TMS320C8x

Register Allocator and Code Compactor

PRINTED WITH

&

SOYINK|_

User’s Guide

Release 2.00

Literature Number: SPRU217

Manufacturing Part Number: D418022—-9741 revision *

February 1997

Q?‘ TEXAS
INSTRUMENTS

o

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tlwarrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TlI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
representthat any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 0 1997, Texas Instruments Incorporated

About This Manual

Preface

Read This First

This manual tells you how to use the TMS320C8x Register Allocator and Code
Compactor (ppca) tool.

Notational Conventions

This document uses the following conventions.

a

Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
boldversion of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is an example of a command that you might enter:
ppca myfile

In syntax descriptions, the instruction, command, or directive is in a bold
typeface fontand parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

name .reg type

.reg is the directive. This directive requires two parameters, indicated by
name and type.

Notational Conventions / Related Documentation From Texas Instruments

[0 Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
do not enter the brackets themselves. Here is an example of a directive
that has optional parameters:

.cjump labell [, label2...]

.cjump is the directive. This directive requires one or more parameters,
indicated by /abell and [, label2...]. Notice that when more than one
parameter is specified, the parameters are separated by commas.

Related Documentation From Texas Instruments

The following books describe the TMS320C8x and related support tools. To
obtain a copy of any of these Tl documents, call the Texas Instruments
Literature Response Center at (800) 477-8924. When ordering, please
identify the book by its title and literature number.

TMS320C80 (MVP) C Source Debugger User’s Guide (literature number
SPRU107) describes the 'C8x master processor and parallel processor
C source debuggers. This manual provides information about the
features and operation of the debuggers and the parallel debug
manager; it also includes basic information about C expressions and a
description of progress and error messages.

TMS320C80 (MVP) Code Generation Tools User's Guide (literature
number SPRU108) describes the 'C8x code generation tools. This
manual provides information about the features and operation of the
linker and the master processor (MP) and parallel processor (PP) C
compilers and assemblers. It also includes a description of the common
object file format (COFF) and shows you how to link MP and PP code.

TMS320C8x Master Processor User’s Guide (literature number SPRU109)
provides information about the master processor (MP) features,
architecture, operation, and assembly language instruction set; it also
includes sample applications that illustrate various MP operations.

TMS320C8x Multitasking Executive User’s Guide (literature number
SPRU112) provides information about the multitasking executive
software features, operation, and interprocessor communications; it also
includes a list of task error codes.

TMS320C8x Parallel Processor User’s Guide (literature number SPRU110)
provides information about the parallel processor (PP) features,
architecture, operation, and assembly language instruction set; it also
includes software applications and optimizations.

Related Documentation From Texas Instruments

TMS320C8x System-Level Synopsis (literature number SPRU113)
describes the 'C8x features, development environment, architecture,
memory organization, and communication network (the crossbar).

TMS320C80 Transfer Controller User’'s Guide (literature number
SPRU105) provides information about the transfer controller (TC)
features, functional blocks, and operation; it also includes examples of
block write operations for big- and little-endian modes.

TMS320C80 Video Controller User’s Guide (literature number SPRU111)
provides information about the video controller (VC) features,
architecture, and operation; it also includes procedures and examples
for programming the serial register transfer (SRT) controller and the
frame timer registers.

TMS320C80 Digital Signal Processor Data Sheet (literature number
SPRS023) describes the features of the TMS320C80 and provides
pinouts, electrical specifications, and timings for the device.

TMS320C80 to TMS320C82 Software Compatibility User’s Guide
(literature number SPRU154) describes how to port software developed
for one of these devices to the other. It also presents a set of software
compatibility guidelines for developing software that will run on either
device.

Modified Goertzel Algorithm in DTMF Detection Using the TMS320C80
Application Report (literature number SPRA066) describes the
C-callable Goertzel dual-tone multi-frequency (DTMF) detection
algorithm implementation on one of the TMS320C80’s parallel
processors.

Interfacing SDRAM to the TMS320C80 Application Report (literature
number SPRAO055) describes an interface between the 'C80 and the
TMS626802-10 SDRAM(S). It illustrates the operation of the SDRAM
interface and provides schematics for a baseline SDRAM interface to the
TMS320C80.

Interfacing DRAM to the TMS320C80 Application Report (literature
number SPRA056) describes an interface between the 'C80 and the
TMS417400 DRAM(s). The report also describes the interface’s
connection to 4MB and 8MB SIMMs, a timing analysis for the proposed
design, and a complete set of schematics.

TMS320C80 H.320 Software Library White Paper (literature number
SPRY002) describes the TMS320C80’s single-chip implementation of
the H.320 videoconferencing standard.

Read This First Y

Related Documentation From Texas Instruments

TMS320C80 Digital Signal Processor Data Sheet (literature number
SPRS023) describes the features of the TMS320C80 and provides
pinouts, electrical specifications, and timings for the device.

TMS320C8x Software Development Board Installation Guide (literature
number SPRU150B), included with the TMS320C8x SDB, provides
information about how to install and use the SDB.

TMS320C8x Software Development Board Programmer’s Guide
(literature number SPRU178), included with the TMS320C8x SDB,
provides descriptions of hardware functions, complete API references,
theory of operation, and example code for the SDB.

TMS320C8x (DSP) — Fundamental Graphic Algorithms Application
Book (literature number SPRA069) contains application notes that
demonstrate several 'C8x application programs. These notes are as
follows:

Transform3 Command is an application presented for the Master
Processor which demonstrates how two-dimensional graphic
coordinate transformations can use the 'C8x floating-point unit
efficiently. Performance estimation also is provided.

Transform4 Command is an application presented for the Master
Processor which demonstrates how three-dimensional graphic
coordinate transformations can use the 'C8x floating-point unit
efficiently. Performance estimation also is provided.

Draw Colored Lines Command is an application presented for the 'C8x
parallel processor which demonstrates how to generate colored
lines efficiently. Performance estimation also is provided.

Draw Colored Trapezoids Command is an application presented for
the 'C8x parallel processor which demonstrates how to generate
colored trapezoids efficiently. Performance estimation also is
provided.

Parallel Processor Integer and Floating-Point Math describes
several C-callable 32-bit IEEE 754 standard floating-point math
subroutines. Performance estimation also is provided.

vi

Trademarks

Related Documentation From Texas Instruments / Trademarks

Implementation of the Vector Maximum Search Benchmark on the
TMS320C8x Parallel Processor Application Report (literature
number SPRA087) uses the Vector Maximum Search benchmark to
demonstrate the efficient performance of the TMS320C8x parallel
processors. This manual describes a software implementation that uses
the parallel processor’s advanced assembly language features to
implement this benchmark.

Acoustic Echo Cancellation — Algorithms and Implementation on the
TMS320C8x Application Report (literature number SPRA063)
describes the implementation of an integral N-tap digital acoustic echo
canceller on the TMS320C8x parallel processor. The report presents a
brief discussion of generic echo cancellation algorithms. The
implementation considerations for a 512-tap (64-ms span) echo
canceller on the TMS320C8x are described in detail, as well as the
software logic and flow for each program module.

Viewing TMS320C8x Register Bit Fields and Memory-Mapped Registers
in the HLL Debugger (TMS320 DSP Designer’s Notebook, DNP# 69)
describes a method for viewing ’'C8x register bit fields and
memory-mapped registers in the 'C8x HLL debugger.

Writing TMS320C8x PP Code Under the Multitasking Executive (TMS320
DSP Designer’s Notebook, DNP# 73) provides useful guidelines for
writing 'C8x Parallel Processor (PP) assembly language or C code that
can run under the Multitasking Executive.

TMS320C82 Digital Signal Processor Data Sheet (literature number —
Preliminary) describes the features of the TMS320C82 and provides
pinouts, electrical specifications, and timings for the device.

320 Hotline On-line is a trademark of Texas Instruments Incorporated.

Read This First vii

If You Need Assistance

If You Need Assistance . . .

1 World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://iwww.ti.com/dsps
320 Hotline On-line™ http://www.ti.com/sc/docs/dsps/support.htm
0 North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
Tl Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/mirrors/tms320bbs
(1 Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:
Multi-Language Support +33130701169 Fax:+33130701032 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 130 70 11 68
English +33130 701165
Francais +331307011 64
Italiano +33130701167
EPIC Modem BBS +3313070 1199
European Factory Repair +334 932225 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
1 Asia-Pacific
Literature Response Center +852 2956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 25512804 Fax: +82 2551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/Tl/
[Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”
(1 Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.
Mail: Texas Instruments Incorporated Email: comments@books.sc.ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443
Note: When calling a Literature Response Center to order documentation, please specify the literature number of the

viii

book.

Contents

1 Getting Started With ppCao _‘L-E
Explains the functionality of the tool and how to invoke it. Also summarizes the ppca directives.
0 A o 3 o o= Y 1-2
1.2 Program Development 1-3
1.3 INVOKING PPCA . v ovv ettt et e et e e e e 1-4
1.4 Summary Of DIFECHVES 1-5
2 USING PPl o« ot ittt e e e E
Explains how to use the tool to control program functions. Includes descriptions of the tool’s
directives.
2.1 Declaring Variablesuiiuii D-2
DUmMMy Variablesit D-2
2.2 Defining ENtry POINES\ttt e e e P-4
2.3 Specifying Program FIOWiriee e e P-5
Specifying a branch to a label inside the currentfile E
The .ujump direCHIVE . .. o e -5
The .cjump direCtiVe -6
Specifying a branch or return to a point outside the currentfile 2-8
Calling external SUDIOULINES o e -9
2.4 Reserving Registers 2-11
2.5 Controlling Register and Variable Lifetime i ... 2-12,
2.6 Controlling Compactionttt -13
The register move iNStrUCHIoN e 2-13
The pack direCtiVeS i e e -13
2.7 Controlling Scheduling i 2-14
2.8 Copying the Contentsofan Include File 2-15
2.9 Compacting Before Register Allocationc i 2-16

Contents

B PPCA OULPULS ottt e e e @

Describes the various outputs produced by the tool.

3.1 OUtpUt FOrMAL ..o @
Variable Naming CONVENtIONSt
Variable-Usage Table
Opcode-Usage Table e e e e

3.2 Progress and Ermror MESSA0ESo v vttt ittt ettt et et
Parse-stage MeSSagesSottt
Register-allocation MeSSAgESottt
COMPACHON MESSAGES .+ .« vt vttt ettt ettt e et ettt

A KNoWn DefiCIENCIES ..ot

Lists the deficiencies that are known to exist in this release.

N
B

PR

W N -

L

o

!
~N o

oo

©

o

N =
NP

II\)Il\)NI\)I\)I\)I\JI\JI\)
=
w

w

T
N -

Tables

Summary of Allocation and Compaction Directives i ..
VaHabIE TYPES .« .ottt ettt P-2)

Using dummy variables to store instructionresults i .
Using .live to achieve aread ofadummy variable
Using .ujump to specify an unconditionalbranch
Using .cjump to specify a conditionalbranch
Using .cjump with multiple [abels
Using .uexit to specify an unconditional branch
Using .cexit to specify a conditionalbranch
Using .cjump and .ujump when indicating subroutinecalls

Using .entry to specify outputs from a subroutine 2-10
Using .lock and .free to reserve and free registers,
Loop containing an uninitialized registero i
Using .live to indicate the lifetime of register i,

Copying the contents of aninclude file i i

Variable-Usage Table
Opcode-Usage Table -4

Contents Xi

Chapter 1

Getting Started With ppca

The register allocator and code compactor (ppca) allocates symbolic variables
to physical registers and (optionally) compacts assembly language
instructions for the TMS320C8x’s parallel processors. This chapter explains
the functionality of the tool and describes how to invoke it. The ppca-specific
directives are listed and a brief description of each is provided.

Topic Page
L1 ADOUL PPCA vt eee e e e et e e e e e e e
1.2 Program Development 1
1.3 INVOKING PPCA .« ittt et e 1
1.4 Summary of Directives t 1

About ppca

1.1 About ppca

1-2

ppca performs two independent, although related, actions that make it easier
to use the TMS320C8x’s parallel processors (PP). The tool

[Automatically allocates symbolic variables to physical PP registers

[Compacts assembly language instructions to reduce code size and
improve execution speed

ppca allows the source and destination operands for each instruction to be
referred to symbolically, as in a high-level language. These symbolic variables
can then be allocated to physical PP registers. ppca automates the process
of allocating the symbolic variables to physical registers.

The PP assembly language allows multiple complex instructions to occur in a
single cycle. In addition to register allocation, ppca can reorder instructions so
that the instructions can be performed in parallel. The reordering process
ensures that the data dependencies in the original code are maintained. The
resulting code should be smaller in size and execute faster. The tool can
accept input in unpacked (where only one of the complex instructions is used
in a cycle), partially packed, or fully packed form (where all of the instruction
slots are filled in the cycle). The tool does not break apart packed operations
in an instruction but may add to any unused slots available, unless prohibited
by a directive.

Program Development

1.2 Program Development

The manner in which ppca is intended to be used is as follows. An algorithm
is developed for the TMS320C8x’s parallel processors and prepared in a ppca
source file (for example, myfile.p). In this source file, symbolic variables are
freely used, as they would be in any high-level language program. To help ppca
perform its register allocation and code compaction tasks, special directives
are added to the source file by the user. ppca is then run on the source file to
allocate the variables to registers and (optionally) reorder the source file
instructions into a more compact, parallel format. The tool produces an
assembly code file (in this case, myfile.ss) which can be assembled by the PP
assembler (ppasm) to generate object code.

Getting Started With ppca 1-3

Invoking ppca

1.3

1-4

Invoking ppca

To invoke the tool, enter:

ppca [-p | —p2] [-K] [-n | =n1 | —n2 | —n3] [ppasm_options]
[input_file [output _file]]

ppasm_options

input_file

output_file

Invokes the register allocator and code compactor.

Performs both register allocation and code compaction
on the input file. By default, only register allocation is
performed.

Performs code compaction, but not register allocation.
Keeps the pre-process file.
Prevents the commenting of directives.

Prevents the output of line numbers, block headings, and
the opcode-usage table.

Prevents the commenting of directives, line numbers,
block headings, and the opcode-usage table.

Assembler options. Any command-line option that can
be specified for ppasm also can be specified for ppca.

The input source file. By default, the input source file is
assumed to have an extension of .p.

An alternate name for the output from the tool. By default,
the output is written to a file with the same name as the
source file and the extension .ss. For example, if the
input file is named myfile.p, the output file will be named
myfile.ss.

Most often the tool is used for register allocation only. This operation can be
performed by simply specifying

ppca myfile

If code compaction is also required, use

ppca —p myfile

By default, register allocation is performed first, followed by code compaction.
Performing the code compaction before the register allocation may produce
a more compact output. For more information, see Section 2.9 Compacting
Before Register Allocation. This section explains the use of the —p2 and —n
command line options. For a description of the —k option see Section 2.8.

Summary of Directives

1.4 Summary of Directives

The input format is a PP assembly language file. ppca uses the same parser
as the PP assembler (ppasm), and the same constructs used for ppasm can
be used with ppca. Additional directives may be required to assist the
allocation and compaction process. These directives are summarized in
Table 1-1 and are more fully described in Chapter 2.

Table 1-1. Summary of Allocation and Compaction Directives

Directive Syntax Description Page

&l

.cexit .cexit [variable | register|, variable | register...]] specifies a conditional jump to a point
outside the current file and the registers
and variables that are live at that point

.cjump .cjump labell][, label2...] specifies a conditional jump to one or @
more labels in the current file

.copy .copy ["lfilename]"] copies the contents of an include file into
the output file

dummy name .dummy declares a dummy variable to which @I
unneeded instruction results are
assigned

.entry .entry [variable | register|, variable | register...]] specifies the instruction that is the entry @

point for the file and the registers and
variables that are live on entry to the

routine

free free register |, register...] specifies which registers can be |2-1
allocated

Jlive live variable [, variable...] specifies a new instance of a variable

Jock Jlock register [, register...] specifies which registers cannot be
allocated

.nodelay .nodelay placed before abranchor callinstruction [2-14

to reserve its delay slots

.nopack .nopack temporarily disables compaction

.pack .pack re-enables compaction following a
.nopack directive

.reg name .reg type declares each variable and its type @

.uexit .uexit [variable| register|, variable | register...]] specifies an unconditional jump to a @

point outside the current file and the
registers and variables that are live at
that point

(&

.ujump .ujump labell [, label2...] specifies an unconditional jump to one
or more labels in the current file

Getting Started With ppca 1-5

Chapter 2

Using ppca

This chapter explains how to use ppca. In describing the tasks that the tool
performs, the ppca-specific directives are discussed, including their syntax,
and examples are provided.

Topic Page
2.1 Declaring Variables 2
2.2 Defining Entry POINIS ot ZE
2.3 Specifying Program FIOWoueeee e 26 |
2.4 ReServing REQIStErS'u it 2t11 |
2.5 Controlling Register and Variable Lifetime ~ 2-.1E|
2.6 Controlling Compaction — it 2-13 |
2.7 Controlling Schedulingoouir it 2-14 |
2.8 Copying the Contents of an Include File 2-
2.9 Compacting Before Register Allocation — 2:

2-1

Declaring Variables

2.1 Declaring Variables

The register allocation performed by ppca takes place on variables in the
source file. Just as with a high-level language, each variable used in the
assembly file must be explicitly declared along with its type. Use the .reg
directive to declare all variables. The syntax for this directive is:

name .reg type

where name is a variable name consistent with those used in the ppasm .set
directive, and type is one of the types described in Table 2-1.

Table 2-1. Variable Types

Dummy Variables

Type Description

d specifies data unit registers

ga specifies global address registers
X specifies global index registers

la specifies local address registers
I specifies local index registers

No other PP registers (for example, mf, loop registers) can be allocated. Two
.reg directives cannot have the same variable name.

In some circumstances, the result of an instruction is not required. For
example, if the instruction sets status information and it is the status that is
required, not the write to the destination. In these circumstances, the result can
be specified as a dummy variable. Dummy variables must first be declared
using the directive:

name .dummy

Example 2-1 illustrates how the dummy variable is used to store the result of
an instruction.

Example 2—1. Using dummy variables to store instruction results

2-2

dummy .dummy

dummy =varl—var2 ;notinterested in the result,
; only in the status
var3 =[n]varl ; move based on the status

Declaring Variables

In every instance that the dummy variable is used, ppca attempts to allocate
a free register using the following criteria:

1) If there is a global transfer to a D register in parallel with the write to the
dummy variable, that D register is used.

2) |If there is a local transfer to a D register in parallel with the write to the
dummy variable (and the write to the dummy variable is not a global
transfer) that D register is used.

3) Ifthefirsttwo criteria are not met, any D register that is not live is used (for
example, any D register that does not contain the value of any variable that
is read later in the program).

If none of the criteria is met, an allocation error message is displayed.

Reads of dummy registers are not allowed. However, they can be achieved
using aregular variable declared of d type which is preceded by a .live directive
as shown in Example 2-2.

Example 2-2. Using .live to achieve a read of a dummy variable

varl .reg d
var2 .reg d
duml .reg d

live duml ; this forces a new instance of duml
d6 =varl + var2
|| d6 = duml * duml

:I.i.ve duml ; this forces a new instance of duml
d6 = varl —var2
|| d6 = duml * duml

The .live directive is discussed further in Section 2.5 on page 2-12.

Using ppca 2-3

Defining Entry Points

2.2 Defining Entry Points

2-4

ppca assumes the first instruction in the code is the entry point for the file. If
the first instruction is not the entry point or the code contains multiple entry
points, you must specify the entry point by using the .entry directive. To specify
an entry point, a .entry directive must be placed before the instruction which
is the entry point. The syntax for .entry is:

.entry [variable |register [,variable |register...]]

The list of variables and registers separated by commas specify the variables
and registers that are live on entry to the routine. Live variables and registers
contain values that have been loaded prior to the entry point. These values will
be used in the routine. If they are not defined explicitly in the .entry directive,
ppca may try to use these registers, overwriting the values in them before they
have been read. Thus, the code would not function as intended. Because most
routines have some registers live on entry, it is recommended that you specify
an entry point with the .entry directive in every source file.

Specifying Program Flow

2.3 Specifying Program Flow

To perform correct register allocation and code compaction, ppca must
comprehend the program flow through an assembly language program. The
tool cannot predict program branches, and assumes that program execution
is sequential unless otherwise directed.

The directives .ujump, .cjump, .uexit, and .cexit provide program flow
information. They are used to indicate that there is a different flow from the
instruction preceding the directive, instead of (or in addition to) the instruction
following the directive. Use these directives to indicate branches, returns, and
loops.

An important point to remember when these directives are used to indicate a
branch or call, is that they must be placed after the instruction in the second
delay slot, not after the instruction containing the branch.

Use .ujump and .cjump to indicate branches and returns inside the currentfile.
Use .uexit and .cexit to indicate branches and returns outside the current file.

Specifying a branch to a label inside the current file

The .ujump directive

The .ujump and .cjump directives allow you to specify one of three types of
branches:

J A branch to a label in the current file

1 Areturn from the current subroutine to the calling function or functions that
reside in the current file

J Aloop

The .ujump directive is used to specify an unconditional branch to a label in
the current file or to specify a return from the current subroutine to the calling
function or functions that reside in the current file.

The syntax of the .ujump directive is:
.ujump labell [,label2...]

This directive is placed after the instruction at which the branch takes place.
It informs ppca that there is no path from the instruction before the directive
to the instruction following the directive. One or more labels separated by
commas should be placed after the .ujump directive to specify that there is a
path from this point to the label.

Using ppca 2-5

Specifying Program Flow

Example 2-3. Using .

The .cjump directive

2-6

An example of when more than one label should be specified occurs when a
subroutine is called from several different places in a file. The subroutine will
have several possible return points. Place the .ujump directive at the end of
the subroutine and specify the labels for all possible returns.

The labels used with .ujump must be located within the current file. Labels
which are .global (for example, external references) are not allowed, and .uexit
should be used instead.

The code fragment in Example 2—3 shows an unconditional branch.

ujump to specify an unconditional branch

LAB1:

... =varl

br = LAB3 ; unconditional branch

nop

nop

.ujump LAB3 ; branch occurs here because of the

; 2-cycle delay

LAB2:

..=varl ; flow never reaches this instruction
LAB3: ; flow skips to this point

In Example 2-3, .ujump is used because there is an unconditional branch to
LAB3. Because this branch is unconditional, there is no flow from the nop
before the .ujump to the instruction at LAB2. This causes the read of varl at
LAB1 to be the last read of varl, which extends the lifetime of varl to LABL.
Because the lifetime of varl ends at LAB1, varl’s register can be reused by
ppca after LAB1. This would not be the case if the .ujump directive were
missing, since the lifetime of varl would extend to LAB2. Thus, itis vital to the
correct operation of the register allocation, that the program flow directives be
added, wherever necessary, to the source file.

The .cjump directive is used to specify a conditional branch to a label in the
current file or to specify a return from the current subroutine to the calling
function or functions that reside in the current file.

The syntax of the .cjump directive is:
.cjump labell [, label2...]

Example 2—4 shows how .cjump can be used for a conditional branch.

Specifying Program Flow

Example 2—4. Using .cjump to specify a conditional branch

varl = ...

...=var2
LAB1:

...=varl

br = [n] LAB3 ; conditional branch

nop

nop

.cjump LAB3
LAB2:

...=varl ; flow continues if n bit is clear
LAB3: ; flow skips to here if n bit is set

Because the jump to LABS3 is conditional, there is a flow between the nop
before LAB2 and the instruction at LAB2. Unlike the previous Example 2—3 for
.ujump directives, this flow extends the lifetime of varl.

This directive is also used to indicate hardware loops that have been set up
inthe code. The .cjump directive should be placed after the loop end-address,
and the label should be the loop start-address value. You can specify multiple
labels to indicate that nested loops share a common end-address, as shown
in Example 2-5.

Example 2-5. Using .cjump with multiple labels

loop_setup:
lel =inner_end ; inner loop ends at label inner:
Irs1=7 ; inner loop occurs 7 times
Isl = inner ; inner loop starts at label inner:
le0 = outer_end ; outer loop ends at outer_end:
IrsO=5 ; outer loop occurs 5 times
nop
nop ; by default, outer loop begins at
; label outer:, 2 cycles after Irs0=5
outer:
varl =var2 ; inner loop starts here
inner:
var2 =var2 + 1 ; inner loop starts here
inner_end: ; both outer and inner loops end here
outer_end:
; indicates that flow can go to the
; inner or outer labels or to the
; following instruction
varl = var2
.cjump outer, inner

Using ppca 2-7

Specifying Program Flow

Specifying a branch or return to a point outside the current file

2-8

The .uexit and .cexit directives allow you to specify one of two types of exits:
[A branch to a label outside the current file

[A return from a subroutine to the calling function or functions that reside
outside the current file

The .uexit directive is used to specify an unconditional exit from the currentfile.
Its syntax is:

.uexit [variable | register [, variable | register...]]

Specifying .uexit informs ppca that there is no path from the instruction before
the directive to the instruction following the directive.

The .cexit directive is used to specify a conditional exit from the currentfile. Its
syntax is:

.cexit [variable | register [, variable | register...]]

.cexit is placed after the instruction takes place. This directive informs ppca
that there is a path from the instruction to the next instruction and an additional
branch outside the current file.

After .uexit or .cexit, you can specify a list of variables or registers separated
by commas. This list specifies which variables and registers must be kept live
to this point in the file. This prevents the registers from being reused and
preserves their values for a destination point outside the current file.

You do not have to specify a label with .uexit or .cexit because ppca only
analyzes one file. When using .cjump or .ujump, the tool automatically follows
the program flow to determine which variables need to be kept live. However,
because you are branching or returning to a point outside the current file, you
must use .cexit and .uexit to explicitly specify the variables used in the destina-
tion function so that the lifetimes of the variables are extended to the exit point.

The difference between .cexit and .uexit is that .cexit is conditional and .uexit
is unconditional. This does not affect the lifetime of variables that are explicitly
mentioned in .cexit or .uexit, but this does affect the lifetime of other variables
that are in the code. Example 2—6 shows an unconditional branch.

Specifying Program Flow

Example 2—6. Using .uexit to specify an unconditional branch

LAB1:
...=varl
br =iprs ; unconditional return
nop
nop
.uexit var2 ; return occurs here because of the
; 2-cycle branch delay
LAB2:
...=varl ;flow never reaches here

In Example 2—6, .uexit is used because there is an unconditional return from
this subroutine. The calling function in this example is assumed to be outside
the current file. It is also assumed that the calling function will receive var2 as
areturnvalue. Specifying var2 in .uexit prevents the register used by var2 from
being reallocated by the ppca prior to the exit, ensuring that the calling function
can read the register contents. The lifetime of var2 is extended to just before
LAB2. Because this exit is unconditional, there is no flow from the nop before
.uexit and the instruction at LAB2. This causes the read of varl at LAB1 to be
the lastread of varl, which causes the lifetime of var1 to end at LAB1. Because
the lifetime of varl ends at LAB1, varl’s register can be reused by ppca.

If the branch is conditional, the register varl cannot be reused after LAB1
because execution might continue to LAB2, as shown in Example 2—7.

Example 2—7. Using .cexit to specify a conditional branch

varl = ...

... =var2
LAB1:

...=varl

br =[n]iprs ; conditional return

nop

nop

.cexit var2 ; if nis set, branch occurs here

; because of the 2-cycle branch delay

LAB2:

...=varl ; flow continues if n bit is clear

Calling external subroutines

If the subroutine being called is within the current source file, then no special
consideration needs to be made. To indicate a subroutine call, the .ujump or
.cjump directives should be used depending on whether or not the call was
conditional, as shown in Example 2-8.

Using ppca 2-9

Specifying Program Flow

Example 2—-8. Using .cjump and .ujump when indicating subroutine calls

varl = ...

call = subl ; unconditional call

nop

nop

.ujump subl ; unconditional jump
retl:

...=varl

call =[n] subl ; conditional call

nop

nop

.cjump subl ; conditional jump
ret2:

subil:

br =iprs

nop

nop

.ujump retl, ret2 ; two possible return points

Because the subroutine is within the source file, ppca can evaluate execution
flow. It can detect the fact that there is a dependency path from the write of varl
through the subroutine, back to retl and to the read of varl.

When the subroutine is an external subroutine (for example, it resides in a
separate file), then it is important that the call to the subroutine is always
followed by .cexit, regardless of whether the call is a conditional branch to the
subroutine or not. This informs ppca that there is a flow through the subroutine
call back to the return point. You may also need to specify the live registers in
the parameters to the .cexit which are inputs into the subroutine. Specify any
outputs from the subroutine in a .entry directive, as shown in Example 2-9.

Example 2-9. Using .entry to specify outputs from a subroutine

varl =
4o = ; parameter to extsubl
dl = ; parameter to extsubl

call = extsubl ; unconditional call

nop

nop
.cexit d0,d1 ; conditional exit (subroutine)
.entry d2 ; output register from extsubl

...=varl

2-10

Reserving Registers

2.4 Reserving Registers

ppca analyzes the code to determine where registers are already used, so that
it does not allocate those registers to variables. However, you might want to
tell the tool explicitly not to use certain registers, even though these registers
are not apparently used in the supplied code. This capability is provided by the
directives:

Jock register [,register...]
free register [,register...]

where registeris a valid data unit or index register. The .lock directive must be
placed before the block of instructions the directive refers to. The .free
directive must be placed after the block of instructions the directive refers to.
Multiple .locks and .frees may be placed throughout the code. Although the
same register may be locked multiple times without resulting in an error, the
first .lock or .free determines the locking as shown in Example 2-10.

Example 2—-10. Using .lock and .free to reserve and free registers

Jdock d0,a2,x1 ; dO, a2, and x1 cannot be allocated

<code>

Jlock a2,x2 ; X2 cannot be allocated, a2 already
; locked

<code>

free dO,x1 ; d0 and x1 are free to be allocated

<code>

.free a2,d0 ; a2 is free, dO is already free

The .lock and .free directives only affect the contiguous sequence of instruc-
tions that they surround. They are not affected by the flow-control and entry-
point directives.

Using ppca 2-11

Controlling Register and Variable Lifetime

2.5 Controlling Register and Variable Lifetime

The register-allocation process determines the lifetime of registers and
variables by checking every read of a register or variable and searching back-
ward to find the first write of that register or variable. The lifetime of a register
extends from the time it is first allocated to the time it becomes free.

Loop optimizations that perform a dummy read of a register or variable can
hamper register allocation.

Example 2—-11. Loop containing an uninitialized register

regl =d3
loop1l:

regl =do +d1

|| *a0O++ =regl

.cjump loopl

In Example 2-11, successive values of regl are computed and stored in a
loop. The first value of regl is not initialized. Because there is a read of regl
at this instruction, ppca looks backward through the code to find a correspon-
ding write of regl. If a corresponding write is found, you may not want the
register to which regl is allocated to be considered live in instructions prior to
loopl because this prevents this register from being used by other instruc-
tions. To prevent this, a .live directive can be placed at the point where regl
becomes live, as shown in Example 2-12.

Example 2—-12. Using .live to indicate the lifetime of register

2-12

live regl
loopl:

regl =d0 +d1l

|| *a0++ = regl

.cjump loopl

A list of variables separated by commas can be used with .live. For example,

live regl, reg2, reg3

Controlling Compaction

2.6 Controlling Compaction

When using the compaction process, some instructions can be represented
by more than one type of operation. For instance, an operation that uses the
stack pointer such as d0 = *sp++ could be represented as either a local or a
global transfer. Normally this is not a problem as ppca selects the appropriate
form that provides the maximum compaction.

However, the one instruction type that does require careful consideration is the
register move instruction.

The register move instruction

The pack directives

The register move instruction can be treated as either an ALU or global
transfer. However, the two forms are not identical, because the ALU version
sets status but the global transfer does not. If the more general form of register
move is used (d0 = d1), then ppca assumes that either form can be used. This
means that the instruction could be packed with either another ALU or global
transfer as appropriate. If the form d0 =g d1, then the global transfer form is
used. nop || dO0 =d1 does not force the instruction to use a global transfer.

The following directives are only applicable if compaction is being performed.
It might be necessary to control compaction by temporarily disabling and
re-enabling the packing operation. The following directives are for this
purpose.

.nopack
.pack

The .nopack directive disables compaction temporarily until the next .pack
directive. The .pack directive re-enables compaction after a .nopack directive
has disabled compaction.

Using ppca 2-13

Controlling Scheduling

2.7 Controlling Scheduling

2-14

ppca automatically ensures that position-dependent instructions are retained
in the same position in the compacted output as they appeared in the input file.
Other instructions may be moved into the delay slots of a branch or Irs
instruction when it is valid to do so, but the branch or Irs itself is not moved
within the block of instructions being compacted.

Although the compaction process attempts to use all instruction slots,
occasionally you might want to reserve delay slots. If you want to reserve the
two delay slots of a branch instruction, you can use the .nodelay directive. The
syntax for this directive is:

.nodelay

When this directive is placed before a branch or call instruction, ppca leaves
the branch or call instruction’s delay slots unused, as nops. You might want to
reserve delay slots if your code branches into the delay slots of other branches.

Copying the Contents of an Include File

2.8 Copying the Contents of an Include File

The ppca .copy directive is a modification of the existing PP assembler
(ppasm) .copy directive. The ppasm .copy directive is used to copy the
contents of an include file into the output file. Because ppca-specific directives
such as .ujump, and .entry are not part of the input format for ppasm, they must
be commented out of the source file. ppca comments out all of its directives
in the source file, but does not modify the contents of include files. If include
files contain ppca-specific directives, they must also be commented out,
otherwise they will result in syntax errors when the output file is assembled.

The .copy directive has been modified so that it causes the code to be copied
rather than included in the output file. The .copy directive itself is commented
out. You can nest .copy directives up to 32 levels deep. The syntax for this
directive is:

.copy ["]filename[”]

Copying takes place only when the .copy directive occurs in the source code
or in another include file that is a .copy itself. Files included with a .include
directive are not copied, nor is any file specified with a .copy within that include
file.

An intermediate file, containing any copied include files is stored in a file with
the same base name as the source file but with a .pca extension. This file is
normally deleted after use, but can be retained if the —k command line option
is used. In Example 2-13, a code fragment is input to ppca to produce an
intermediate file.

Example 2—13. Copying the contents of an include file
(a) Code input to ppca

.copy "copy.i”
.include ’include.i”
varl = var2+var3

(b) ppca output

o .copy "copy.i”

smvarl .reg d ; contents of "copy.i”
.include "include.i”
varl = var2+var3

Using ppca 2-15

Compacting Before Register Allocation

2.9 Compacting Before Register Allocation

2-16

If the input file is to be compacted as well as register allocated, ppca first
performs the allocation and then performs the compaction. More compaction
could be achieved if the compaction was performed before the register
allocation. However, the resultant code could be compacted so that it required
more registers than are available, causing the allocation process to fail.

However, you can compact the code without performing register allocation by
specifying the —p2 option on the command line. This option enables
compaction to be performed before allocation by running ppca twice. For
example

ppca —p2 —n infile.p infile.int ; compact-only to an

; intermediate file
ppca infile.int infile.ss ; allocate-only

This two-pass approach gives you the ability to edit the compacted code in the
intermediate file, should the allocation process fail. You must specify the —n
option so that the tool will not comment out its own directives in the first
invocation of ppca.

Because you are running ppca twice, the tool generates two sets of instruction
numbers, block comments and opcode-usage tables. To prevent the tool from
generating this information twice, use the —n2 command line option which
inhibits the output of this information.

Chapter 3

ppca Outputs

This chapter describes the types of output produced by ppca. These types
include usage tables as well as progress and error messages.

Topic Page
S, OWDUE [F@MMEE oo 00nooo00
3.2 Progress and Error Messagesoiiiiiiiia ., B-E

3-1

Output Format

3.1 Output Format

The output of ppca is a file containing PP assembly language instructions
ready forinput to the PP assembler (ppasm). This file has the same base name
as the source file but with an extension of .ss. All the ppca-specific directives
are changed to comments by inserting ;;; (three semicolons).

Each instruction is numbered with a comment. For example,

o 27
do=d1+d2
e 28
d4 = d2>>d3

In addition, the output file can contain up to three tables:

[0 settableis alist of .set statements which map the variables to the physical
registers. This table is added to the output file if the input file contains
variables.

[variable-usage table maps variables to the instructions in which they are
used

[0 opcode-usage table shows whether the ALU, local, and global portions of
each instruction are being used

Variable Naming Conventions

3-2

Each variable declared by the .reg directive is translated to a .set directive and
placed in a set table. The register to which the variable has been allocated is
filled in by ppca. If different registers are used for the same variable in different
places in the code, the variable name has _xxx appended to it, where xxx is
a sequence number starting at 001. The tool also appends the _xxx to the
variable names within the code.

If the exact sequence _xxx is the last four characters of a variable name, ppca
fillsin the sequence number over the top of the xxx characters. This preserves
the text formatting of the source file so that comments and code remain lined
up in the ppca output file. For example, the statement

reg = d0 + d1; comment
will appear in the output file as
reg_001 = dO + d1; comment

Notice that the code and comment are shifted to the right.

Variable-Usage Table

Output Format

To avoid this problem, append _xxx to the name of the original variable in the
input file:

reg_xxx = d0 + d1; comment
This statement will appear in the output file as:
reg_001 = dO + d1; comment

Now the code and comment are aligned exactly as in the input file.

If an allocation runs out of physical registers, false registers are allocated to
variables. These names have the following syntax:

_<register-type><index-number>

For instance, if all the d registers are used, then _d0, d1, etc. are used.
Similarly, if all the global index registers are used, then _gx0, gx1 are used.

The variable-usage table helps you to view the lifetime of variables. This table
is useful when the register allocation process runs out of registers and the
variables are assigned to false registers. This table helps you determine where
code can be rearranged or modified to use fewer physical registers.

In the variable-usage table, variables that use the same physical register are
grouped together. The group of variables is ordered so that the first instruction
to use the register is listed first and so on.

The variable name is placed next to the physical register name, followed by
a series of columns that represent instructions. These instructions are
indicated by a header in the table which numbers the instructions. If the
variable is not used in that instruction, the column contains a . (period). If the
variable is used, the column contains an X. Because itis possible for more than
one variable to share the same register in the same instruction (if it is the end
of one variable’s lifetime and the start of another), variables using the same
register can have more than one X in the same column. To make this distinction
clearly, the first X in a sequence is substituted with a < and the last X is substi-
tuted with a > as shown in Example 3-1.

ppca Outputs 3-3

Output Format

Example 3—1.

Variable-Usage Table

;» Variable-Usage Table
" 111111111122222222223333333333444444
o 0123456789012345678901234567890123456789012343

saxyPosition d4 ... SXXXXX> e,

myDelta_ 001 d4 ..o, <>,
;;DrawableBase d4ooevvvvveeennn... <XK>.e.

S EXtADress d4 e <XX>.....

imdla PT_ A d5 <XXXXXXXXXXXXXXXXXXXX> e
;dWidth_001 d5 ., 19,.0.0.0.0.9.9.0.0.0.0 C
iNextLpCount d5 ... XXXXX>...

imyDelta_ 002 d5 v <XXX

Opcode-Usage Table

The opcode-usage table shows the compactness of the code and which
unused instruction slots are available for further compaction. The table
consists of four lines representing the multiply, ALU, global-transfer, and local-
transfer portions of an instruction. Each column of the table represents an
instruction. A column can contain one of three characters:

[X which means the instruction uses that portion of the instruction

[. which means the instruction does not use that portion of the
instruction
(1 - which means that portion of the instruction cannot be used because

of restrictions in the format of the opcode

The format for the opcode-usage table is shown in Example 3-2.

Example 3—2. Opcode-Usage Table

3-4

;;;0pcode-Usage Table:

" 11

o 012345678901

i MPY —. . —..—

i ALU XX XXX... X

;1 GLOBAL ——XXXXXXXX~
;17 LOCAL . —X—XXXXXX.

Progress and Error Messages

3.2 Progress and Error Messages

ppca outputs various progress, warning, and error messages categorized as
parse-stage messages, register allocation messages, and compaction
messages. The following subsections describe the three types of messages
and explain what you should do if you receive these messages.

Parse-stage messages

Before any register allocation or compaction is performed, the source file is
parsed to determine ifit contains valid PP assembly language syntax. Also, the
format of the directives is checked to ensure that it is valid. If any errors occur
at this stage, ppca does not perform register allocation or compaction. The
following message is output, and the program terminates.

PPCA: No allocation or compaction performed due to errors
in parsing

Any errors are also written to stderr and to the list output file along with the
message:

PARSE STAGE: XXX errors, XXX warnings

During the parse stage, ppca may print warnings when it detects situations
which may affect the register allocation process, such as the following:

an instruction forces variables varl and var2 tobe
identical

an instruction forces variables varl and var2 tobe
companions

an instruction forces variable varl to be register var2
an instruction forces variables varl and var2 to be pairs

ppca Outputs 3-5

Progress and Error Messages

Register-allocation messages

3-6

If there are no parse errors and —p2 has not been specified on the command
line, register allocation proceeds. If the allocation process completes success-
fully, the following message is output:

ALLOCATE STAGE: n variables successfully allocated

If the file does not contain .reg directives, this message is output:
ALLOCATE STAGE: No register allocation required

Errors that you might encounter during the register-allocation process are:

Failure to allocate a register for variable varl dueto
companion register requirements cause the allocation
process to fail

Failure to allocate a register for variable varl dueto
pairing with register var2 cause the allocation process to

fail

Failure to allocate a register for the dummy varl when

there are no free registers for use as a dummy write

Read of a dummy variable varl atinstruction n a variable
declared as a .dummy was read from

If the allocation process runs out of registers, variables are allocated false
registers. If this occurs, the following message is output and you must rework
the input source to use fewer physical registers.

n extra register(s) of type varl has been added to perform
the allocation

Another error message which can occur during the allocation process is

Companion variables varl and var2 tied tothe same
physical register have interfering writes/reads at
instruction n

where ppca has detected that there may be overlapping lifetimes of
companion registers in the input source. If you receive this error message,
check that the instructions in the source file are correct.

Progress and Error Messages

Compaction messages

If —p is specified on the command line, then code compaction is performed. If
the compaction process is successful, the following message is output and the
program terminates.

COMPACTION STAGE: Compacted the original n instructions
into minstructions

The compaction stage can fail if no valid schedule for the instructions is
provided. In such cases, the following message is output for each block that
fails to schedule

SCHEDULING FAILED FOR BLOCK n
and the program terminates with the message
COMPACTION STAGE: Failed to obtain a valid schedule

During the scheduling process, ppca detects potential problems related to
position-dependent instructions. These problems output the following

warning:

Position-dependent instruction n for Block mwas put into
slot s instead of slot t, which could produce incorrect
schedule

ppca Outputs 3-7

Appendix A

Known Deficiencies

The known deficiencies in ppca are the following.

Deficiency A variable can only be paired with one other variable. Multiple pairings are not
allowed.

For example, if you input the following code

X .regd
varl .regd
var2 .regd

do = x[n]varl
d1 = x[n]var2

you will receive this error

** ERROR! line9: E0800: Cannot pair variable x with var2
as it is already paired with varl
d1 =x[n] var2

Deficiency When ppca performs compaction, labels that occur within a block are placed
together at the beginning of the block. This ensures that any jumps to the code
at a particular label reach all code within the block. This capability, however,
causes the identification of particular instructions to be lost (for example, the
use of .global labels).

If you input the following file and you invoke ppca with the —p option

lab1:

do=d1+d2
lab2:

*a0 = d3
lab3:

*a9++ = d4

ppca outputs the following code

lab1:

lab2:

lab3:
do=d1+d2

|l *a9++ = d4

[l *a0 = d3

Known Deficiencies

A-2

Deficiency

Work-around

Deficiency

ppca allows for an extra delay slot between the loading and reading of the
comm register to allow for the latency required to set the Q bit. At this time, the
tool does not take into account the three-instruction delay required when using
the PTQ bit, as described in the Interrupt subsection of the Waiting for Packet
Transfer Completion section in the PP User’s Guide. To prevent this problem,
code compaction must be turned off using the .nopack/.pack directives.

For example, if you are using PTQ and ppca produced the following code

comm=1\\28 ; Setthe PTQ bit
do =*a0 ; Read the memory brought in by the
; packet transfer
the code will not execute correctly because the PTQ interrupt would not occur
until three instructions later.

Use the .nopack/.pack directives to turn off compaction and to pad the code by
three instructions to account for the three-instruction delay.

.nopack

comm=1\\28 ; Set the PTQ bit
nop

nop

nop

.pack

do =*a0

Although nops are used for this example, you can use any instruction to pad
the unpacked region.

Compaction does not work correctly with conditional assembly directives
(.if/.elsel.endif). For example, consider the following code

dl = *a0++

d2 = *a0++
f1

d5=d1+d2
.else

d5=d1-d2
.endif

*al++ =d5

Running ppca on this code with compaction turned on will produce the
following output

df1

.else

.endif

dl = *a0++
d2 = *a0++
d5=dl+d2
d5=d1-d2
*al++ = d5

Work-around

Known Deficiencies

Instead of using conditional assembly directives, use the conditional
compilation directives (#if/#else/#endif). For example, modify the code from
the previous example as follows:

dl = *a0++

d2 = *a0++
#if 1

d5=dl1+d2
#else

d5=d1-d2
#endif

*al++ = d5

Then, before running ppca, run the file through the C compiler’s pre-processor
using the following command. Notice that this command assumes that the
code is located in the file myfile.p.

ppcl —pon myfile.p

The pre-processor produces the following output in myfile.pp.

dl =*a0++
d2 = *a0++
d5=d1+d2
al++=d5

This file can then be run through ppca in the normal way.

Known Deficiencies A-3

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks
	If You Need Assistance...

	Contents
	Tables
	Examples
	Getting Started With ppca
	About ppca
	Program Development
	Invoking ppca
	Summary of Directives

	Using ppca
	Declaring Variables
	Dummy Variables

	Defining Entry Points
	Specifying Program Flow
	Specifying a branch to a label inside the current file
	The .ujump directive
	The .cjump directive
	Specifying a branch or return to a point outside the current file
	Calling external subroutines

	Reserving Registers
	Controlling Register and Variable Lifetime
	Controlling Compaction
	The register move instruction
	The pack directives

	Controlling Scheduling
	Copying the Contents of an Include File
	Compacting Before Register Allocation

	ppca Outputs
	Output Format
	Variable Naming Conventions
	Variable-Usage Table
	Opcode-Usage Table

	Progress and Error Messages
	Parse-stage messages
	Register-allocation messages
	Compaction messages

	Known Deficiencies

