numberof PPs, 2-5
2.3 Technique #1: Using Only Common RAM 2-6
2.3.1 Advantagesiii e 2-6
2.3.2 Disadvantages ... e 2-6
2.3.3 Implementing Technique #2 2-6
2.3.4 Considerationsttt e 2-7
2.4 Technique #2: Using Pointers to Allocate RAM 2-8
241 Advantagesc.ii i e 2-8
2.4.2 Disadvantages 2-8
2.4.3 Implementing Technique #2 2-8
2.4.4 Considerationsottt 2-9

Xi

Contents

6

Prototyping 'C82 Code onthe 'C80 i,
Describes techniques for emulating the 'C82’s RAM with the 'C80’s RAM.

Bl OVEIVIBW ettt
3.2 Emulatingthe’C82'sDataRAMS,
3.2.1 Emulating the 'C82's DataRAMO
3.2.2 Emulating the 'C82’s PP0O Data RAM 1 and PP1 Data RAM
3.3 Emulating the 'C82’'s Parameter RAMS
3.3.1 Emulating the PP Parameter RAMS
3.3.2 Emulating the MP Parameter RAM
3.3.3 Managing Pointers i

B The 'C80 and 'C82 Memory Mapsuuiiiiii i,

Xii

Provides the memory maps of the 'C80 and 'C82.

TMS320C80 to TMS320C82 Software Compatibility User’s Guide

. 3-3
1 3-3
. 34

R A P A
A OWN P

j>)>(|;0l\)l\)f\)l—‘l—‘l—‘l—‘l—\
L don ko

N B

Figures

'C80 and 'C82 Data RAMs inthe Memory Map 1-7
'C80 and 'C82 Parameter RAMs inthe MemoryMap 1-9
'C80 and 'C82 MP Parameter RAM Block Diagram 1-10
'C80 and 'C82 PP Parameter RAM Block Diagram 1-11
PP State Information on the Stack atReset 1-12
The Type Field in the MP config Register 2-3
The PP’s comm RegiSter 2-3
Structure of a PP Command Buffer 2-9
Structure of a PP Command Buffer, 3-5
TMS320C80 MemOory Mapo A-2
TMS320C82 MemOory Mapo A-4

Contents xiii

Xiv TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Chapter 1

Comparison of the 'C80 and 'C82

There are several differences between the 'C80 and the 'C82. As
a programmer, you must be aware of these differences to effec-
tively write code that runs on both the 'C80 and the 'C82. This
chapter describes important differences to prepare you for the
software-related discussions in Chapter 2 and Chapter 3.

In this chapter, you will find information that will help you:
L] Understand general differences between the 'C80 and 'C82.
L] Understand memory differences between the 'C80 and 'C82.

L] Understand the basis for the information in Chapter 2 and

Chapter 3.

Topics
1.1 Overview of 'C80 and 'C82 Features 1-2
1.2 Parallel Processor Differences 1-3
1.3 Transfer Controller Differences 1-4
1.4 Video Controller Differences 1-5
15 Memory Differences i 1-6

1-1

Overview of 'C80 and 'C82 Features

1.1 Overview of 'C80 and 'C82 Features

The 'C80 offers processing power equivalent to up to 2 billion
RISC operations/second. The 'C82 is a low-cost implementation
of the 'C8x architecture that provides high levels of processing
power for cost-sensitive applications.

The 'C80 and the 'C82 are very similar in design. They have sev-
eral features in common, including a crossbar network, parallel
processors, a master processor, a transfer controller, and on-
chip RAM. The processors are binary compatible and can run
each other’s software if the software is written for compatibility.
Four main differences relate to compatibility:

[_] The 'C80 has four parallel processors; the 'C82 has two.

(L1 The on-chip RAM of the 'C80 is divided into 25 2-KB blocks;
the on-chip RAM of the 'C82 is divided into 11 4-KB blocks.

(] The 'C80 transfer controller has 7 externally initiated packet
transfer (XPT) requests; the 'C82 transfer controller has 15.

(] The 'C80 has an on-chip video controller; the 'C82 has none.

Table 1-1 compares the features of the 'C80 and the 'C82.

Table 1-1.'C80 and 'C82 Features

1-2

Feature 'C80 'C82
Number of PPs 4 2
On-chip video controllers 1 None
Total on-chip RAM 50 KB 44 KB
Local data RAM per PP 6 KB 8 KB
Parameter RAM per PP 2 KB 4 KB
PP instruction cache size 2 KB 4 KB
MP parameter RAM size 2 KB 4 KB
MP data cache size 4 KB 4 KB
MP instruction cache size 4 KB 4 KB

TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Parallel Processor Differences

1.2 Parallel Processor Differences

The most important difference related to the parallel processors
(PPs) is the number of PPs per chip: the 'C80 has four PPs and
the 'C82 has two.

Since the 'C82 has two PPs, software written to execute on both
the 'C80 and 'C82 must not require more than two PPs. Software
that can use up to four PPs but that requires only two PPs will run
on both devices.

The number of PPs on a chip can be counted through software.
This allows you to optimize your software’s use of available PPs.
See subsection 2.2.4, Counting the Number of PPs, for a descrip-
tion of how your software can determine the number of available
PPs.

Comparison of the 'C80 and the 'C82 1-3

Transfer Controller Differences

1.3 Transfer Controller Differences

The differences between the transfer controllers (TCs) on the
'C80 and 'C82 are hardware differences. Generally, these differ-
ences have a negligible impact on how you write your software.

The 'C82 and 'C80 TCs differ in two main ways:

(] The 'C80 TC supports 7 XPT requests, but the 'C82 TC sup-
ports 15 XPT requests.

(] The 'C80 TC uses dedicated pins for obtaining memory con-
figuration information, but the 'C82 TC uses a configuration
cache.

1.3.1 Number of Externally Initiated P acket Transfer Requests

The number of XPT requests handled by the 'C80 and 'C82 is dif-
ferent. However, because XPT requests are driven by external
devices, the seven XPT requests shared by the 'C80 and 'C82
generally aren’t used to emulate each other in different systems
with different peripherals. For example, the likelihood is small
that the peripheral connected to XPT1 on the 'C80 software de-
velopment board (SDB) is the same as the peripheral connected
to XPT1 on a target 'C82 board. XPTs are normally handled
through software drivers that are written for each application. The
drivers for the SDB will almost always differ from the drivers used
in an actual application.

1.3.2 RAM Bank Configuration Mechanisms

1-4

The special RAM bank configuration pins on the 'C80 and the
configuration cache on the 'C82 are hardware features that have
a negligible impact on software.

TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Video Controller Differences

1.4 Video Controller Differences

The 'C80 has an on-chip video controller, but the 'C82 does not.
If the chips are to be used in video applications, the portion of
your software that sets up the video timing registers needs to be
written so that an external video controller can be used with the
'C82. This is usually just a matter of switching video drivers, de-
pending on the chip being used.

Comparison of the 'C80 and the 'C82 1-5

Memory Differences

1.5 Memory Differences

1.5.1 Data RAMs

The 'C80 has 50 KB of on-chip RAM, and the 'C82 has 44 KB of
on-chip RAM. On-chip RAM is used as data RAM, as parameter
RAM, and as instruction and data caches.

The 'C80’s RAM is partitioned into 25 individual 2-KB modules.
In contrast, the 'C82’s RAM is partitioned into 11 individual 4-KB
modules. Modules can be accessed in parallel over the crossbar
during the same clock cycle without contention. However, since
RAM organization is not identical in the 'C80 and 'C82, conten-
tion may occur in one device without occurring in the other if your
program does not compensate for this difference.

For your reference, the memory maps of the 'C80 and 'C82 are
described in Appendix A.

Data RAMs are standard read/write memory with no caching or
special features. They are the main areas in which the PPs store
the data they are processing. Any transfer of data to or from data
RAMs is done explicitly by the processors, either by a direct read
from or write to memory, or by a request to the TC to transfer the
data through packet transfers.

As Figure 1-1 illustrates, all data RAM locations corresponding
to PPO and PP1 on the 'C80 are populated with data RAM on the
'C82. Thus, the 'C82’s data-RAM map for PP0O and PP1 is a su-
perset of the 'C80’s. The last half of each of the 4-KB memory
spaces occupied by the 'C82’s PP0 data RAM 1 and PP1 data
RAM 1 is unpopulated on the 'C80. The memory locations occu-
pied by the 'C80’s data RAMs for PP2 and PP3 are unpopulated
on the 'C82.

1-6 TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Address
(Hex)
0000 0000

0000 O7FF
0000 0800

0000 OFFF
0000 1000

0000 17FF
0000 1800

0000 1FFF
0000 2000

0000 27FF
0000 2800

0000 2FFF
0000 3000

0000 37FF
0000 3800

0000 3FFF

0000 8000

0000 87FF
0000 8800

0000 8FFF
0000 9000

0000 97FF
0000 9800

0000 9FFF
0000 8000

0000 87FF
0000 8800

0000 8FFF
0000 8000

0000 87FF
0000 8800

0000 8FFF

Figure 1-1.’C80 and 'C82 Data RAMs in the Memory Map

'C80 Block

Memory Differences

'C82 Block

PPO data RAM 0

PPO data RAM 1

PPO data RAM 0
(4096 bytes)

PP1 data RAM 0

PP1 data RAM 1

PP1 data RAM 0
(4096 bytes)

PP2 data RAM 0O

PP2 data RAM 1

Reserved
(4096 bytes)

PP3 data RAM 0O

PP3 data RAM 1

Reserved
(4096 bytes)

PPO data RAM 2

Reserved

PPO data RAM 1
(4096 bytes)

PP1 data RAM 2

Reserved

PP1 data RAM 1
(4096 bytes)

PP2 data RAM 2

Reserved

Reserved
(4096 bytes)

PP3 data RAM 2

Reserved

Reserved
(4096 bytes)

Comparison of the 'C80 and the 'C82

1-7

Memory Differences

1.5.2 Parameter RAMs

A parameter RAM is associated with each processor on a 'C8x
device. A portion of this RAM is dedicated to hardware parame-
ters, such as the state of suspended packet transfers, buffers for
external-to-external packet transfers, and interrupt vectors. The
remainder of each parameter RAM is available to software for
general-purpose data storage.

Figure 1-2 contrasts the memory maps for the on-chip parame-
ter RAM on the 'C80 and 'C82. All 'C80 memory locations occu-
pied by parameter RAM for PPO, PP1, and the MP are also popu-
lated on the 'C82. The memory locations occupied by the 'C80’s
parameter RAMs for PP2 and PP3 are unpopulated on the 'C82.
Each of the 'C82’s parameter RAMs is 4096 bytes long, which is
twice the size of each parameter RAM on the 'C80. The second
half of each of the corresponding memory spaces is unpopulated
on the 'C80.

Note:

In the 'C80, the MP parameter RAM can be accessed only by
the MP and TC. However, in the 'C82, the MP parameter RAM
can be accessed by the MP, TC, and PPs.

1-8 TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Figure 1-2.’C80 and 'C82 Parameter RAMs in the Memory Map

Memory Differences

Address
(Hex) 'C80 Block 'C82 Block
0100 0000
PPO parameter RAM
0100 O7FF PPO parameter RAM
0100 0800 (4096 bytes)
Reserved
0100 OFFF
0100 1000
PP1 parameter RAM
0100 17FF PP1 parameter RAM
0100 1800 (4096 bytes)
Reserved
0100 1FFF
0100 2000
PP2 parameter RAM
0100 27FF Reserved
0100 2800 (4096 bytes)
Reserved
0100 2FFF
0100 3000
PP3 parameter RAM
0100 37FF Reserved
0100 3800 (4096 bytes)
Reserved
0100 3FFF
0101 0000
MP parameter RAM
0101 O7FF MP parameter RAM
0101 0800 (4096 bytes)
Reserved
0101 OFFF

Figure 1-3 shows the MP parameter RAM in the 'C80 and 'C82.
The memory maps of the hardware-dedicated areas in the first
672 bytes are nearly identical in the ’'C80 and 'C82; the only differ-
ence is that the 'C80 dedicates room for seven XPT addresses
and the 'C82 dedicates room for 15 XPT addresses. The general-
purpose area that begins at address 0x010102A0 is 1376 bytes
long in the '"C80 and 3424 bytes long in the 'C82.

Comparison of the 'C80 and the 'C82 1-9

Memory Differences

Address
(Hex)
0101 0000

0101 007F

0101 0080

0101 OOBF
0101 00CO

0101 OODF
0101 OOEO

0101 OOFB
0101 OOFC

0101 OOFF

0101 0100

0101 017F
0101 0180

0101 O1FF
0101 0200

0101 021F
0101 0220

0101 029F
0101 02A0

0101 O7FF
0101 0800

0101 OFFF

Figure 1-3.’C80 and 'C82 MP Parameter RAM Block Diagram

'C80 Block

'C82 Block

Suspended-packet
parameters

(128 bytes)

Suspended-packet
parameters

(128 hytes)

Reserved

(96 bytes)

Reserved
(64 bytes)

7 XPT linked-list
addresses

(28 bytes)

15 XPT linked-list
addresses

(60 bytes)

MP packet transfer
linked-list
address (4 bytes)

MP packet transfer
linked-list
address (4 bytes)

Buffer for MP-initiated
ext-to-ext transfers

(128 bytes)

Buffer for MP-initiated
ext-to-ext transfers

(128 bytes)

MP interrupt vectors
(128 bytes)

MP interrupt vectors
(128 hytes)

MP trap vectors
(32 bytes)

MP trap vectors
(32 bytes)

Buffer for XPTs
(128 bytes)

Buffer for XPTs
(128 bytes)

General-purpose RAM
(1376 bytes)

Reserved
(2K bytes)

General-purpose RAM
(3424 bytes)

TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Memory Differences

Figure 1-4 shows a typical PP parameter RAM in the 'C80 and
'C82. Inthe figure, the # sign in each address corresponds to the
PP number. The memory maps of the first 512 bytes of the PP
parameter RAM are identical in the 'C80 and 'C82. Beginning at
address 01001200h is a general-purpose area that is 1536 bytes
long in the 'C80 and 3584 bytes long in the 'C82. The PP’s stack
occupies the higher addresses in this general-purpose area and
grows toward smaller addresses.

Figure 1-4.’C80 and 'C82 PP Parameter RAM Block Diagram

Address
(Hex) 'C80 Block 'C82 Block
0100 #000 Suspended-packet Suspended-packet
parameters parameters
0100 #07E (128 bytes) (128 bytes)
0100 #080
Reserved Reserved
96 bytes 96 bytes
0100 #0ODF (ytes) (ytes)
0100 #0EO Restricted for Restricted for
operating system operating system
0100 #OE7 (24 bytes) (24 bytes)
0100 #0F8
Cache fault address Cache fault address
4 bytes 4 bytes
0100 #0FB (4 bytes) (4 bytes)
0100 #0FC) . . .
Linked-list start address Linked-list start address
4 bytes 4 bytes
0100 #OFF (4 bytes) (4 bytes)
0100 #100 Buffer for PP-initiated Buffer for PP-initiated
ext-to-ext transfers ext-to-ext transfers
0100 #17F (128 bytes) (128 bytes)
0100 #180 i .
PP interrupt vectors PP interrupt vectors
128 bytes 128 bytes
0100 #1FF (ytes) (ytes)
0100 #200
General-purpose RAM General-purpose RAM
(1536 bytes)
3584 bhytes
0100 #7FF SEIEs (e
0100 #800
Reserved
(2048 bytes) Stack
0100 #FFF

Comparison of the 'C80 and the 'C82

Memory Differences

The four words at the end of the PP parameter RAM are shown
in Figure 1-5 (PP1'sinthis case). The # sign in each address cor-
responds to the PP number. When a PP is reset, the hardware
sets the stack pointer register (SP) to the highest address in the
PP’s parameter RAM and pushes the before-reset values of the
SP, instruction pointer address stage register (IPA), and instruc-
tion pointer execute stage register (IPE) onto the stack. As shown
in Figure 5, this leaves the SP register pointing to address
010017FCh in the 'C80 and to address 01001FFCh in the 'C82.
For most applications, these addresses are likely to be the best
choices for the initial SP values because they assign the largest
available contiguous block of memory to the combined stack and
general-purpose areas in the parameter RAM.

Figure 1-5. PP State Information on the Stack at Reset

'C80 'C82
Address Address
(Hex) (Hex) Word

0100 #7F0 0100 #FFO

0100 #7F4 0100 #FF4 IPE value from before reset
0100 #7F8 0100 #FFS8 IPA value from before reset
0100 #7FC 0100 #FFC SP value from before reset

Next word in stack
(stack pointer points here after reset)

1-12 TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Memory Differences

1.5.3 Caches

Generally, cache operation is completely transparent; in most
cases you need not worry about cache differences between the
'C80 and the 'C82.

Cache memory is generally not directly accessed by application
software, so the locations of the caches are not important. This
information is available on the memory maps in Appendix A, for
your reference.

Table 1-2 lists the sizes of the caches in the 'C80 and 'C82. Bet-
ter PP performance may occur in the 'C82, since each 'C82 PP
instruction cache is twice as large as its corresponding 'C80 PP
instruction cache.

Table 1-2.'C80 and 'C82 Cache Sizes

Cache 'C80 'C82
PP instruction-cache size (each PP) 2 KB 4 KB
MP data cache-size 4 KB 4 KB
MP instruction-cache size 4 KB 4 KB

Comparison of the 'C80 and the 'C82 1-13

1-14 TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Chapter 2

Programming for Compatibility

By following simple compatibility guidelines, you can write code
that will run equally well on both the 'C80 and the 'C82. Object
code written with these guidelines in mind should run on both de-
vices without recompiling or relinking.

In this chapter, you will find information that will help you:
] Select the best compatibility technique for your application.
[_] Write programs that will run on both the 'C80 and the 'C82.

[_] Write code that can test which device it is running on ("C80 or
'C82).

(L1 Write code that correctly initializes a PP’s stack pointer based
upon which device it is running on.

Topics
2.1 Programming Considerations — 2-2
2.2 Obtaining Device-Specific Information 2:3
2.3 Technique #1: Using Only Common RAM ~ 2-6
2.4 Technique #2: Using Pointers to Allocate RAM ..2-8

2-1

Programming Considerations

2.1 Programming Considerations

Despite the differences shown in Chapter 1, the two 'C8x devices
are fundamentally quite similar. The similarities allow software
developed on one device to be used on the other.

For instance, a 'C80-based board and emulator can serve as a
convenient prototyping system for developing code targeted to
run on a 'C82. In fact, developing software that will run on both
the "C80 and 'C82 without recompiling or relinking is not difficult.

Writing code that runs on both the 'C80 and 'C82 is straightfor-
ward because of the similarities in the two devices’ memory
maps.

2-2 TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Obtaining Device-Specific Information

2.2 Obtaining Device-Specific Information

Device-specific information can be obtained by your software.
This information can help you effectively use all available PPs
and properly initialize each PP’s stack pointer.

2.2.1 Determining the Device that is Executing your Software (MP)

An MP-resident program can determine which device itis running
on by reading the MP’s CONFIG register, which is shown in
Figure 2—1. The 4-bit type field in bits 15-12 of the CONFIG reg-
ister is hardwired to the value 00005 in the 'C80, and to the value
00105 in the 'C82.

Figure 2—1. The Type Field in the MP CONFIG Register

31 16 15 12 11 0
| | Tvee” | |

TType = 0000, in the 'C80; Type = 00105 in the 'C82

2.2.2 Determining the Device that is Executing your Software (PP)

PP software can determine which device itis running on by read-
ing the M field (bits 15-8) in the comm register, which is shown
in Figure 2—2. The M field equals 00000000, in the 'C80 and
00000001, in the 'C82.

Figure 2-2. The PP’s comm Register

31 30 29 28 27 16 15 8 7 4 3 2 10
| H | S | Q | P | Reserved Mt Reserved |R| PP#

TM=000000005 in the *C80; M=000000015 in the 'C82

Notes:

1) In order to provide backward compatibility for preproduction
'C80 devices (silicon revisions 1, 2, and 3), your software
should write a value of 0 to the comm register to initialize the
M field before attempting to read it. In preproduction 'C80
devices, bit 8 of the comm register is a read/write bit whose
value is undefined immediately following reset.

2) The Mfield will be used to identify future versions of the 'C8x,
so make sure your software checks all bits in the M field to
properly identify the device.

Programming for Compatibility 2-3

Obtaining Device-Specific Information

2.2.3 Initializing a PP’s Stack Pointer

The PP’s initialization software may need to set the SP to its initial
value at some time other than immediately after reset. This initial
value differs between the 'C80 and 'C82.

One way to initialize the SP is to load it with a PP-relative address
constant whose value is specified at link time. If the stack is to be-
gin in different locations in the 'C80 and 'C82, however, this ap-
proach requires that separately linked object modules be pro-
vided to run on the 'C80 and 'C82.

An approach that does not have this drawback is to link together
a single object code module that determines at run time whether
itis running on a 'C80 or 'C82 and then sets up the stack accord-
ingly. Typically, the software would set the SP to the same value
it would have immediately following reset. This value is
0100#7F0h on the 'C80 and to 0100#FFO0h on the 'C82 (the # sign
represents the PP number).

Example 2—1 shows a four-instruction code segment, written in
PP assembly language, that sets a PP’s stack pointer and comm
registers to their initial values. The program reads the M bit in the
comm register to determine whether it is running on a 'C80 or a
'C82.

Example 2-1.Initializing a PP’s Stack Pointer and Comm registers

2-4

; Sample code for initializing a PP’s stack pointer (SP)
; and comm registers to their initial values

For the 'C80, the code initializes the SP to 0100#7f0h.
: For the 'C82, the code initializes the SP to 0100#ffOh.

; The # symbol in the previous addresses represents the
; hexadecimal digit that is set to the PP number by the

; first instruction; the first instruction uses the

; keyword pba to specify a PP-relative parameter-RAM

; address offset.

a7 = &*(sp = pba + 0x7F0) ; initialize SP for 'C80
comm =0 ; fix for 'C80 revs 1-3

a7 =comm & (1 \\ 8) ; is this a 'C80 or a 'C82?
sp=[nz]sp|(@\11) ;if'C82, modify initial SP

TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Obtaining Device-Specific Information

2.2.4 Counting the Number of PPs

Counting the number of PPs is essentially a process of checking
which device is executing a program and then using that informa-
tion to determine the number of PPs that are available on the pro-
cessor. For example, if the device check returns 'C80 as the de-
vice type, then the the software should return four as the number
of PPs.

Example 2-2 shows an MP C function that checks the MP’s
CONFIG register to determine which PPs are present on the 'C8x
device. The function returns an 8-bit mask in which each bit indi-
cates whether or not PPO—PP7 are present: bit O corresponds to
PPO, bit 1 corresponds to PP1, etc. When executed on a’C80 de-
vice, the function returns the value OFh to indicate that PPO, PP1,
PP2, and PP3 are present. When executed on a ’'C82 device, the
function returns the value 03h to indicate that PPO and PP1 are
present.

Example 2-2.MP C Function for Counting the Number of PPs

#include <mvp.h>

/*

* Return a mask that specifies the PPs that are

* present on the 'C8x device. Bits 0 to 7 of the

* mask represent PPs 0 to 7. If a PP is present,

* the corresponding mask bit is set to 1.

* The software checks the device it is running on by
* checking the type field in the config register.

*/

int PpGetMask(void)

return((0xff03010f >> ((config & 0x3000) >> 9)) & 0xff);

Programming for Compatibility 2-5

Technique #1: Using Only Common RAM

2.3 Technique #1: Using Only Common RAM

A particularly simple technique for achieving compatibility is to
use only the portions of the on-chip RAM that are common to the
'C80 and 'C82.

The 'C80’s memory map for the local RAMs belonging to the MP,
PPO, and PP1 is a subset of the 'C82’s memory map. All of the
valid local RAM addresses for the 'C80’s MP, PPO, and PP1 cor-
respond to populated local RAM addresses in the 'C82. There-
fore, 'C80 code written to use on-chip RAM belonging to the MP,
PPO, and PP1 should run on the 'C82 without modification.

2.3.1 Advantages of Technique #1

This technique offers three main advantages:
[] Itis simple to implement.
] Performance is nearly identical on the 'C80 and 'C82.

(1 All of the RAM available to the '*C80’s MP, PPO, and PP1 can
be used.

2.3.2 Disadvantages of Technique #1

This technique has two main disadvantages:
] All of the RAM available to the 'C82 cannot be used.

] Contention may result in the 'C82 since the space occupied
by two RAMs (data RAM 0 and data RAM 1) in the 'C80 is oc-
cupied by one RAM (data RAM 0) in the 'C82.

2.3.3 Implementing Technique #1

2-6

In order to implement this technique, place three restrictions
upon your program:

] Use only RAM that is common to both the 'C80 and 'C82.

(] Do not require your program to use RAM belonging to PP2
and PP3 on the 'C80, since the 'C82 doesn't have these PPs.

(] Do not use absolute addresses to access the PP stacks since
the PP stacks have different locations in the 'C80 and 'C82.

TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Technique #1: Using Only Common RAM

2.3.4 Considerations When Using Technique #1

Although PP code that uses this technique should produce identi-
cal results on the 'C80 and 'C82, the timing and performance of
PP-resident programs may be affected by two main differences
between the devices:

(] Each 'C82 PP instruction cache is larger than each 'C80 PP
instruction cache.

[_] For a given PP, two independently-accessible RAMs (RAM 0
and RAM 1) in the 'C80 occupy the same space as a single
RAM (RAM 0) in the 'C82.

First, since the 'C82 PP instruction cache is twice as large as that
of the 'C80, PP performance on the 'C82 should be better than
PP performance on the 'C80.

Second, the C80 PP’s data RAMs 0 and 1 are independently ac-
cessible RAM modules that can be simultaneously accessed
over the crossbar without contention. In the 'C82, however, the
area of memory corresponding to the 'C80’s data RAMs 0 and 1
Is occupied by a single 4-KB RAM module; only a single access
of this module can be performed during any one clock cycle.’'C80
applications may run slightly slower on the 'C82 because this
area of memory can can be accessed only once per clock cycle.
This can occur when software attempts to access data RAMs 0
and 1 simultaneously.

The delays caused by this type of contention are usually negligi-
ble unless a critical inner loop of a PP program written for the "C80
contains instructions that attempt to access data RAMs 0 and 1
in parallel through the PP’s global and local memory ports. Note
that this is a performance issue only; code that runs correctly on
the 'C80 should produce the same results on the 'C82 despite
any increase in processing time due to contention.

Although the '"C80 contains more total on-chip RAM than the 'C82
(50K bytes versus 44K bytes), the 'C82 dedicates a larger
amount of local RAM to each of its processors. On the 'C82, the
MP has an additional 2048 bytes of parameter RAM; each PP
has an additional 2048 bytes of data RAM and an additional 2048
bytes of parameter RAM. The 'C80 addresses corresponding to
the 'C82’s additional RAM are unpopulated. Similarly, the 'C82
addresses corresponding to the 'C80’s local RAM for PPs 2 and
3 are unpopulated.

Programming for Compatibility 2-7

Technique #2: Using Pointers to Allocate RAM

2.4 Technique #2: Using Pointers to Allocate RAM

Technique #1 can be augmented to take advantage of some of
the additional blocks of on-chip RAM that lie outside the popu-
lated regions common to the 'C80 and 'C82.

Technique #2 uses pointers to access on-chip RAM rather than
fixed address constants. With this technique, only the portion of
the software that actually allocates the RAM needs to recognize
the differences between the memory maps of the 'C80 and 'C82.

2.4.1 Advantages of Technique #2

This technique offers two main advantages:

(] Only the portion of the software that actually allocates the
RAM needs to recognize the differences between the
memory maps of the 'C80 and 'C82.

[_] More available memory (compared to technique #1) can be
used on both devices.
2.4.2 Disadvantages of Technique #2
This technique has a two main disadvantages:
(] Technique #2 is more complicated than technique #1.
L] One RAM cannot be used since it is needed to store argu-
ments.
2.4.3 Implementing Technique #2

Implement this technique by writing software that performs three
tasks:

(] Access RAM through pointers rather than through fixed ad-
dress constants.

[_] Use one block (or part of one block) of RAM as an argument
buffer.

] Pass pointers to memory through the argument buffer and
use a command buffer to carry the location of the argument
buffer from the MP to each PP.

The software running on the MP should determine at system ini-
tialization time whether the device it is executing on is a 'C80 or
'C82. From this information, the MP should determine the loca-
tion of the additional RAM and then pass pointers to this RAM to

2-8 TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Technique #2: Using Pointers to Allocate RAM

each PP. Each PP can then use the RAM without being aware of
whether the RAM was allocated from a 'C80 or a 'C82.

The MP should pass a pointer to this RAM through a command
buffer, such as the one shown in Figure 2-3 (taken from Sec-
tion 5.2.6, Command Buffer, in the TMS320C80 Multitasking
Executive User’s Guide). The args field in the command buffer
contains a pointer to a buffer in shared memory that contains the
argument values for the command. The MP can use one of the
additional blocks of RAM as an argument buffer and pass the
pointer to the PP through the args field of the command buffer.

Figure 2-3. Structure of a PP Command Buffer

link Pointer to next command buffer in linked list
flag Full/not-empty flag
function Pointer to command function
args Pointer to buffer containing argument values
mailbox Pointer to server PP’s mailbox
msgValue Message to put in mailbox for client
intCode Code for message interrupt to client

32 hits——»

2.4.4 Considerations When Using Technique #2

In the case of the 'C82, the additional RAM is allocated from the
local RAM of PP0 and PP1. The PPs can access this RAM over
the local-bus connections of crossbar. For the 'C80, however, the
additional RAM may not be local to the PP that accesses the
RAM. If a PP attempts to access a honlocal RAM throughits local
port, however, the only impact is that the access is delayed for
one clock cycle. This delay may slightly alter the execution time
of the software, but is otherwise transparent to software.

Programming for Compatibility 2-9

2-10 TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Chapter 3

Prototyping 'C82 Code on the 'C80

The 'C80 can be used to prototype code that is targeted to run on
the 'C82 alone.

In this chapter, you will find information that will help you:
[_] Prototype 'C82 applications with a 'C80.
[_] Develop 'C82 code on a 'C80 development board.

Topics
3.1 OVEIVIEW . .ottt e 3-2
3.2 Emulating the 'C82’s Data RAMs 3-3
3.3 Emulating the 'C82's Parameter RAMs 34
3.4 Prototyping Code Using Linker Command Files 3-6

3-1

Overview

3.1 Overview

The 'C80 can be used to prototype code that is targeted to run on
the 'C82 alone. To do this, assume that after prototyping is com-
pleted, the resulting code is not intended to be used on the 'C80.

The goal in this instance is to make full use of the 'C82’s on-chip
RAM, as opposed to using only the subset of the on-chip RAM
that is common to the 'C80 and 'C82.

Additionally, since the software will be designed to run primarily
on the 'C82, device-specific information can be hard-coded right
into the software. This can be accomplished by using linker com-
mand files that specify the memory configuration of each device.
For software on the prototype board, you would use the linker
command file for the ’C80. In the actual target board, you would
link your software using the linker command file for the 'C82.

In this way, a 'C80 software development board (SDB) can be
used to develop software for the 'C82.

3-2 TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Emulating the 'C82’s Data RAMs

3.2 Emulating the 'C82’s Data RAMs

The PP data RAMs are relatively simple to emulate since the
'C80 has four 4-KB blocks of contiguous memory in the form of
data RAMs 0 and 1 for each of its four PPs. The level of emulation
provided by this approach should be adequate for many applica-
tions.

The technique involves the emulation of four RAMSs:

To emulate 'C82: Use the 'C80:

PPO data RAM 0 PPO data RAMs 0 and 1
PP1 data RAM 0 PP1 data RAMs 0 and 1
PPO data RAM 1 PP2 data RAMs 0 and 1
PP1 data RAM 1 PP3 data RAMs 0 and 1

3.2.1 Emulating the 'C82’s PPO Data RAM 0 and PP1 Data RAM 0

In the 'C82, each PP data RAM module is 4096 bytes long. The
'C82’'s PP0 data RAM 0 occupies the same 4096 bytes of contig-
uous address space as the 'C80’s PP0O data RAMs 0 and 1.

Thus, the 'C80’s PP0 data RAMs 0 and 1 can directly emulate the
'C82’s PP0O data RAM 0. This approach also works in emulating
the 'C82’s PP1 data RAM 0.

3.2.2 Emulating the 'C82’s PPO Data RAM 1 and PP1 Data RAM 1

Emulating the 'C82’s PP0O data RAM 1 and PP1 data RAM 1 is not
quite as straightforward. Only the first half of the 4-KB block of
memory occupied by each PP’s data RAM 1 is populated on the
'C80 (by the 'C80’s data RAM 2).

The simplest strategy for emulating the 'C82’s PP0 data RAM 1
is to use the 4096 bytes of contiguous RAM from the 'C80’s PP2
data RAMs 0 and 1. Since the address of this RAM differs from
that of the 'C82’s PPO data RAM 1, accesses to this RAM need
to be directed through the use of pointers. Only the portion of the
software that initializes the pointer needs to be aware of the dif-
ference in addresses between the 'C80 and 'C82. Similarly, the
'C82’'s PP1 data RAM 1 can be emulated by the 'C80’s PP3 data
RAMs 0 and 1.

Note:

In order for this approach to work, you must keep the 'C80’s PP2
and PP3 in a halted state.

Prototyping 'C82 Code on the 'C80 3-3

Emulating the 'C82’s Parameter RAMs

3.3 Emulating the 'C82’'s Parameter RAMs

The MP and PP parameter RAMs are a little more difficult to emu-
late for two reasons. First, only the first half of the 4-KB block of
memory occupied by each of the 'C82’s parameter RAMs is pop-
ulated by parameter RAM on the 'C80. Second, there are no re-
maining contiguous 4-KB blocks in the 'C80 (assuming that they
were used in emulating the data RAM).

The technique involves the emulation of three 'C82 RAMSs by us-
ing six 'C80 RAMs:

To emulate 'C82: Use the 'C80:

PPO parameter RAM PPO parameter RAM and PPO data RAM 2
PP1 parameter RAM PP1 parameter RAM and PP1 data RAM 2
MP parameter RAM MP parameter RAM and PP2 parameter RAM

Take three additional actions to ensure successful emulation:

(1 Reinitialize each PP stack so that it starts at the end of the
emulated parameter RAM (the end of the second block).

(L1 Make sure that each PP stack does not exceed the bound-
aries of its RAM.

] Keep PP2 and PP3 halted in the 'C80.

3.3.1 Emulating the PP Parameter RAMs

3-4

The PP parameter RAMs in the 'C82 are twice the size of the PP
parameter RAMs in the 'C80. The second half of each parameter
RAM is not populated in the 'C80; however, PPO data RAM 2 and
PP1 data RAM 2 are available for your use. In many applications,
this RAM may be used in conjunction with the 'C80’s PP0O and
PP1 parameter RAMs to emulate the 'C82’s PP parameter
RAMs.

To do this, use the 'C80’s PPO data RAM 2 to emulate the last half
of the 'C82’s PPO parameter RAM, and use the 'C80’s PP1 data
RAM 2 to emulate the last half of the 'C82’s PP1 parameter RAM.
Access these RAMs through pointers to mask the memory ad-
dress differences between the 'C80 and 'C82.

This approach is viable as long as your application can tolerate
the fact that the RAM modules used for the emulation are not con-
tiguous.

TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Emulating the 'C82’s Parameter RAMs

3.3.2 Emulating the MP Parameter RAM

The remaining issue is how to emulate the 'C82’s 4096-byte MP
parameter RAM. The last half of the memory address block occu-
pied by this RAM is unpopulated on the 'C80. The 'C80’s PP2 pa-
rameter RAM can be mapped into this space and accessed via
a pointer. This approach works only if the application allows two
noncontiguous blocks of 'C80 RAM to be used to emulate a
single block of MP parameter RAM.

This technique uses all 2048 bytes of the 'C80’s PP2 parameter
RAM as general-purpose RAM. As long as PP2 remains halted,
the hardware functions that can write to the parameter RAM re-
main inactive and do not alter the contents of the RAM.

Prototyping 'C82 Code on the 'C80 3-5

Prototyping Code Using Linker Command Files

3.4 Prototyping Code Using Linker Command Files

Linker command files allow you to put linking information in a file;
these files are useful because they allow you to use MEMORY
and SECTIONS directives to customize memory allocation for
your application. In this case, you can specify the location of the
parameter and data RAMs for the processor you are using to
execute your software. By using linker command files to develop
code for the 'C82 on the 'C80, you do not need to modify your as-
sembly or C code.

This method of emulating the 'C82 on a 'C80 requires that you
use different linker command files for the 'C80 and 'C82. Thus,
although the code is not binary-compatible, itis made compatible
through linking.

The basic procedure for using this method requires three steps:

1) Write your code, taking into account the considerations dis-
cussed in this chapter.

2) Link your code with a linker command file for the 'C80 and
then test your code on the 'C80.

3) Link your code with a linker command file for the 'C82 when
you are ready to use that device.

The software tools for the 'C80 and 'C82 come with template link-
er command files that you will need to modify according to the re-
quirements of your program.

For a list of linker directives, see Section 13.4, Linker Command
Files, in the TMS320C80 (MVP) Code Generation Tools User’s
Guide.

3.4.1 PP-Relative Addressing

3-6

One linker command file can be used for linking code so that it
can be executed by all PPs in each device. This is possible be-
cause PP addresses can be specified using offsets.

In order to make this approach work on the PPs, your code must
use PP-relative addressing to access memory.

PP-relative addressing allows the base address for a PP’s local
data RAM 0 or local parameter RAM to be used for address gen-
eration. PP-relative addressing is specified with the keyword
dba, pba, or xba, where dba is the base address beginning at
data RAM 0, pba is the base address beginning at the parameter
RAM, and xba is determined to be either dba or pba by the linker.
A typical line of PP-relative code has the following format:

d6 = *(xba+BUF) ;read a word from memory at BUF

TMS320C80 to TMS320C82 Software Compatibility User’s Guide

3.4.2 Map Files

Prototyping Code Using Linker Command Files

For more information on PP-relative addressing, see subsection
8.8.1.5, PP-Relative Addressing, inthe TMS320C80 (MVP) Par-
allel Processor User’s Guide.

Map files show where sections are linked in memory. Specifically,
they show the names and address ranges of sections and global
variables.

You can cause the linker to generate a map file of your code by
specifying the —m option on the command line or in the linker
command file.

By examining the map file generated by the linker, you can verify
that the sections of your program are mapped into the proper
locations in memory.

For more information about map files, see subsection 13.3.8,
Create a map file (—m filename option), inthe TMS320C80 (MVP)
Code Generation Tools User’s Guide.

3.4.3 Linking Your 'C82 Code for Prototyping on a 'C80

Example 3-1is a sample PP C program that will be used to illus-
trate how code written for the 'C82 can be made to run onthe 'C80
through linking. The program calculates the dot product of two
vectors, A and B. The source code needs to compiled only once;
the object file then only needs to be linked with the proper linker
command file for each device.

Prototyping 'C82 Code on the 'C80 3-7

Prototyping Code Using Linker Command Files

Example 3—-1.Sample PP C Program

[FEFFF IRk kR Rk kkkok * * * * * *kkkkk

* example.c This example C code calculates the dot
* product of vectors A and B.

* * * *kkkkkkk * * * * * * /
#include <mvp.h>

[* allocate space for A in a named section .a_sect */
#pragma DATA_SECTION(A,”.a_sect”)

[* allocate space for B in a named section .b_sect */
#pragma DATA_SECTION(B,”.b_sect”)

* define the buffer size for A and B */
#define BUF_SIZE 1536
short A[BUF_SIZE];
short B[BUF_SIZE];

main()

long dot_prod;
dot_prod = dot_product(A,B,BUF_SIZE);

}

long dot_product(short *A, short *B, int vect_size)

inti;
long dot_prod;
dot_prod = 0; /* set initial value of the

accumulator to zero */
for (i=0; i<vect_size; i++)

dot_prod = dot_prod + A[i] * B[i]; /* calculate the
dot product */

return(dot_prod);

3.4.3.1 Allocating Memory In Sections

3-8

Inthe code, the vectors are allocated by using the #pragma direc-
tive. This directive allocates space in the sections that are de-
fined in the linker command file. A sample #pragma directive is
as follows:

#pragma DATA_SECTION(A,”.a_sect”)

This sample line allocates space for A in a section named
.a_sect; the memory block used for .a_sectis defined in the linker
command file.

In assembly language, #pragma is equivalent to the .sect and
.usect assembler directives. To allocate the vector A in assembly
language, the proper directive would be as follows:

A .usect”.a_sect”,1536

In this way, you can use the linker to specify where to place vari-
ables in memory.

TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Prototyping Code Using Linker Command Files

Note:

For more information about the #pragma directive, see Sec-
tion 2.8, Pragma Directives in the TMS320C80 (MVP) Code
Generation Tools User’s Guide. For more information about the
.sect and .usect directives, see Section 9.10, Directives Refer-
ence, inthe TMS320C80 (MVP) Code Generation Tools User’s
Guide.

3.4.3.2 The 'C80 Linker Command File

Example 3—-2 shows a linker command file for prototyping 'C82
code on a'C80. This linker command file causes the code to use
RAM from other PPs to emulate the RAM in the 'C82.

The method used to create this file is described in Section 3.2,
Emulating the 'C82’s Data RAMs and Section 3.3, Emulating the
'C82’s Parameter RAMSs.

Inthe SECTIONS area of the linker command file, .a_sect s spe-
cified to be placed in DRAMO and .b_sect is specified to be
placed in DRAM1. The directives that accomplish this are as fol-
lows:

SECTIONS

{
.a_sect : (PASS) > DRAMO

.b_sect : (PASS) > DRAM1
}

Note:

For more information about the PASS keyword, see Section
13.11inthe TMS320C80 (MVP) Code Generation Tools User’s
Guide.

The file in Example 3-2 could be used to create a 'C80 execut-
able file for the program shown in Example 3-1.

Prototyping 'C82 Code on the 'C80 3-9

Prototyping Code Using Linker Command Files

Example 3—-2.’C80 PP Linker Command File for example.c

[F** *kkkkkkk * * * * * * * *

* ¢80pp.Ink — PP linker command file for prototyping

* 'C82 code on the 'C80.
* * * *kkkkkkk * * * * * * /
—X
—pstack 0x580
—| pp_rts.lib
MEMORY
{
DRAMO : 0=0x00000004 | = 0xOffc
DRAM1 :0=0x00002000 I|=0x1000
PRAMO :0=0x01000200 |=0x00600

PRAM1 :0=0x00008000 |=0x00800
EXTMEM : 0=0x02000000 | = 0x80000

}
SECTIONS

{
ptext : > EXTMEM

.pcinit : > EXTMEM

.pbss : (PASS) > DRAMO
.pstack : (PASS) > PRAMO
.a_sect : (PASS) > DRAMO
.b_sect : (PASS) > DRAM1

}

3.4.3.3 Compiling and Linking example.c for the 'C80
To compile and link example.c for the 'C80, perform two steps:
1) Compile the C source code using the PP compiler.

2) Link the output of the compiler with the linker command file
shown in Example 3-2.

Both of these steps can be accomplished using a single com-
mand:

ppcl —g example.c —z —o c80ex.out —m c80ex.map c80pp.Ink

3.4.3.4 The 'C80 Map File

The map file shows where each variable was linked into memory.
In this case, the linker command file specifically assigns A to
DRAMO and B to DRAM1. Example 3—3 shows the lines from the
map file that show where A and B were placed in memory. The
entire file is not shown in that example; dots (..) are used to show
sections that were deleted.

In this example, .a_sect was placed at address 00000140h in
DRAMO and .b_sect was placed at address 00002000h in
DRAML1.

To see a complete map file, see Section 14.5, The Example Link-
er Map Files, in the TMS320C80 (MVP) Code Generation Tools
User’s Guide.

3-10 TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Prototyping Code Using Linker Command Files

Example 3-3."C80 Map File Lines for Vector A and Vector B

MVP COFF Linker Version 1.10

*% *%

Tue Oct 3 10:00:06 1995

OUTPUT FILE NAME: <c80ex.out>
ENTRY POINT SYMBOL: "$c_int00” address: 020006b8

MEMORY CONFIGURATION

name origin length attributes Afill
DRAMO 00000004 000000ffc ~ RWIX
DRAM1 00002000 000001000 RWIX
PRAM1 00008000 000000800 RWIX
PRAMO 01000200 000000600 RWIX
EXTMEM 02000000 000080000 RWIX

SECTION ALLOCATION MAP

output
section page origin

attributes/
length input sections

a_sect 0 00000140

00000140 00000c00

.b_sect 0 00002000

00002000 00000c00

GLOBAL SYMBOLS

address name

00000140 $A
00002000 $B

00000c00 PASS SECTION
example.o (.a_sect)
PASS SECTION

example.o (.b_sect)

00000c00

3.4.4 Linking your Code for a 'C82

After prototyping your code on the 'C80, you can make it execute
on the 'C82 by simply linking the object file using a 'C82 linker
command file. In this case, you can use the linker command file
in this section to link the object file generated by compiling
Example 3—1 to create an executable file for the 'C82.

The linker command files for the ’C80 and the 'C82 differ mainly
in the MEMORY section; the locations of the data RAMs, param-
eter RAMs, and external memory are defined in that section.

The entries in the SECTIONS area need to use RAMs that are
defined in the MEMORY section; thus, the entries in the SEC-
TIONS area may differ in the two files. This is the case with the
parameter RAM, since the 'C80 uses two noncontiguous RAMs
to emulate each single 'C82 PP parameter RAM. Thus, in the
'C80 linker command file, the parameter RAM is defined as

Prototyping 'C82 Code on the 'C80 3-11

Prototyping Code Using Linker Command Files

PRAMO and PRAML1 instead of just PRAM, as is the case in the
'C82 linker command file.

3.4.4.1 The 'C82 Linker Command File

The linker command file for the 'C82 specifies the location of
DRAMO, DRAM1, and PRAM, and external memory (EXTMEM).

Example 3—4."C82 PP Linker Command File

JFFFFF IRk kg ok kkkk * * * * * *kkkkk

* ¢82pp.Ink — 'C82 PP linker command file.

**/

—X

—pstack 0x580
—| pp_rts.lib
MEMORY

DRAMO : 0=0x00000004 | = 0xOffc
DRAM1 :0=0x00008000 |=0x1000
PRAM : 0=0x01000200 | = 0x00e00
EXTMEM : 0=0x02000000 | = 0x80000

}
SECTIONS

{
.ptext : > EXTMEM

.pcinit : > EXTMEM
.pstack : (PASS) > PRAM
.pbss : (PASS) > DRAMO
.a_sect : (PASS) > DRAMO
.b_sect : (PASS) > DRAM1

}
3.4.4.2 Compiling and Linking example.c for the 'C82

To produce an executable for the 'C82, link the object file gener-
ated when you last compiled example.c with the linker command
file shown in Example 3—4.

This step can be accomplished using a single command:
ppcl —z —o c82ex.out —m c82ex.map example.o c82pp.Ink

If you do not have an object file to link, you can compile and link
with a single command:

ppcl —g example.c —z —0 c82ex.out —m c82ex.map c82pp.Ink

3.4.4.3 The 'C82 Map File

The 'C82 linker command file specifically assigns A to DRAMO
and B to DRAML1, as was the case for the 'C80 linker command
file. Example 3-5 shows the lines from the map file that show
where A and B were placed in memory. The entire file is not
shown in that example; dots (..) are used to show sections that
were deleted.

3-12 TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Prototyping Code Using Linker Command Files

Example 3-5."C82 Map File Lines for Vector A and Vector B

*% *% *% *% *% * * * *% *%

MVP COFF Linker Version 1.10

Tue Oct 3 10:04:01 1995

OUTPUT FILE NAME: <c82ex.out>
ENTRY POINT SYMBOL: "$c_int00” address: 020006b8

MEMORY CONFIGURATION
name origin length attributes fill

DRAMO 00000004 000000ffc ~ RWIX
DRAM1 00008000 000001000 RWIX
PRAM 01000200 000000e00 RWIX
EXTMEM 02000000 000080000 RWIX

SECTION ALLOCATION MAP

output attributes/
section page origin length input sections

.a_sect 0 00000140 00000c0O0 PASS SECTION
00000140 00000c00 example.o (.a_sect)
.b_sect 0O 00008000 00000cO0 PASS SECTION
00008000 00000c00 example.o (.b_sect)

GLOBAL SYMBOLS

address name

00000140 $A
00008000 $B

In this example, .a_sect was placed at address 00000140h in
DRAMO and .b_sect was placed at address 00008000h in
DRAML1.

To see a complete map file, see Section 14.5, The Example Link-
er Map Files, in the TMS320C80 (MVP) Code Generation Tools
User’s Guide.

Prototyping 'C82 Code on the 'C80 3-13

Prototyping Code Using Linker Command Files

3.4.5 MP Linker Command Files

MP linker command files function in the same way as PP linker
command files. Example 3—6 shows the command file for proto-
typing 'C82 code on a’C80. Example 3—7 show the command file
for linking 'C82 code to execute on a 'C82.

Example 3-6."C80 MP Linker Command File

3-14

/ T
* ¢80mp.Ink — MP linker command file for prototyping
* 'C82 code on a'C80
~k*-k**~k***********************-k*********-k****-k***********/

—C

—X

—heap 0x2000

—stack 0x2000

—| mp_rts.lib
MEMORY

EXTMEM : 0=0x02000000 | = 0x80000
MPPRAMO : 0=0x01010000 | = 0x800
MPPRAM1 :0=0x01002000 | = 0x800

}

SECTIONS

{
text : > EXTMEM
ptext : >EXTMEM
.bss : >EXTMEM
.const : >EXTMEM
.switch : > EXTMEM
.sysmem : > EXTMEM
.stack : > EXTMEM
.cinit : > EXTMEM
.pcinit : > EXTMEM

TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Prototyping Code Using Linker Command Files

Example 3-7."C82 MP Linker Command File

[* *% *% *% *% *% *% *kk * * *%

* c82mp.Ink — 'C82 MP linker command file

*hkkkkkhkkkkkhkkkkhhhkkkkk * nnnnnnn/

—C
—X

—heap 0x2000
—stack 0x2000
—l mp_rts.lib
MEMORY

EXTMEM : 0=0x02000000 | = 0x80000
MPPRAM : 0=0x01010000 | = 0x1000

}
SECTIONS

{
text : >EXTMEM

.ptext : > EXTMEM
.bss : >EXTMEM
.const : > EXTMEM
.switch : > EXTMEM
.sysmem : > EXTMEM
.stack : > EXTMEM
.cinit : > EXTMEM
.pcinit : > EXTMEM
}

3.4.6 Considerations when Using Linker Command Files

There are two basic considerations when prototyping 'C82 code
on a 'C80 using linker command files:

] In some cases, code may run more quickly on the *C80 than
on the 'C82. The probability of contention is lower in the 'C80
because each PP DRAMO, PP DRAM1, PP PRAM, and MP
PRAM is emulated by two RAMs in the 'C80.

] In some cases, code may run more slowly on the 'C80 than
on the 'C82. Code that uses the local port to access DRAM1
could cause a 1-cycle stall during each access, since DRAM1
is not local to the 'C80 PPs.

3.4.6.1 Contention Differences in the 'C80 and 'C82

In the 'C82, contention exists between accesses to the first half
and last half of a RAM. In the 'C80, however, this contention does
not exist. A 'C80 PP can access the first and second halves of a
given RAM at the same time. On the other hand, a 'C82 PP can
only access either the first or second half of a given RAM in one
cycle. In the case of the 'C82, one access will be stalled until the
other access is complete.

This situation is one that you should avoid when you prototype
'C82 code on the 'C80; in the very least, take this into consider-
ation when estimating performance on the 'C82.

Prototyping 'C82 Code on the 'C80 3-15

Prototyping Code Using Linker Command Files

3.4.6.2 Global and Local Ports in the 'C80 and 'C82

3-16

In the 'C82, each PP’s data is local to that PP; however, on the
'C80, each PP uses data RAMs from another PP to emulate
DRAML. Since the borrowed RAM is not local to each PP, any ac-
cess to that RAM will be forced over the PP’s global port, regard-
less of whether the local port or global port was specified in the
code.

If the PP’s DRAM1 is accessed using the PP’s local port, and a
global port access is made in parallel, the instruction would stall
for one cycle. This would cause the execution time on the 'C80
to be longer than the execution time on the 'C82.

Example 3-8 is a C PP example that calls a PP assembly lan-
guage function to calculate the dot product of two vectors, A and
B. Example 3-9 is the assembly language function called by the
C program. These two examples together perform the same
function as example.c, the sample program used in the previous
example.

This example illustrates how to use the PP’s address units so that
'C82 code that is prototyped on the 'C80 can equivalent in terms
of timing and functionality. In other words, the most important
consideration in this case is to write the assembly code to avoid
different execution times for each processor.

In the example, A is accessed (loaded) using the local port, since
it is specifically linked to a portion of memory that is local to the
PP that is executing the code. B, on the other hand, is accessed
using the global port, since it is linked to a RAM that is global
when it runs on the 'C80 (but not when it runs on the 'C82).

In the code, the access to vector B takes place through the global
port. The following assembly language line shows how the port
is specified using a ppca (register allocator/compactor) directive:

Ga_B_ptr .reg ga

The access to vector A is specified as taking place through the
local port. The following line of assembly language code shows
how the port was specified using a ppca directive:

La_A ptr reg la

The following lines of assembly language code show how the ac-
cesses to A and B are specified in parallel:

[| B =h*Ga_B_ptr++ ; load next B element

[| A=h*La_A_ptr++ ; load next A element

In your code, you can avoid timing differences by using the tech-
nique shown in the example: use the global port when accessing
RAM that is global to a 'C80 PP, and use the local port when
accessing RAM that is local to a 'C80 PP.

TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Prototyping Code Using Linker Command Files

Example 3-8.Sample PP C Program With an Assembly Language Function

/ * * *

ex_asm.c This example C code calculates the dot
product of vectors A and B.

*

* The code uses an assembly language function
* to calculate the dot product. The assembly
* language code has the filename c80ex.p.
*kkkkkkkhkhkkhkhkkhxk *% *% *% * nnnnn/

#include <mvp.h>

[* allocate space for A in a named section .asect */

#pragma DATA_SECTION(A,".a_sect”)

[* allocate space for B in a named section .bsect */

#pragma DATA_SECTION(B,".b_sect”)

[* define a the buffer size for A and B */

#define BUF_SIZE 1536

short A[BUF_SIZE];

short B[BUF_SIZE];

extern long dot_product(short *, short *, int);

main()

long dot_prod;
dot_prod = dot_product(A,B,BUF_SIZE);
}

Prototyping 'C82 Code on the 'C80 3-17

Prototyping Code Using Linker Command Files

Example 3-9.Assembly Language Function to Calculate the Dot Product of Two Vectors

a_addr .set dl ; pointer to A[] passed in d1
b_addr .set d2 ; pointer to B[] passed in d2
vect_size .set d3 ; vector size is passed in d3
dot_product .set d5 ; the dot product of A and B is
; returned in d5.

A reg d ; ppca determines the registers
B reg d ; these variables will be assigned to.
prod reg d
La_A ptr rreg la
Ga_B_ptr .reg oga

Jock d6, d7, a4, al2 ; tell ppca not to use

; these registers
.entry a_addr, b_addr, vect_size ; tell ppca that registers
; are live on entry (these
; are the arguments passed
; from the C calling function).

.system $dot_product ; define function entry point
.system _dot_product ; so that it is visible
; to both MP and PP C.
$dot_product:
_dot_product:

La_A_ptr=a_addr ; initialize a local address
; register to vector A.
Ga_B_ptr =b_addr ; initialize global address

; register to vector B.

Irse2 = vect_size — 1 : Use the fast initialization
; form to set up a single
; instruction loop. The PP
; executes the instruction
;at DOT_PROD_LOOP vect_size

; imes.
prod =0 ; clear prod.
|| A=h*La_ A ptr++ ; load first element of A,

; using the local port
; and postincrement A’s

; pointer.
dot_product = 0 ; clear dot_product
|| B =h*Ga_B_ptr++ ; load first element of B,

; using the global port
; and postincrement B’s

; pointer.
DOT_PROD_LOOP:
prod=A*B ; calculate the product of
;Aand B
|| dot_product=dot_product+prod ; calculate sum of products
|| B =h*Ga_B_ptr++ ; load next B element (global port)
[| A=h*La_A_ptr++ ; load next A element (local port)
.cjump DOT_PROD_LOOP ; tell ppca that the code conditionally
; loops to DOT_PROD_LOOP.
br = iprs ; return to calling function.
dot_product = dot_product + prod ; calculate last sum.
nop
.uexit ; tell ppca that this is the end of

; this function.

3-18 TMS320C80 to TMS320C82 Software Compatibility User’s Guide

Appendix A

The 'C80 and 'C82 Memory Maps

The TMS320C8x is a byte-addressable device with a single 4-GB
memory space common to its processors. Each address refers
to a specific byte in the address space. Addresses less than
02000000h are reserved for on-chip memory, and addresses
from 02000000h to FFFFFFFFh are assigned to off-chip
memory. The memory map is shown in Figure A-1 for the 'C80
and in Figure A-2 for the 'C82.

A-1

The 'C80 and 'C82 Memory Maps

Figure A—1. TMS320C80 Memory Map

Starting
Address
(hex)

0000 0000
0000 0800
0000 1000
0000 1800
0000 2000
0000 2800
0000 3000
0000 3800

0000 4000

0000 8000
0000 8800
0000 9000
0000 9800
0000 A000
0000 A800
0000 BO0O

0000 B80O

0100 0000
0100 0800
0100 1000
0100 1800
0100 2000
0100 2800
0100 3000

0100 3800

TBlock sizes have been rounded to the nearest unit size.

Ending
Address
(hex)

0000 O7FF
0000 OFFF
0000 17FF
0000 1FFF
0000 27FF
0000 2FFF
0000 37FF
0000 3FFF

0000 7FFF

0000 87FF
0000 8FFF
0000 97FF
0000 9FFF
0000 A7FF
0000 AFFF
0000 B7FF

00FF FFFF

0100 O7FF
0100 OFFF
0100 17FF
0100 1FFF
0100 27FF
0100 2FFF
0100 37FF

0100 FFFF

Bank
Size
(bytes)

2K
2K
2K
2K
2K
2K
2K
2K

16K

2K
2K
2K
2K
2K
2K
2K

16M*

2K
2K
2K
2K
2K
2K
2K

50K

Memory or Device

PPO Data RAM 0

PPO Data RAM 1

PP1 Data RAM 0

PP1 Data RAM 1

PP2 Data RAM 0

PP2 Data RAM 1

PP3 Data RAM 0

PP3 Data RAM 1

Reserved

PPO Data RAM 2

Reserved

PP1 Data RAM 2

Reserved

PP2 Data RAM 2

Reserved

PP3 Data RAM 2

Reserved

PPO Parameter RAM

Reserved

PP1 Parameter RAM

Reserved

PP2 Parameter RAM

Reserved

PP3 Parameter RAM

Reserved

A-2 TMS320C80 to TMS320C82 Software Compatibility User’'s Guide

Figure A-1. TMS320C80 Memory Map (Continued)

Starting
Address
(hex)

0101 0000

0101 0800

0180 1800
0180 2000
0180 3800
0180 4000
0180 5800
0180 6000
0180 7800

0180 8000

0181 0000
0181 0800

0181 1000

0181 8000
0181 8800

0181 9000

0182 0000
0182 0200

0182 0400

0200 0000

TBlock sizes have been rounded to the nearest unit size.

Ending
Address
(hex)

0101 O7FF

0180 17FF

0180 1FFF
0180 37FF
0180 3FFF
0180 57FF
0180 5FFF
0180 77FF
0180 7FFF

0180 FFFF

0181 O7FF
0181 OFFF

0181 7FFF

0181 87FF
0181 8FFF

0181 FFFF

0182 01FF
0182 03FF

01FF FFFF

FFFF FFFF

Bank
Size
(bytes)

2K

8mft

2K
6K
2K
6K
2K
6K
2K

32K

2K
2K

28K

2K
2K

28K

512
512

8MT

4Gt

The 'C80 and 'C82 Memory Maps

Memory or Device

MP Parameter RAM

Reserved

PPO Instruction Cache

Reserved

PP1 Instruction Cache

Reserved

PP2 Instruction Cache

Reserved

PP3 Instruction Cache

Reserved

MP Data Cache 0

MP Data Cache 1

Reserved

MP Instruction Cache O

MP Instruction Cache 1

Reserved

Memory-Mapped TC Registers

Memory-Mapped VC Registers

Reserved

External Memory

The 'C80 and 'C82 Memory Maps

A-3

The 'C80 and 'C82 Memory Maps

Figure A—2. TMS320C82 Memory Map

Starting
Address
(hex)

0000 0000

0000 1000

0000 2000

0000 8000

0000 9000

0000 A000

0100 0000

0100 1000

0100 2000

0101 0000

0101 1000

0180 1000

0180 2000
0180 3000

0180 4000

0181 0000

0181 1000

TBlock sizes have been rounded to the nearest unit size.

Ending
Address
(hex)

0000 OFFF

0000 1FFF

0000 7FFF

0000 8FFF

0000 9FFF

00FF FFFF

0100 OFFF

0100 1FFF

0100 FFFF

0101 OFFF

0180 OFFF

0180 1FFF

0180 2FFF
0180 3FFF

0180 FFFF

0181 OFFF

0181 7FFF

Bank
Size
(bytes)

4K

4K

24K

4K

4K

16MT

4K

4K

56K

4K

8mt

4K

4K
4K

48K

4K

28K

Memory or Device

PPO Data RAM 0

PP1 Data RAM O

Reserved

PPO Data RAM 1

PP1 Data RAM 1

Reserved

PPO Parameter RAM

PP1 Parameter RAM

Reserved

MP Parameter RAM

Reserved

PPO Instruction Cache

Reserved

PP1 Instruction Cache

Reserved

MP Data Cache

Reserved

A-4 TMS320C80 to TMS320C82 Software Compatibility User’'s Guide

The 'C80 and 'C82 Memory Maps

Figure A—2. TMS320C82 Memory Map (Continued)

Starting Ending Bank
Address Address size
(hex) (hex) (bytes) Memory or Device

0181 8000 0181 8FFF 4K MP Instruction Cache
0181 9000 0181 FFFF 28K Reserved
0182 0000 0182 01FF 512 Memory-Mapped TC Registers
0182 0200 01FF FFFF 8mT Reserved
0200 0000 FFFF FFFF 4Gt External Memory

TBlock sizes have been rounded to the nearest unit size.

The 'C80 and 'C82 Memory Maps A-5

A-6 TMS320C80 to TMS320C82 Software Compatibility User’s Guide

