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Digital Motor Control
Software Library

The Digital Motor Control Software Library is a collection of digital motor control (DMC)
software modules (or functions). These modules allow users to quickly build, or customize,
their own systems. The Library supports the three motor types: ACI, BLDC, PMSM, and
comprises both peripheral dependent (software drivers) and TMS320C24xx� CPU-only
dependent modules.

� The features of the Digital Motor Control Software Library are:

� Complete working software

� Majority offered both in Assembly and in “CcA” (C callable assembly)

� CcA modules are xDAIS-ready

� Fully documented usage and theory

� Used to build the DMC reference systems
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Reactive Power MRAS Speed Estimator for 3-ph Induction MotorACI_MRAS

Description This software module implements a speed estimator for the 3-ph induction motor
based on reactive power model reference adaptive system (MRAS). In this technique,
there are two subsystems called reference and adaptive models, which compute the
reactive power of the induction motor. Since both pure integrators and stator resistance
are not associated in the reference model, the reactive power MRAS is independent
of initial conditions and insensitive to variation of stator resistance.

ACI_MRAS

ualfa_mras

ubeta_mras

ialfa_mras

ibeta_mras

wr_hat_mras

wr_hat_rpm_mras

Q15

Q15

Q15

Q15

Q0

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: aci_mras.asm

ASM Routines: ACI_MRAS, ACI_MRAS_INIT

Parameter calculation excel file: aci_mras_init.xls

C-callable ASM filenames: aci_mras.asm, aci_mras.h

Item ASM Only C-Callable ASM Comments

Code size 416 words 495 words†

Data RAM 43 words 0 words†

xDAIS module No No

xDAIS component No No

Multiple instances No Yes

† Each pre-initialized ACIMRAS structure instance consumes 33 words in the data memory and 35 words
in the .cinit section.
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Direct ASM Interface

Table 1.  Module Terminal Variables/Functions

Name Description Format Range

Inputs ualfa_mras Stationary alfa-axis stator
voltage (pu)

Q15 −1 −> 0.999

ubeta_mras Stationary beta-axis stator
voltage (pu)

Q15 −1 −> 0.999

ialfa_mras Stationary alfa-axis stator
current (pu)

Q15 −1 −> 0.999

ibeta_mras Stationary beta-axis stator
current (pu)

Q15 −1 −> 0.999

Outputs wr_hat_mras Estimated rotor speed
(pu)

Q15 −1 −> 0.999

wr_hat_rpm_mras Estimated rotor speed
(rpm)

Q0 −32768 −>
32767

Init / Config† K1 K1 =
(Ls−Lm^2/Lr)*Ib/(T*Vb)

Q10 −32−> 31.999

K2 K2 = Lm^2*Ib/(Lr*Tr*Vb) Q15 −1 −> 0.999

K3 K3 = Tr*Wb Q8 −128 −> 127.996

K4 K4 = (Wb*T)^2/2 Q15 −1 −> 0.999

K5 K5 = 1−T/Tr+T^2/(2*Tr^2) Q15 −1 −> 0.999

K6 K6 = Wb*(T−T^2/Tr) Q15 −1 −> 0.999

K7 K7 = T/Tr−T^2/(2*Tr^2) Q15 −1 −> 0.999

base_rpm base_rpm =
120*base_freq/no_poles

Q3 −4096 −> 4095.9

† These constants are computed using the machine parameters (Ls, Lr, Lm, Tr), base quantities (Ib, Vb, Wb),
and sampling period (T).

Routine names and calling limitation:
There are two routines involved:

ACI_MRAS, the main routine; and
ACI_MRAS_INIT, the initialization routine.

The initialization routine must be called during program initialization. The ACI_MRAS
routine must be called in the control loop.

Variable Declaration:
In the system file, including the following statements before calling the subroutines:

.ref ACI_MRAS, ACI_MRAS_INIT ; Function calls

.ref wr_hat_mras, wr_hat_rpm_mras ; Outputs

.ref ualfa_mras, ubeta_mras ; Inputs

.ref ialfa_mras, ibeta_mras ; Inputs

Memory map:
All variables are mapped to an uninitialized named section, mras_aci, which can be
allocated to any one data page.
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Example:
During system initialization specify the ACI_MRAS parameters as follows:

LDP #K1
SPLK #K1_,K1 ; K1 = (Ls−Lm^2/Lr)*Ib/(T*Vb) (Q10)
SPLK #K2_,K2 ; K2 = Lm^2*Ib/(Lr*Tr*Vb) (Q15)
SPLK #K3_,K3 ; K3 = Tr*Wb (Q8)
SPLK #K4_,K4 ; K4 = (Wb*T)^2/2 (Q15)
SPLK #K5_,K5 ; K5 = 1−T/Tr+T^2/(2*Tr^2) (Q15)
SPLK #K6_,K6 ; K6 = Wb*(T−T^2/Tr) (Q15)
SPLK #K7_,K7 ; K7 = T/Tr−T^2/(2*Tr^2) (Q15)
SPLK #BASE_RPM_,base_rpm ; Base motor speed in rpm (Q3)

Then in the interrupt service routine call the module and read results as follows:

LDP #ualfa_mras ; Set DP for module inputs
BLDD #input_var1,ualfa_mras ; Pass input variables to module inputs
BLDD #input_var2,ubeta_mras ; Pass input variables to module inputs
BLDD #input_var3,ialfa_mras ; Pass input variables to module inputs
BLDD #input_var4,ibeta_mras ; Pass input variables to module inputs

CALL ACI_MRAS

LDP #output_var1 ; Set DP for module output
BLDD #wr_hat_mras,output_var1 ; Pass output to other variables
BLDD #wr_hat_rpm_mras,output_var2 ; Pass output to other variables
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C/C-Callable ASM Interface

Object Definition The structure of the ACIMRAS object is defined in the header file, aci_mras.h, as be-
low:

typedef struct{ int  ualfa_mras; /* Input: alfa−axis phase voltage at k (Q15) */
int  ubeta_mras; /* Input: beta−axis phase voltage at k (Q15) */
int  ialfa_mras; /* Input: alfa−axis line current at k (Q15) */
int  ibeta_mras; /* Input: beta−axis line current at k (Q15) */
int  ialfa_old; /* History: alfa−axis line current at k−1 (Q15) */
int  ibeta_old; /* History: beta−axis line current at k−1 (Q15) */
int  imalfa_old_high;/* History: alfa−axis magnetizing current at k−1 (Q31) */
int  imalfa_old_low; /* History: alfa−axis magnetizing current at k−1 (Q31) */
int  imbeta_old_high;/* History: beta−axis magnetizing current at k−1 (Q31) */
int  imbeta_old_low; /* History: beta−axis magnetizing current at k−1 (Q31) */
int  imalfa_high; /* Variable: alfa−axis magnetizing current at k (Q31) */
int  imalfa_low; /* Variable: alfa−axis magnetizing current at k (Q31) */
int  imbeta_high; /* Variable: beta−axis magnetizing current at k (Q31) */
int  imbeta_low; /* Variable: beta−axis magnetizing current at k (Q31) */
int  ealfa; /* Variable: alfa−axis back emf at k (Q15) */
int  ebeta; /* Variable: beta−axis back emf at k (Q15) */
int  q; /* Variable: reactive power in reference model (Q15) */
int  q_hat; /* Variable: reactive power in adaptive model  (Q15) */
int  error; /* Variable: reactive power error (Q15) */
int  K1; /* Parameter: constant using in reference model (Q10) */
int  K2; /* Parameter: constant using in adaptive model (Q15) */
int  K3; /* Parameter: constant using in adaptive model (Q8) */
int  K4; /* Parameter: constant using in adaptive model (Q15) */
int  K5; /* Parameter: constant using in adaptive model (Q15) */
int  K6; /* Parameter: constant using in adaptive model (Q15) */
int  K7; /* Parameter: constant using in adaptive model (Q15) */
int  Kp; /* Parameter: proportioanl gain  (Q15) */
int  Ki_high; /* Parameter: integral gain (Q31) */
int  Ki_low; /* Parameter: integral gain (Q31) */
int  base_rpm; /* Parameter: base motor speed in rpm (Q3) */
int  wr_hat_mras; /* Output: estimated (per−unit) motor speed (Q15) */
int  wr_hat_rpm_mras;/* Output: estimated (rpm) motor speed (Q0) */
int  (*calc)(); /* Pointer to calculation function */

} ACIMRAS;

Special Constants and Datatypes

ACIMRAS
The module definition itself is created as a data type. This makes it convenient to
instance an ACIMRAS object. To create multiple instances of the module simply de-
clare variables of type ACIMRAS.

ACIMRAS_DEFAULTS
Initializer for the ACIMRAS object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers. This is initialized in the header
file, aci_mras.h.
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Methods void calc(ACIMRAS *);
This default definition of the object implements just one method – the runtime compute
function for MRAS speed estimator. This is implemented by means of a function point-
er, and the default initializer sets this to aci_mras_calc function. The argument to this
function is the address of the ACIMRAS object. Again, this statement is written in the
header file, aci_mras.h.

Module Usage Instantiation:
The following example instances two such objects:

ACIMRAS mras1, mras2;

Initialization:
To instance a pre-initialized object:

ACIMRAS mras1 = ACIMRAS_DEFAULTS;
ACIMRAS mras2 = ACIMRAS_DEFAULTS;

Invoking the compute function:

mras1.calc(&mras1);
mras2.calc(&mras2);

Example:
Lets instance two ACIMRAS objects, otherwise identical, and run two MRAS speed
estimators. The following example is the c source code for the system file.

ACIMRAS mras1 = ACIMRAS_DEFAULTS; /* instance the first object */
ACIMRAS mras2 = ACIMRAS_DEFAULTS; /* instance the second object */

main()
{

mras1.ualfa_mras=volt1.Vdirect; /* Pass inputs to mras1 */
mras1.ubeta_mras=volt1.Vquadra; /* Pass inputs to mras1 */
mras1.ialfa_mras=current_dq1.d; /* Pass inputs to mras1 */
mras1.ibeta_mras=current_dq1.q; /* Pass inputs to mras1 */

mras2.ualfa_mras=volt2.Vdirect; /* Pass inputs to mras2 */
mras2.ubeta_mras=volt2.Vquadra; /* Pass inputs to mras2 */
mras2.ialfa_mras=current_dq2.d; /* Pass inputs to mras2 */
mras2.ibeta_mras=current_dq2.q; /* Pass inputs to mras2 */

}

void interrupt periodic_interrupt_isr()
{

mras1.calc(&mras1); /* Call compute function for mras1 */
mras2.calc(&mras2); /* Call compute function for mras2 */

speed_pu1=mras1.wr_hat_mras; /* Access the outputs of mras1 */
speed_rpm1=mras1.wr_hat_rpm_mras;/* Access the outputs of mras1 */
speed_pu2=mras2.wr_hat_mras; /* Access the outputs of mras2 */
speed_rpm2=mras2.wr_hat_rpm_mras;/* Access the outputs of mras2 */

}
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Background Information

The reactive power MRAS speed estimator is shown in Figure 1. The information re-
quired for this module is stator voltages and stator current components in the α−β
stationary reference frame. Two sets of equations are developed to compute reactive
power of induction motor in the reference and adaptive models. The reference model
does not involve the rotor speed while the adaptive model needs the estimated rotor
speed to adjust the computed reactive power to that computed from the reference
model. The system stability had been proved by Popov’s hyperstability theorem
[1]−[2]. The equations for the reactive power in both models can be derived in the con-
tinuous and discrete time domains, as shown below. Notice that the representation of
complex number is defined for the stator voltages and currents in the stationary refer-
ence frame, i.e., βα += sss jvvv  and βα += sss jiii .

q

+

−

Reference Model

Adaptive Model

PI

vs�

vs�

is�

is�

�^ r

q^

��e

Figure 1.  The Simplified Block Diagram of Reactive Power
MRAS Speed Estimator

Continuous time representation

Reference model

The back emf of Induction motor can be expressed in the stationary reference frame
as follows:

e^�s��� �
Lm

Lr

�d���r���
�

dt
� v(s�) � Rsi(s�) � �Ls

di�s���

dt
(1)

e^�s� �� �
Lm

Lr

�d���r� ��
�

dt
� v�s�� � Rsi�s�� � �Ls

di�s� ��

dt
(2)

e � e(s�) � je�s� �� (3)

The reactive power of the Induction motor can be computed from cross product of sta-
tor currents and back emf vectors as follows:

dt
id

Livi
dt
id

LiRvieiq s
ssss

s
ssssss σ×−×=





σ−−×=×= (4)
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where 0iiiiii ssssss =−=× αββα  and 
rs

2
m

LL
L

1−=σ  (leakage coefficient)

As a result, the reactive power shown in (4) can be further derived as







−σ−−= α

β
β

ααββα dt
di

i
dt

di
iLviviq s

s
s

ssssss (5)

Adaptive model

The estimated back emf computed in the adaptive model can be expressed as follows:

e^�s��� �
(L2)

m

Lr

�
di�m ���

dt
�

(L2)
m

(Lr�r)
�� �r��

^i�m�� � i(m�)�i(s�)� (6)

e^�s� �� �
(L2)

m

Lr

�
di�m � ��

dt
�

(L2)
m

(Lr�r)
�� �r��

^i(m�) � i�m���i�s��� (7)

e
^� e^(s�) � je

^

�s�� (8)

where 
r

r
r R

L=τ  is rotor time constant, and imα, imβ are computed from the following

equations:

ααβ
α

τ
+

τ
−ω−= s

r
m

r
mr

m i1i1i^
dt

di (9)

ββα
β

τ
+

τ
−ω= s

r
m

r
mr

m i1i1i^
dt

di (10)

Once the estimated back emf, ê , computed by using (6)−(10), the estimated reactive
power can be computed as follows:

ê^
αββα −=×= sssss êiêiiq (11)

Then, the PI controller tunes the estimated rotor speed, ωr^ , such that the reactive pow-

er generated by adaptive model, q̂ , matches that generated by reference model, q.
The speed tuning signal, ��e, is the error of reactive power that can be expressed as
follows:

( ) q̂qêeise −=−×=ε∆ (12)

Discrete time representation

For implementation on DSP based system, the differential equations need to be trans-
formed to difference equations. Due to high sampling frequency compared to band-
width of the system, the simple approximation of numerical integration, such as for-
ward, backward, or trapezoidal rules, can be adopted. Consequently, the reactive pow-
er equations in both reference and adaptive models are discretized as follows:

Reference model

According to (5), using backward approximation, then






 −−−
−−

σ

−−=

αα
β

ββ
α

αββα

T
)1k(i)k(i

)k(i
T

)1k(i)k(i
)k(iL

)k(v)k(i)k(v)k(i)k(q

ss
s

ss
ss

ssss

(13)
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Equation (13) can be further simplified as.

( ))1k(i)k(i)1k(i)k(i
T
L

)k(v)k(i)k(v)k(i)k(q ssss
s

ssss −−−σ−−= βααβαββα (14)

where T is the sampling period

Adaptive model

According to (11),

q^(k) � i(s�)(k)e
^
�s��(k)� i�s��(k)e

^
(s�)(k) (15)

where )k(ê),k(ê ss αβ  are computed as follows:

e^(s�)(k) �
(L2)

m

(Lr�r)
�� �r�

^
r(k)i���(k)� i(m�)(k)� i(s�)(k)� (16)

e^�s��(k) �
(L2)

m

(Lr�r)
�� �r�

^
r(k)i(�)(k)� i�m��(k)� i�s��(k)� (17)

and imα(k), imβ(k) can be solved by using trapezoidal integration method, it yields

i(m�)(k) � i(m�)(k� 1)�� �T2

2
���^2�

r

(k)� 1��T�r� � � T2

�2)r
���

i�m��(k� 1)�^r(k)�T� T2

�r
� �

i(s�)(k)�T�r � T2

�2(�2)
r
���

i�s��(k)�
^

r(k)� T2

(2�r)
� (18)

i�m��(k) � i�m��(k� 1)�T2

2
��^2�

r

(k)� 1� T
�r
� T2

�2(�2)
r
���

i(m�)(k� 1)�^r(k)�T� T2

�r
� �

i�s��(k)�T�r � T2

(2�r)
��

i(s�)(k)�
^

r(k)� T2

(2�r)
�� (19)

Per unit, discrete time representation

For the sake of generality, the per unit concept is used in all equations. However, for
simplicity, the same variables are also used in the per unit representations.

Reference model

Dividing (14) by base power of VbIb, then its per unit representation is as follows:

( ))1k(i)k(i)1k(i)k(iK)k(v)k(i)k(v)k(i)k(q ssss1ssss −−−−−= βααβαββα  pu (20)

Rearranging (20), then another form can be shown
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( ) ( ))1k(iK)k(v)k(i)1k(iK)k(v)k(i)k(q s1sss1ss −+−−−= ααβββα  pu (21)

where 
b

bs
1 TV

IL
K

σ= , Vb is base voltage, and Ib is base current.

Adaptive model

Dividing (16) and (17) by base voltage Vb, then yields

ω( ))k(i)k(i)k(i)k(^KK)k(ê smmr32s ααβα +−−=  pu (22)

K ω( ))k(i)k(i)k(i)k(^K)k(ê smmr32s ββαβ +−=  pu (23)

where 
brr

b
2
m

2 VL
IL

K
τ

= , 
r

br
br3 R

L
K

ω=ωτ= , and ωb = 2πfb is base electrically angular veloc-

ity. Similarly, dividing (18)−(19) by base current Ib, then yields

i(m�)(k) � i(m�)(k� 1)�� K4
��^2�

r

(k)� K5�� i�m��(k� 1)�^r(k)K6 �pu

i(s�)(k)K7 � i�s��(k)�
^

r(k)K8 (24)

i�m��(k) � i�m��(k� 1)�� K4
��^2�

r

(k)� K5�� i(m�)(k� 1)�^r(k)K6 �pu

i�s��(k)K7 � i(s�)(k)�
^

r(k)K8 (25)

where 
2
T

K
22

b
4

ω= , 2
r

2

r
5

2
TT1K
τ

+
τ

−= , 


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
τ

−ω=
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2
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TTK , 2

r

2

r
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2
TTK
τ

−
τ

= , and 
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b8 2
TK
τ

ω= .

After imα(k) and imβ(k) in per unit are calculated from (24) and (25), the back emf in per
unit can also be computed by using (22) and (23), and then the per unit estimated reac-
tive power in adaptive model can be simply calculated from (15).

Notice that the K8 is practically ignored because it is extremely small. The excel file
aci_mras_init.xls is used to compute these seven constants (i.e., K1,0,K7) in the ap-
propriately defined Q system. This file can directly compute the hexadecimal/decimal
values of these K’s in order to put them into the ACI_MRAS_INIT module easily. The
PI controller gains Kp and Ki are also translated into the hexadecimal/decimal values
in this excel file. Moreover, the base motor speed is computed in the hexadecimal/deci-
mal values as well. The required parameters for this module are summarized as fol-
lows:

The machine parameters:

� number of poles

� rotor resistance  (Rr)

� stator leakage inductance (Lsl)

� rotor leakage inductance (Lrl)

� magnetizing inductance (Lm)

The based quantities:
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� base current (Ib)

� base voltage (Vb)

� base electrically angular velocity (ωb)

� The sampling period:

� sampling period (T)

Notice that the rotor self inductance is Lr = Lrl + Lm, and the stator self inductance is
Ls = Lsl + Lm.

Next, Table 2 shows the correspondence of notations between variables used here
and variables used in the program (i.e., aci_mras.asm). The software module requires
that both input and output variables are in per unit values (i.e., they are defined in Q15).

Table 2.  Correspondence of Notations

Equation Variables Program Variables

Inputs vsα ualfa_mras

vsβ ubeta_mras

isα ialfa_mras

isβ ibeta_mras

Outputs wr_hat_mras

Others ealfa

ebeta

imα imalfa_high, imalfa_low

imβ imbeta_high, imbeta_low

q q

q_hat

error

References:

3) P. Vas, Sensorless Vector and Direct Torque Control, Oxford University Press,
1998.

4) F-Z Peng and T. Fukao, “Robust speed identification for speed-sensorless vector
control of Induction motors”, IEEE Trans. Ind. Appl., vol. 30, no. 5, pp. 1234−1240,
1994.

�^ r

e^ s�

e^ s�

q^

��e
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General-Purpose 4-Conversion ADC Driver (bipolar)ADC04_DRV

Description This module performs 4-channel AD conversion on bipolar signals. The channels are
specified by A4_ch_sel.

ADC

HW
ADC04_DRV

C1_out

C2_out

C3_out

C4_out

ADCINw

ADCINx

ADCINy

ADCINz

Availability This module is available in the direct-mode assembly-only interface (Direct ASM).

Module Properties Type: Target dependent, Application dependent

Target Devices: x24x/x24xx

Assembly File Name: adc04drv.asm

Item ASM Only Comments

Code size 101 words

Data RAM 15 words

xDAIS module No

xDAIS component No IALG layer not implemented
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Direct ASM Interface

Table 3.  Module Terminal Variables/Functions

Name Description Format Range

Inputs ADCINw/x/y/z ADC pins in 24x/24xx device.
w,x,y,z correspond to the channel
numbers selected by A4_ch_sel

N/A N/A

Outputs Cn_out
(n=1,2,3,4)

Conversion result for channel
corresponding to Cn

Q15 0−7FFF

Init / Config A4_ch_sel ADC channel select variable.
Specify appropriate channels using
this variable. Input format =
C4C3C2C1, Ex, A4_ch_sel =
FC83 implies selected channels
are, Ch3 as C1, Ch8 as C2, Ch12
as C3 and Ch15 as C4.

Q0 N/A

Variable Declaration:
In the system file include the following instructions:

.ref ADC04_DRV, ADC04_DRV_INIT ;function call

.ref A4_ch_sel, C1_gain, C2_gain, C3_gain, C4_gain ;input

.ref C1_offset, C2_offset, C3_offset, C4_offset ;input

.ref C1_out, C2_out, C3_out, C4_out ;output

Memory Map:
All variables are mapped to an uninitialized named section ‘adc04drv’.

Example:
During system initialization specify the inputs as follows:

ldp #A4_ch_sel ;Set DP for module inputs
splk #04321h, A4_ch_sel ;Select ADC channels. In this example

;channels selected are 4, 3, 2, and 1.
splk #GAIN1, C1_gain ;Specify gain value for each channel
splk #GAIN2, C2_gain
splk #GAIN3, C3_gain
splk #GAIN4, C4_gain
splk #OFFSET1, C1_offset ;Specify offset value for each channel
splk #OFFSET2, C2_offset
splk #OFFSET3, C3_offset
splk #OFFSET4, C4_offset

Then in the interrupt service routine call the module and read results as follows:

CALL ADC04_DRV
ldp #output_var1 ;Set DP for output variables
bldd #C1_out, output_var1 ;Pass module outputs to output variables
bldd #C2_out, output_var2
bldd #C3_out, output_var3
bldd #C4_out, output_var4
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General Purpose 4 Conversion ADC Driver (unipolar)ADC04U_DRV

Description This module performs 4-channel AD conversion on unipolar signals.  The channels are
specified by A4_ch_sel .

ADC
HW ADC04U_DRV

C1_out

C2_out

C3_out

C4_out

ADCINw

ADCINx

ADCINy

ADCINz

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Dependent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: adc4udrv.asm

C-Callable Version File Names: F243ADC1.ASM, F243ADC2.ASM, F243_ADC.H,
F2407ADC1.ASM, F2407ADC2.ASM, F2407ADC.H

Item ASM Only C-Callable ASM Comments

Code size 93/73 words 91/71 words†

Data RAM 11 words 0 words†

Multiple instances No See note

† Each pre-initialized ADCVALS structure instance consumes 11 words in the data memory and 13 words
in the .cinit section.

Note: Multiple instances must point to distinct interfaces on the target device. Multiple instances pointing
to the same ADC interface in hardware may produce undefined results. So the  number of interfaces
on the F241/3 is limited to one, while there can be upto two such interfaces on the LF2407.
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Direct ASM Interface

Table 4.  Module Terminal Variables/Functions

Name Description Format Range

H/W Inputs ADCINw/x/y/z ADC pins in 24x/24xx device. w,x,y,z
correspond to the channel numbers
selected by A4_ch_sel

N/A N/A

Outputs Cn_out
(n=1,2,3,4)

Conversion result for channel
corresponding to Cn

Q15 0−7FFF

Init / Config A4_ch_sel ADC channel select variable. Use this
to specify appropriate ADC channels.
Input format = C4C3C2C1, for
example, A4_ch_sel = FC83 implies
selected channels are, Ch3 as C1,
Ch8 as C2, Ch12 as C3 and Ch15 as
C4.

Q0 N/A

Cn_gain
(n=1,2,3,4)

Gain control for channel
corresponding to Cn. Use this to
adjust gain for each channel for
appropriately scaled signals.

Q13 0−7FFF

24x/24xx Select appropriate 24x/24xx device in
the x24x_app.h file.

Variable Declaration: 
In the system file include the following instructions:

.ref ADC04U_DRV, ADC04U_DRV_INIT ;function call

.ref  A4_ch_sel, C1_gain, C2_gain, C3_gain, C4_gain ;input

.ref  C1_out, C2_out, C3_out, C4_out ;output

Memory map: 
All variables are mapped to an uninitialized named section  ‘adc4udrv’

Example:
During system initialization specify the inputs as follows:

ldp #A4_ch_sel ;Set DP for module inputs
splk #04321h, A4_ch_sel ;Select ADC channels. In this example 

;channels selected are 4, 3, 2, and 1.
splk #GAIN1, C1_gain ;Specify gain value for each channel
splk #GAIN2, C2_gain
splk #GAIN3, C3_gain
splk #GAIN4, C4_gain

Then in the interrupt service routine call the module and read results as follows:

CALL ADC04U_DRV

ldp #output_var1 ;Set DP for output variables
bldd #C1_out, output_var1 ;Pass module outputs to output variables
bldd #C2_out, output_var2
bldd #C3_out, output_var3
bldd #C4_out, output_var4
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C/C-Callable ASM Interface

Object Definition The structure of the ADCVALS Interface Object is defined by the following structure
definition

typedef struct {
int c1_gain; /* Gain control for channel 1[Q13] */
int c2_gain; /* Gain control for channel 2[Q13] */
int c3_gain; /* Gain control for channel 3[Q13] */
int c4_gain; /* Gain control for channel 4[Q13] */

int c1_out;  /* Conversion result for channel 1[Q15]*/
int c2_out;  /* Conversion result for channel 2[Q15]*/
int c3_out;  /* Conversion result for channel 3[Q15]*/
int c4_out;  /* Conversion result for channel 4[Q15]*
int a4_ch_sel; /* ADC channel select variable[Q0] */
int (*init)();  /* Initialization func pointer  */
int (*update)(); /* Update function              */
} ADCVALS;

Table 5.  Module Terminal Variables/Functions

Name Description Format Range

H/W Inputs ADCINw/x/y/z ADC pins in 24x/24xx device. w,x,y,z
correspond to the channel numbers
selected by A4_ch_sel

N/A N/A

Outputs Cn_out
(n=1,2,3,4)

Conversion result for channel
corresponding to Cn

Q15 0−7FFF

Init / Config A4_ch_sel ADC channel select variable. Use this
to specify appropriate ADC channels.
Input format = C4C3C2C1, for
example, A4_ch_sel = FC83 implies
selected channels are, Ch3 as C1,
Ch8 as C2, Ch12 as C3 and Ch15 as
C4.

Q0 N/A

Cn_gain
(n=1,2,3,4)

Gain control for channel
corresponding to Cn. Use this to
adjust gain for each channel for
appropriately scaled signals.

Q13 0−7FFF

24x/24xx Select appropriate 24x/24xx device in
the x24x_app.h file.

Special Constants and Datatypes

ADCVALS
The module definition itself is created as a data type. This makes it convenient to
instance an interface to the ADC Driver module.

ADCVALS_DEFAULTS
Initializer for the ADCVALS Object. This provides the initial values to the terminal vari-
ables as well as method pointers.

ADCVALS_handle
Typedef’ed to ADCVALS *
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F243_ADC_DEFAULTS
Constant initializer for the F243ADC Interface.

F2407_ADC_DEFAULTS
Constant initializer for the F2407 ADC Interface

Methods void init (ADCVALS_handle)
Initializes the ADC Driver unit hardware.

void update(ADCVALS_handle)
Updates the ADC Driver  hardware with the data from the ADCVALS Structure.

Module Usage Instantiation:
The interface to the ADC Driver Unit is instanced thus:

ADCVALS  adc;

Initialization:
To instance a pre-initialized object

ADCVALS adc =ADC_DEFAULTS

Hardware Initialization:

adc.init(&adc);

Invoking the update function:

adc.update(&adc);

Example:
Lets instance one ADCVALS object

ADCVALS adc =ADC_DEFAULTS;

main()
{

adc.a4_ch_sel = 0x5432 ; /* Initialize */
adc.c1_gain   = 0x1FFF;
adc.c2_gain   = 0x1FFF;
adc.c3_gain   = 0x1FFF;
adc.c4_gain   = 0x1FFF;

(*adc.init)(& adc); /* Call the function */
}

void interrupt periodic_interrupt_isr()
{
(*adc.update)(& adc);
x = adc.c1_out;
y = adc.c2_out;
z = adc.c3_out;
p = adc.c4_out;
}
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Averaging Box CarBC_CALC

Description This software module calculates the average value of a s/w variable. The output can
be rescaled and the size of buffer used for storing the averaging data is selectable.

BC_CALC BC_OUTBC_IN

Q15/Q15

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Asembly File Name: box_car.asm

ASM Routines: BC_CALC, BC_INIT

C-Callable ASM File Names: box_car.asm, box_car.h

Item ASM Only C-Callable ASM Comments

Code size 47 words 46 words‡

Data RAM 69† words 69† words‡

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† For 64-word buffer size.
‡ Each pre-initialized BOXCAR structure occupies (5+BC_SIZE) words in the data memory and

(7+BC_SIZE) words in the .cinit section.
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Direct ASM Interface

Table 6.  Module Terminal Variables/Functions

Name Description Format Range

Input BC_IN Input to be averaged Q15 −1 −> 0.999

Output BC_OUT Averaged output with the
selectable buffer size

Q15 −1 −> 0.999

Init / Config BC_SIZE The buffer size Q0 2, 4, 8, 16, …

bc_scaler The scaling factor Q15 −1 −> 0.999

Routine names and calling limitation:
There are two routines involved:

BC_CALC, the main routine; and 
BC_INIT, the initialization routine.

The initialization routine must be called during program initialization. The BC_CALC
routine must be called in the control loop.

Variable Declaration: 
In the system file, including the following statements before calling the subroutines:

.ref BC_INIT, BC_CALC ;function call

.ref BC_IN, BC_OUT ;Inputs/Outputs

Memory map:
All variables are mapped to an uninitialized named section, bc, which can be allocated
to any one data page. However, the buffer data is mapped to an uninitialized named
section, farmem.

Example:
In the interrupt service routine call the module and read results as follows:

LDP #BC_IN   ; Set DP for module inputs
BLDD #input_var1,BC_IN ; Pass input variables to module inputs

CALL BC_CALC

LDP #output_var1 ; Set DP for module output
BLDD #BC_OUT, output_var1 ; Pass output to other variables
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C/C-Callable ASM Interface

Object Definition The structure of the BOXCAR object is defined in the header file, box_car.h, as seen
in the following:

#define BC_SIZE 64

typedef struct { int  BC_IN; /* Input: Box−Car input (Q15) */
int  BC_PTR; /* Variable: Box−car buffer pointer */
int  BC_BUFFER[BC_SIZE]; /* Variable: Box−car buffer (Q15) */
int  BC_OUT; /* Output: Box−car output (Q15) */
int  bc_scaler; /* Parameter: Box−car scaler (Q15) */
int  (*calc)(); /* Pointer to calculation function */ 

} BOXCAR;

Special Constants and Datatypes

BOXCAR
The module definition itself is created as a data type. This makes it convenient to
instance a BOXCAR object. To create multiple instances of the module simply declare
variables of type BOXCAR.

BOXCAR_DEFAULTS
Initializer for the BOXCAR object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers. This is initialized in the header
file, box_car.h.

Methods void calc(BOXCAR *);
This default definition of the object implements just one method – the runtime compute
function for averaging. This is implemented by means of a function pointer, and the de-
fault initializer sets this to bc_calc function. The argument to this function is the ad-
dress of the BOXCAR object. Again, this statement is written in the header file,
box_car.h.

Module Usage Instantiation:
The following example instances two such objects:

BOXCAR bc1, bc2;

Initialization:
To instance a pre-initialized object:

BOXCAR bc1 = BOXCAR_DEFAULTS;
BOXCAR bc2 = BOXCAR_DEFAULTS;

Invoking the compute function:

bc1.calc(&bc1); 
bc2.calc(&bc2);
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Example:
Lets instance two BOXCAR objects, otherwise identical, and compute the averaging
values of two different s/w variables. The following example is the c source code for
the system file.

BOXCAR bc1= BOXCAR_DEFAULTS;  /* instance the first object */
BOXCAR bc2= BOXCAR_DEFAULTS;    /* instance the second object */

main()
{

bc1.BC_IN = input1; /* Pass inputs to bc1 */
bc2.BC_IN = input2; /* Pass inputs to bc2 */

}

void interrupt periodic_interrupt_isr()
{

bc1.calc(&bc1); /* Call compute function for bc1 */
bc2.calc(&bc2); /* Call compute function for bc2 */

output1 = bc1.BC_OUT; /* Access the outputs of bc1 */  
output2 = bc2.BC_OUT; /* Access the outputs of bc2 */

}
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Background Information

This s/w module computes the average of the runtime values of the selected input vari-
able. The size of the buffer used to keep the data is selectable with the power of two,
i.e., 2, 4, 8, 16, 32, 64, …. The default buffer size is 64. For different buffer size modify
the code (valid for both ASM and CcA versions) as required. The following instruction
is added or deleted, according to the buffer size, at the location indicated in the code.
This divides the number in accumulator by two.

SFR ; Number of times SFR need to be executed
; is, log2(BC_SIZE)
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3-Phase BLDC PWM DriverBLDC_3PWM_DRV

Description This module generates the 6 switching states of a 3-ph power inverter used to drive
a 3-ph BLDC motor. These switching states are determined by the input variable
cmtn_ptr_bd. The module also controls the PWM duty cycle by calculating appropriate
values for the full compare registers CMPR1, CMPR2 and CMPR3. The duty cycle val-
ues for the PWM outputs are determined by the input D_func.

EV
HWBLDC_3PWM_DRV

PWM1

PWM2

PWM3

PWM4

cmtn_ptr_bd

D_func

Mfunc_p PWM5

PWM6

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Dependent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: bldc3pwm.asm

C-Callable Version File Names: f2407bldcpwm1.c, f2407bldcpwm2.asm,
f2407bldcpwm.h, f243bldcpwm1.c, f243bldcpwm2.asm, f243_bldcpwm.h

Item ASM Only C-Callable ASM Comments

Code size 82 words 89 words†

Data RAM 6 words 0 words†

Multiple instances No See note

† Each pre-initialized PWMGEN structure instance consumes 6 words in the data memory and 8 words in
the .cinit section.

Note: Multiple instances must point to distinct interfaces on the target device. Multiple instances pointing
to the same PWM interface in hardware may produce undefined results. So the  number of inter-
faces on the F241/3 is limited to one, while there can be upto two such interfaces on the LF2407.
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Direct ASM Interface

Table 7.  Module Terminal Variables/Functions

Name Description Format Range

Inputs cmtn_ptr_bd Commutation(or switching) state
pointer input

Q0 0−5

D_func Duty ratio of the PWM outputs Q15 0−7FFF

Mfunc_p PWM period modulation input Q15 0−7FFF

H/W Outputs PWMx
(x=1,2,3,4,5,6)

Full compare PWM outputs from
24x/24xx device

N/A N/A

Init / Config FPERIOD PWM frequency select constant.
Default value is set for 20kHz.
Modify this constant for different
PWM frequency.

Q0 Application
dependent

24x/24xx Select appropriate 24x/24xx
device in the x24x_app.h file.

N/A N/A

Variable Declaration: 
In the system file include the following statements:

.ref BLDC_3PWM_DRV, BLDC_3PWM_DRV_INIT ;function call

.ref  cmtn_ptr_bd, D_func, Mfunc_p ;input

Memory map: 
All variables are mapped to an uninitialized named section  ‘bldc3pwm’

Example:

ldp #cmtn_ptr_bd ;Set DP for module inputs
bldd #input_var1, cmtn_ptr_bd ;Pass input variables to module inputs
bldd #input_var2, D_func
CALL BLDC_3PWM_DRV

Note:

Since this is an output driver module it does not have any user configurable s/w out-
puts and, therefore, does not need any output parameter passing. This s/w module
calculates the compare values, which are used in the full compare unit internal to
24x/24xx device. From the compare values the device generates the PWM outputs.
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C/C-Callable ASM Interface

Object Definition The structure of the PWMGEN Interface Object is defined by the following structure
definition

typedef struct {
int cmtn_ptr_bd; /* Commutation(or switching) state pointer input[Q0] */
int mfunc_p; /* Duty ratio of the PWM outputs[Q15]                */
int period_max; /* Maximum period                                    */
int d_func; /* PWM period modulation input[Q15]                  */
int (*init)(); /* Function pointer to INIT function                 */
int (*update)(); /* Function pointer to UPDATE function               */

} PWMGEN;

Table 8.  Module Terminal Variables/Functions

Name Description Format Range

Inputs cmtn_ptr_bd Commutation(or switching) state
pointer input

Q0 0−5

D_func Duty ratio of the PWM outputs Q15 0−7FFF

Mfunc_p PWM period modulation input Q15 0−7FFF

H/W Outputs PWMx
(x=1,2,3,4,5,6)

Full compare PWM outputs from
24x/24xx device

N/A N/A

Init / Config FPERIOD PWM frequency select constant.
Default value is set for 20kHz.
Modify this constant for different
PWM frequency.

Q0 Application
dependent

24x/24xx Select appropriate 24x/24xx
device in the x24x_app.h file.

N/A N/A

Special Constants and Datatypes

PWMGEN
The module definition itself is created as a data type. This makes it convenient to
instance an interface to the PWM Generator module.

PWMGEN _DEFAULTS
Initializer for the PWMGEN Object. This provides the initial values to the terminal vari-
ables as well as method pointers.

PWMGEN_handle
Typedef’ed to PWMGEN *

F243_PWMGEN_DEFAULTS
Constant initializer for the F243 PWM Interface.

F2407_PWMGEN_DEFAULTS
Constant initializer for the F2407 PWM Interface
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Methods void init  (PWMGEN_handle)
Initializes the PWM Gen unit hardware.

void update(PWMGEN_handle)
Updates the PWM Generation hardware with the data from the PWM Structure.

Module Usage Instantiation:
The interface to the PWM Generation Unit is instanced thus:

PWMGEN  pwm;

Initialization:
To instance a pre-initialized object

PWMGEN  pwm =PWMGEN_DEFAULTS

Hardware Initialization:

pwm.init(&pwm);

Invoking the update function

pwm.update(&pwm);

Example:
Lets instance one PWMGEN object

PID2 pid =PID2_DEFAULTS;
PWMGEN  pwm =PWMGEN_DEFAULTS;

main()
{
pid.k0_reg2 = 0x080; /* Initialize */
pid.k1_reg2 = 0x0140;
pid.kc_reg2 = 0x0506;

pwm.cmtn_ptr_bd = 3; /* Initialize */
pwm.mfunc_p =0x1777;
pwm.d_func = 0x6fff;
pwm.period_max =0x5fff;

(*pwm.init)(&pwm); /* Call the compute function for pwm */
}
void interrupt periodic_interrupt_isr()
{

(*pid.update)(&pid); /*call compute function for pid */

/* Lets output pid.out_reg2 */

pwm.d_func = bldc.pid2.out_reg2;

(*pwm.update)(&pwm);

}
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Background Information

Figure 2 shows the 3-phase power inverter topology used to drive a 3-phase BLDC
motor. In this arrangement, the motor and inverter operation is characterized by a two
phases ON operation. This means that two of the three phases are always energized,
while the third phase is turned off. This is achieved by controlling the inverter switches
in a periodic 6 switching or commutation states. The bold arrows on the wires in
Figure 2 indicate the current flowing through two motor stator phases during one of
these commutation states. The direction of current flowing into the motor terminal is
considered as positive, while the current flowing out of the motor terminal is considered
as negative. Therefore, in Figure 2, Ia is positive, Ib is negative and Ic is 0.

Shunt
Resistor

BLDC

Q1

Q2

Q3

Q4

Q5

Q6

ADCINx

Ia

Ib
Ic

Figure 2.  Three Phase Power Inverter for a BLDC Motor Drive

In this control scheme, torque production follows the principle that current should flow
in only two of the three phases at a time and that there should be no torque production
in the region of Back EMF zero crossings. Figure 3 depicts the phase current and Back
EMF waveforms for a BLDC motor during the two phases ON operation. All the 6
switching states of the inverter in Figure 2 are indicated in Figure 3 by S1 through S6.
As evident from Figure 3, during each state only 2 of the 6 switches are active, while
the remaining 4 switches are turned OFF. Again, between the 2 active switches in each
state, the odd numbered switch (Q1or Q3 or Q5) are controlled with PWM signal while
the even numbered switch (Q2 or Q4 or Q6) is turned fully ON. This results in motor
current flowing through only two of the three phases at a time. For example in state S1,
Ia is positive, Ib is negative and Ic is 0. This is achieved by driving Q1 with PWM signals
and turning Q4 fully ON. This state occurs when the value in the commutation state
pointer variable, cmtn_ptr_bd, is 0. Table 9 summarizes the state of the inverter
switches and the corresponding values of the related peripheral register, the commuta-
tion pointer and the motor phase currents.
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θ

θ

θ
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Phase B

Phase C

Ea

Ia

Eb

Ib

Ec

Ic

Figure 3.  Phase Current and Back EMF Waveforms in 3-ph BLDC Motor Control

Table 9.  Commutation States in 3-ph BLDC Motor Control

State
cmtn_
ptr_bd ACTR Q1 Q2 Q3 Q4 Q5 Q6 Ia Ib Ic

S1 0 00C2 PWM OFF OFF ON OFF OFF +ve −ve 0

S2 1 0C02 PWM OFF OFF OFF OFF ON +ve 0 −ve

S3 2 0C20 OFF OFF PWM OFF OFF ON 0 +ve −ve

S4 3 002C OFF ON PWM OFF OFF OFF −ve +ve 0

S5 4 020C OFF ON OFF OFF PWM OFF −ve 0 +ve

S6 5 02C0 OFF OFF OFF ON PWM OFF 0 −ve +ve
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Capture Input Event DriverCAP_EVENT_DRV

Description This module provides the instantaneous value of the selected time base (GP Timer)
captured on the occurrence of an event. Such events can be any specified transition
of a signal applied at the event manager (EV) capture input pins of 24x/24xx devices.

EV
CAP_EVENT_

CAPn_FIFO DRV

Q15
HW

CAPn

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Dependent, Application Dependent

Target Devices: x24x/x24xx

Direct ASM Version File Name: cap_drv.asm

C-Callable Version File Names: F243CAP.h, F243CAPx.c, F2407CAPx.c,
F2407CAP.H, CAPTURE.H

Item ASM Only C-Callable ASM Comments

Code size 32 words 54 words (49
words .text, 5
words .cinit)

Data RAM 1 words 6 words

Multiple instances No Yes† Multiple instances must be
initialized to point to different
capture pin routines.

† Creating multiple instances pointing to the same capture pin can cause undefined results.
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Direct ASM Interface

Table 10.  Module Terminal Variables/Functions

Name Description Format Range

H/W Inputs CAPn
(n=1,2,3,4)

Capture input signals to 24x/24xx
device

N/A N/A

Outputs CAPnFIFO
(n=1,2,3,4)

Capture unit FIFO registers. N/A N/A

Init / Config 24x/24xx Select appropriate 24x/24xx device
in the x24x_app.h file.

N/A N/A

CLK_prescaler_bits Initialize this clock prescaler
variable. The default value is set to
4. To use this value call the
CAP_EVENT_DRV_INIT routine
only. For a different value modify
this variable and also call the other
initialization routine
CAP_EVENT_DRV_CLKPS_INIT.
The correct value for this
parameter is calculated in the
Excel file with the user input of the
desired clock prescaler
(1,2,4,8,16,32,64,128).

Q0 0−7

Variable Declaration: 
In the system file include the following statements:

.ref CAP_EVENT_DRV, CAP_EVENT_DRV _INIT ;function call

.ref CAP_EVENT_DRV_CLKPS_INIT ;function call

.ref CLK_prescaler_bits ;parameter

Memory map: 
Not required.

Example:

CALL CAP_EVENT_DRV_INIT
ldp #CLK_prescaler_bits
splk #7, CLK_prescaler_bits ;To specify a prescaler of 128
CALL CAP_EVENT_DRV_CLKPS_INIT

ldp #output_var1 ;Set DP for output variable
bldd #CAP1FIFO,output_var1 ;Pass module o/ps to output vars
bldd # CAP2FIFO, output_var2
bldd # CAP3FIFO, output_var3
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C/C-Callable ASM Interface

Object Definition The structure of the CAPTURE object is defined by the following struct

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Define the structure of the Capture Driver Object 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
typedef struct { int time_stamp;
                 int (*init)(); /*Pointer to the init function */
                 int (*read)(); /*Pointer to the init function */
               } CAPTURE;

Table 11.  Module Terminal Variables/Functions

Name Description Format Range

H/W Input
Pins

− − Inputs are
logic levels on
hardware pins.

Output Time_stamp An Integer value read from timer
assigned to the capture unit.

Q0 −32768 to
32767

Special Constants and Datatypes

CAPTURE
The module definition itself is created as a data type. This makes it convenient to
instance an interface to the CAPTURE pin(s).

CAPTURE_DEFAULTS 
Initializer for the CAPTURE Object. This provides the initial values to the terminal vari-
ables as well as method pointers.

CAPTURE_handle
This is typedef’ed to CAPTURE *.

Methods void init(CAPTURE_handle)
Initializes the CAPTURE unit on the device to activate the capture function.

int read(CAPTURE_handle)
Reads a time stamp value from the timer associated with the capture unit. Note that
the time stamp is placed in the capture object. The return value of the function is either
0 or 1. If the function read a value from the hardware, i.e. if a capture event has oc-
curred, then the function returns 0. Otherwise the return value is 1.

Module Usage Instantiation:
The interface to the Capture unit on the device is instanced thus:

CAPTURE cap1;

Initialization:
To instance a pre-initialized object

CAPTURE cap1=CAP1_DEFAULTS;

Invoking the initialization function:

cap1.init(&cap1);
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Reading a  time stamp from the capture unit:

cap1.read(&cap1);

Example:
Lets instance one CAPTURE object, init it and invoke the read function to fetch a time
stamp.

CAPTURE cap1 CAP1_DEFAULTS; /*Instance the Capture interface object    */

main()
{

cap1.init(&cap1);

}
void interrupt periodic_interrupt_isr()
{

int status;
int time_of_event;

status=cap1.read(&cap1);

/* if status==1 then a time stamp was not read, 
   if status==0 then a time stamp was read.

if(status==0) 
{
time_of_event=cap1.time_stamp;
}

}



33 Chapter Title—Attribute Reference

Proportional and Integral RegulatorsPID_REG_ID/
PID_REG_IQ

Description These s/w modules implement two PI regulators with integral windup correction.

PID_REG_ID
ud_out

id_fdb

id_ref

Q15

Q15

Q15

PID_REG_IQ
uq_out

iq_fdb

iq_ref

Q15

Q15

Q15

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: pid.asm

ASM Routines: PID_REG_ID, PID_REG_ID_INIT, PID_REG_IQ,
PID_REG_IQ_INIT

Parameter calculation excel file: pid.xls

Item ASM Only C-Callable ASM Comments

Code size 134 words ?? words

Data RAM 24 words ?? words

xDAIS ready No Yes

xDAIS module No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes
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Table 12.  Module Terminal Variables/Functions

Name Description Format Range

Inputs id_fdb Feedback signal for PI
regulator PID_REG_ID

Q15 8000−7FFF

id_ref Reference signal for PI
regulator PID_REG_ID

Q15 8000−7FFF

iq_fdb Feedback signal for PI
regulator PID_REG_IQ

Q15 8000−7FFF

iq_ref Reference signal for PI
regulator PID_REG_IQ

Q15 8000−7FFF

Outputs ud_out Output for PI regulator
PID_REG_ID

Q15 Umin_d_−
Umax_d_

uq_out Output for PI regulator
PID_REG_IQ

Q15 Umin_q_−
Umax_q_

Init / Config Kp_d† Proportional gain coefficient Q11 System
dependent

Ki_d† Integral coefficient Q25 System
dependent

Kc_d† Integral windup correction
coefficient

Q14 System
dependent

Kp_q† Proportional gain coefficient Q11 System
dependent

Ki_q† Integral coefficient Q25 System
dependent

Kc_q† Integral windup correction
coefficient

Q14 System
dependent

† From the system file, initialize these PI regulator coefficients.

Variable Declaration: 
In the system file include the following statements:

.ref pid_reg_id,pid_reg_id_init ; function call

.ref id_fdb,id_ref,Kp_d,Ki_d,Kc_d ; Inputs|

.ref ud_int ; Input

.ref ud_out ; Outputs

.ref pid_reg_iq,pid_reg_iq_init ; function call

.ref iq_fdb,iq_ref,Kp_q,Ki_q,Kc_q ; Inputs

.ref uq_int ; Input

.ref uq_out ; Outputs

Memory map: 
All variables are mapped to an uninitialized named section ‘pid’
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Example:

ldp #id_fdb ;Set DP for module inputs
bldd #input_var1, id_fdb ;Pass input variables to module inputs
bldd #input_var2, id_ref

CALL pid_reg_id

ldp #output_var1 ;Set DP for output variable
bldd #ud_out, output_var1 ;Pass module output to output variable

ldp #iq_fdb ;Set DP for module inputs
bldd #input_var3, iq_fdb ;Pass input variables to module inputs
bldd #input_var4, iq_ref

CALL pid_reg_iq

ldp #output_var2 ;Set DP for output variable
bldd #uq_out, output_var2 ;Pass module output to output variable
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TBD
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Background Information

The discrete-time equations used for the PI controller with anti-windup correction can
be summarized as follows:

en � i *n � in

Un � X(n�1) � Kpen

Uout � Umax ifUn � Umax

Uout � Umin ifUn 	 Umin

Uout � Un

otherwise

Xn � X(n�1) � Kien � Kc(Uout �Un)

where Kc � Ki
Kp
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Clarke Transform ModuleCLARKE

Description Converts balanced three phase quantities into balanced two phase quadrature
quantities.

CLARKE
clark_d

clark_q

clark_a

clark_b

Q15/Q15

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent/Application Independent

Target Devices: x24x/x24xx

Direct ASM Version File Name: clarke.asm

C-Callable Version File Name: clark.asm

Item ASM Only C-Callable ASM Comments

Code size 19 words 29 words†

Data RAM 6 words 0 words†

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† The Clarke transform operates on structures allocated by the calling function.
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Direct ASM Interface

Table 13.  Module Terminal Variables/Functions

Name Description Format Range

Inputs clark_a Phase ‘a’ component of the
balanced three phase quantities.

Q15 8000−7FFF

clark_b Phase ‘b’ component of the
balanced three phase quantities

Q15 8000−7FFF

Outputs clark_d Direct axis(d) component of the
transformed signal

Q15 8000−7FFF

clark_q Quadrature axis(q) component
of the transformed signal

Q15 8000−7FFF

Init / Config none

Variable Declaration:
In the system file include the following statements:

.ref CLARKE, CLARKE_INIT ;function call

.ref clark_a, clark_b, clark_d, clark_q ;input/output

Memory map:
All variables are mapped to an uninitialized named section ‘clarke’

Example:

ldp #clark_a ;Set DP for module input
bldd #input_var1, clark_a ;Pass input variable to module input
bldd #input_var2, clark_b

CALL CLARKE

ldp #output_var1 ;Set DP for output variable
bldd #clark_d, output_var1 ;Pass module output to output

; variable
bldd #clark_q, output_var2
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C/C-Callable ASM Interface

This function is implemented as a function with two arguments, each a pointer to the
input and output structures.

struct { int a;
int b;
int c;

} clark_in;

struct { int d;
int q;

} clark_out;

void clark(&clark_in,&clark_out);

The inputs are read from the clarke_in structure and the outputs are placed in the
clarke_out structure.

Table 14.  Module Terminal Variables/Functions

Name Description Format Range

Inputs a Phase ‘a’ component of the
balanced three phase quantities.

Q15 8000−7FFF

b Phase ‘b’ component of the
balanced three phase quantities

Q15 8000−7FFF

c Phase ‘c’ component of the
balanced three phase quantities

Q15 8000−7FFF

Outputs d Direct axis(d) component of the
transformed signal

Q15 8000−7FFF

q Quadrature axis(q) component of
the transformed signal

Q15 8000−7FFF

Init / Config none

Example:
In the following example, the variables intput_a, input_b, input_c are transformed to
the quadrature components output_d, output_q.

typedef struct { int a,b,c ; } triad;

triad threephase;
triad quadrature;

int threephase_a, threephase_a, threephase_a;
int output_d,output_q;

void some_func(void)
{

threephase.a=input_a;
threephase.b=input_b;
threephase.c=input_c;

clark(&threephase,&quadrature);
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output_d=quadrature.a;
output_q=quadrature.b;

}
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Background Information

Implements the following equations:


Id � Ia
Iq � (2Ib � Ia)� 3�

This transformation converts balanced three phase quantities into balanced two phase
quadrature quantities as shown in figure below:

90°120°

7FFFh

0

8000h

7FFFh

0

8000h

ia ib ic
idiq

Ia

Ib

Id

Iq
CLARKE

3-phase Quadrature: 2-phase

The instantaneous input and the output quantities are defined by the following
equations:

Ia

Ib

Ib

Ia = Id

Ic
�� � 0

ia � I 
 sin(�t)
ib � I 
 sin(�t � 2��3)
ic � I 
 sin(�t � 2��3)


id � I 
 sin(�t)
iq � I 
 sin(�t � ��2)

Iq � (2Ib � Ia)� 3�

Table 15.  Variable Cross Ref Table

Variables in the Equations Variables in the Code

Ia clark_a

Ib clark_b

Id clark_d

Iq clark_q
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Compensated Full-Compare PWM Output DriverCOMPWM

Description The software module “COMPWM” compensates and/or modifies the PWM output
based on system inputs. Although this module is applied for a single phase AC induc-
tion motor drive, the same can be applied for a three phase AC induction motor drive.

COMPWM

Mfunc_c1

Mfunc_c2

Mfunc_c3

limit

DC_RIPPLE

VDC_ACTUAL

VDC_HOT

VDC_TOP_REF

VDC_BOT_REF

EV

PWM1

PWM2

PWM3

PWM4

Availability This module is available in the direct-mode assembly-only interface (Direct ASM).

Module Properties Type: Target dependent, Application Dependent

Target Devices: x24x/x24xx

Item ASM Only Comments

Code size 311 words

Data RAM 30 words

xDAIS module No

xDAIS component No IALG layer not implemented
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Direct ASM Interface

Table 16.  Module Terminal Variables/Functions

Name Description Format Range

Inputs VDC_ACTUAL Total DC bus voltage. Measured
across both DC bus capacitors.

Q15 0−7FFFh

VDC_HOT Half of the DC bus voltage.
Measured across the lower DC
bus capacitor.

Q15 0000h−
7FFFh

VDC_TOP_REF The ideal voltage across the top
capacitor.

Q15 0000h−
7FFFh

VDC_BOT_REF The ideal voltage across the
lower capacitor. Ideally both the
reference voltages are same.

Q15 0000h−
7FFFh

Mfunc_c1 PWM duty ratio Q15 8000h−
7FFFh

Mfunc_c2 PWM duty ratio Q15 8000h−
7FFFh

Mfunc_c3 PWM duty ratio Q15 8000h−
7FFFh

limit Determines the level of
over-modulation

Q0 0 –
T1PER/2

DC_RIPPLE Software switch to activate riple
compensation

Q0 0 (OFF)
or 1 (ON)

Outputs CMPR1 Compensated value for compare
1

Q0 0 –
T1PER

CMPR2 Compensated value for compare
2

Q0 0 –
T1PER

Init / Config ADC_BOT_REF The reference voltage of the
lower DC bus capacitor

Q15 0 –
7FFFh
(half of
total DC
bus)

ADC_TOP_REF The reference voltage of the
upper DC bus capacitor

Q15 0 –
7FFFh
(half of
total DC
bus)

Variable Declaration: 
In the system file include the following statements:

.ref COMPWM ;function call

.ref COMPWM_INIT ;function call

.ref Mfunc_c1, Mfunc_c2, Mfunc_c3, Mfunc_p ;Inputs

.ref limit ;limit

.ref DC_RIPPLE,VDC_TOP_REF, VDC_BOT_REF ;inputs

.ref VDC_ACTUAL, VDC_HOT ;inputs
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Memory map: 
All variables are mapped to an uninitialized named section “compwm”

Example:

LDP #DC_RIPPLE

BLDD #ripple_on, DC_RIPPLE
BLDD #total_bus, VDC_ACTUAL
BLDD #half_bus, VDC_HOT
BLDD #ADCref1, VDC_TOP_REF 
BLDD #ADCref2, VDC_BOT_REF

CALL COMPWM
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Background Information

This software module modifies a particular system variable based on other system
variable feedback. One obvious application of this module is to modify PWM output
based on DC bus voltage variation of the voltage source inverter. Ideally, the PWM duty
ratio is calculated assuming that the DC bus voltage is stiff with no variation. However,
in a practical system there is always DC bus voltage variation based on the load. If this
variation is not taken into account than the voltage output of the inverter will get dis-
torted and lower order harmonics will be introduced. The inverter voltage output can
be immune to the DC bus variation if the PWM duty ratio is modified according to the
bus voltage variation. The following equation shows the mathematical relationship be-
tween various variables –

At any PWM cycle the ideal voltage applied across Phase A is,

Va = (T1PER – compare_1)*VDC_TOP_REF – VDC_BOT_REF*compare_1 (1)

In an actual system, voltages across the capacitors will have ripple and the actual volt-
age applied across Phase A is,

Va_actual = (T1PER – Ta_new)*V1 – Ta_new*V2 (2)

Where,
V1 = measured voltage across the upper capacitor (VDC_ACTUAL – VDC_HOT)
V2 = measured voltage across the lower capacitor (VDC_HOT)

The compensated compare values for Phase A (Ta_new) can be calculated by solving
equations (1) and (2) and is given by,

Va = Va_actual

Ta_new = (T1PER*V1 – Va)/ (V1+V2) (3)

Similar, calculation can be performed for Phase B and the compensated compare val-
ue becomes,

Tb_new = (T1PER*V1 – Vb)/ (V1+V2) (4)

Where, 
Vb = (T1PER – compare_2)*VDC_BOT_REF – VDC_TOP_REF*compare_2

It is clear from equations (3) and (4) that the compensation routine depends on accu-
rate measurement of DC bus voltages. Moreover, the user will have to provide protec-
tion so that the power devices do not stay ON for a long period to create a short circuit
in the motor phase.
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Commutation Trigger Generator ModuleCOMTN_TRIG

Description This module determines the Bemf zero crossing points of a 3-ph BLDC motor based
on motor phase voltage measurements and then generates the commutation trigger
points for the 3-ph power inverter switches.

COMTN_TRIG
cmtn_trig

cmtn_ptr_ct

Va

Vb

Vc

V_timer

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Independent

Target Devices: x24x / x24xx

Assembly File Name: COM_TRIG.asm

C-Callable Version File Name: COM_TRIG.asm, cmtn.h

Item ASM Only C-Callable ASM Comments

Code size 195 words 237 words†

Data RAM 21 words 0 words†

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized CMTN structure instance consumes 19 words in the data memory and 21 words in the
.cinit section.
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Table 17.  Module Terminal Variables/Functions

Name Description Format Range

Inputs cmtn_ptr_ct Commutation state pointer input.
This is used for Bemf zero
crossing point calculation for the
appropriate motor phase.

Q0 0−5

Va, Vb, Vc Motor phase voltages referenced
to GND

Q15 0−7FFFh

V_timer A virtual timer used for
commutation delay angle
calculation.

Q0 0−7FFFh

Output cmtn_trig Commutation trigger output Q0 0 or 7FFFh

Init / Config none

Variable Declaration: 
In the system file include the following statements:

.ref COMTN_TRIG, COMTN_TRIG_INIT ;function call

.ref Va, Vb, Vc, cmtn_trig, cmtn_ptr_ct ;input/output

Note: One of the module inputs, V_timer, is a global resource. This should be declared
as a GLOBAL variable in the system file.

Memory map: 
All variables, except V_timer, are mapped to an uninitialized named section ‘com_trig’

V_timer is mapped to the same memory section as the other variables in the main sys-
tem

Example:

ldp #Va ;Set DP for module inputs
bldd #input_var1, Va ;Pass input variables to module inputs
bldd #input_var2, Vb
bldd #input_var3, Vc
bldd #input_var4, cmtn_ptr_ct
CALL COMTN_TRIG

ldp #output_var1 ;Set DP for output variable
bldd #cmtn_trig, output_var1 ;Pass module output to output variable
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C/C-Callable ASM Interface

Object Definition The structure of the CMTN Object is defined by the following structure definition:

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Define the structure of the CMTN
(Commutation trigger)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

typedef struct { int trig; /* Commutation trig output                     */
int va; /* Motor phase voltage to GND  for phase A       */
int vb; /* Motor phase voltage to GND  for phase B       */
int vc ; /* Motor phase voltage to GND  for phase C      */
int zc_trig;
int ptr_ct; /* Commutation state pointer input           */
int debug_Bemf;
int noise_windowCntr;
int d30_doneFlg;
int time_stampNew;
int time_stampOld;
int v_timer; /* Virtual timer used for commmutaion delay angle

calculation */
int delay;
int dt_taskFlg ;
int noise_windowMax;
int delay_cntr;
int cdnw_delta;
int nw_dynThold;
int (*calc) (); /* Function pointer */

} CMTN;

Table 18.  Module Terminal Variables/Functions

Name Description Format Range

Inputs ptr_ct Commutation state pointer input.
This is used for Bemf zero
crossing point calculation for the
appropriate motor phase.

Q0 0−5

va, vb, vc Motor phase voltages referenced
to GND

Q15 0−7FFFh

v_timer A virtual timer used for
commutation delay angle
calculation.

Q0 0−7FFFh

Output trig Commutation trigger output Q0 0 or 7FFFh
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Special Constants and Datatypes

CMTN
The module definition itself is created as a data type. This makes it convenient to
instance a Commutation trigger module.To create multiple instances of the module
simply declare variables of type CMTN

CMTN_handle
Typedef’ed to CMTN*

CMTN_DEFAULTS 
Initializer for the CMTN Object. This provides the initial values to the terminal variables,
internal variables, as well as method pointers.

Methods void calc(CMTN_handle)
The default definition of the object implements just one method – the runtime imple-
mentation of the Commutation trigger module. This is implemented by means of a func-
tion pointer, and the default initializer sets this to cmtn_calc. The argument to this func-
tion is the address of the CMTN object.

Module Usage Instantiation:
The following example instances one such objects:

CMTN p1,p2;

Initialization:
To instance a pre-initialized object

CMTN p1 = CMTN_DEFAULTS, p2 = CMTN_DEFAULTS;

Invoking the compute function:

p1.calc(&p1);

Example:
Lets instance two CMTN objects ,othewise identical but running with different freq val-
ues

CMTN p1 = CMTN_DEFAULTS; /* Instance the first object */
CMTN p2 = CMTN_DEFAULTS; /* Instance the second object */

main()
{

p1.ptr_ct  = 5;
p1.va      = 7;
p1.vb      = 0;
p1.vc      =8;
p1.v_timer =2;
p1.nw_dynThold = 90;
p1.dt_taskFlg = 0;
p1.cdnw_delta = 0;
p1.d30_doneFlg =0;
p1.time_stampNew =14;
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p2.ptr_ct  = 1;
p2.va      =6;
p2.vb      =7;
p2.vc      = 2;
p2.v_timer = 78;
p2.nw_dynThold = 3;
p2.dt_taskFlg = 0;
p2.cdnw_delta = 7;
p2.d30_doneFlg = 15;
p2.time_stampNew = 30;

}

void interrupt periodic_interrupt_isr()
{

(*p1.calc)(&p1);   /* Call compute function for p1 */
(*p2.calc)(&p2);   /* Call compute function for p2 */

x = p1.trig;            /* Access the output */
y = p1.time_stampNew;   /* Access the output */
z = p1.time_stampOld;   /* Access the output */
q = p2.trig;            /* Access the output */
r = p2.time_stampNew;   /* Access the output */
s = p2.time_stampOld;   /* Access the output */

/* Do something with the outputs */
}
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Background Information

Figure 4 shows the 3-phase power inverter topology used to drive a 3-phase BLDC
motor. In this arrangement, the motor and inverter operation is characterized by a two
phase ON operation. This means that two of the three phases are always energized,
while the third phase is turned off.

Shunt
Resistor

BLDC

Q1

Q2

Q3

Q4

Q5

Q6

ADCINy

Full
Compare

Unit

Figure 4.  Three Phase Power Inverter for a BLDC Motor Drive

The bold arrows on the wires indicate the Direct Current flowing through two motor sta-
tor phases. For sensorless control of BLDC drives it is necessary to determine the zero
crossing points of the three Bemf voltages and then generate the commutation trigger
points for the associated 3-ph power inverter switches.

Figure 5 shows the basic hardware necessary to perform these tasks.

ADCINx

ADCINy

Stator Phase #x Cable

Figure 5.  Basic Sensorless Additional Hardware
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The resistor divider circuit is specified such that the maximum output from this voltage
sensing circuit utilizes the full ADC conversion range. The filtering capacitor should fil-
ter the chopping frequency, so only very small values are necessary (in the range of
nF). The sensorless algorithm is based only on the three motor terminal voltage mea-
surements and thus requires only four ADC input lines.

Figure 6 shows the motor terminal model for phase A, where L is the phase inductance,
R is the phase resistance, Ea is the back electromotive force, Vn is the star connection
voltage referenced to ground and Va is the phase voltage referenced to ground. Va
voltages are measured by means of the DSP controller ADC Unit and via the voltage
sense circuit shown in Figure 5.

Shunt Resistor

Ea

Ia

VnVa

R
L

Figure 6.  Stator Terminal Electrical Model

Assuming that phase C is the non-fed phase it is possible to write the following equa-
tions for the three terminal voltages:

VnEa
dt
dIaLRIaVa +++= .

VnEb
dt
dIbLRIbVb +++=

VnEcVc +=

As only two currents flow in the stator windings at any one time, two phase currents
are equal and opposite. Therefore,

IbIa −=

Thus, by adding the three terminal voltage equations we have,

Vn3EcEbEaVcVbVa +++=++

The instantaneous Bemf waveforms of the BLDC motor are shown in Figure 7. From
this figure it is evident that at the Bemf zero crossing points the sum of the three Bemfs
is equal to zero. Therefore the last equation reduces to,

Vn3VcVbVa =++

This equation is implemented in the code to compute the neutral voltage. In the code,
the quantity 3Vn is represented by the variable called neutral.
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θ

Ea Eb Ec

Figure 7.  Instantaneous Bemf Waveforms
.

Bemf Zero Crossing Point Computation

For the non-fed phase (zero current flowing), the stator terminal voltage can be rewrit-
ten as follows:

Vn3Vc33Ec −= .

This equation is used in the code to calculate the Bemf zero crossing point of the non-
fed phase C. Similar equations are used to calculate the Bemf zero crossing points of
other Bemf voltages Ea and Eb. As we are interested in the zero crossing of the Bemf
it is possible to check only for the Bemf sign change; this assumes that the Bemf scan-
ning loop period is much shorter than the mechanical time constant. This function is
computed after the three terminal voltage samples, once every 16.7µs (60kHz sam-
pling loop).

Electrical Behaviour at Commutation Points

At the instants of phase commutation, high dV/dt and dI/dt glitches may occur due to
the direct current level or to the parasitic inductance and capacitance of the power
board. This can lead to a misreading of the computed neutral voltage. This is over-
comed by discarding the first few scans of the Bemf once a new phase commutation
occurs. In the code this is implemented by the function named ‘NOISE_WIN’. The
duration depends on the power switches, the power board design, the phase induc-
tance and the driven direct current. This parameter is system-dependent and is set to
a large value in the low speed range of the motor. As the speed increases, the s/w grad-
ually lowers this duration since the Bemf zero crossings also get closer at higher
speed.

Commutation Instants Computation

In an efficient sensored control the Bemf zero crossing points are displaced 30° from
the instants of phase commutation. So before running the sensorless BLDC motor with
help of the six zero crossing events it is necessary to compute the time delay corre-
sponding to this 30° delay angle for exact commutation points. This is achieved by im-
plementing a position interpolation function. In this software it is implemented as fol-
lows: let T be the time that the rotor spent to complete the previous revolution and α
be the desired delay angle. By dividing α by 360° and multiplying the result by T we
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obtain the time duration to be spent before commutating the next phase pair. In the
code this delay angle is fixed to 30°. The corresponding time delay is represented in
terms of the number of sampling time periods and is stored in the variable cmtn_delay.
Therefore,

Time delay = cmtn_delay .Ts = T(α/360) = v_timer.Ts(α/360) = v_timer . Ts/12

Where, Ts is the sampling time period and v_timer is a timer that counts the number
of sampling cycles during the previous revolution of the rotor.

The above equation is further simplified as,

cmtn_delay = v_timer /12

This equation is implemented in the code in order to calculate the time delay corre-
sponding to the 30° commutation delay angle.
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Current ModelCURRENT_MODEL

Description This module estimates the rotor flux position based on three inputs. These are the
quadrature(isq) and direct(isd) axis components of the stator current in the orthogonal
rotating reference frame(output of PARK transform) and the rotor mechanical speed.

cur_mod
i_cur_mod_D

spd_cur_mod

Q15/Q15 theta_cur_modi_cur_mod_Q

Availability This module is available in direct-mode assembly-only interface (Direct ASM).

Module Properties Type: Peripheral Independent, Application Dependent

Target Devices: x24x/x24xx

Direct ASM Version File Name: cur_mod.asm

Item ASM Only Comments

Code size 122 words

Data RAM 13 words

xDAIS ready No

xDAIS component No

Multiple instances No
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Direct ASM Interface

Table 19.  Module Terminal Variables/Functions

Name Description Format Range

Inputs i_cur_mod_D Direct axis component of current
in rotating reference frame (D
component of PARK transform)

Q15 0 − 7FFF

i_dur_mod_Q Quadrature axis component of
current in rotating reference
frame (Q component of PARK
transform)

Q15 0 − 7FFF

spd_cur_mod Per unit motor speed. Q15 0 − 7FFF

Outputs theta_cur_mod rotor flux position Q15 0 − 7FFF
(0−360
degrees)

Init / Config p Number of pole pairs Q0 User
specified

Kr, Kt, K Parameters depending on the
motor used

Q12 User
specified

Variable Declaration:
In the system file include the following statements:

.ref CURRENT_MODEL,CURRENT_MODEL_INIT ;function call

.ref i_cur_mod_D,i_cur_mod_Q ;Inputs

.ref spd_cur_mod ;Input

.ref theta_cur_mod ;Outputs

Memory map:
All variables are mapped to an uninitialized named section ‘cur_mod.’

Example:

LDP      #spd_cur_mod               ;Set DP for current module input
BLDD     #speed_frq,spd_cur_mod     ; variables
BLDD     #park_D,i_cur_mod_D
BLDD     #park_Q,i_cur_mod_Q
CALL     CURRENT_MODEL

ldp   #output_var1                  ;Set DP for output variable
bldd  #theta_cur_mod, output_var1   ;Pass module output to output

  variable
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Background Information

With asynchronous drive, the mechanical rotor angular speed is not, by definition,
equal to the rotor flux angular speed. This implies that the necessary rotor flux position
cannot be detected directly by themechanical position sensor used with the asynchro-
nous motor (QEP or tachometer). The current model module must be added to the
generic structure in the regulation block diagram to perform a current and speed closed
loop for a three phase ACI motor in FOC control.

The current model consists of implementing the following two equations of the motor
in d, q reference frame:

ids � T
R
.
dimR

dt
� imR

fs � 1
�b

�d ���
dt

 � n�
iqS

(TRimR��b)

where we have:

� is the rotor flux position

imR is the magnetizing current

TR �
LR

RR

 is the rotor time constant with LR the rotor inductance and RR the rotor resist-

ance.

fs is the rotor flux speed

�b is the electrical nominal flux speed.

Knowledge of the rotor time constant is critical to the correct functioning of the current
model.  This system outputs the rotor flux speed that is integrated to calculate the rotor
flux position.

Assuming that iqS
(k�1)

� iqS
k
 the above equations can be discretized as follows:

imR
(k�1)

� imR
k
� T

TR

�idS
k
� imR

k
�

fS
(k�1)

� nk�1 �
1

(TR��b)
�

iqS
k

imR
(k�1)

In these equations, T represents the main control loop period.

Let the two constants T
TR

 and 1
�TR��b

�, in the last equations, be renamed as KR and Kt

respectively. These two constants need to be calculated according to the motor param-
eters and then initialized into the cur_mod.asm file.
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Let us take an example with the specific motor parameters:

KR �
T
TR

� T
�LR�RR

� �
100.10�6

�162.10�3�5.365�
� 3.3117.10�3 � 0eh�4.12f

Kt � 1
(TR2��n)

� 1
(30.195.10�3 
 2�
 50)

� 105.42.10�3 � 01b0h�4.12f

Once the motor flux speed (fs) has been calculated, the necessary rotor flux position
(�cm) is computed by the integration formula:

�cm � �cm
k
� �b�fskT

As the rotor flux position range is [0; 2�], 16 bit integer values have been used to
achieve the maximum resolution. However, the cur_mod module output,
theta_cur_mod, is a 15 bit integer value (0−32765). This is done to make this output
signal compatible with the input of the I_PARK and PARK modules.

In the above equation, let us denote �b�fsT as �incr. This is the angle variation within
one sample period. At nominal speed (in other words, when fs = 1, mechanical speed
nominal needs to be determined by the user, here the description of the current model
takes 1500 rpm as a nominal speed), �incr is thus equal to 0.031415 rad. In one

mechanical revolution performed at nominal speed, there are 2 �
0.031415

� 200 incre-

ments of the rotor flux position. Let K be defined as the constant, which converts the
[0; 2�] range into the range (0;655355) range. K is calculated as follows:

K � 65536
200

� 327.68 � 0148h

Using this constant, the rotor flux position computation and its formatting becomes:

�cm
(k�1)

� �cm
k
� KfS

k

The �cm
k
 is thus represented as 16 bits integer value. As already mentioned ablve, this

variable is the computed rotor flux position. It is then passed to the module variable
output, theta_cur_mod and scaled for the range (0-32765). The user should be aware
that the current model module constants depend on the motor parameters and need
to be calculated for each type of motor. The information needed for this are the rotor
resistance and the rotor inductance (which is the sum of the magnetizing inductance
and the rotor leakage inductance (LR � LH � L6R)).



60 SPRU473

Four Channel DAC DriverDAC_VIEW_DRV

Description This module converts any s/w variable with Q15 representation into its equivalent Q0
format that spans the full input range of a 12-bit DAC. Thus, the module output can be
directly applied to the input of a 12-bit DAC. This allows the user to view the signal,
represented by the variable, at the output of the 12-bit DAC on the 24x/24xx EVM.

I/O
DAC_VIEW_DRV

DAC0

DAC1

DAC2

DAC3

DAC_iptr0

DAC_iptr1

DAC_itpr2

DAC_itpr3

+
DAC

H/W
Q15

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target dependent, Application dependent

Target Devices: x24x/x24xx EVM only

Direct ASM Version File Name: dac_view.asm

C-Callable Version File Names: evmdac.asm, evmdac.h

Item ASM Only C-Callable ASM Comments

Code size 54 words 50 words‡

Data RAM 7 words 0 words‡

Multiple instances No No†

† Since there is only one DAC on the EVM, creating multiple instances of the interface may produce unde-
fined results.

‡ Each pre−initialized EVMDAC struction instance consumes 6 words in the data memory and 8 words in
the .cinit section.
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Direct ASM Interface

Table 20.  Module Terminal Variables/Functions

Name Description Format Range

Inputs DAC_iptrx
(x=0,1,2,3)

These input variables contain the
addresses of the desired s/w
variables.

N/A N/A

H/W Outputs DACx
(x=0,1,2,3)

Output signals from the 4 channel
DAC on the 24x/24xx EVM.

N/A 0−Vcc

Init / Config DAC_iptrx
(x=0,1,2,3)

Initialize these input variables with
the addresses of the desired s/w
variables. However, this initialization
is optional, since these input
variables can also be loaded with
the addresses of any s/w variables
from the Code Composer watch
window.

N/A N/A

Variable Declaration: 
In the system file include the following statements:

.ref DAC_VIEW_DRV, DAC_VIEW _DRV _INIT ;function call

.ref DAC_iptr0, DAC_iptr1, DAC_iptr2, DAC_iptr3 ;inputs

Memory map: 
All variables are mapped to an uninitialized named section ‘dac_view’

Example:
During the initialization part of the user code, initialize the module inputs with the ad-
dress of the desired variables as shown below:

CALL DAC_VIEW_DRV_INIT ;Initializes DAC parameters
ldp #DAC_iptr0 ;Set DP for module inputs

;Pass input variables to module inputs
splk #input_var0,DAC_iptr0 
splk #input_var1, DAC_iptr1
splk #input_var2, DAC_iptr2
splk #input_var3, DAC_iptr3

Then in the interrupt routine just call the driver module to view the intended signals at
the DAC output.

CALL DAC_VIEW_DRV

Note:

Since this is an output driver module it does not have any user configurable s/w out-
puts and, therefore, does not need any output parameter passing.
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C/C-Callable ASM Interface

Object Definition The structure of the EVMDAC object is defined by the following structure definition

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
EVMDAC.H:

Interface header file for the F24X/F240x EVM DAC interface(s).
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
typedef struct {

int *qptr0;/* Pointer to source data output on DAC channel 0 */
int *qptr1;/* Pointer to source data output on DAC channel 1 */
int *qptr2;/* Pointer to source data output on DAC channel 2 */
int *qptr3;/* Pointer to source data output on DAC channel 3 */
int scale;
int (*update)(); 
} EVMDAC ;

Table 21.  Module Terminal Variables/Functions

Name Description Format Range

Inputs DAC_qptrx
(x=0,1,2,3)

These input variables contain
the addresses of the s/w
variables to be output on the
DAC Channels.

int * Must be
pointed to
legal data
mem
locations.

scale Contains the hardware scaling
constant Dmax.

Q0
integer

−

H/W Outputs DACx
(x=0,1,2,3)

Output signals from the 4
channel DAC on the 24x/24xx
EVM.

Analog
voltages

0−Vcc

Special Constants and Datatypes

EVMDAC
The module definition itself is created as a data type. This makes it convenient to
instance an interface to the DAC on the EVM.

EVMDAC_DEFAULTS 
Initializer for the EVMDAC Object. This provides the initial values to the terminal vari-
ables as well as method pointers.

Methods void update (EVMDAC *)
The only method implemented for this object is the up-date function.

Module Usage Instantiation:
The interface to the DAC on the EVM  is instanced thus:

EVMDAC dac;

Initialization:
To instance a pre-initialized object

EVMDAC dac=EVMDAC_DEFAULTS

Invoking the update function:

dac.update(dac);
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Example:

Lets instance one EVMDAC object and one SVGENMF object, (For details on
SVGENMF see the SVGEN_MF.DOC.). The outputs of SVGENMF are output via the
F24x EVM DAC.

SVGENMF sv1=SVGEN_DEFAULTS; /*Instance the space vector gen object */
EVMDAC  dac=EVMDAC_DEFAULTS; /*Instance the DAC interface object    */

main()
{

sv1.freq=1200; /* Set properties for sv1 */

dac.qptr0=&sv1.va;
dac.qptr1=&sv1.vb;
dac.qptr2=&sv1.vc;
dac.qptr3=&sv1.vc;

}
void interrupt periodic_interrupt_isr()
{

sv1.calc(&sv1); /* Call compute function for sv1 */

/* Lets display sv1.va,sv1.vb, and sv1.vc */

dac.update(&dac); /* Call the update function */

}



Background Information

64 SPRU473

Background Information

This s/w module converts a variable with Q15 representation, into its equivalent Q0
format that spans the full input range of a 12-bit DAC. If the variable in Q15 is U, and
the DAC maximum digital input word is Dmax (=4095 for a 12-bit DAC), then the equiva-
lent Q0 variable Din (representing U) applied to the DAC input is calculated by the fol-
lowing equation:

2
D

U
2

D
D maxmax

in ∗+=

This means that, as U varies from –1 to +1, the digital word input to the DAC varies from
0 to Dmax. Thus U is converted to a Q0 variable that spans the full input range of the
DAC.
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2-Channel Data Logging Utility ModuleDATA_LOG

Description This module stores the realtime values of two user selectable s/w variables in the exter-
nal data RAM provided on the 24x/24xx EVM. Two s/w variables are selected by con-
figuring two module inputs, dlog_iptr1 and dlog_iptr2, point to the address of the two
variables. The starting addresses of the two RAM locations, where the data values are
stored, are set to 8000h and 8400h. Each section allows logging of 400 data values.

EXT

RAM

dlog_iptr1

dlog_itpr2 DATA_LOG DATA

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Independent

Target Devices: x24x/x24xx

Assembly File Name: data_log.asm

ASM Routines: DATA_LOG, DATA_LOG_INIT

C-Callable ASM File Names: data_log1.c, data_log2.asm, data_log.h

Item ASM Only C-Callable ASM Comments

Code size 80 words 118 words†

Data RAM 8 words 0 words†

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized DATALOG structure instance consumes 14 words in the data memory and 16 words
in the .cinit section.
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Direct ASM Interface

Table 22.  Module Terminal Variables/Functions

Name Description Format Range

Inputs dlog_iptrx
(x=1,2)

These inputs contain the
addresses of the desired variables.

N/A N/A

Outputs none

Init / Config dlog_iptrx
(x=1,2)

Initialize these inputs with the
addresses of the desired variables.
However, this initialization is
optional, since these input
variables can also be loaded with
the addresses of any s/w variables
from the Code Composer watch
window.

Variable Declaration: 
In the system file include the following statements:

.ref DATA_LOG, DATA_LOG _INIT ;function call

.ref dlog_iptr1, dlog_iptr2 ;inputs

Memory map: 
All variables are mapped to an uninitialized named section ‘data_log’

Example:
During the initialization part of the user code, initialize the module inputs with the ad-
dress of the desired variables as shown below:

CALL DATA_LOG_INIT ;Initializes DAC parameters

ldp #dlog_iptr1 ;Set DP for module inputs
splk #input_var1, dlog_iptr1 ;Pass input variables to module inputs
splk #input_var2, dlog_iptr2

Then in the interrupt routine just call the module to store the values of the intended vari-
ables in the external RAM.

CALL DATA_LOG

Note:

This module does not have any user configurable s/w outputs and, therefore, does
not need any output parameter passing.
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C/C-Callable ASM Interface

Object Definition The structure of the DATALOG object is defined in the header file, data_log.h, as
shown in the following:

typedef struct { int  *dlog_iptr1; /* Input: First input pointer (Q15) */
int  *dlog_iptr2; /* Input: Second input pointer (Q15) */
int  trig_value; /* Input: Trigger point (Q15) */
int  graph_ptr1; /* Variable: First graph address */
int  graph_ptr2; /* Variable: Second graph address */
int  dlog_skip_cntr; /* Variable: Data log skip counter */
int  dlog_cntr; /* Variable: Data log counter */
int  task_ptr; /* Variable: Task address */
int  dlog_prescale; /* Parameter: Data log prescale */
int  dlog_cntr_max; /* Parameter: Maximum data buffer */
int  dl_buffer1_adr; /* Parameter: Buffer starting address 1 */
int  dl_buffer2_adr; /* Parameter: Buffer starting address 2 */
int  (*init)(); /* Pointer to init function */
int  (*update)(); /* Pointer to update function */ 

} DATALOG;

Special Constants and Datatypes

DATALOG 
The module definition itself is created as a data type. This makes it convenient to
instance a DATALOG object. To create multiple instances of the module simply declare
variables of type DATALOG.

DATALOG_DEFAULTS
Initializer for the DATALOG object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers. This is initialized in the header
file, data_log.h.

Methods void init(DATALOG *);
void update(DATALOG *);
This default definition of the object implements two methods – the initialization and run-
time update function for data logging. This is implemented by means of a function
pointer, and the default initializer sets these to data_log_init and data_log_update
functions. The argument to these functions is the address of the DATALOG object.
Again, this statement is written in the header file, data_log.h.

Module Usage Instantiation:
The following example instances two such objects:

DATALOG dlog1, dlog2;

Initialization:
To instance a pre-initialized object:

DATALOG dlog1 = DATALOG_DEFAULTS;
DATALOG dlog2 = DATALOG_DEFAULTS;

Invoking the compute function:

dlog1.update(&dlog1); 
dlog2.update(&dlog2);
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Example:
Lets instance two DATALOG objects, otherwise identical, and run four data logging
variables. The following example is the c source code for the system file.

DATALOG dlog1= DATALOG_DEFAULTS; /* instance the first object */
DATALOG dlog2 = DATALOG_DEFAULTS; /* instance the second object */

main()
{

dlog1.init(&dlog1); /* Initialize the data_log function for dlog1 */
dlog2.init(&dlog2); /* Initialize the data_log function for dlog2 */

/* Since dlog1 already occupied the data buffer addressed (by default) from 0x8000 to
0x87FF, the starting buffer address for dlog2 need to set to other empty space of memory */

dlog2.dl_buffer1_adr = 0x08800; /* Set new starting buffer address of dlog2 */ 
dlog2.dl_buffer2_adr = 0x08C00; /* Set new starting buffer address of dlog2 */

dlog1.dlog_iptr1 = &input1; /* Pass inputs to dlog1 */
dlog1.dlog_iptr2 = &input2; /* Pass inputs to dlog1 */

dlog2.dlog_iptr1 = &input3; /* Pass inputs to dlog2 */
dlog2.dlog_iptr2 = &input4; /* Pass inputs to dlog2 */

}

void interrupt periodic_interrupt_isr()
{

dlog1.update(&dlog1); /* Call update function for dlog1 */
dlog2.update(&dlog2); /* Call update function for dlog2 */

/* This module does not have any user configurable s/w outputs and, therefore, does not
need any output parameter passing.  */

}
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Background Information

This s/w module stores 400 realtime values of each of the selected input variables in
the data RAM as illustrated in the following figures. The starting addresses of two RAM
sections, where the data values are stored, are set to 8000h and 8400h.

input_var1
dlog_iptr1

DATA
RAM

8000h

83FFh

input_var2
dlog_iptr2

DATA
RAM

8400h

87FFh
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Full Compare PWM DriverFC_PWM_DRV

Description This module uses the duty ratio information and calculates the compare values for gen-
erating PWM outputs. The compare values are used in the full compare unit in
24x/24xx event manager(EV). This also allows PWM period modulation.

FC_PWM_DRV

PWM1mfunc_c1

Q0

EV

HW

mfunc_c2

mfunc_c3

mfunc_p

PWM2

PWM3

PWM4

PWM5

PWM6

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version.

Module Properties Type: Target Dependent, Application Dependent

Target Devices: x24x/x24xx

Direct ASM Version File Name: pwm_drv.asm

C-Callable Version File Names: F243PWM1.C, F243PWM2.ASM, F243PWM.H,
F2407PWM1.C, F2407PWM2.C, F2407PWM3.ASM, F2407PWM4.ASM,
F2407PWM.H, PWM.H

Item ASM Only C-Callable ASM Comments

Code size 52 words 88 words † ‡ §

Data RAM 6 words 0 words §

Multiple instances No Yes

† Multiple instances must point to distinct interfaces on the target device. Multiple instances pointing to the
same PWM interface in hardware may produce undefined results. So the  number of interfaces on the
F241/3 is limited to one, while there can be upto two such interfaces on the LF2407.

‡ If, on the 2407, there are two interfaces concurrently linked in, then the code size will be 176 words + .cinit
space + data memory space.

§ Each pre-initialized PWMGEN structure instance consumes 6 words in data memory and 8 words in the
.cinit section.
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Direct ASM Interface

Table 23.  Module Terminal Variables/Functions

Name Description Format Range

Inputs mfunc_cx
(x=1,2,3)

Duty ratios for full compare unit
1, 2 and 3

Q15 8000−7FFF

mfunc_p PWM period modulation function Q15 8000−7FFF

Outputs PWMx
(x=1,2,3,4,5,6)

Full compare PWM outputs from
24x/24xx device.

N/A N/A

Init / Config 24x/24xx Select appropriate 24x/24xx
device from the x24x_app.h file.

N/A N/A

FPERIOD PWM frequency select constant.
Default value is set for 20kHz.
Modify this constant for different
PWM frequency.

Q0 Application
dependent

Variable Declaration:
In the system file include the following statements:

.ref FC_PWM_DRV, FC_PWM _DRV _INIT ;function call

.ref mfunc_c1, mfunc_c2, mfunc_c3, mfunc_p ;inputs

Memory map:
All variables are mapped to an uninitialized named section ‘pwm_drv’

Example:

ldp #mfunc_c1 ;Set DP for module inputs
bldd #input_var1, mfunc_c1 ;Pass input variables

;to module inputs
bldd #input_var2, mfunc_c2 
bldd #input_var3, mfunc_c3
bldd #input_var4, mfunc_p
CALL FC_PWM_DRV

Note:

Since this is an output driver module it does not have any user configurable s/w out-
puts and, therefore, does not need any output parameter passing. This s/w module
calculates the compare values, which are used in the full compare unit internal to
24x/24xx device. From the compare values the device generates the PWM outputs.
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C/C-Callable ASM Interface

Object Definition The structure of the PWMGEN Interface Object is defined by the following structure
definition

typedef struct {   
int period_max;    /* PWM Period in CPU clock cycles.  Q0−Input  */
         int mfunc_p;       /* Period scaler. Q15 − Input                 */
         int mfunc_c1;      /* PWM 1&2 Duty cycle ratio. Q15, Input       */
         int mfunc_c2;      /* PWM 3&4 Duty cycle ratio. Q15, Input       */
         int mfunc_c3;      /* PWM 5&6 Duty cycle ratio. Q15, Input       */
         int (*init)();     /* Pointer to the init function               */
         int (*update)();   /* Pointer to the update function             */
         } PWMGEN ;

Table 24.  Module Terminal Variables/Functions

Name Description Format Range

Inputs mfunc_cx
(x=1,2,3)

Duty ratios for full compare unit
1, 2 and 3

Q15 8000−7FFF

mfunc_p PWM period modulation function Q15 8000−7FFF

Outputs PWMx
(x=1,2,3,4,5,6)

Full compare PWM outputs from
24x/24xx device.

N/A N/A

Init / Config 24x/24xx Select appropriate 24x/24xx
device from the x24x_app.h file.

N/A N/A

period_max PWM period setting. Modify this
constant for different PWM
frequency.

Q0 Application
dependent

Special Constants and Datatypes

PWMGEN
The module definition itself is created as a data type. This makes it convenient
to instance an interface to the PWM Generator module.

PWMGEN _DEFAULTS
Initializer for the PWMGEN Object. This provides the initial values to the termi-
nal variables as well as method pointers.

PWMGEN_handle
Typedef’ed to PWMGEN *

F243_FC_PWM_GEN
Constant initializer for the F243 PWM Interface.

F2407_EV1_FC_PWM_GEN
Constant initializer for the F2407 PWM Interface, EV1.
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F2407_EV2_FC_PWM_GEN
Constant initializer for the F2407 PWM Interface, EV2.

Methods void init  (PWMGEN  *)
Initializes the PWM Gen unit hardware.

void update(PWMGEN *)
Updates the PWM Generation hardware with the data from the PWM Structure.

Module Usage Instantiation:
The interface to the PWM Generation Unit is instanced thus:

PWMGEN  gen;

Initialization:
To instance a pre-initialized object

PWMGEN  gen =PWMGEN_DEFAULTS

Hardware Initialization:

gen.init(&gen);

Invoking the update function:

gen.update(&gen);

Example:
Lets instance one PWMGEN object and one SVGENMF object, (For details on
SVGENMF see the SVGEN_MF.DOC.). The outputs of SVGENMF are output via the
PWMGEN.

SVGENMF svgen= SVGEN_DEFAULTS;  /*Instance the space vector gen object */
PWMGEN  gen  = F243_FC_PWM_GEN; /*Instance the PWM interface object    */

main()
{
svgen.freq=1200; /* Set properties for svgen */
gen.period_max=500; /*Sets the prd reg for the Timer to 500 cycles*/
gen.init(&gen); /* Call the hardware initialization function  */

}
void interrupt periodic_interrupt_isr()
{
sv1.calc(&sv1); /* Call compute function for sv1 */

/* Lets output sv1.va,sv1.vb, and sv1.vc */

gen.mfunc_c1= svgen.va; /*Connect the output of svgen to gen inputs*/
gen.mfunc_c2= svgen.vb;
gen.mfunc_c3= svgen.vc;

gen.update(&gen); /* Call the hardware update function */
}
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Full-Compare PWM Driver with Over-modulationFC_PWM_O_DRV

Description The module implements over-modulation technique to increase DC bus voltage utiliza-
tion for a voltage source inverter. The input limit sets the extent of over-modulation. For
example, limit = 0 means no over-modulation and limit = (timer period)/2 means maxi-
mum over-modulation.

FC_PWM_

PWM1mfunc_c1

EV

HW

mfunc_c2

mfunc_c3

mfunc_p

PWM2

PWM3

PWM4

PWM5

PWM6limit

O_DRV

Q0

Availability This module is available in the direct-mode assembly-only interface (Direct ASM).

Module Properties Type: Target Dependent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: pwmodrv.asm

Item ASM Only Comments

Code size 133 words

Data RAM 11 words

xDAIS module No

xDAIS component No IALG layer not implemented
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Direct ASM Interface

Table 25.  Module Terminal Variables/Functions

Name Description Format Range

Inputs limit Defines the level of over
modulation. This is related to
the PWM timer period.

Q0 0−timer_
period/2

Mfunc_c1 Duty ratio for PWM1/PWM2 Q15 08000h−
7FFFh

Mfunc_c2 Duty ratio for PWM3/PWM4 Q15 08000h−
7FFFh

Mfunc_c3 Duty ratio for PWM5/PWM6 Q15 08000h−
7FFFh

mfunc_p PWM period modulation
function

Q15 08000h−
7FFFh

H/W Outputs PWMx
(x=1,2,3,4,5,6)

Full compare PWM outputs
from 24x/24xx device.

N/A N/A

Init / Config limit Initial limit is set to 0 so that the
system starts without any
over-modulation. Specify limit
for overmodulation.

Q0 0 −
T1PER/2

FPERIOD PWM frequency select
constant. Default value is set
for 20kHz. Modify this constant
for different PWM frequency.

Q0 Application
dependent

24x/24xx Select appropriate 24x/24xx
device from the x24x_app.h
file.

N/A N/A

Variable Declaration: 
In the system file include the following statements:

.ref FC_PWM_O_DRV

.ref FC_PWM_O_DRV_INIT ;function call

.ref Mfunc_c1, Mfunc_c2, Mfunc_c3, Mfunc_p ;Inputs

Memory map: 
All variables are mapped to an uninitialized named section “pwmodrv”

Example:

ldp #mfunc_c1 ;Set DP for module inputs
bldd #input_var1, mfunc_c1 ;Pass input variables to module inputs
bldd #input_var2, mfunc_c2 
bldd #input_var3, mfunc_c3
bldd #input_var4, mfunc_p

CALL FC_PWM_O_DRV
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Background Information

For high performance motor drive systems, full utilization of the dc bus voltage is an
important factor to achieve maximum output torque under any operating conditions,
and to extend the field weakening range of the motor.  However, for a pulse-width mod-
ulated voltage source inverter (PWM−VSI), the maximum voltage is 78% of the six-
step waveform value. Therefore, in general, a standard motor supplied from an inverter
can not utilize the full DC bus voltage capability. To obtain higher DC bus voltage utiliza-
tion, operating the inverter in over-modulation region is required.

This software module implements a simple but effective over-modulation scheme for
PWM inverters. This module can be applied both for three phase drive (using Space
Vector PWM or regular Sine PWM strategies) as well as single phase drive.

The level of over-modulation is controller by a variable called “limit”. Whenever, the
ouptut waveform is within “limit”, the Compare values for PWM channels are saturated
to the maximum value during the positive half of the waveform and to the minimum val-
ue during the negative half of the waveform. Figure 8 shows the effect of various values
of “limit”.
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(a)

(b)

(c)

Figure 8.  Implementation of Over-modulation Using the Software Module
(a) No over-modulation,

(b) Over-modulation with limit = T1PER/4,
(c) Maximum over-modulation (square wave) with limit = T1PER/2
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Hall Effect Interface Driver for Sensored BLDC ControlHALL3_DRV

Description This module produces a commutation trigger for a 3-ph BLDC motor, based on hall sig-
nals received on capture pins 1, 2, and 3. Edges detected are validated or debounced,
to eliminate false edges often occurring from motor oscillations. Hall signals can be
connected in any order to CAPs1−3. The software attempts all (6) possible commuta-
tion states to initiate motor movement. Once the motor starts moving, commutation oc-
curs on each debounced edge from received hall signals.

HALL3_DRV

CAP1/IOPx

CAP2/IOPx

CAP3/IOPx

cmtn_trig_hall

Hall_map_ptr Q0

EV

HW

Availability This module is available in the direct-mode assembly-only interface (Direct ASM).

Module Properties Type: Target Dependent

Target Devices: x24x/x24xx

Assembly File Name: hall3_drv.asm

Item ASM Only Comments

Code size 170 words

Data RAM 20 words

xDAIS module No

xDAIS component No IALG layer not implemented
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Direct ASM Interface

Table 26.  Module Terminal Variables/Functions

Name Description Format Range

Inputs CAP(1−3)/IOPx Capture Inputs 1,2, and 3 (H/W) N/A N/A

Hall_map_ptr As an input, it is defined by
MOD6_CNT.

Outputs cmtn_trig_hall Commutation trigger for Mod6cnt
input

Q0 0 or 1

Hall_map_ptr During hall map creation, this
variable points to the current
commutation state. After map
creation, it points to the next
commutation state.

Init / Config Select device Select appropriate 24x/24xx device
from the x24x_app.h file.

N/A N/A

Variable Declaration: 
In the system file include the following statements:

.ref HALL3_DRV, HALL3_DRV_INIT ;function call

.ref cmtn_trig_hall, hall_map_ptr

Memory map: 
All variables are mapped to an uninitialized named section ‘HALL_VAR’.

Example:

LDP #hall_map_ptr
BLDD #input_var1, hall_map_ptr

CALL HALL3_DRV

LDP #output_var1
BLDD #cmtn_trig_hall, output_var1
BLDD #hall_map_ptr, output_var2
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Software Flowcharts

Start:  Hall3_DRV

Hall edge
detected ?

Clear all capture
interrupt flags

Call ”Determine_State” − Read
logic levels on GPIO inputs

shared with CAP1−3
Call ”Hall_Debounce” −

Debounce detected edge for
current motor position

Set hall commutation
trigger

Current
position

debounced ?

End: Hall3_Drv

Yes

No

Yes

Call ”Next_State_Ptr” − If current position is
debounced, find match in table and return

pointer to current state.  Ptr to be incremented
by MOD6CNT after RET.

No
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Start:
Hall_Debounce

Is current
position same
as debounced

position ?

Has motor been at
current position for the

duration of the
debounce time ?

End: Hall3_Drv

No

Is current
position same
as last position

?

Save new position for
comparison on next loop

No

Yes

Increment debounce counterNo

Position has been debounced.  Reset
debounce counter, store position and

set debounce flag.

Yes

Is # of Revs <=
0 ?

Call ”Create_Map”

Yes No

Yes
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Start:
Determine_State

Set CAP1−3 as GPIO Inputs

Read logic levels on CAP1−3 and save to
memory (3−bits, right justified)

Reset CAP1−3 to use capture logic

End:
Determine_State
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Inverse Clarke Transform ModuleI_CLARKE

Description Converts balanced two phase quadrature quantities into balanced three phase quanti-
ties.

I_CLARKE
Iclark_a

Iclark_c

Iclark_d

Iclark_q

Q15/Q15 Iclark_b

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version.

Module Properties Type: Target Independent/Application Independent

Target Devices: x24x/x24xx

Direct ASM Version File Name: I_clarke.asm

C-Callable Version File Name: iclark.asm

Item ASM Only C-Callable ASM Comments

Code size 21 words 32 words

Data RAM 6 words 0 words†

xDAIS module No Yes

xDAIS component No No IALG layer not implemented

† The inverse clark transform operates on structures allocated by the calling function.
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Direct ASM Interface

Table 27.  Module Terminal Variables/Functions

Name Description Format Range

Inputs Iclark_d Direct axis(d) component of the
input two phase signal

Q15 8000−7FFF

Iclark_q Quadrature axis(q) component
of the input two phase signal

Q15 8000−7FFF

Outputs Iclark_a Phase ‘a’ component of the
transformed signal

Q15 8000−7FFF

Iclark_b Phase ‘b’ component of the
transformed signal

Q15 8000−7FFF

Iclark_c Phase ‘c’ component of the
transformed signal

Q15 8000−7FFF

Init / Config none

Variable Declaration:
In the system file include the following statements:

.ref I_CLARKE, I_CLARKE_INIT ;function call

.ref Iclark_d, Iclark_q, Iclark_a, Iclark_b, Iclark_c ;input/output

Memory map: 
All variables are mapped to an uninitialized named section ‘I_clarke’

Example:

ldp #Iclark_d ;Set DP for module input
bldd #input_var1, Iclark_d ;Pass input variable to module input
bldd #input_var2, Iclark_q

CALL I_CLARKE

ldp #output_var1 ;Set DP for output variable
bldd #Iclark_a, output_var1 ;Pass module output to output variable
bldd #Iclark_b, output_var2
bldd #Iclark_c, output_var3
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C/C-Callable ASM Interface

This function is implemented as a function with two arguments, each a pointer to the
input and output structures.

struct { int d;
int q;

} iclark_in;

struct { int a;
int b;
int c;

} iclark_out;

void iclark(&iclark_in,&iclark_out);

The inputs are read from the iclark_in structure and the outputs are placed in the
iclark_out structure.

Table 28.  Module Terminal Variables/Functions

Name Description Format Range

Inputs d Direct axis(d) component of the
input two-phase signal.

Q15 8000−7FFF

q Quadrature axis(q) component of
the input two-phase signal.

Q15 8000−7FFF

Outputs a Phase ‘a’ component of the
transformed signal.

Q15 8000−7FFF

b Phase ‘b’ component of the
transformed signal.

Q15 8000−7FFF

c Phase ‘c’ component of the
transformed signal.

Q15 8000−7FFF

Init / Config none

Example:
In the following example, the variables intput_d, input_q are transformed to the out-
put_a, output_b, and output_c

typedef struct { int a,b,c ; } triad;

triad threephase;
triad quadrature;

int input_d, input_q;
int output_a, output_b, output_c;

void some_func(void)
{

quadrature.a=input_d;
quadrature.b=input_q;

iclark(&quadrature,&threephase);

output_a=threephase.a;
output_b=threephase.b;
output_c=threephase.c;

}
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Background Information

Implements the following equations:

�
�
�
�

�

Ia � Id

Ib �
� Id � Iq 
 3�

2

Ic �
� Id � Iq 
 3�

2

Table 29.  Variable Cross Ref Table

Variables in the Equations Variables in the Code

Ia Iclark_a

Ib Iclark_b

Ic Iclark_c

Id Iclark_d

Iq Iclark_q

This transformation converts balanced two phase quadrature quantities into balanced
three phase quantities as shown below:

90°

7FFFh

0

8000h

id
iq

Quadrature: 2-phase

7FFFh

0

8000h

ia ic ib

Id

Iq

Ia

Ic
I_CLARKE

3-phase

Ib

The instantaneous input and the output quantities are defined by the following equa-
tions:

Ib

Iq

Id = Ia

Ic

�� � 0

�
�
�

ia � I 
 sin(�t)
ib � I 
 sin(�t � 2��3)
ic � I 
 sin(�t � 2��3)


id � I 
 sin(�t)
iq � I 
 sin(�t � ��2)

Iq 
 3�
2

� Id�2
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Inverse Park Transform ModuleI_PARK

Description This transformation projects vectors in orthogonal rotating reference frame into two
phase orthogonal stationary frame.

I_PARK
ipark_d

ipark_q

ipark_D

ipark_Q

Q15/Q15theta_ip

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version.

Module Properties Type: Target Independent/Application Independent

Target Devices: x24x/x24xx

Direct ASM Version File Name: I_park.asm

C-Callable Version File Name: ipark.asm

Item ASM Only C-Callable ASM Comments

Code size 43 words 52 words

Data RAM 12 words 0 words†

xDAIS module No Yes

xDAIS component No No IALG layer not implemented

† The inverse park operates on structures allocated by the calling function.
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Direct ASM Interface

Table 30.  Module Terminal Variables/Functions

Name Description Format Range

Inputs ipark_D Direct axis(D) component of input in
rotating reference frame.

Q15 8000−7FFF

ipark_Q Quadrature axis(Q) component of
input in rotating reference frame

Q15 8000−7FFF

theta_ip Phase angle between stationary
and rotating frame

Q15 0−7FFF
(0−360
degree)

Outputs ipark_d Direct axis(d) component of
transformed signal in stationary
reference frame

Q15 8000−7FFF

ipark_q Quadrature axis(q) component of
transformed signal in stationary
reference frame

Q15 8000−7FFF

Init / Config none

Variable Declaration:
In the system file include the following statements:

.ref I_PARK, I_PARK_INIT ;function call

.ref ipark_D, ipark_Q, theta_ip, ipark_d, ipark_q ;input/output

Memory map:
All variables are mapped to an uninitialized named section ‘I_park’

Example:

ldp #ipark_D  ;Set DP for module input
bldd #input_var1, ipark_D  ;Pass input variable to module input
bldd #input_var2, ipark_Q
bldd #input_var3, theta_ip

CALL I_PARK

ldp #output_var1 ;Set DP for output variable
bldd #ipark_d, output_var1 ;Pass module o/p to output variable
bldd #ipark_q, output_var2
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C/C-Callable ASM Interface

This function is implemented as a function with two arguments, each a pointer to the
input and output structures.

struct { int D;
int Q;
int theta;

} ipark_in;

struct { int d;
int q;

} ipark_out;

void park(&ipark_in,&ipark_out);

The inputs are read from the park_in structure and the outputs are placed in the
park_out structure.

Table 31.  Module Terminal Variables/Functions

Name Description Format Range

Inputs D Direct axis(D) component of the
input signal in rotating reference
frame

Q15 8000−7FFF

Q Quadrature axis(Q) component of
the input signal in rotating reference
frame

Q15 8000−7FFF

theta Phase angle between stationary
and rotating frame

Q15 0−7FFF
(0−360
degree)

Outputs d Direct axis(d) component of
transformed signal in stationary
reference frame

Q15 8000−7FFF

q Quadrature axis(q) component of
transformed signal in stationary
reference frame

Q15 8000−7FFF

Init / Config none

Example:
In the following example, the variables rotating_d, rotating_q, are transformed to the
stationery frame values based on theta_value.

typedef struct { int a,b,c ; } triad;

triad stationery_cmds;
triad rotating_cmds;

int stat_D,stat_Q;
int rotating_d,rotating_q,theta_value;

void some_func(void)
{

rotating_cmds.a = rotating_d;
rotating_cmds.b = rotating_q;

park(&stationary_cmds,&rotating_cmds);
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stat_d = stationary_cmds.a;
stationary_cmds.b = stat_q;

}
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Background Information

Implements the following equations:


Id � ID 
 cos �� IQ 
 sin �
Iq � ID 
 sin �� IQ 
 cos �

Q

q

Iq

IQ
D

ID

Id d

IQ � cos �

ID � sin �

IQ � sin �

ID � cos �

�

�

�

�

Table 32.  Variable Cross Ref Table

Variables in the Equations Variables in the Code

Id ipark_d

Iq ipark_q

θ theta_ip

ID ipark_D

IQ ipark_Q
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Line Currents/DC-Bus Voltage Measurements ADC DriversILEG2_DCBUS_DRV

Description This module allows 3-channel analog-to-digital conversion with programmable gains
and offsets. The conversions are triggered on GP Timer 1 underflow. The converted
results represent load currents and DC-bus voltage in the inverter when:

1) GP Timer 1 is the time base for symmetrical Pulse-Width Modulation (PWM);

2) Two of the analog inputs are the amplified voltage across resistors placed between
the sources or emitters of low-side power devices and low-side DC rail; and

3) The third analog input is derived from the output of the voltage divider circuit con-
nected across the DC bus.

ADC
HW ILEG2_DCBUS_DRV

Imeas_a

Imeas_b

Imeas_c

Vdc_meas

ADCINx (Ia)

ADCINy (Ib)

ADCINz (Vdc)

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Dependent/Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: i2vd_drv.asm

ASM Routines: ILEG2_DCBUS_DRV, ILEG2_DCBUS_DRV_INIT

C-callable ASM filenames: F07ILVD1.ASM, F07ILVD2.C, F07ILVD.h (for x24xx only)

Item ASM Only C-Callable ASM Comments

Code size 87 words 103 words†

Data RAM 13 words 0 words†

xDAIS module No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized ILEG2DCBUSMEAS structure instance consumes 13 words in the data memory and
15 words in the .cinit section.
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Direct ASM Interface
Table 33.  Module Terminal Variables/Functions

Name Description Default Format Range Scale

H/W
Inputs

ADCINx,
ADCINy,
ADCINz

ADC pins in 24x/24xx
device where x,y,z
correspond to the
channel numbers
selected by Ch_sel

N/A N/A N/A N/A

Outputs Imeas_a xth channel digital
representation for
current Ia

N/A Q15 −1.0 −>
0.999

Imax

Imeas_b yth channel digital
representation for
current Ib

N/A Q15 −1.0 −>
0.999

Imax

Imeas_c Computing current Ic N/A Q15 −1.0 −>
0.999

Imax

Vdc_meas zth channel digital
representation for
DC-bus voltage Vdc

N/A Q15 −1.0 −>
0.999

Vmax

Init /
Config

Ch_sel 16-bit ADC channel
select format can be
seen as:

Ch_sel  = 0zyxh

0710h
(243EVM),
0D32h
(2407EVM)

Q0 x, y, z
are
between
0h −>
Fh

N/A

Imeas_a_
gain

Gain for xth channel.
Modify this if default
gain is not used.

1FFFh
(0.999)

Q13 −4.0 −>
3.999

N/A

Imeas_b_
gain

Gain for yth channel.
Modify this if default
gain is not used.

1FFFh
(0.999)

Q13 −4.0 −>
3.999

N/A

Vdc_meas_
gain

Gain for zth channel.
Modify this if default
gain is not used.

1FFFh
(0.999)

Q13 −4.0 −>
3.999

N/A

Imeas_a_
offset

Offset for xth channel.
Modify this if default
offset is not used.

0000h
(0.000)

Q15 −1.0 −>
0.999

Imax

Imeas_b_
offset

Offset for yth channel.
Modify this if default
offset is not used.

0000h
(0.000)

Q15 −1.0 −>
0.999

Imax

Vdc_meas_
offset

Offset for zth channel.
Modify this if default
offset is not used.

0000h
(0.000)

Q15 −1.0 −>
0.999

Vmax
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Routine names and calling limitation:
There are two routines involved:

� ILEG2_DCBUS_DRV, the main routine

� ILEG2_DCBUS_DRV_INIT, the initialization routine

The initialization routine must be called during program initialization. The
ILEG2_DCBUS_DRV routine must be called in the control loop. The
ILEG2_DCBUS_DRV must be called in GP Timer 1 underflow interrupt service routine.

Variable Declaration:
In the system file, including the following statements before calling the subroutines:

.ref ILEG2_DCBUS_DRV, ILEG2_DCBUS_DRV_INIT ;function call

.ref Ch_sel, Imeas_a_gain, Imeas_b_gain, Vdc_meas_gain ;Inputs

.ref Imeas_a_offset, Imeas_b_offset, Vdc_meas_offset ;Inputs

.ref Imeas_a, Imeas_b, Imeas_c, Vdc_meas ;Outputs

Memory map:
All variables are mapped to an uninitialized named section, i2vd_drv, which can be allo-
cated to any one data page.

Example:
During system initialization specify the ILEG2_DCBUS_DRV parameters as follows:

LDP #Ch_sel ;Set DP for module inputs
SPLK #0D32h, Ch_sel ;Select ADC channels. In this example 

;three channels selected are 13, 3 and 2.
SPLK #GAIN1, Imeas_a_gain ;Specify gain value for each channel
SPLK #GAIN2, Imeas_b_gain
SPLK #GAIN3, Vdc_meas_gain
SPLK #OFFS1, Imeas_a_offset;Specify offset value for each channel
SPLK #OFFS2, Imeas_b_offset
SPLK #OFFS3, Vdc_meas_offset

Then in the interrupt service routine call the module and read results as follows:

CALL ILEG2_DCBUS_DRV
LDP #output_var1 ;Set DP for output variables
BLDD #Imeas_a, output_var1 ;Pass module outputs to output variables
BLDD #Imeas_b, output_var2 ;Pass module outputs to output variables
BLDD #Imeas_c, output_var3 ;Pass module outputs to output variables
BLDD #Vdc_meas, output_var4;Pass module outputs to output variables
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Object Definition The structure of the ILEG2DCBUSMEAS object is defined in the header file,
F07ILVD.h, as seen in the following:

typedef struct { int Imeas_a_gain; /* Parameter: gain for Ia (Q13) */
int Imeas_a_offset; /* Parameter: offset for Ia (Q15) */
int Imeas_a; /* Output: measured Ia (Q15) */
int Imeas_b_gain; /* Parameter: gain for Ib (Q13) */
int Imeas_b_offset; /* Parameter: offset for Ib (Q15) */
int Imeas_b; /* Output: measured Ib (Q15) */
int Vdc_meas_gain; /* Parameter: gain for Vdc (Q13) */
int Vdc_meas_offset; /* Parameter: offset for Vdc (Q15) */
int Vdc_meas; /* Output: measured Vdc (Q15) */
int Imeas_c; /* Output: computed Ic (Q15) */
int Ch_sel; /* Parameter: ADC channel selection */
int (*init)(); /* Pointer to the init function */
int (*read)(); /* Pointer to the read function */

} ILEG2DCBUSMEAS;

Special Constants and Datatypes

ILEG2DCBUSMEAS
The module definition itself is created as a data type. This makes it convenient to
instance ILEG2DCBUSMEAS object. To create multiple instances of the module sim-
ply declare variables of type ILEG2DCBUSMEAS.

ILEG2DCBUSMEAS_DEFAULTS
Initializer for the ILEG2DCBUSMEAS object. This provides the initial values to the ter-
minal variables, internal variables, as well as method pointers. This is initialized in the
header file, F07ILVD.h.

Methods void init(ILEG2DCBUSMEAS *);
void read(ILEG2DCBUSMEAS *);
This default definition of the object implements two methods – the initialization and the
runtime compute function for Q15 conversion, and gain/offset calculation. This is im-
plemented by means of a function pointer, and the initializer sets this to
F2407_ileg2_dcbus_drv_init and F2407_ileg2_dcbus_drv_read functions. The argu-
ment to this function is the address of the ILEG2DCBUSMEAS object. Again, this state-
ment is written in the header file, F07ILVD.h. The F2407_ileg2_dcbus_drv_init module
is implemented in F07IlVD1.C and the F2407_ileg2_dcbus_drv_read module is imple-
mented in F07IlVD2.ASM.
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Module Usage Instantiation:
The following example instances two such objects:

ILEG2DCBUSMEAS ilg2_vdc1, ilg2_vdc2;

Initialization:
To instance a pre-initialized object:

ILEG2DCBUSMEAS ilg2_vdc1 = ILEG2DCBUSMEAS_DEFAULTS;
ILEG2DCBUSMEAS ilg2_vdc2 = ILEG2DCBUSMEAS_DEFAULTS;

Invoking the compute function:

ilg2_vdc1.calc(&ilg2_vdc1);
ilg2_vdc2.calc(&ilg2_vdc2);

Example:
Lets instance two ILEG2DCBUSMEAS objects, otherwise identical, and run two in-
dependent ADC sequences. The following example is the c source code for the system
file.

/* instance the first object */
ILEG2DCBUSMEAS ilg2_vdc1 = ILEG2DCBUSMEAS_DEFAULTS;

/* instance the second object */
ILEG2DCBUSMEAS ilg2_vdc2 = ILEG2DCBUSMEAS_DEFAULTS;

main()
{

ilg2_vdc1.init(&ilg2_vdc1); /* Call init function for ilg2_vdc1 */
ilg2_vdc2.init(&ilg2_vdc2); /* Call init function for ilg2_vdc2 */

}

void interrupt periodic_interrupt_isr()
{

ilg2_vdc1.read(&ilg2_vdc1); /* Call compute function for ilg2_vdc1 */
ilg2_vdc2.read(&ilg2_vdc2); /* Call compute function for ilg2_vdc2 */

current_abc1.a = ilg2_vdc1.Imeas_a; /* Access the outputs of ilg2_vdc1 */
current_abc1.b = ilg2_vdc1.Imeas_b; /* Access the outputs of ilg2_vdc1 */
current_abc1.c = ilg2_vdc1.Imeas_c; /* Access the outputs of ilg2_vdc1 */

volt1.DC_bus=ilg2_vdc1.Vdc_meas; /* Access the outputs of ilg2_vdc1 */

current_abc2.a = ilg2_vdc2.Imeas_a; /* Access the outputs of ilg2_vdc2 */
current_abc2.b = ilg2_vdc2.Imeas_b; /* Access the outputs of ilg2_vdc2 */
current_abc2.c = ilg2_vdc2.Imeas_c; /* Access the outputs of ilg2_vdc2 */
volt2.DC_bus=ilg2_vdc2.Vdc_meas; /* Access the outputs of ilg2_vdc2 */

}
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Background Information

The ADCIN pins accepts the analog input signals (Ia, Ib, and Vdc) in the following range:

� 0.0−5.0 volt; for x24x based DSP

� 0.0−3.3 volt; for x240x based DSP

with ground referenced to 0.0 volt.

Therefore, the current and voltage signals need to be conditioned properly before they
are applied to the ADC pins.

From the three converted signals, four output variables of the module (Imeas_a,
Imeas_b, Imeas_c, and Vdc_meas) are computed, as shown below:

Imeas_a = Imeas_a_gain*ADC_Ia_Q15 + Imeas_a_offset
Imeas_b = Imeas_b_gain*ADC_Ib_Q15 + Imeas_b_offset
Imeas_c = −(Imeas_a + Imeas_b)
Vdc_meas = Vdc_meas_gain*ADC_Vdc_Q15 + Vdc_meas_offset

Note that ADC_Ix_Q15 (x=a,b) and ADC_Vdc_Q15 are already converted to Q15
number.

Basically, the signals can be categorized into two main types: bipolar and unipolar sig-
nals. The AC currents (or AC voltages) are examples of bipolar signal and the DC-bus
voltage is an example of unipolar signal.

XOR #8000h

0000h

FFC0h

8000h

8000h

7FC0h

0000h

0.0 volt

5.0 volt (24x)
3.3 volt (240x)

ADCINx
pin

24x/240x DSP

external AC signal

0 v

0 v

+ +

+−

offset signal

Q15 representation

Figure 9.  Q15-Number Conversion for Current Measurements (bipolar signal)
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For DC-bus voltage (Vdc), the input signal is in the positive range, so its digitized vari-
able has to be rescaled corresponding to the Q15 number. Figure 10 illustrates the
Q15-number conversion for the DC-bus voltage measurement.

0000h

FFC0h

0000h

7FE0h

4000h

0.0 volt

5.0 volt (24x)
3.3 volt (240x)

ADCINx
pin

24x/240x DSP

external DC signal

0 v

Q15 representation

8000h
SFR
(SXM=0)
or
SFR
AND 7FFFh

Figure 10.  Q15-Number Conversion for DC-Bus Voltage Measurement (unipolar signal)

In both cases of Q15-number conversion, the number is distorted a little bit about the
maximum value (e.g., 7FC0h for bipolar and 7FE0h for unipolar at the maximum value
of 7FFFh).
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Dual Inverter Leg Resistor Based Load Current Measurement DriverILEG2DRV

Description Ileg2drv is a driver module that converts two analog inputs into digital representations
with programmable gains and offsets. The conversions are triggered on GP Timer 1
underflow. The converted results represent load currents of a three-phase voltage
source inverter when:

1) Symmetrical Pulse-Width Modulation (PWM) is used to control the inverter with
GP Timer 1 as PWM time base;

2) PWM outputs 1, 3 and 5 control the turn-on and off of the upper power devices;

3)  PWM outputs 2, 4, and 6 control the turn-on and off of the lower power devices;
and

4) The analog inputs are the amplified and filtered voltage outputs of resistors placed
between the sources or emitters of low-side power devices and low-side DC rail.

ADC

HW
ILEG2DRV

Ia_out

Ib_out

ADCINx

ADCINy

Availability This module is available in two interface formats:

5) The direct-mode assembly-only interface (Direct ASM)

6) The C-callable interface version

Module Properties Type: Target Dependent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: ileg2drv

Routines: ileg2drv, ileg2drv_init

Item ASM Only C-Callable ASM Comments

Code size 62 words TBD

Data RAM 8 words TBD

xDAIS module No Yes

xDAIS component No No IALG layer not implemented
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Table 34.  Module Terminal Variables/Functions

Name Description Default Format Range Scale

H/W Inputs ADCINx,
ADCINy

ADC pins in 24x/24xx
device where x and y
correspond to the
channel numbers
selected by A4_ch_sel

N/A N/A N/A N/A

Outputs Ia_out 1st channel digital
representation

N/A Q15 −1.0 −>
0.999

Imax

Ib_out 2nd channel digital
representation

N/A Q15 −1.0 −>
0.999

Imax

Init / Config I_ch_sel Channel select variable.
Init this in the form of
XYh with X being the1st
channel, and Y being
the 2nd channel.

XYh:
10h for
24x,
40h for
240x

Q0 X,Y:
0 −> Fh

N/A

Ia_gain Gain for 1st channel.
Modify this if default
gain is not used.

1FFFh
(1.0)

Q13 −4.0 −>
3.999

N/A

Ib_gain Gain for 2nd channel.
Modify this if default
gain is not used.

1FFFh
(1.0)

Q13 −4.0 −>
3.999

N/A

Ia_offset Offset for 1st channel.
Modify this if default
offset is not used.

32
(0.001)

Q15 −1.0 −>
0.999

Imax

Ib_offset Offset for 2nd channel.
Modify this if default
offset is not used.

32
(0.001)

Q15 −1.0 −>
0.999

Imax

Routine names and calling limitation:
There are two routines involved:

ILEG2DRV, the main routine, and
ILEG2DRV_INIT, the initialization routine.

The initialization routine must be called during program (or incremental build) initializa-
tion. The ILEG2DRV must be called in GP Timer 1 underflow interrupt service routine.

Global reference declarations: 
In the system file include the following statements before calling the subroutines:

.ref ILEG2DRV,ILEG2DRV_INIT ; function calls

.ref Ia_out,Ib_out ; Outputs

.ref Ia_gain,Ib_gain,Ia_offset,Ib_offset ; Inputs

Memory map: 
All variables are mapped to an uninitialized named section, ileg2drv, which can be allo-
cated to any one data page.
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Example:

CALL ILEG2DRV_INIT ; Initialize ILEG2DRV
Splk #GAIN_CH1,Ia_gain ; Initialize gain for 1st channel
… ; Use default values for other inputs

ldp #Ia_gain ; Set DP for module inputs
bldd #input_var1,Ia_gain ; Pass input variables to module inputs
bldd #input_var2,Ib_gain ;
… ; Use default values for other inputs

CALL ILEG2_DRV

ldp #output_var1 ; Set DP for output variable
bldd #Ia_out,output_var1 ; Pass output to other variable
… ; Pass more outputs to other variables

; if needed.
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C/C-Callable ASM Interface

TBD
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Background Information

Figure 11 is an illustration of using 24x or 240x to measure the load currents of a three-
phase inverter driving a three-phase load. The currents to be measured are Ia, Ib and
Ic. In most cases, the three-phase load has a floating neutral, which means only two
load currents must be measured and the third is simply the negative of the sum of the
two measured ones. Indeed this is true in most three-phase motor control applications.

24x/240x
DSP

Ic Ib Ia

Irb Ira

c

c’

b

b’

a

a’

Voffset

Voffset

Vdc

ADCIN0

ADCIN1

Three
phase
load

Figure 11.  Inverter Load Current Measurement

As shown in Figure 11, two (low-resistance) resistors are connected in between the
source (or emitter) of the low-side power devices and low-side DC rail. Note that the
low-side DC rail is assumed to be the ground reference. The voltages across these two
resistors are amplified and level shifted to generate an output range within Vref_lo and
Vref_hi (typically 0 to 5V for 24x and 0 to 3.3V for 240x). They are then fed into the ADC
inputs of the ‘24x or ‘240x device. The inputs are converted into digital representations
once every PWM period. Since the resistors have known resistance, the converted re-
sults represent currents flowing through the resistors at the time the samples are taken.
According to Table 35, the current flowing through a leg resistor represents the load
current of the inverter leg whenever the high-side power device is off and the low-side
power device is on. Therefore, to obtain measurement of the load current, the sample
must be taken when the corresponding high-side power device is off.

Table 35.  Leg Current vs Switching State

a a’ Ira b b’ Ib

1 0 0 1 0 0

0 1 Ia 0 1 Irb
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Figure 12 indicates how symmetric PWM is achieved with up-and-down counting
mode of GP Timer 1 of ‘24x and ‘240x. It can be seen that the high-side power device
is always off on GP Timer 1 underflow. Therefore, the Start of Conversion (SOC) is con-
figured to be underflow of GP Timer 1.

Period

Underflow

GP Timer 1

SOC

a

b

SOC

Figure 12.  Symmetric PWM and Load Current Sampling

In addition to allowing selection of different ADC input channels, the module also allow
different offsets and gains to be applied to the converted results. The offset and gain
can be used to convert the outputs to a different Q format.

The default configuration assumes that the external Op-Amp circuit applies Vref_hi to
the ADC when load current is at Imax, and Vref_lo when load current is at –Imax. Note,
before the software offsets and gains, the converted result is 8000h (−1.0 as a Q15
number) when input voltage is Vref_lo, and 7FC0h (~0.998 as a Q15 number) when
input voltage is Vref_hi. To make the result symmetric with respect to 0, an offset of 32
(~0.001 as a Q15 number) is used as the default for both channels.
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Impulse Generator ModuleIMPULSE

Description This module implements a periodic impulse function. The output variable ig_out is set
to 7FFF for 1 sampling period. The period of the output signal ig_out is specified by
the input ig_period.

IMPULSE
ig_outig_period

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Independent

Target Devices: x24x / x24xx

Assembly File Name: impulse.asm

C-Callable Version File Name: impulse.asm, impl.h

Item ASM Only C-Callable ASM Comments

Code size 20 words 30 words†

Data RAM 3 words 0 words†

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized IMPULSE structure instance consumes 4 words in the dta memory and 6 words in the
.cinit section.
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Direct ASM Interface

Table 36.  Module Terminal Variables/Functions

Name Description Format Range

Input ig_period Period of output impulses in
number of sampling cycles

Q0 0−7FFFh

Output ig_out Impulse generator output Q0 0 or 7FFFh

Init / Config none

Variable Declaration:
In the system file include the following statements:

.ref IMPULSE, IMPULSE_INIT ;function call

.ref ig_period, ig_out ;input/output

Memory map:
All variables are mapped to an uninitialized named section ‘impulse’

Example:

ldp #ig_period ;Set DP for module input
bldd #input_var1, ig_period ;Pass input variable to module input

CALL IMPULSE

ldp #out_var1 ;Set DP for output variable
bldd #ig_out, output_var1 ;Pass module output to output variable
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Object Definition The structure of the IMPULSE Object is defined by the following structure definition

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Define the structure of the IMPULSE
(Impulse generator)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

typedef struct {
int period; /* Period of output impulses in number of sampling cycles */
int out; /* Impulse generator output                               */
int skpcnt;
int (*calc)(); /* Pointer to the Calculation function                    */
}IMPULSE;

Table 37.  Module Terminal Variables/Functions

Name Description Format Range

Input period Period of output impulses in
number of sampling cycles

Q0 0−7FFFh

Output out Impulse generator output Q0 0 or 7FFFh

Special Constants and Datatypes

IMPULSE
The module definition itself is created as a data type. This makes it convenient to
instance a Impulse generator module.To create multiple instances of the module sim-
ply declare variables of type IMPULSE

IMPULSE_handle
Typedef’ed to IMPULSE *

IMPULSE_DEFAULTS
Initializer for the IMPULSE Object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers.

Methods void calc (IMPULSE_handle)
The default definition of the object implements just one method – the runtime imple-
mentation of the Impulse generator. This is implemented by means of a function point-
er, and the default initializer sets this to impulse_calc. The argument to this function
is the address of the IMPULSE object.

Module Usage Instantiation:
The following example instances two such objects:

IMPULSE p1,p2;

Initialization:
To instance a pre-initialized object

IMPULSE p1 = IMPULSE_DEFAULTS, p1 = IMPULSE_DEFAULTS;

Invoking the compute function:

 p1.calc(&p1);
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Example:
Lets instance two IMPULSE objects,otherwise identical ,but running with different val-
ues

IMPULSE p1 = IMPULSE_DEFAULTS; /* Instance the first  object */
IMPULSE p2 = IMPULSE_DEFAULTS; /* Instance the second object */

main()
{

p1.period =300; /* Initialize  */
p2.period =400; /* Initialize  */

}
void interrupt periodic_interrupt_isr()
{

(*p1.calc)(&p1); /* Call compute function for p1 */
(*p2.calc)(&p2); /* Call compute function for p2 */

x = p1. out; /* Access the output of p1 */

q = p2. out; /* Access the output of p2 */

/* Do something with the outputs */

}
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Background Information

Implements the following equation:

ig_out = 7FFF, for t = n . Tout, n = 1, 2, 3, …
= 0, otherwise

where,
Tout = Time period of output pulses = ig_period x Ts
Ts = Sampling time period

IMPULSE
ig_outig_period

ig_out

Ts

Tout

t
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Modulo6 CounterMOD6_CNT

Description This module implements a modulo 6 counter. It counts from state 0 through 5, then re-
sets to 0 and repeats the process. The state of the output variable m6_cntr changes
to the next state every time it receives a trigger input through the input variable
m6_trig_in.

MOD6_CNT
m6_cntrm6_trig_in

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Independent

Target Devices: x24x / x24xx

Assembly File Name: mod6_cnt.asm

C-Callable Version File Name: mod6_cnt.asm, mod6.h

Item ASM Only C-Callable ASM Comments

Code size 22 words 28 words†

Data RAM 2 words 0 words†

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized MOD6CNT structure instance consumes 3 words in the data memory and 5 words in
the .cinit section.
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Direct ASM Interface

Table 38.  Module Terminal Variables/Functions

Name Description Format Range

Input m6_trig_in Modulo 6 counter trigger
input

Q0 0 or 7FFFh

Output m6_cntr Modulo 6 counter output Q0 0=<m6_cntr=<5

Init / Config none

Variable Declaration:
In the system file include the following statements:

.ref MOD6_CNT, MOD6_CNT_INIT ;function call

.ref m6_trig_in, m6_cntr ;input/output

Memory map:
All variables are mapped to an uninitialized named section ‘mod6_cnt’

Example:

ldp #m6_trig_in ;Set DP for module input
bldd #input_var1, m6_trig_in ;Pass input variable to module input

CALL MOD6_CNT

ldp #output_var1 ;Set DP for output variable
bldd #m6_cntr, output_var1 ;Pass module output to output variable
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Object Definition The structure of the MOD6CNT Object is defined by the following structure definition

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Define the structure of the MOD6CNT
(Modulo6 counter)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

typedef struct { int trig_in; /* Modulo 6 counter trigger input  */
int cntr; /* Modulo 6 counter output */
int  (*calc)(); /* pointer to the calculation function */

} MOD6CNT;

Table 39.  Module Terminal Variables/Functions

Name Description Format Range

Input trig_in Modulo 6 counter trigger input Q0 0 or 7FFFh

Output cntr Modulo 6 counter output Q0 0=<cntr=<5

Special Constants and Datatypes

MOD6CNT
The module definition itself is created as a data type. This makes it convenient to
instance a modulo6 counter module.To create multiple instances of the module simply
declare variables of type MOD6CNT

MOD6CNT_handle
Typedef’ed to MOD6CNT *

MOD6CNT_DEFAULTS
Initializer for the MOD6CNT Object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers.

Methods void calc(MOD6CNT_handle)
The default definition of the object implements just one method – the runtime imple-
mentation of the modulo6 counter. This is implemented by means of a function pointer,
and the default initializer sets this to mod6cnt_calc. The argument to this function is
the address of the MOD6CNT object.

Module Usage Instantiation:
The following example instances two such objects:

MOD6CNT p1,p2;

Initialization:
To instance a pre-initialized object

MOD6CNT p1 = MOD6CNT_DEFAULTS, p2 = MOD6CNT_DEFAULTS;

Invoking the compute function:

p1.calc(&p1);
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Example:

Lets instance two MOD6CNT objects,otherwise identical ,but running with different
values

MOD6CNT p1 = MOD6CNT_DEFAULTS; /* Instance the first  object */
MOD6CNT p2 = MOD6CNT_DEFAULTS; /* Instance the second object */

main()
{

p1.cntr = 3; /* Initialize  */
p1.trig_in = 0x0200;

p2.cntr = 4; /* Initialize  */
p2.trig_in = 0x1500;

}
void interrupt periodic_interrupt_isr()
{

(*p1.calc)(&p1); /* Call compute function for p1 */
(*p2.calc)(&p2); /* Call compute function for p2 */

x = p1.cntr; /* Access the output of p1 */

q = p2.cntr; /* Access the output of p2 */

/* Do something with the outputs */

}
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Background Information

Implements the following equation:

m6_cntr= 0, when 1st trigger pulse occur (m6_trig_in is set to 7FFF for the 1st time)
= 1, when 2nd trigger pulse occur (m6_trig_in is set to 7FFF for the 2nd time)
= 2, when 3rd trigger pulse occur (m6_trig_in is set to 7FFF for the 3rd time)
= 3, when 4th trigger pulse occur (m6_trig_in is set to 7FFF for the 4th time)
= 4, when 5th trigger pulse occur (m6_trig_in is set to 7FFF for the 5th time)
= 5, when 6th trigger pulse occur (m6_trig_in is set to 7FFF for the 6th time)

and repeats the output states for the subsequent pulses.

MOD6_CNT
m6_cntrm6_trig_in

7th 6th 5th 4th 3rd 2nd 1st

0,      1,      2,      3,      4,      5,      0,      1, . . .

. . .. . .

.

.

.
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Park Transform ModulePARK

Description This transformation converts vectors in balanced 2-phase orthogonal stationary sys-
tem into orthogonal rotating reference frame.

PARK
park_D

park_Q

park_d

park_q

Q15/Q15theta_p

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version.

Module Properties Type: Target Independent/Application Independent

Target Devices: x24x/x24xx

Direct ASM Version File Name: park.asm

C-Callable Version File Name: park.asm

Item ASM Only C-Callable ASM Comments

Code size 36 words 52 words

Data RAM 12 words 0 words†

xDAIS module No Yes

xDAIS component No No IALG layer not implemented

† The park transform operates on structures allocated by the calling function.
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Direct ASM Interface

Table 40.  Module Terminal Variables/Functions

Name Description Format Range

Inputs park_d Direct axis(d) component of the
input signal in stationary reference
frame

Q15 8000−7FFF

park_q Quadrature axis(q) component of
the input signal in stationary
reference frame

Q15 8000−7FFF

theta_p Phase angle between stationary
and rotating frame

Q15 0−7FFF
(0−360
degree)

Outputs park_D Direct axis(D) component of
transformed signal in rotating
reference frame

Q15 8000−7FFF

park_Q Quadrature axis(Q) component of
transformed signal in rotating
reference frame

Q15 8000−7FFF

Init / Config none

Variable Declaration:
In the system file include the following statements:

.ref PARK, PARK_INIT ;function call

.ref theta_p, park_d, park_q, park_D, park_Q ;input/output

Memory map:
All variables are mapped to an uninitialized named section ‘park’

Example:

ldp #park_d ;Set DP for module input
bldd #input_var1, park_d ;Pass input variable to module input
bldd #input_var2, park_q
bldd #input_var3, theta_p

CALL PARK

ldp #output_var1 ;Set DP for output variable
bldd #park_D, output_var1 ;Pass module output to output variable
bldd #park_Q, output_var2
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C/C-Callable ASM Interface

This function is implemented as a function with two arguments, each a pointer to the
input and output structures.

struct { int d;
int q;
int theta;

} park_in;

struct { int D;
int Q;

} park_out;

void park(&park_in,&park_out);

The inputs are read from the park_in structure and the outputs are placed in the
park_out structure.

Table 41.  Module Terminal Variables/Functions

Name Description Format Range

Inputs d Direct axis(d) component of the input
signal in stationary reference frame

Q15 8000−7FFF

q Quadrature axis(q) component of the
input signal in stationary reference
frame

Q15 8000−7FFF

theta Phase angle between stationary and
rotating frame

Q15 0−7FFF
(0−360
degree)

Outputs D Direct axis(D) component of
transformed signal in rotating
reference frame

Q15 8000−7FFF

Q Quadrature axis(Q) component of
transformed signal in rotating
reference frame

Q15 8000−7FFF

Init / Config none

Example:
In the following example, the variables stat_d, stat_q, are transformed to the rotating
frame values based on theta_value.

typedef struct { int a,b,c ; } triad;

triad stationery_cmds;
triad rotating_cmds;

int some_other_var1, some_other_var2;
int stat_d,stat_q,theta_value;

void some_func(void)
{

stationary_cmds.a=stat_d;
stationary_cmds.b=stat_q;
stationary_cmds.c=theta_value;

park(&stationary_cmds,&rotating_cmds);
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some_other_var1=rotating_cmds.a;
some_other_var2=rotating_cmds.b;

}
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Background Information

Implements the following equations:


ID � Id 
 cos �� Iq 
 sin �

IQ � � Id 
 sin �� Iq 
 cos �

This transformation converts vectors in 2-phase orthogonal stationary system into the
rotating reference frame as shown in figure below:

Q

q

Iq

IQ
D

ID

Id d

Iq � cos �

Id � sin �

Iq � sin �

�

�

�

�

The instantaneous input quantities are defined by the following equations:


Id � I 
 sin(�t)
Iq � I 
 sin(�t � ��2)

Table 42.  Variable Cross Ref Table

Variables in the Equations Variables in the Code

Id park_d

Iq park_q

θ theta_p

ID park_D

IQ park_Q
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Three phase voltages and two stationary dq-axis voltages calculation
based on DC-bus voltage and three upper switching functions

PHASE_VOLTAGE_
CALC

Description This software module calculates three phase voltages applied to the 3-ph motor (i.e.,
induction or synchronous motor) using the conventional voltage-source inverter. Three
phase voltages can be reconstructed from the DC-bus voltage and three switching
functions of the upper power switching devices of the inverter. In addition, this software
module also includes the clarke transformation that converts three phase voltages into
two stationary dq-axis voltages.

PHASE_

Vphase_A

Vphase_B

Vphase_C

Vdirect

Mfunc_V1

Mfunc_V2

Mfunc_V3

DC_bus

VOLTAGE_
CALC

Q15/Q15

Vquadra

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: volt_cal.asm

ASM Routines: PHASE_VOLTAGE_CALC, PHASE_VOLTAGE_CALC_INIT

C-callable ASM filenames: volt_cal.asm, volt_cal.h

Item ASM Only C-Callable ASM Comments

Code size 68 words 76 words†

Data RAM 12 words 0 words†

xDAIS module No No

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre−initialized PHASEVOLTAGE structure instance consumes 10 words in the dat memory and 12
words in the .cinit section.
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Direct ASM Interface

Table 43.  Module Terminal Variables/Functions

Name Description Format Range

Inputs Mfunc_V1 Switching function of upper
switching device 1

Q15 −1 −> 0.999

Mfunc_V2 Switching function of upper
switching device 2

Q15 −1 −> 0.999

Mfunc_V3 Switching function of upper
switching device 3

Q15 −1 −> 0.999

DC_Bus DC-bus voltage Q15 −1 −> 0.999

Outputs Vphase_A Line-neutral phase voltage A Q15 −1 −> 0.999

Vphase_B Line-neutral phase voltage B Q15 −1 −> 0.999

Vphase_C Line-neutral phase voltage C Q15 −1 −> 0.999

Vdirect Stationary d-axis phase voltage Q15 −1 −> 0.999

Vquadra Stationary q-axis phase voltage Q15 −1 −> 0.999

Init / Config out_of_phase_ Out-of-phase correction of three
inputs of switching functions. It
must be changed in the s/w
module.

N/A 0 or 1

Routine names and calling limitation:
There are two routines involved:

PHASE_VOLTAGE_CALC, the main routine; and
PHASE_VOLTAGE_CALC_INIT, the initialization routine.

The initialization routine must be called during program initialization. The
PHASE_VOLTAGE_CALC routine must be called in the control loop.

Variable Declaration:
In the system file, including the following statements before calling the subroutines:

.ref PHASE_VOLTAGE_CALC ; Function calls

.ref PHASE_VOLTAGE_CALC_INIT ; Function calls

.ref Vphase_A, Vphase_B, Vphase_C ; Outputs

.ref Vdirect, Vquadra ; Outputs

.ref Mfunc_V1, Mfunc_V2 ; Inputs

.ref Mfunc_V3, DC_bus ; Inputs

Memory map:
All variables are mapped to an uninitialized named section, volt_cal, which can be allo-
cated to any one data page.
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Example:
In the interrupt service routine call the module and read results as follows:

LDP #DC_bus ; Set DP for module inputs
BLDD #input_var1,Mfunc_V1 ; Pass input variables to module inputs
BLDD #input_var2,Mfunc_V2 ; Pass input variables to module inputs
BLDD #input_var3,Mfunc_V3 ; Pass input variables to module inputs
BLDD #input_var4,DC_bus ; Pass input variables to module inputs

CALL PHASE_VOLTAGE_CALC

LDP #output_var1 ; Set DP for module output
BLDD #Vphase_A,output_var1 ; Pass output to other variables
BLDD #Vphase_B,output_var2 ; Pass output to other variables
BLDD #Vphase_C,output_var3 ; Pass output to other variables
BLDD #Vdirect,output_var4 ; Pass output to other variables
BLDD #Vquadra,output_var5 ; Pass output to other variables
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C/C-Callable ASM Interface

Object Definition The structure of the PHASEVOLTAGE object is defined in the header file, volt_cal.h,
as seen in the following:

typedef struct { int  DC_bus; /* Input: DC−bus voltage (Q15) */
int  Mfunc_V1; /* Input: Modulation voltage phase A (Q15) */
int  Mfunc_V2; /* Input: Modulation voltage phase B (Q15) */
int  Mfunc_V3; /* Input: Modulation voltage phase C (Q15) */
int  Vphase_A; /* Output: Phase voltage phase A (Q15) */
int  Vphase_B; /* Output: Phase voltage phase B (Q15) */
int  Vphase_C; /* Output: Phase voltage phase C (Q15) */
int  Vdirect; /* Output: Stationary d−axis phase voltage (Q15) */
int  Vquadra; /* Output: Stationary q−axis phase voltage (Q15) */
int  (*calc)(); /* Pointer to calculation function */ 

} PHASEVOLTAGE;

Special Constants and Datatypes

PHASEVOLTAGE
The module definition itself is created as a data type. This makes it convenient to
instance a PHASEVOLTAGE object. To create multiple instances of the module simply
declare variables of type PHASEVOLTAGE.

PHASEVOLTAGE_DEFAULTS
Initializer for the PHASEVOLTAGE object. This  provides the initial values to the termi-
nal variables, internal variables, as well as method pointers. This is initialized in the
header file, volt_cal.h.

Methods void calc(PHASEVOLTAGE *);
This default definition of the object implements just one method – the runtime compute
function for reconstruction of three phase voltages including clarke transformation.
This is implemented by means of a function pointer, and the default initializer sets this
to phase_voltage_calc function. The argument to this function is the address of the
PHASEVOLTAGE object. Again, this statement is written in the header file, volt_cal.h.

Module Usage Instantiation:
The following example instances two such objects:

PHASEVOLTAGE volt1, volt2;

Initialization:
To instance a pre-initialized object:

PHASEVOLTAGE volt1 = PHASEVOLTAGE _DEFAULTS;
PHASEVOLTAGE volt2 = PHASEVOLTAGE _DEFAULTS;

Invoking the compute function

volt1.calc(&volt1); 
volt2.calc(&volt2);
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Example:
Lets instance two PHASEVOLTAGE objects, otherwise identical, and run two systems
for phase voltage reconstruction. The following example is the c source code for the
system file.

/* instance the first object */
PHASEVOLTAGE volt1= PHASEVOLTAGE_DEFAULTS;

/* instance the second object */
PHASEVOLTAGE volt2= PHASEVOLTAGE _DEFAULTS;

main()
{

volt1.DC_bus=ilg2_vdc1.Vdc_meas; /* Pass inputs to volt1 */
volt1.Mfunc_V1=vhz1.svgen.va; /* Pass inputs to volt1 */
volt1.Mfunc_V2=vhz1.svgen.vb; /* Pass inputs to volt1 */
volt1.Mfunc_V3=vhz1.svgen.vc; /* Pass inputs to volt1 */

volt2.DC_bus=ilg2_vdc2.Vdc_meas; /* Pass inputs to volt2 */
volt2.Mfunc_V1=vhz2.svgen.va; /* Pass inputs to volt2 */
volt2.Mfunc_V2=vhz2.svgen.vb; /* Pass inputs to volt2 */
volt2.Mfunc_V3=vhz2.svgen.vc; /* Pass inputs to volt2 */

}

void interrupt periodic_interrupt_isr()
{

volt1.calc(&volt1); /* Call compute function for volt1 */
volt2.calc(&volt2); /* Call compute function for volt2 */

Va_1=volt1.Vphase_A; /* Access the outputs of volt1 */
Vb_1=volt1.Vphase_B;
Vc_1=volt1.Vphase_C;
Vd_1=volt1.Vdirect;
Vq_1=volt1.Vquadra;

Va_2=volt2.Vphase_A; /* Access the outputs of volt2 */
Vb_2=volt2.Vphase_B;
Vc_2=volt2.Vphase_C;
Vd_2=volt2.Vdirect;
Vq_2=volt2.Vquadra;

}
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Background Information

The phase voltage of a general 3-ph motor (Van, Vbn, and Vcn) can be calculated from
the DC-bus voltage (Vdc) and three upper switching functions of inverter (S1, S2, and
S3). The 3-ph windings of motor are connected either ∆ or Υ without a neutral return
path (or 3-ph, 3-wire system). The overall system is shown in Figure 13.

V dc

+

−

S1
S2 S3

S4 S5 S6

i a

i b

i c

3−ph motor

V a

V
b

V
c

V n

r, L

voltage−source inverter

Figure 13.  Voltage-Source Inverter With a 3-ph Electric Motor

Each phase of the motor is simply modeled as a series impedance of resistance and
inductance (r, L) and back emf (ea, eb, ec). Thus, three phase voltages can be com-
puted as

a
a

anaan e
dt
diLriVVV ++=−= (1)

b
b

bnbbn e
dt
di

LriVVV ++=−= (2)

c
c

cnccn e
dt
di

LriVVV ++=−= (3)

Summing these three phase voltages, yields

( ) ( )
cba

cba
cbancba eee

dt
iiid

LriiiV3VVV ++++++++=−++ (4)

For a 3-phase system with no neutral path and balanced back emfs, 0iii cba =++ , and
ea + eb + ec = 0. Therefore, equation (4) becomes,

0VVV cnbnan =++ (5)

Furthermore, the neutral voltage can be simply derived from (4)−(5) as

( )cban VVV
3
1V ++= (6)

Now three phase voltages can be calculated as

( ) cbacbaaan V
3
1V

3
1V

3
2VVV

3
1VV −−=++−= (7)
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( ) cabcbabbn V
3
1V

3
1V

3
2VVV

3
1VV −−=++−= (8)

( ) baccbaccn V
3
1V

3
1V

3
2VVV

3
1VV −−=++−= (9)

Three voltages Va, Vb, Vc are related to the DC-bus voltage (Vdc) and three upper
switching functions (S1, S2, S3) as:

dc1a VSV = (10)

dc2b VSV = (11)

dc3c VSV = (12)

where S1, S2, S3 = either 0 or 1, and
S4 = 1−S1, S5 = 1−S2, and S6 = 1−S3. (13)

As a result, three phase voltages in (7)−(9) can also be expressed in terms of DC-bus
voltage and three upper switching functions as:






 −−= 321dcan S

3
1S

3
1S

3
2VV (14)






 −−= 312dcbn S

3
1S

3
1S

3
2VV (15)






 −−= 213dccn S

3
1S

3
1S

3
2VV (16)

It is emphasized that the S1, S2, and S3 are defined as the upper switching functions.
If the lower switching functions are available instead, then the out-of-phase correction
of switching functions is required in order to get the upper switching functions as easily
computed from equation (13).

Next the clarke transformation is used to convert the three phase voltages (Van, Vbn,

and Vcn) to the stationary dq-axis phase voltages ( s
dsV , and s

qsV ). Because of the bal-

anced system (5), Vcn is not used in clarke transformation.

an
s
ds VV = (17)

( )bnan
s
qs V2V

3

1V += (18)

Figure 14 depicts the abc-axis and stationary dq-axis components for the stator volt-
ages of motor.
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V
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cn

s

qs
V

s

ds
V
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Figure 14.  The abc-Axis and Stationary dq-Axis Components of the Stator
Phase Voltages

Table 44 shows the correspondence of notation between variables used here and vari-
ables used in the program (i.e., volt_cal.asm). The software module requires that both
input and output variables are in per unit values (i.e., they are defined in Q15).

Table 44.  Correspondence of Notations

Equation Variables Program Variables

Inputs S1 Mfunc_V1

S2 Mfunc_V2

S3 Mfunc_V3

Vdc DC_bus

Outputs Van Vphase_A

Vbn Vphase_B

Vcn Vphase_C

Vdirect

Vquadra

V
s

ds

V
s
qs
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PID Controller 1PID_REG1

Description This module implements a digital PID controller without anti-windup correction. It can
also be used as a PI or PD controller. In this implementation, the differential equation
is transformed to a difference equation by means of the backward approximation.

PID_REG1 pid_out_reg1

pid_ref_reg1

pid_fb_reg1

Q15

Q15

Q15

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: pid_reg1.asm

ASM Routines: PID_REG1, PID_REG1_INIT

C-callable ASM filenames: pid_reg1.asm, pid_reg1.h

Item ASM Only C-Callable ASM Comments

Code size 94 words 99 words†

Data RAM 21 words 0 words†

xDAIS module No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized PIDREG1 structure instance consumes 12 words in the data memory and 14 words
in the .cinit section.
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Direct ASM Interface

Table 45.  Module Terminal Variables/Functions

Name Description Format Range

Inputs pid_ref_reg1 Reference signal for PID
regulator

Q15 −1 −> 0.999

pid_fb_reg1 Feedback signal for PID regulator Q15 −1 −> 0.999

Output pid_out_reg1 PID regulator output Q15 −1 −> 0.999

Init / Config Kp_reg1† Proportional gain coefficient Q15 System
dependent

Ki_low_reg1† Integral coefficient (low16 bit) Q31 (L) System
dependent

Ki_high_reg1† Integral coefficient (high 16 bit) Q31 (H) System
dependent

Kd_reg1† Derivative coefficient Q15 System
dependent

pid_out_min† Minimum PID regulator output Q15 System
dependent

pid_out_max† Maximum PID regulator output Q15 System
dependent

† From the system file initialize these PI regulator coefficients.

Routine names and calling limitation:
There are two routines involved:

PID_REG1, the main routine; and 
PID_REG1_INIT, the initialization routine.

The initialization routine must be called during program initialization. The PID_REG1
routine must be called in the control loop.

Variable Declaration:
In the system file, including the following statements before calling the subroutines:

.ref PID_REG1, PID_REG1_INIT ;function call

.ref pid_ref_reg1, pid_fb_reg1 ;Inputs

.ref pid_out_reg1 ;Output

Memory map:
All variables are mapped to an uninitialized named section, pid_reg1, which can be al-
located to any one data page.

Example:
During system initialization specify the PID parameters as follows:

LDP #Kp_reg1 ;Set DP for module parameters
SPLK #Kp_REG1_,Kp_reg1
SPLK #Ki_LO_REG1_,Ki_low_reg1
SPLK #Ki_HI_REG1_,Ki_high_reg1
SPLK #Kd_REG1_,Kd_reg1
SPLK #PID_OUT_MAX_,pid_out_max
SPLK #PID_OUT_MIN_,pid_out_min
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Then in the interrupt service routine call the module and read results as follows:

LDP # pid_fb_reg1 ;Set DP for module inputs
BLDD #input_var1, pid_fb_reg1 ;Pass input variables to module inputs
BLDD #input_var2, pid_ref_reg1 ;Pass input variables to module inputs

CALL PID_REG1

LDP #output_var1 ;Set DP for output variable
BLDD #pid_out_reg1, output_var1 ; Pass module output to output variable



C/C−Callable ASM Interface

 PID_REG1 131

C/C-Callable ASM Interface

Object Definition The structure of the PIDREG1object is defined in the header file, pid_reg1.h, as seen
in the following:

typedef struct { int  pid_ref_reg1; /* Input: Reference input (Q15) */
int  pid_fb_reg1; /* Input: Feedback input (Q15) */
int  Kp_reg1; /* Parameter: Proportional gain (Q15) */
int  Ki_high_reg1; /* Parameter: Integral gain (Q31) */
int  Ki_low_reg1; /* Parameter: Integral gain (Q31) */
int  Kd_reg1; /* Parameter: Derivative gain (Q15) */
int  pid_out_max; /* Parameter: Maximum PID output (Q15) */
int  pid_out_min; /* Parameter: Minimum PID output (Q15) */
int  pid_e1_reg1; /* History: Previous error at time = k−1 (Q15) */
int  pid_e2_reg1; /* History: Previous error at time = k−2 (Q15) */
int  pid_out_reg1; /* Output: PID output (Q15) */
int  (*calc)(); /* Pointer to calculation function */ 

} PIDREG1;

Special Constants and Datatypes

PIDREG1
The module definition itself is created as a data type. This makes it convenient to
instance a PIDREG1 object. To create multiple instances of the module simply declare
variables of type PIDREG1.

PIDREG1_DEFAULTS
Initializer for the PIDREG1 object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers. This is initialized in the header
file, pid_reg1.h.

Methods void calc(PIDREG1 *);
This default definition of the object implements just one method – the runtime compute
function for PID controller. This is implemented by means of a function pointer, and the
default initializer sets this to pid_reg1_calc function. The argument to this function is
the address of the PIDREG1 object. Again, this statement is written in the header file,
pid_reg1.h.

Module Usage Instantiation:
The following example instances two such objects:

PIDREG1 pid1, pid2;

Initialization:
To instance a pre-initialized object:

PIDREG1 pid1 = PIDREG1_DEFAULTS;
PIDREG1 pid2 = PIDREG1_DEFAULTS;

Invoking the compute function:

pid1.calc(&pid1); 
pid2.calc(&pid2);
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Example:
Lets instance two PIDREG1 objects, otherwise identical, and run two feedback sys-
tems. The following example is the c source code for the system file.

PIDREG1 pid1 = PIDREG1_DEFAULTS; /* instance the first object */
PIDREG1 pid2 = PIDREG1_DEFAULTS; /* instance the second object */

main()
{

pid1.pid_ref_reg1=0x4000; /* Pass inputs to pid1 */
pid1.pid_fb_reg1=mras1.wr_hat_mras; /* Pass inputs to pid1 */
pid2.pid_ref_reg1=0x7000; /* Pass inputs to pid2 */
pid2.pid_fb_reg1=mras2.wr_hat_mras; /* Pass inputs to pid2 */

}

void interrupt periodic_interrupt_isr()
{

pid1.calc(&pid1); /* Call compute function for pid1 */
pid2.calc(&pid2); /* Call compute function for pid2 */

u1= pid1.pid_out_reg1;  /* Access the outputs of pid1 */
u2= pid2.pid_out_reg1; /* Access the outputs of pid2 */

}
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Background Information

The block diagram of a conventional PID controller without anti-windup correction is
shown in Figure 15.

PID
eω*

ω

−
+

u

Figure 15.  PID Controller Block Diagram

The differential equation for PID controller is described in the following equation.

dt
)t(deKd)(eK)t(eK)t(u D

t

0IP +ςς+= ∫ (1)

where

u(t) is the output of PID controller

e(t) is the error between the reference and feedback variables (i.e., ω−ω*=e )

ω* is the reference variable

ω is the feedback variable

KP is the proportional gain of PID controller

KI is the integral gain of PID controller

KD is the derivative gain of PID controller

Applying the Laplace transform to equation (1) with zero initial condition (i.e., e(0)=0),
yields,

)s(EsK
s
KK)s(U D

I
P 



 ++= (2)

Using backward approximation, the differential equation can be transformed to the dif-

ference equation by substituting 
T
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Rearranging equation (3), yields
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Equation (4) can be rewritten in discrete time-domain as,
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Rearranging equation (5), we have,
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Denoting 
T

K
TKKK D
IP0 ++= , 

T
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2KK D
P1 += , and 

T
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K D
2 = , the final equation is,

)2k(eK)1k(eK)k(eK)1k(u)k(u 210 −+−−+−= (7)

where K0 > K2 and K1 > K2 are all typically positive numbers. Also, K0, K1, and K2 can
be independently set for different values of KP, KI, and KD. In other words, any value
of KP, KI, and KD can be selected by setting K0, K1, and K2 independently.

Equation (7) can be used to derive the PI or PD controller, as shown below:

PI Controller

According to equation (6), once KD becomes zero, then K2 = 0 and K0 > K1 where
K0 = f(KP,KI) (i.e., a function of KP and KI) and K1 = f(KP) (i.e., a function of KP only)

PD Controller

According to equation (6), once KI becomes zero, then K1 > K0 > K2 and K1 = K0 + K2
where K0 = f(KP,KD) (i.e., a function of KP and KD) and K2 = f(KD) (i.e., a function of KD
only)

Notice that this PID controller is applicable for unsaturated output u(k) because it has
no anti-windup correction (to get rid of the integral action when the output saturates).

In summary, Table 46 summarizes the setting KP, KI, and KD for different types of con-
troller and the corresponding output equation u(k). The corresponding K0, K1, and K2
are also shown for different controllers, as shown in Table 46:

Table 46.  Setting KP, KI, and KD and the Corresponding Output Equation u(k)

Setting KP, KI, and KD Output equation u(k) Comment

PI KP  ≠ 0, KI ≠ 0, KD = 0 u(k) = u(k−1) + K0e(k) −
K1e(k−1)

K2 = 0, K0 > K1

PD KP  ≠ 0, KI = 0, KD ≠ 0 u(k) = u(k−1) + K0e(k) −
K1e(k−1) + K2e(k−2)

or

u(k) = K0e(k) − K2e(k−1)

K1 = K0 + K2 and K0 > K2

PID KP  ≠ 0, KI ≠ 0, KD ≠ 0 u(k) = u(k−1) + K0e(k) −
K1e(k−1) + K2e(k−2)

K0 > K2 and K1 > K2
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Table 47 shows the correspondence of notation between variables used here and vari-
ables used in the program (i.e., pid_reg1.asm). The software module requires that both
input and output variables are in per unit values (i.e., they are defined in Q15).

Table 47.  Correspondence of Notations

Equation Variables Program Variables

Inputs ω*(k) pid_ref_reg1

ω(k) pid_fb_reg1

Output u(k) pid_out_reg1

Others u(k−1) pid_out1_reg1

e(k) pid_e0_reg1

e(k−1) pid_e1_reg1

e(k−2) pid_e2_reg1

KP Kp_reg1

KIT Ki_low_reg1, Ki_high_reg1

KD/T Kd_reg1

K0 K0_low_reg1, K0_high_reg1

K1 K1_reg1

K2 Kd_reg1

References:

1) G.F. Franklin, D.J. Powell, and M.L. Workman, Digital Control of Dynamic Sys-
tems, Addison-Wesley, 1997.
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Proportional and Integral Regulator 2PID_REG2

Description This module implements a PI regulator with integral windup correction

PID_REG2 pid_out_reg2

pid_ref_reg2

pid_fb_reg2 Q15/Q15

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: pid_reg2.asm

C-Callable Version File Name: pid_reg2.asm, pid2.h

Item ASM Only C-Callable ASM Comments

Code size 50 words 74 words†

Data RAM 12 words 0 words†

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized PID2 structure instance consumes 13 words in the data memory and 15 words in the
.cinit section.
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Direct ASM Interface

Table 48.  Module Terminal Variables/Functions

Name Description Format Range

Inputs pid_ref_reg2 Reference signal for PI
regulator.

Q15 8000−7FFF

pid_fb_reg2 Feedback signal for PI
regulator.

Q15 8000−7FFF

Output pid_out_reg2 PI regulator output Q15 pid_min_reg2
−
pid_max_reg2

Init / Config K0_reg2† Proportional gain coefficient Q9 System
dependent

K1_reg2† Integral coefficient Q13 System
dependent

Kc_reg2† Integral windup correction
coefficient

Q13 System
dependent

pid_min_reg2† Minimum PI regulator output Q15 System
dependent

pid_max_reg2† Maximum PI regulator output Q15 System
dependent

† From the system file initialize these PI regulator coefficients.

Variable Declaration:
In the system file include the following statements:

.ref PID_REG2, PID_REG2_INIT ;Function call

.ref pid_fb_reg2, pid_ref_reg2 ;Inputs

.ref pid_out_reg2, ;Output

.ref pid_max_reg2, pid_min_reg2 ;Parameters

.ref K0_reg2, K1_reg2, Kc_reg2 ;Parameters

Memory map:
All variables are mapped to an uninitialized named section ‘pid_reg2’

Example:

ldp # pid_fb_reg2 ;Set DP for module inputs
bldd #input_var1, pid_fb_reg2 ;Pass input variables to module inputs
bldd #input_var2, pid_ref_reg2
CALL PID_REG2

ldp #output_var1 ;Set DP for output variable
bldd #pid_out_reg2, output_var1 ;Pass module output to output variable
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C/C-Callable ASM Interface

Object Definition The structure of the PID2 Object is defined by the following structure definition

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Define the structure of the PID2
(pid regulator2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

typedef struct {

int fb_reg2; /* Feedback signal for PI regulator Q15 Input  */
int ref_reg2; /* Reference signal for PI regulator Q15 Input */
int k0_reg2; /* PI parameter − proportional gain Q9 */
int k1_reg2; /* PI parameter − integral time * sample time Q13 */
int kc_reg2; /* PI parameter − sampling time / integral time Q13 */
int un_reg2; /* Integral component of PI Q15 */
int en0_reg2; /* reference signal − feedback signal Q15 */
int upi_reg2; /* actual PI output without taking into account saturation Q15 */

/* i.e. if output is not saturated out_reg2 = upi_reg2 */
int epi_reg2; /* out_reg2 − upi_reg2 Q15 */
int max_reg2; /* PI parameter − upper cut off saturation limit of PI regulator output Q15*/
int min_reg2; /* PI parameter − lower cut off saturation limit of PI regulator output Q15*/
int out_reg2; /* final PI regulator output Q15 */
int (*calc)();/* Pointer to the calculation function */

} PID2;

Table 49.  Module Terminal Variables/Functions

Name Description Format Range

Inputs ref_reg2 Reference signal for PI
regulator.

Q15 8000−7FFFh

fb_reg2 Feedback signal for PI
regulator.

Q15 8000−7FFFh

Output out_reg2 PI regulator output Q15 min_reg2 −
max_reg2

Special Constants and Datatypes

PID2
The module definition itself is created as a data type. This makes it convenient to
instance a pid regulator 2 module.To create multiple instances of the module simply
declare variables of type PID2

PID2_handle
Typedef’ed to PID2 *
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PID2_DEFAULTS
Initializer for the PID2 Object. This provides the initial values to the terminal variables,
internal variables, as well as method pointers.

Methods void calc(PID2_handle)
The default definition of the object implements just one method – the runtime imple-
mentation of the pid regulator 2. This is implemented by means of a function pointer,
and the default initializer sets this to pid2_calc. The argument to this function is the ad-
dress of the PID2 object.

Module Usage Instantiation:
The following example instances one such objects:

PID2 p1,p2

Initialization:
To instance a pre-initialized object

PID2  p1 = PID2_DEFAULTS, p2 = PID2_DEFAULTS;

Invoking the compute function:

p1.calc(&p1);

Example:

Lets instance two PID2 objects,otherwise identical ,but running with different freq val-
ues.

PID2  p1 = PID2_DEFAULTS; /* Instance the first object */
PID2  p2 = PID2_DEFAULTS; /* Instance the second object */

main()
{

p1.k0_reg2 = 5;
p1.k1_reg2 = 6;
p1.kc_reg2 = 7;
p1.min_reg2 = 10;
p1.max_reg2 = 20;
p1.un_reg2 = 20;

p2.k0_reg2 = 17;
p2.k1_reg2 = 13;
p2.kc_reg2 = 14;
p2.min_reg2 = 20;
p2.max_reg2 = 40;
p2.un_reg2 = 20;

}
void interrupt periodic_interrupt_isr()
{

(*p1.calc)(&p1); /* Call compute function for p1 */
(*p2.calc)(&p2); /* Call compute function for p2 */

x = p1.out_reg2; /* Access the output */

q = p2.out_reg2; /* Access the output */

/* Do something with the outputs */

}
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Background Information

An analog PI controller can be transformed to an equivalent digital form as shown be-
low, before being implemented by 24x/24xx:
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In discrete form the controller above can be expressed as,
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Table 50.  Variable Cross Ref Table

Variables in the Equations Variables in the Code

U(n) pid_out_reg2

I(n) Un_reg2

E(n) En0_reg2

Epi epi_reg2

Umax pid_max_reg2

Umin pid_min_reg2

K0 K0_reg2

K1 K1_reg2

Kc Kc_reg2
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Quadrature Encoder Pulse Interface DriverQEP_THETA_DRV

Description This module determines the rotor position and generates a direction (of rotation) signal
from the shaft position encoder pulses.

QEPQEP_THETA_

theta_elec

theta_mech

dir_QEP

index_sync_flg

QEP_A

QEP_B

QEP_index

I/F

H/WQ15

DRV

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Dependent, Application Dependent

Target Devices: x24x/x24xx

Direct ASM File Name: qep_drv.asm

C−Callable Version File Names: F243QEP1.C, F243QEP2.ASM, F243QEP.H,
F2407QEP1.C, F2407QEP2.ASM, F2407QEP.HQEP.H

Item ASM Only C-Callable ASM Comments

Code size 53 words 108 words†

Data RAM 9 words 0 words†

Multiple instances No See note

† Each pre-initialized QEP structure instance consumes 13 words in the data memory and 15 words in the
.cinit section.

Note: Multiple instances must point to distinct interfaces on the target device. Multiple instances pointing
to the same QEP interface in hardware may produce undefined results. So the  number of interfaces
on the F241/3 is limited to one, while there can be upto two such interfaces on the LF2407.
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Direct ASM Interface

Table 51.  Module Terminal Variables/Functions

Name Description Format Range

H/W Inputs QEP_A Quadrature pulse A input to
24x/24xx from the position encoder

N/A N/A

QEP_B Quadrature pulse B input to
24x/24xx from the position encoder

N/A N/A

QEP_index Zero index pulse input to 24x/24xx
from the position encoder

N/A N/A

Outputs theta_elec Per unit (pu) electrical
displacement of the rotor.

Q15 0−7FFF
(0−360
degree)

theta_mech Per unit (pu) mechanical
displacement of the rotor

Q15 0−7FFF
(0−360
degree)

dir_QEP Rotor direction of rotation signal Q0 0 or F

index_sync_flg Flag variable for synchronizing
rotor displacement calculation with
zero index pulse.

Q0 0 or F

QEP_cnt_idx T2CNT value prior to resetting it at
the occurrence of the index pulse.

Q0 N/A

Init / Config 24x/24xx† Select appropriate 24x/24xx device
in the x24x_app.h file.

polepairs† Number of pole pairs in the motor Q0 N/A

cal_angle† Timer 2 counter (T2CNT) value
when the rotor mechanical
displacement is 0.

Q0 N/A

mech_scale† Scaling factor for converting
T2CNT values to per unit
mechanical displacement.

Q26 N/A

† From the system file, initialize these parameters with the desired values if the default values are not used.
These are initialized to some default values in the init routine (QEP_THETA_DRV_INIT).

Variable Declaration: 
In the system file include the following statements:

.ref QEP_THETA_DRV, QEP_THETA_DRV _INIT ;function call

.ref QEP_INDEX_ISR_DRV ;ISR call

.ref polepairs, cal_angle, mech_scale ;inputs

.ref theta_elec, theta_mech, dir_QEP ;outputs

.ref index_sync_flg, QEP_cnt_idx ;outputs

Memory map: 
All variables are mapped to an uninitialized named section ‘qep_drv’
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Example:

CALL QEP_THETA_DRV

ldp #output_var1 ;Set DP for output variable
bldd #theta_elec, output_var1 ;Pass module outputs to output variables
bldd #theta_mech, output_var2
bldd #dir_QEP, output_var3

Note:

This module does not need any input parameter passing in the interrupt routine. It
receives it’s inputs from the hardware(H/W) internal to 24x/24xx. The signals from
the shaft position encoder are first applied to the appropriate QEP pins of 24x/24xx
device. Then the QEP interface(QEP I/F) H/W inside 24x/24xx generates three inter-
mediate signals which are finally used as inputs to this module.
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C/C-Callable ASM Interface

Object Definition The structure of the EVMDAC object is defined by the following structure definition

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Define the structure of the QEP (Quadrature Encoder) Driver Object 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
typedef struct {
       int theta_elec;     /* Motor Electrical Angle, Q15, Output   */
       int theta_mech;     /* Motor Mechanical Angle  Q15, Output   */
       int QepDir;         /* Motor rotation direction Q0, Output   */
       int dwn_cnt_offset; /* Encoder offset 65533− #lines Q0,Input */
       int theta_raw;      /* Raw angle  Q0, Internal, Output       */
       int mech_scaler;    /* Scaler for conv’n to Q15 Q15,Parameter*/
       int pole_pairs;     /* # of poles/2 for the motor, Q0 Input  */
       int rev_counter;    /* # of index events, Q0, Output+History */
       int pulse_count;    /* Pulses on encoder at index− Output−Q0 */
       int index_flag ;    /* Index sync status Q0 output+History   */
       int (*calc)();      /* Pointer to the calc funtion           */
       int (*init)();      /* Pointer to the init funcion           */
       int (*indexevent)(); /* Pointer to index event handler       */
       }  QEP ;

Table 52.  Module Terminal Variables/Functions

Name Description Format Range

H/W Inputs QEP_A Quadrature pulse A input to 24x/24xx
from the position encoder

N/A N/A

QEP_B Quadrature pulse B input to 24x/24xx
from the position encoder

N/A N/A

QEP_index Zero index pulse input to 24x/24xx from
the position encoder

N/A N/A

Outputs theta_elec Per unit (pu) electrical displacement of
the rotor.

Q15 0−7FFF
(0−360
degree)

theta_mech Per unit (pu) mechanical displacement of
the rotor

Q15 0−7FFF
(0−360
degree)

QEP_dir Rotor direction of rotation signal Q0 0 or F

index_flg Flag variable for synchronizing rotor
displacement calculation with zero index
pulse.

Q0 0 or F

QEP_cnt_idx T2CNT value prior to resetting it at the
occurrence of the index pulse.

Q0 N/A

Init /
Config

24x/24xx† Select appropriate 24x/24xx device in the
x24x_app.h file.

pole_pairs† Number of pole pairs in the motor Q0 N/A

cal_angle† Timer 2 counter (T2CNT) value when the
rotor mechanical displacement is 0.

Q0 N/A
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RangeFormatDescriptionName

mech_scale† Scaling factor for converting T2CNT
values to per unit mechanical
displacement.

Q26 N/A

rev_counter Number of index events handled. Q0 −32768
to
32767

† From the system file, initialize these parameters with the desired values if the default values are not used.
These are initialized to some default values in the init routine (QEP_THETA_DRV_INIT).

Special Constants and Datatypes

QEP
Module definition data type.

QEP_DEFAULTS 
Initializer for the QEP Object. This provides the initial values to the variables as well
as method pointers.

Module Usage Instantiation:
The interface to the QEP is instanced thus:

QEP qep1;

Initialization:
To instance a pre−initialized interface:

QEP qep1=QEP_DEFAULTS;

To initialize the QEP measurement hardware (timer/counter etc) call the init function:

qep1.init(&qep1);

Invoking the angle calculation function:

qep.calc(&qep1);

Invoking the index event handler:
The index event handler resets the QEP counter, and synchronizes the software / hard-
ware counters to the index pulse. Also it sets the QEP.index_flag variable to reflect that
an index sync has occurred.

The index handler is invoked in an interrupt service routine. Of course the system
framework must ensure that the index signal is connected to the correct pin and the
appropriate interrupt is enabled and so on.

void interrupt_linked_to_the_index()
{

qep1.index_event(&qep1);
}
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Background Information

Example:
1000 QEP pulses = 4000 counter “ticks,” per 360°

θ1

θ2

∆ θ

index

1000

ω

1234

Figure 16.  Speed Sensor Disk

Figure 16 shows a typical speed sensor disk mounted on a motor shaft for motor
speed, position and direction sensing applications. When the motor rotates, the sensor
generates two quadrature pulses and one index pulse. These signals are shown in
Figure 17 as QEP_A, QEP_B and QEP_index.

QEP_A

QEP_B

QEP_index

QEP CLK
(H/W)

DIR
(H/W)

One revolution
(360 mechanical degrees)

Figure 17.  Quadrature Encoder Pulses, Decoded Timer Clock and Direction Signal

These signals are applied to 24x/24xx CAP/QEP interface circuit to determine the mo-
tor speed, position and direction of rotation. QEP_A and QEP_B signals are applied
to the QEP1 and QEP2 pins of 24x/24xx device respectively. QEP_index signal is ap-
plied to the CAP3 pin. The QEP interface circuit in 24x/24xx, when enabled (CAP-
CONx[13,14]), count these QEP pulses and generates two signals internal to the de-
vice. These two signals are shown in Figure 17 as QEP_CLK and DIR. QEP_CLK sig-
nal is used as the clock input to GP Timer2. DIR signal controls the GP Timer2 counting
direction.

Now the number of pulses generated by the speed sensor is proportional to the angular
displacement of the motor shaft. In Figure 16, a complete 360° rotation of motor shaft
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generates 1000 pulses of each of the signals QEP_A and QEP_B. The QEP circuit in
24x/24xx counts both edges of the two QEP pulses. Therefore, the frequency of the
counter clock, QEP_CLK, is four times that of each input sequence. This means, for
1000 pulses for each of QEP_A and QEP_B, the number of counter clock cycles will
be 4000. Since the counter value is proportional to the number of QEP pulses, there-
fore, it is also proportional to the angular displacement of the motor shaft.

The counting direction of GP Timer2 is reflected by the status bit, BIT14, in GPTCON
register. Therefore, in the s/w, BIT14 of GPTCON is checked to determine the direction
of rotation of the motor.

The capture module (CAP3) is configured to generate an interrupt on every rising edge
of the QEP_index signal. In the corresponding CAP3 interrupt routine the function
QEP_INDEX_ISR_DRV is called. This function resets the timer counter T2CNT and
sets the index synchronization flag index_sync_flg to 000F. Thus the counter T2CNT
gets reset and starts counting the QEP_CLK pulses every time a QEP_index high
pulse is generated.

To determine the rotor position at any instant of time, the counter value(T2CNT) is read
and saved in the variable theta_raw. This value indicates the clock pulse count at that
instant of time. Therefore, theta_raw is a measure of the rotor mechanical displace-
ment in terms of the number of clock pulses. From this value of theta_raw, the corre-
sponding per unit mechanical displacement of the rotor, theta_mech, is calculated as
follows:

Since the maximum number of clock pulses in one revolution is 4000 (ENCOD-
ER_MAX=4000), i.e., maximum count value is 4000, then a coefficient, mech_scale,
can be defined as,

( )
)Qin(count/displacementmechpu

count/displacementmechpu/scale_mech
displacementmechanical)pu(unitpermechanicalscale_mech

2616777
40001

13604000 0

=
=⇒

==×

Then, the pu mechanical displacement, for a count value of theta_raw, is given by,

raw_thetascale_mechmech_theta ×=

If the number of pole pair is polepairs, then the pu electrical displacement is given by,

mech_thetapolepairselec_theta ×=
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Ramp Control ModuleRAMP_CNTL

Description This module implements a ramp up and ramp down function. The output flag variable
s_eq_t_flg is set to 7FFFh when the output variable setpt_value equals the input vari-
able target_value.

RAMP_CNTL

setpt_value

target_value
s_eq_t_flg

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: rmp_cntl.asm

C-Callable ASM File Names: rmp_cntl.asm, rmp_cntl.h

Item ASM Only C-Callable ASM Comments

Code size 47 words 72 words†

Data RAM 7 words 0 words†

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized RMPCNTL structure instance consumes 8 words in the data memory and 10 words
in the .cinit section.
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Direct ASM Interface

Table 53.  Module Terminal Variables/Functions

Name Description Format Range

Input target_value Desired value of the ramp Q0 rmp_lo_limit
–
rmp_hi_limit

Outputs setpt_value Ramp output value Q0 rmp_lo_limit
–
rmp_hi_limit

s_eq_t_flg Ramp output status flag Q0 0 or 7FFF

Init / Config rmp_dly_max† Ramp step delay in number of
sampling cycles

Q0 0−7FFF

rmp_hi_limit† Maximum value of ramp Q0 0−7FFF

rmp_lo_limit† Minimum value of ramp Q0 0−7FFF

† From the system file, initialize these variables as required by the application. From the Real-Time Code
Composer window, specify target_value to vary the output signal setpt_value.

Variable Declaration:
In the system file include the following statements:

.ref RAMP_CNTL, RAMP_CNTL_INIT ; function call

.ref target_value ; Inputs

.ref rmp_dly_max, rmp_lo_limit ; Input Parameters

.ref rmp_hi_limit ; Input Parameter

.ref setpt_value, s_eq_t_flg ; Outputs

Memory map:
All variables are mapped to an uninitialized named section  ‘rmp_cntl’

Example:

ldp #target_value ;Set DP for module input
bldd #input_var1, target_value ;Pass input variable to module input

CALL RAMP_CNTL

ldp #output_var1 ;Set DP for output variable
bldd #setpt_value, output_var1 ;Pass module output to output variable
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Object Definition The structure of the RMPCNTL object is defined in the header file, rmp_cntl.h, as
seen in the following:

typedef struct { int  target_value; /* Input: Target input (Q15) */
int  rmp_dly_max; /* Parameter: Maximum delay rate */
int  rmp_lo_limit; /* Parameter: Minimum limit (Q15) */
int  rmp_hi_limit; /* Parameter: Maximum limit (Q15) */
int  rmp_delay_cntl; /* Variable: Incremental delay  */
int  setpt_value; /* Output: Target output (Q15) */
int  s_eq_t_flg; /* Output: Flag output */
int  (*calc)();   /* Pointer to calculation function */ 

} RMPCNTL;

Special Constants and Datatypes

RMPCNTL
The module definition itself is created as a data type. This makes it convenient to
instance a RMPCNTL object. To create multiple instances of the module simply de-
clare variables of type RMPCNTL.

RMPCNTL_DEFAULTS
Initializer for the RMPCNTL object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers. This is initialized in the header
file, rmp_cntl.h.

Methods void calc(RMPCNTL *);
This default definition of the object implements just one method – the runtime compute
function for ramp control. This is implemented by means of a function pointer, and the
default initializer sets this to rmp_cntl_calc function. The argument to these functions
is the address of the RMPCNTL object. Again, this statement is written in the header
file, rmp_cntl.h.

Module Usage Instantiation:
The following example instances two such objects

RMPCNTL rmpc1, rmpc2;

Initialization:
To instance a pre-initialized object:

RMPCNTL rmpc1 = RMPCNTL_DEFAULTS;
RMPCNTL rmpc2 = RMPCNTL_DEFAULTS;

Invoking the compute function:

rmpc1.calc(&rmpc1); 
rmpc2.calc(&rmpc2);
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Example:
Lets instance two RMPCNTL objects, otherwise identical, and run two ramp control-
ling variables. The following example is the c source code for the system file.

RMPCNTL rmpc1= RMPCNTL_DEFAULTS; /* instance the first object */
RMPCNTL rmpc2 = RMPCNTL_DEFAULTS; /* instance the second object */

main()
{

rmpc1.target_value = input1; /* Pass inputs to rmpc1 */
rmpc2.target_value = input2; /* Pass inputs to rmpc2 */

}

void interrupt periodic_interrupt_isr()
{

rmpc1.calc(&rmpc1); /* Call compute function for rmpc1 */
rmpc2.calc(&rmpc2); /* Call compute function for rmpc2 */

output1 = rmpc1.setpt_value; /* Access the outputs of rmpc1 */
output2 = rmpc2.setpt_value; /* Access the outputs of rmpc2 */

}
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Background Information

Implements the following equations:

Case 1: When target_value > setpt_value

setpt_value = setpt_value + 1,for t = n . Td, n = 1, 2, 3…
and (setpt_value + 1) < rmp_hi_limit

= rmp_hi_limit , for (setpt_value + 1) > rmp_hi_limit

where,
Td = rmp_dly_max . Ts
Ts = Sampling time period

Case 2: When target_value < setpt_value

setpt_value = setpt_value − 1, for t = n . Td, n = 1, 2, 3….. 
and (setpt_value − 1) > rmp_lo_limit

= rmp_lo_limit , for (setpt_value − 1) < rmp_lo_limit

where,
Td = rmp_dly_max . Ts
Ts = Sampling time period

target_value < setpt_value

target_value>
setpt_value target_value > setpt_value

1
Td

rmp_hi_limit

rmp_lo_limit

t

setpt_value

Example:

setpt_value = 0 (initial value), target_value = 1000 (user specified),
rmp_dly_max = 500 (user specified), sampling loop time period Ts = 0.000025 Sec.

This means that the time delay for each ramp step is Td = 500x0.000025 = 0.0125 Sec.
Therefore, the total ramp time will be Tramp = 1000x0.0125 Sec = 12.5 Sec
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Ramp GeneratorRAMP_GEN

Description This module generates ramp output of adjustable gain, frequency and dc offset.

RAMP_GEN rmp_out

rmp_gen

rmp_freq
Q15/Q15

rmp_offset

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version.

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Direct ASM Version File Name: rampgen.asm

C-Callable Version File Names: rampgen.asm, rampgen.h

Item ASM Only C-Callable ASM Comments

Code size 28 words 27 words text +
cinit mem†

Data RAM 8 words 0 words†

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized RAMPGEN structure consumes 7 words in the data memory and 9 words in the .cinit
section.
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Table 54.  Module Terminal Variables/Functions

Name Description Format Range

Inputs rmp_gain Normalized slope of the ramp
signal.

Q15 0−7FFF

rmp_offset Normalized DC offset in the ramp
signal.

Q15 0−7FFF

rmp_freq Normalized frequency of the ramp
signal.

Q15 0−7FFF

Outputs rmp_out Normalized Ramp output Q15 0−7FFF

Init / Config step_angle_max Initialize the maximum ramp
frequency by specifying this
maximum step value. The default
value is set to 1000 to generate a
maximum frequency of 305.2Hz
using a 20kHz sampling loop.

Q0 User
specified

Variable Declaration:
In the system file include the following statements:

.ref RAMP_GEN, RAMP_GEN_INIT ;function call

.ref rmp_gain, rmp_offset, rmp_freq ;inputs

.ref step_angle_max ;input

.ref rmp_out ;output

Memory map:
All variables are mapped to an uninitialized named section ‘rampgen’

Example:

ldp #rmp_gain ;Set DP for module inputs
bldd #input_var1, rmp_gain ;Pass input variables to module inputs
bldd #input_var2, rmp_freq
bldd #input_var3, rmp_offset

CALL RAMP_GEN

ldp #output_var1 ;Set DP for output variable
bldd #rmp_out, output_var1 ;Pass module output to output variable
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Object Definition The structure of the RAMPGEN object is defined by the following structure definition

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Define the structure of the RAMPGEN Ramp Function Generator
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
typedef struct {   
                int freq;     /* Frequency setting Q15 Input      */
                int freq_max; /* Frequency setting Q0  Input      */
                int alpha;    /* Internal var history             */
                int gain;     /* Waveform amplitude Q15 Input     */
                int offset;   /* Offset setting Q15 Input         */
                int out;      /* Ramp outputQ15 Output            */
                int (*calc)(); /* Pointer to calculation function */
               } RAMPGEN;

Table 55.  Module Terminal Variables/Functions

Name Description Format Range

Inputs gain Normalized slope of the ramp signal. Q15 0−7FFF

offset Normalized DC offset in the ramp
signal.

Q15 0−7FFF

freq Normalized frequency of the ramp
signal.

Q15 0−7FFF

Outputs out Normalized Ramp output Q15 0−7FFF

Init / Config freq_max Initialize the maximum ramp
frequency by specifying this maximum
step value. The default value is set to
1000 to generate a maximum
frequency of 305.2Hz using a 20kHz
sampling loop.

Q0 User
specified

Special Constants and Datatypes

RAMPGEN
Data type for instancing Rampgen module(s).

RAMPGEN_handle
Typedefed to RAMPGEN *.

RAMPGEN_DEFAULTS
Default values for RAMPGEN objects.
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Methods void calc(RAMPGEN_handle);
Invoke this function to compute the next point on the RAMP. The RAMPGEN properties
must be initialized properly before calling the compute function. Also it is VERY impor-
tant that the method pointer in the RAMPGEN object be initialized to a valid RAMPGEN
compute function, to avoid execution into garbage and system crashes.

Module Usage Instantiation:
The following example instances two such objects:

RAMPGEN rmp1,rmp2;

Initialization:
The above creates ‘empty’ object.  To create pre-initialized objects,  the following form
can be used:

RAMPGEN rmp1= RAMPGEN_DEFAULTS;
RAMPGEN rmp2= RAMPGEN_DEFAULTS;

Invoking the compute function:

rmp1.calc(&rmp1);

Computes the next point of the ramp.

Example:

RAMPGEN ramp1=RAMP_DEFAULTS;

main()
{

ramp1.freq=0x2000;
}

void periodic_interrupt_isr()
{

int output;
ramp1.calc(&ramp1); /* Call the ramp calculation function */
output=ramp1.out; /* Access output of ramp              */

/* Do something with the output  */

. . . 

. . . 

. . . 

. . .

}
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Background Information

In this implementation the frequency of the ramp output is controlled by a precision fre-
quency generation algorithm which relies on the modulo nature (i.e. wrap-around) of
finite length variables in 24x/24xx. One such variable, called alpha_rg (a data memory
location in 24x/24xx) in this implementation, is used as a modulo-16 variable to control
the time period (1/frequency) of the ramp signal. Adding a fixed step value
(step_angle_rg) to this variable causes the value in alpha_rg to cycle at a constant rate
through 0 to FFFFh. At the end limit the value in alpha_rg simply wraps around and
continues at the next modulo value given by the step size. The rate of cycling through
0 to FFFFh is very easily and accurately controlled by the value of the step size.

For a given step size, the frequency of the ramp output (in Hz) is given by:

f �
step_angle_rg 
 fs

2m

where

fs = sampling loop frequency in Hz

m = # bits in the auto wrapper variable alpha_rg.

From the above equation it is clear that a step_angle_rg value of 1 gives a frequency
of 0.3052Hz when m=16 and fS=20kHz. This defines the frequency setting resolution
of the ramp output.

Now if the maximum step size is step_angle_max and the corresponding maximum
frequency is fmax, then from the above equation we have,

fmax �
step_angle_max 
 fs

2m

From the last two equations we have,

f
fmax

�
step_angle_rg

step_angle_max
� step_angle_rg � rmp_freq 
 step_angle_max

This last equation is implemented in the code to control the frequency of the ramp out-
put. Here, the normalized ramp output frequency, rmp_freq, is given by,

rmp_freq � f
fmax

In the code the variable step_angle_max is initialized to 1000. This means the maxi-
mum ramp frequency is fmax=305.17 Hz, when m=16 and fs=20kHz.
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Ramp2 Control ModuleRMP2CNTL

Description This module implements a ramp up and ramp down function. The output variable
rmp2_out follows the desired ramp value rmp2_desired.

RMP2CNTL
rmp2_outrmp2_desired

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: rmp2cntl.asm

C-Callable Version File Name: rmp2cntl.asm, rmp2.h

Item ASM Only C-Callable ASM Comments

Code size 48 words 53 words†

Data RAM 6 words 0 words†

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized RMP2 structure instance consumes 7 words in the data memory and 9 words in the
.cinit section.
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Table 56.  Module Terminal Variables/Functions

Name Description Format Range

Input rmp2_desired Desired output value of ramp 2 Q0 0−7FFF

Output rmp2_out Ramp 2 output Q0 rmp2_min
–
rmp2_max

Init / Config rmp2_dly† Ramp 2 step delay in number of
sampling cycles

Q0 0−7FFF

rmp2_max† Maximum value of ramp 2 Q0 0−7FFF

rmp2_min† Minimum value of ramp 2 Q0 0−7FFF

† From the system file, initialize these variables as required by the application. From the Real-Time Code
Composer watch window, specify rmp2_desired to vary the output signal rmp2_out.

Variable Declaration:
In the system file include the following statements:

.ref RMP2CNTL, RMP2CNTL_INIT ;function call

.ref  rmp2_dly, rmp2_desired ;input

.ref  rmp2_max, rmp2_min, rmp2_out ;input/output

Memory map:
All variables are mapped to an uninitialized named section  ‘rmp2cntl’

Example:

ldp #rmp2_desired ;Set DP for module input
bldd #input_var1, rmp2_desired ;Pass input variable to module input

CALL RMP2CNTL

ldp #output_var1 ;Set DP for output variable
bldd #rmp2_out, output_var1 ;Pass module output to output variable
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Object Definition The structure of the RMP2 Object is defined by the following structure definition

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Define the structure of the RMP2
(Ramp2 control module)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

typedef struct {
int max   /*  Maximum  value of Ramp2  */
int min;   /*  Minimum  value of Ramp2                         */
int dly;   /* Ramp 2 step delay in number of sampling cycles       */
int delay_cntr; /* Counter for ramp 2 step delay  */
int desired;     /*  Desired value of ramp2    */
int out;         /*  Ramp2 output   */
int (*calc)();   /*  Pointer to the calculation function  */
} RMP2;

Table 57.  Module Terminal Variables/Functions

Name Description Format Range

Inputs delay_cntr Counter for ramp 2 step delay Q0 0−7FFF

dly Ramp 2 step delay in number of
sampling cycles

Q0 0−7FFF

desired Desired value of ramp 2 Q0 0−7FFF

max Maximum value of ramp 2 Q0 0−7FFF

min Minimum value of ramp 2 Q0 0−7FFF

Output out Ramp 2 output Q0 min–max

Special Constants and Datatypes

RMP2
The module definition itself is created as a data type. This makes it convenient to
instance a ramp2 control module.To create multiple instances of the module simply de-
clare variables of type RMP2

RMP2_handle
Typedef’ed to RMP2 *

RMP2_DEFAULTS;
Initializer for the RMP2 Object. This provides the initial values to the terminal variables,
internal variables, as well as method pointers.

Methods void calc (RMP2_handle)
The default definition of the object implements just one method – the runtime computa-
tion of the ramp2 control function. This is implemented by means of a function pointer,
and the default initializer sets this to rmp2_calc. The argument to this function is the
address of the RMP2 object.

Module Usage Instantiation:
The following example instances two such objects:

RMP2 p1,p2
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Initialization:
To instance a pre-initialized object

RMP2 p1=RMP2_DEFAULTS, p2=RMP2_DEFAULTS;

Invoking the compute function:

p1.calc(&p1);

Example:
Lets instance one RMP2 object

RMP2  p1 = RMP2_DEFAULTS; /* Instance the first object*/
RMP2  p2 = RMP2_DEFAULTS; /* Instance the second object*/

main()
{

p1.desired = 8; /* initialize */
p1.min=50;
p1.out = 30;
p1.dly = 1;

p2.desired = 6; /* initialize */
p2.min=60;
p2.out = 40;
p2.dly = 2;

}

void interrupt periodic_interrupt_isr()
{

(*p1.calc)(&p1); /* Call compute function for p1 */

(*p2.calc)(&p2); /* Call compute function for p2 */

x = p1.out; /* Access the output */

q = p2.out; /* Access the output */

/* Do something with the outputs */

}
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Background Information

Implements the following equations:

Case 1: When rmp2_desired > rmp2_out.

rmp2_out = rmp2_out + 1, for t = n . Td, n = 1, 2, 3….. and (rmp2_out + 1)< rmp2_max
= rmp2_max, for (rmp2_out + 1)>rmp2_max

where,
Td = rmp2_dly . Ts
Ts = Sampling time period

Case 2: When rmp2_desired < rmp2_out.

rmp2_out = rmp2_out − 1, for t = n . Td, n = 1, 2, 3….. and (rmp2_out − 1)> rmp2_min
= rmp2_min, for (rmp2_out − 1)<rmp2_min

where,
Td = rmp2_dly . Ts
Ts = Sampling time period

rmp2_desired < rmp2_out

rmp2_desired >
rmp2_out rmp2_desired > rmp2_out

1
Td

rmp2_max

rmp2_min

t

rmp2_out

Example:

rmp2_out=0(initial value), rmp2_desired=1000(user specified), 
rmp2_dly=500(user specified), sampling loop time period Ts=0.000025 Sec.

This means that the time delay for each ramp step is Td=500x0.000025=0.0125 Sec.
Therefore, the total ramp time will be Tramp=1000x0.0125 Sec=12.5 Sec
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Ramp3 Control ModuleRMP3CNTL

Description This module implements a ramp down function. The output flag variable
rmp3_done_flg is set to 7FFFh when the output variable rmp3_out equals the input
variable rmp3_desired.

RMP3CNTL

rmp3_out

rmp3_desired
rmp3_done_flg

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: rmp3cntl.asm, rmp3.h

C-Callable Version File Name: rmp3cntl.asm

Item ASM Only C-Callable ASM Comments

Code size 33 words 45 words†

Data RAM 6 words 0 words†

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre−initialized RMP3 structure instance consumes 7 words in the data memory and 9 words in the
.cinit section.
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Direct ASM Interface

Table 58.  Module Terminal Variables/Functions

Name Description Format Range

Input rmp3_desired Desired value of ramp 3 Q0 0−7FFF

Outputs rmp3_out Ramp 3 output Q0 rmp3_min–
7FFF

rmp3_done_flg Flag output for indicating ramp
3 status

Q0 0 or 7FFF

Init / Config rmp3_min† Minimum value of ramp 3 Q0 0−7FFF

rmp3_dly† Ramp 3 step delay in number of
sampling cycles

Q0 0−7FFF

rmp3_desired† Desired value of ramp 3 Q0 0−7FFF

rmp3_out† Ramp 3 output Q0 0−7FFF

† From the system file, initialize these variables as required by the application.

Variable Declaration:
In the system file include the following statements:

.ref  RMP3CNTL, RMP3CNTL_INIT ;function call

.ref  rmp3_dly, rmp3_desired ;input

.ref  rmp3_min, rmp3_done_flg, rmp3_out ;input/output

Memory map:
All variables are mapped to an uninitialized named section  ‘rmp3cntl’

Example:

ldp #rmp3_desired ;Set DP for module input
bldd #input_var1, rmp3_desired ;Pass input variables to module inputs
bldd #input_var2, rmp3_dly

CALL RMP3CNTL

ldp #output_var1 ;Set DP for output variable

bldd #rmp3_out, output_var1 ; Pass module outputs to output variables
bldd #rmp3_done_flg, output_var2
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Object Definition The structure of the RMP3 Object is defined by the following structure definition

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Define the structure of the RMP3
(Ramp3 control module)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

typedef struct{

int desired; /* Desired value of ramp3 */
int dly; /* ramp3 step delay */
int dly_cntr; /* counter for ramp3 step delay  */
int min; /* minimun value of ramp3 */
int out; /* ramp3 output */
int done_flg; /* flag output for indicating ramp3 status */
int (*calc)(); /* pointer to calculation function */

}RMP3;

Table 59.  Module Terminal Variables/Functions

Name Description Format Range

Input dly_cntr Counter for ramp 3 step delay Q0 0−7FFFh

dly Ramp 3 step delay in number of
sampling cycles

Q0 0−7FFFh

desired Desired value of ramp 3 Q0 0−7FFFh

min Minimum value of ramp 3 Q0 0−7FFFh

Outputs out Ramp 3 output Q0 min–7FFFh

done_flg Flag output for indicating ramp
3 status

Q0 0 or 7FFFh

Special Constants and Datatypes

RMP3
The module definition itself is created as a data type. This makes it convenient to
instance a ramp3 control module.To create multiple instances of the module simply de-
clare variables of type RMP3

RMP3_handle
Typedef’ed to RMP3 *

RMP3_DEFAULTS;
Initializer for the RMP3 Object. This provides the initial values to the terminal variables,
internal variables, as well as method pointers.

Methods void calc (RMP3_handle)
The default definition of the object implements just one method – the runtime imple-
mentation of the ramp3 control. This is implemented by means of a function pointer,
and the default initializer sets this to rmp3_calc. The argument to this function is the
address of the RMP3 object.

Module Usage Instantiation:
The following example instances one such objects:

RMP3 p1,p2
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Initialization:
To instance a pre-initialized object

RMP3 p1=RMP3_DEFAULTS, p2=RMP3_DEFAULTS;

Invoking the compute function:

p1.calc(&p1);

Example:
Lets instance two RMP3 objects,otherwise identical ,but running with different values

RMP3 p1 =RMP3_DEFAULTS; /* initialization */
RMP3 p2 =RMP3_DEFAULTS; /* initialization */

main()
{

p1.desired = 3;
p1.min     = 12;
p1.out     = 15;
p1.dly     = 3;

p2.desired = 7;
p2.min     = 30;
p2.out     = 10;
p2.dly     = 12;

}
void interrupt periodic_interrupt_isr()
{

(*p1.calc)(&p1); /* Call compute function for p1 */
(*p2.calc)(&p2); /* Call compute function for p2 */

 x=p1.out; /* Access the output */
y=p1.done_flg; /* Access the output */

 p=p2.out; /* Access the output */
q=p2.done_flg; /* Access the output */

/* Do something with the outputs */

}
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Background Information

Implements the following equations:

rmp3_out = rmp3_out − 1, for t = n . Td, n = 1, 2, 3….. and (rmp3_out − 1)> rmp3_min
= rmp3_min, for (rmp3_out − 1)<rmp3_min

rmp3_done_flg = 7FFF, when rmp3_out = rmp3_desired or rmp3_min

where,
Td = rmp3_dly . Ts
Ts = Sampling time period

1

Td

rmp3_min

rmp3_out

rmp3_desired
t

Example:

Rmp3_out=500(user specified initial value), rmp3_desired=20(user specified), 
Rmp3_dly=100(user specified), sampling loop time period Ts=0.000025 Sec.

This means that the time delay for each ramp step is Td=100x0.000025=0.0025 Sec.
Therefore, the total ramp down time will be Tramp=(500−20)x0.0025 Sec=1.2 Sec
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2-Phase Sine Generator with Variable Phase ControlSINCOSPH

Description The software module “SINCOSPH” generates two sine waves with variable magnitude
(gain_cs), frequency (freq), and phase difference (phase).  The two sine waves are
“sine_a1” and “sine_a2”. The maximum magnitude of these waves set by the variable
“gain_cs”. The frequency of the waves is set by “freq” and the phase difference is set
by the variable “phase”.

SINCOSPH

sine_a1

sine_a2

gain_cs

phase

freq

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: sincosph.asm

ASM Routines: SINCOSPH, SINCOSPH _INIT

C-Callable ASM File Names: sincosph.asm, sincosph.h

Item ASM Only C-Callable ASM Comments

Code size 53 words 58 words†

Data RAM 13 words 0 words†

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized SINCOSPH structure instance consumes 7 words in the data memory and 9 words in
the .cinit section.
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Table 60.  Module Terminal Variables/Functions

Name Description Format Range

Inputs gain_cs This sets the magnitude of the
sine waves

Q15 0−7FFFh

freq The frequency of the sine waves
(frequency is same for both
waves)

Q15 0−7FFFh

phase This sets the phase difference
between the waves.

Q00 0−180

Outputs sine_a1 The first sine wave Q15 8000h <
sine_a1 <
7FFFh

sine_a2 The second wave. The phase
difference between first and
second wave will be equal to
“phase” angle

Q15 8000h <
sine_a2 <
7FFFh

Init / Config none

Variable Declaration:
In the system file include the following statements:

.ref SINCOSPH, SINCOSPH_INIT ;function call

.ref gain_cs, freq, phase ;Inputs

.ref sine_a1, sine_a2, ;Outputs

Memory map:
All variables are mapped to an uninitialized named section ‘sincos’

Example:

LDP #gain_cs ; Set data page pointer (DP) for module 
BLDD #v_out, gain_cs ; Passing input variables to module inputs.

; Here “v_out” is the magnitude of the waves
BLDD #vhz_freq, freq ; “vhz_freq” is the frequency of the waves
BLDD #phase_in, phase ; “phase_in” is the phase angle.

CALL SINCOSPH

LDP #output_variable ; Set DP for output variable
BLDD #sine_a1, output_var1 ; Pass the value of first sine wave
BLDD #sine_a2, output_var2 ; Pass the value of second sine wave
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C/C-Callable ASM Interface

Object Definition The structure of the SINCOSPH object is defined in the header file, sincosph.h, as
seen in the following:

typedef struct { int  phase_cs; /* Input: Phase shift in degree (Q0) */
int  freq_cs; /* Input: Frequency (Q15) */
int  gain_cs; /* Input: Magnitude (Q15) */
int  sg2_freq_max; /* Parameter: Maximum step angle (Q0) */
int  ALPHA_a1; /* Variable: Incremental angle (Q0) */
int  sine_a1; /* Output: Sinusoidal output 1 (Q15) */
int  sine_a2; /* Output: Sinusoidal output 2 (Q15) */
int  (*calc)(); /* Pointer to calculation function */ 

} SINCOSPH;

Special Constants and Datatypes

SINCOSPH
The module definition itself is created as a data type. This makes it convenient to
instance a SINCOSPH object. To create multiple instances of the module simply de-
clare variables of type SINCOSPH.

SINCOSPH_DEFAULTS
Initializer for the SINCOSPH object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers. This is initialized in the header
file, sincosph.h.

Methods void calc(SINCOSPH *);
This default definition of the object implements just one method – the runtime compute
function for sine-cosine generation. This is implemented by means of a function point-
er, and the default initializer sets this to sincosph_calc function. The argument to
these functions is the address of the SINCOSPH object. Again, this statement is writ-
ten in the header file, sincosph.h.

Module Usage Instantiation:
The following example instances two such objects

SINCOSPH sc1, sc2;

Initialization:
To instance a pre-initialized object:

SINCOSPH sc1 = SINCOSPH_DEFAULTS;
SINCOSPH sc2 = SINCOSPH_DEFAULTS;

Invoking the compute function:

sc1.calc(&sc1); 
sc2.calc(&sc2);
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Example:
Lets instance two SINCOSPH objects, otherwise identical, and run two sine-cosine
generators. The following example is the c source code for the system file.

SINCOSPH sc1= SINCOSPH_DEFAULTS; /* instance the first object */
SINCOSPH sc2 = SINCOSPH_DEFAULTS; /* instance the second object */

main()
{

sc1.phase_cs = phase_in1;  /* Pass inputs to sc1 */
sc1.freq_cs = freq_in1;  /* Pass inputs to sc1 */
sc1.gain_cs = gain_in1;  /* Pass inputs to sc1 */
sc2.phase_cs = phase_in2;  /* Pass inputs to sc2 */
sc2.freq_cs = freq_in2;  /* Pass inputs to sc2 */
sc2.gain_cs = gain_in2;  /* Pass inputs to sc2 */

}

void interrupt periodic_interrupt_isr()
{

sc1.calc(&sc1); /* Call compute function for sc1 */
sc2.calc(&sc2); /* Call compute function for sc2 */

sine1 = sc1.sine_a1; /* Access the outputs of sc1 */
sine2 = sc1.sine_a2; /* Access the outputs of sc1 */

sine3 = sc2.sine_a1; /* Access the outputs of sc2 */
sine4 = sc2.sine_a2; /* Access the outputs of sc2 */

}
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Background Information

The generation of the sine wave is performed using a look up table.  To be able to con-
trol the frequency of sine waves, a method based on the modulo mathematical opera-
tion is used. For more information, see Digital Signal Processing applications with the
TMS320 Familt: Theory, Algorithms, and Implementations, Volume 1, (Literature Num-
ber SPRA012A).

A 16 bit software counter is used to determine the location of the next value of the sine
waves. A step value is added to the counter every time a new value from the sine table
is to be loaded. By changing the value of the step, one can accurately control the fre-
quency of the sine wave.

Although a 16 bit counter is used, the upper byte determines the location of the next
sine value to be used; thus, by changing how quickly values overflow from the lower
byte (i.e. manipulating the step value), the frequency of the sine wave can be changed.
The modulo mathematical operation is used when there is overflow in the accumulator
from the lower word to the upper word.  When an overflow occurs, only the remainder
(lower word) is stored.

For example, the counter is set to 0000h and the step value is set to 40h.  Every time
a value is to be looked up in the table, the value 40h is added to the counter; however,
since the upper byte is used as the pointer on the look up table, the first, second, and
third values will point to the same location.  In the fourth step, which results in an over-
flow into the upper byte, the value that is loaded will change.  Since the upper byte is
used as the pointer, the lookup table has 256 values, which is equivalent to the number
of possibilities for an 8-bit number – 0 to 255.  Additionally, since the upper word of the
accumulator is disregarded, the pointer for the sine lookup table does not need to be
reset.

Step Accumulator Counter Pointer Step Value = 40h

0 0000 0000h 0000h 00h 1st value of sine table

1 0000 0040h 0040h 00h

2 0000 0080h 0080h 00h

3 0000 00C0h 00C0h 00h

4 0000 0100h 0100h 01h 2nd value of sine table

.

.

.

.

.

.

.

.

.

.

.

.

n 0000 FFC0h FFC0h FFh 256th value of sine table

n+1 0001 0000h 0000h 00h 1st value of sine table

n+2 0000 0040h 0040h 00h

The step size controls the frequency that is output; as a result, the larger the step, the
quicker the overflow into the upper byte, and the faster the pointer traverses through
the sine lookup table.
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Step Counter Pointer Step Value = C0h

0 0000h 00h 1st value of sine table

1 00C0h 00h

2 0180h 01h 2nd value of sine table

3 0240h 02h 3rd value of sine table

4 0300h 03h 4th value of sine table

Although the step size indicates how quickly the pointer moves through the look up
table, the step size does not provide much information about the approximate frequen-
cy that the sine wave will be modulating the PWM signal.  To determine the frequency
of the sine wave, one needs to determine how often the value in the compare register
will be modified.

The frequency that the sine wave will be modulated at can be calculated from the fol-
lowing formula

f (step) �
step

Ts 
 2n

Where,

f(step) = desired frequency
TS = the time period between each update (in this case, the PWM period)
n = the number of bits in the counter register
step = the step size used

The frequency that the PWM signal will be modulated is proportional to the step size
and inversely proportional to the size of the counter register and the period at which
the routine is accessed.  Thus, to increase the resolution that one can increment or
decrement the frequency of the PWM modulation, one needs to have a larger counting
register or access the routine at a slower frequency by increasing the period.

The second sine wave is generated using the same method. However, for the second
wave a phase is also added with the counter before reading the value from the sine
table.
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Permanent Magnet Synchronous Motor Angular Position Estimation
Based on Sliding-Mode ObserverSMOPOS

Description This software module implements a rotor position estimation algorithm for Permanent-
Magnet Synchronous Motor (PMSM) based on Sliding-Mode Observer (SMO).

SMOPOS
zalfa

zbeta

vsalfa

vsbeta

isalfa

isbeta

speedref

thetae

Availability This module is available in the direct-mode assembly-only interface (Direct ASM).

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: smopos.asm

Routines: smopos, smopos_init

Parameter Calculation Spreadsheet: smopos.xls

Item ASM Only Comments

Code size 135 words

Data RAM 25 words

xDAIS module No

xDAIS component No IALG layer not implemented
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Direct ASM Interface

Table 61.  Module Terminal Variables/Functions

Name Description Format Range Scale

Inputs isalfa α-axis phase current Q15 −1.0 −>
0.999

Imax†

isbeta β-axis phase current Q15 −1.0 −>
0.999

Imax

vsalfa α-axis phase voltage
command

Q15 −1.0 −>
0.999

Vmax†

vsbeta β-axis phase voltage
command

Q15 −1.0 −>
0.999

Vmax

speedref Reference speed Q15 −1.0 −>
0.999

Spdmax
†

Outputs thetae Estimated electric angular
position

Q15 0 −>
0.999
(0−360
degree)

2*pi

zalfa α-axis sliding control Q15 −1.0 −>
0.999

Vmax

zbeta β-axis sliding control Q15 −1.0 −>
0.999

Vmax

Program
Parameters

fsmopos_ F term of motor model Q15 −1.0 −>
0.999

N/A

gsmopos_ G term of motor model Q15 −1.0 −>
0.999

N/A

Kslide_ Bang-bang control gain Q15 −1.0 −>
0.999

N/A

† The motor current and voltage are normalized with respect to Imax and Vmax, respectively. Here,

Vmax � Vbus� 3�  with Vbus being the Bus voltage. Note, selection of Imax affects the gain of current
sampling circuit. Spdmax is what the motor speed is normalized against.

Routine names and calling limitation: 
There are two routines involved:

smopos, the main routine; and
smopos_init, the initialization routine.

The initialization routine must be called during program (or incremental build) initializa-
tion. The smopos routine must be called in current control loop.

Global reference declarations: 
In the system file include the following statements before calling the subroutines:

.ref smopos,smopos_init ; Function calls

.ref thetae,zalfa,zbeta ; Outputs

.ref vsalfa,vsbeta,isalfa,isbeta,spdref ; Inputs

Memory map: 
All variables are mapped to an uninitialized named section, smopos, which can be allo-
cated to any one (128 words) data page.
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Example:

CALL smopos_init ; Initialize smopos

ldp #vsalfa ; Set DP for module inputs
bldd #input_var1,vsalfa ; Pass input variables to module inputs
bldd #input_var2,vsbeta ;
bldd #input_var3,isalfa ;
bldd #input_var4,isbeta ;
bldd #input_var5,spdref ;

CALL smopos

ldp #output_var1 ; Set DP for output variable
bldd #thetae,output_var1 ; Pass output to other variable
… ; Pass more outputs to other variables

; if needed.
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Background Information

Figure 18 is an illustration of a permanent-magnet synchronous motor control system
based on field orientation principle. The basic concept of field orientation is based on
knowing the position of rotor flux and positioning the stator current vector at orthogonal
angle to the rotor flux for optimal torque output. The implementation shown in Figure 18
derives the position of rotor flux from encoder feedback. However, the encoder in-
creases system cost and complexity.
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Figure 18.  Field Oriented Control of PMSM

Therefore for cost sensitive applications, it is ideal if the rotor flux position information
can be derived from measurement of voltages and currents. Figure 19 shows the block
diagram of a sensorless PMSM control system where rotor flux position is derived from
measurement of motor currents and knowledge of motor voltage commands.
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Figure 19.  Sensorless Field-Oriented Control of PMSM
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This software module implements a rotor flux position estimator based on a sliding
mode current observer. As shown in Figure 20, the inputs to the estimator are motor
phase currents and voltages expressed in α-β coordinate frame.

Motor model
based

sliding mode
current

observer

Band−gang
control

Low−pass
filter

Flux angle
calculator

Flux angle
correction

euθ~
eθ~se~si

~

si

*
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*ω

Figure 20.  Sliding Mode Observer-Based Rotor Flux Position Estimator

Figure 21 is an illustration of the coordinate frames and voltage and current vectors
of PMSM, with a, b and c being the phase axes, α and β being a fixed Cartesian coordi-
nate frame aligned with phase a, and d and q being a rotating Cartesian coordinate
frame aligned with rotor flux. vs, is and es are the motor phase voltage, current and back
emf vectors (each with two coordinate entries). All vectors are expressed in α-β coordi-
nate frame for the purpose of this discussion. The α-β frame expressions are obtained
by applying Clarke transformation to their corresponding three phase representations.

α
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c

a

β

dq ψm

es=ωψm

esα

esβ θ=ωt

is

isα

isβ
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vsβ
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Figure 21.  PMSM Coordinate Frames and Vectors

Equation 1 is the mathematical model of PMSM in α-β coordinate frame.

)ev(BAii
dt
d

ssss −+= (1)

The matrices A and B are defined as 2IL
RA −=  and 2IL

1B =  with mL
2
3L = , where Lm and

R are the magnetizing inductance and resistance of stator phase winding and I2 is a
2 by 2 identity matrix.
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1) Sliding Mode Current Observer

The sliding mode current observer consists of a model based current observer and
a bang-bang control generator driven by error between estimated motor currents
and actual motor currents. The mathematical equations for the observer and con-
trol generator are given by Equations 2 and 3.

)ze~v(Bi~Ai~
dt
d

s
*

sss −−+= (2)

)ii~(signkz ss −= (3)

The goal of the bang-bang control z is to drive current estimation error to zero. It is
achieved by proper selection of k and correct formation of estimated back emf, e~s.
Note that the symbol ~ indicates that a variable is estimated. The symbol * indi-
cates that a variable is a command.

The discrete form of Equations 2 and 3 are given by Equations 4 and 5.

))n(z)n(e~)n(v(G)n(i~F)1n(i~ s
*

sss −−+=+ (4)

))n(i)n(i~(signk)n(z ss −= (5)

The matrices F and G are given by 2

T
L

R

IeF s−
=  and 2

T
L

R

I)e1(
R
1G s−

−=  where Ts is the

sampling period.

2) Estimated Back EMF

Estimated back emf is obtained by filtering the bang-bang control, z, with a first or-
der low-pass filter described by Equation 6.

ze~e~
dt
d

0s0s ω+ω−= (6)

The parameter ω0 is defined as ω0=2πf0, where f0 represents the cutoff frequency
of the filter. The discrete form of Equation 6 is given by Equation 7.

))n(e~)n(z(f2)n(e~)1n(e~ s0ss −π+=+ (7)

3) Rotor Flux Position Calculation

Estimated rotor flux angle is obtained based on Equation 8 for back emf.







θ
θ−ω=

cos
sin

k
2
3e es

(8)

Therefore given the estimated back emf, estimated rotor position can be calcu-
lated based on Equation 9.

)e~,e~arctan(~
sseu βα−=θ (9)

4) Rotor Flux Position Correction

The low-pass filter used to obtain back emf introduces a phase delay. This delay is
directly linked to the phase response of the low-pass filter and is often character-
ized by the cutoff frequency of the filter. The lower the cutoff frequency is, the big-
ger the phase delay for a fixed frequency. Based on the phase response of the low-
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pass filter, a lookup take for phase delay can be constructed. The command fre-
quency is used as the index to lookup the table at run time to obtain the phase
delay. This phase delay is then added to the calculated rotor flux angle to compen-
sate for the delay introduced by the filter.

The following table describes the correspondence between variables and or pa-
rameters in the program and those used in the above mathematical equations and
representations. Note that this software module assumes that both the input and
output variables are per unit, i.e. they are both normalized with respect to their pre-
selected maximums. The file smopos.xls that is used to calculate the program pa-
rameters has taken this into account.

Equation Variables Program Variables

v *
vsα* vsalfa

vs*
vsβ* vsbeta

i
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isβ isbeta
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Speed Calculator Based on Frequency MeasurementSPEED_FRQ

Description This module calculates motor speed based on measurement of frequency of the signal
generated by a speed sensor. The frequency of the speed sensor signal is the number
of pulses generated per second, which is again proportional to the angular displace-
ment of the sensor disk and hence that of the rotor. Therefore, this module gets the
input as rotor shaft displacements (shaft_angle) for a known time interval and then
uses this information to calculate the motor speed.

SPEED_FRQ
speed_frq

speed_frq_rpm

shaft_angle

direction

Q15/Q15

Availability This module is available in direct-mode assembly-only interface (Direct ASM).

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Direct ASM Version File Name: speed_fr.asm

Item ASM Only Comments

Code size 49 words

Data RAM 9 words

xDAIS ready No

xDAIS component No

Multiple instances No
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Direct ASM Interface

Table 62.  Module Terminal Variables/Functions

Name Description Format Range

Inputs shaft_angle Rotor displacement in pu
mechanical degrees

Q15 0−7FFF
(0−360
degree)

direction Rotor direction of rotation signal Q0 0 or F

Outputs speed_frq Per unit motor speed Q15 0−7FFF

speed_frq_rpm Motor speed in revolution/min Q0 Application
dependant

Init / Config SPEED_LP
_MAX

Time interval in number of
sampling cycles for calculating
the per unit mechanical
displacement. The default value
is set to 100.

When this is used in a 10 kHz
sampling loop, the time interval
becomes 100x0.0001=0.01 sec.
This means 1 pu mechanical
displacement takes 0.01 sec,
which sets the maximum
measurable speed to 100 rps, or
6000 rpm.

Set this parameter appropriately,
according to the maximum
speed of the motor.

Q0 User
specified

rpm_scaler Maximum motor speed in rpm.
Default value is set to 6000. Set
this parameter appropriately,
according to the maximum
speed of the motor.

Q0 User
specified

Variable Declaration:
In the system file include the following statements:

.ref SPEED_FRQ, SPEED_FRQ_INIT ;function call

.ref shaft_angle,direction,speed_frq,speed_frq_rpm  ;inputs/outputs

.ref SPEED_LP_MAX, rpm_scaler

Memory map:
All variables are mapped to an uninitialized named section ‘speed_fr.’

Example:

ldp #shaft_angle             ;Set DP for module inputs
bldd #input_var1, shaft_angle ;Pass input variables to module inputs
bldd #input_var2, direction

CALL SPEED_FRQ

ldp #output_var1            ;Set DP for output variable
bldd #speed_frq, output_var1 ;Pass module outputs to output variables
bldd #speed_frq_rpm, output_var2
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Background Information

This module calculates motor speed based on measurement of frequency of the signal
generated by a speed sensor. The frequency of the speed sensor signal is the number
of pulses generated per second, which is again proportional to the angular displace-
ment of the sensor disk and hence that of the rotor. Therefore, this module gets it’s input
as rotor per unit shaft displacements (shaft_angle) for a known time interval and then
use this information to calculate the motor speed.

Figure 22 shows a typical speed sensor disk mounted on a motor shaft f. When the
motor rotates, the sensor generates quadrature pulses (QEP). The number of pulses
generated is proportional to the angular displacement of the motor shaft. In Figure 22,
a complete 360� rotation of motor shaft generates 1000 QEP pulses. 24x/24xx devices
have an internal QEP interface circuit that can count these pulses. This QEP circuit
counts both edges of the two QEP pulses. Therefore, the frequency of the counter
clock in the QEP circuit is four times that of each input sequence. This means, for 1000
QEP pulses, the maximum counter value will be 4000. Since the counter value is pro-
portional to the number of QEP pulses, therefore, it is also proportional to the angular
displacement of the motor shaft. This means that the shaft_angle input to this module,
which represents the per unit mechanical displacement of the motor shaft at a certain
instant of time, also represents the per unit counter value at the same instant of time.
Figure 23 shows the instantaneous counter values for both forward and reverse direc-
tion of rotation.

Figure 22.  Speed sensor disk
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Figure 23.  QEP counter values for forward and reverse direction

In each case in Figure 23, two per unit counter values are compared and the difference
is calculated as indicated in the figure. This difference represents the per unit mechani-
cal displacement of the rotor shaft. In the woftware, this difference is calculated for a
time interval of 0.01 second. This again implies that the rotor makes a maximum of 100
revolutions in one second. This sets the maximum motor speed of 100 rps or 6000 rpm
that can be measured when the time interval is set to 0.01 second. Now,

	� � pu�mechanical�displacement

�� speed_frq� �� pu�mech�displacement� � 	�

Then, the speed in rpm is derived as:

speed in revolution / min = max rpm speed � pu speed

� speed_frq_rpm � �6000
 speed_frq��rpm

Variables in the equations Variables in the code

θ1 s_angle_old

θ2 s_angle_cur

∆θ delta_angle
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Speed Calculator Based on Period MeasurementSPEED_PRD

Description This module calculates the motor speed based on a signal’s period measurement.
Such a signal, for which the period is measured, can be the periodic output pulses from
a motor speed sensor.

SPEED_PRD

speed_prd

speed_rpm

time_stamp

Q0/Q15

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Dependent, Application Dependent

Target Devices: x24x/x24xx

Direct ASM Version File Name: speed_pr.asm

C-Callable Version File Names: speed_pr.asm, speed_pr.h

Item ASM Only C-Callable ASM Comments

Code size 55 words 64 words†

Data RAM 13 words 0 words†

xDAIS module No Yes

xDAIS component No No IALG layer not implemented

† Each pre-initialized SPEED_MEAS structure instance consumes 9 words in the data memory and 11 words
in the .cinit section.
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Direct ASM Interface

Table 63.  Module Terminal Variables/Functions

Name Description Format Range

Inputs time_stamp Captured base timer counter
value corresponding to the
periodic edges of the sensed
signal.

Q0 0−FFFF

Outputs speed_prd Normalized motor speed Q15 0−7FFF

speed_rpm Motor speed in revolution per
minute

Q0 0−rpm_max

Init / Config rpm_max Speed of normalization. The
value chosen should be equal to
or greater than the maximum
motor speed.

Q0 Specified
by user

speed_scaler Scaling constant. Use the Excel
file to calculate this.

Q0 System
dependent

shift Number of left shift less 1
required for max accuracy of
32bit/16bit division used for
speed calculation. Use the Excel
file to calculate this. When
speed_scaler is calculated as 1,
shift will be –1. In that case do
not apply any left shift on the
result of the 32bit/16bit division.

Q0 System
dependent

Variable Declaration: In the system file include the following statements:

.ref SPEED_PRD, SPEED_PRD _INIT ;function call

.ref  time_stamp, rpm_max, speed_scaler, shift ;input

.ref  speed_prd, speed_rpm ;output

Memory map: All variables are mapped to an uninitialized named section  ‘speedprd’

Example:

ldp # time_stamp ;Set DP for module input
bldd #input_var1, time_stamp ;Pass input to module input
CALL SPEED_PRD
ldp #output_var1 ;Set DP for output variables
bldd #speed_prd, output_var1 ;Pass module outputs to output 

;variables
bldd #speed_rpm, output_var2
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C/C-Callable ASM Interface

Object Definition The structure of the SPEED_MEAS object is defined by the following structure defini-
tion

typedef struct {
int time_stamp_new; /*Variable: New ‘Timestamp’ corresponding to a capture event*/
int time_stamp_old; /*Variable: Old ‘Timestamp’ corresponding to a capture event*/
int time_stamp; /*Input: Current ‘Timestamp’ corresponding to a capture event*/
int shift; /*Parameter: For maximum accuracy of 32bit/16bit division*/
int speed_scaler; /*Parameter: Scaler converting 1/N cycles to a Q15 speed*/
int speed_prd; /*Output: speed in per−unit
int rpm_max; /*Parameter: Scaler converting Q15 speed to rpm (Q0) speed*/
int speed_rpm; /*Output: speed in r.p.m.
int (*calc) (); /*Pointer to the calculation function*/
} SPEED_MEAS; /*Data type created*/

Table 64.  Module Terminal Variables

Name Description Format Range

Inputs time_stamp Captured base timer counter
value corresponding to the
periodic edges of the sensed
signal.

Q0 0−FFFF

Outputs speed_prd Normalized motor speed Q15 0−7FFF

speed_rpm Motor speed in revolution per
minute

Q0 0−rpm_max

Init / Config rpm_max Speed of normalization. The
value chosen should be equal to
or greater than the maximum
motor speed.

Q0 Specified
by user

speed_scaler Scaling constant. Use the Excel
file to calculate this.

Q0 System
dependent

shift Number of left shift less 1
required for max accuracy of
32bit/16bit division used for
speed calculation. Use the Excel
file to calculate this. When
speed_scaler is calculated as 1,
shift will be −1. In that case, do
not apply any left shift on the
result of the 32 bit/16 bit division.

Q0 System
dependent

Special Constants and Datatypes

SPEED_MEAS
The module definition itself is created as a data type. This makes it convenient to
instance a Space Vector Generation module. To create multiple instances of the mod-
ule simply declare variables of type SVGENMF.
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SPEED_PR_MEAS_DEFAULTS
Initializer for the SVGENMF Object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers.

Methods void calc(SPEED_MEAS *)
Pointer to the speed calculation function.

Module Usage Instantiation:

SPEED_MEAS  shaftSpeed;

Initialization:
To instance a pre-initialized object

SPEED_MEAS  shaftSpeed=SPEED_PR_MEAS_DEFAULTS;

Invoking the compute function:

shaftSpeed.calc(&shaftSpeed);

Example:

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Pre initialized declaration for the speed measurement object.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
        SPEED_MEAS shaftSpeed=SPEED_PR_MEAS_DEFAULTS;

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Declaration for the capture driver. For more details see the CAP_DRV
document.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
        CAPTURE cap=CAPTURE_DEFAULTS;
main()
{

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    Initialize the capture interface
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
        cap.init(&cap);

}

void periodic_interrupt_isr()
{
/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Call the capture driver read function. Note, that this func returns
the status, as the return value, NOT the time_stamp. The time_stamp
is returned directly into the CAPTURE object structure.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
  if((cap.read(&cap))==0)  /* Call the capture read function */
  {
 shaftSpeed.time_stamp=cap.time_stamp; /* Read out new time stamp */
 shaftSpeed.calc(&shaftSpeed);        /* Call the speed calulator */
  }

}
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Background Information

A low cost shaft sprocket with n teeth and a Hall effect gear tooth sensor is used to mea-
sure the motor speed. Figure 24 shows the physical details associated with the sprock-
et.  The Hall effect sensor outputs a square wave pulse every time a tooth rotates within
its proximity. The resultant pulse rate is n pulses per revolution.  The Hall effect sensor
output is fed directly to the 24x/24xx Capture input pin. The capture unit will capture
(the value of it’s base timer counter) on either the rising or the falling edges(whichever
is specified) of the Hall effect sensor output. The captured value is passed to this s/w
module through the variable called time_stamp.

In this module, every time a new input time_stamp becomes available it is compared
with the previous time_stamp. Thus, the tooth-to-tooth period (t2−t1) value is calcu-
lated. In order to reduce jitter or period fluctuation, an average of the most recent n peri-
od measurements can be performed each time a new pulse is detected.

25 teeth

t1

t2

�t

�

�

�t � t2 � t1 sec

� � 360
25

� � 2�
25�

n � 1
�tn

rad�sec

= 14.4°

Figure 24.  Speed Measurement With a Sprocket

From the two consecutive time_stamp values the difference between the captured val-
ues are calculated as,

∆ = time_stamp(new) – time_stamp(old)

Then the time period in sec is given by,

�t � t2 � t1 � Kp 
 TCLK 
 �

where,

KP = Prescaler value for the Capture unit time base

TCLK = CPU clock period in sec

From Figure 24, the angle θ in radian is given by,

� � 2�
n

where,

n = number of teeth in the sprocket, i.e., the number of pulses per revolution

Then the speed ω in radian/sec and the normalized speed ωN are calculated as,
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� � �
�t

� 2�
n�t

� 2�
n 
 Kp 
 TCLK 
 �

� �N � �
�max

� �

2�� 1
n
KP
TCLK

� �
1
�

Where, ωmax is the maximum value of ω which occurs when ∆=1. Therefore,

�max � 2�
nKPTCLK

For, n=25, KP=32 and TCLK=50x10−9 sec (20MHz CPU clock), the normalized speed
ωN is given by,

�N � �
2�(25000)

� 1
�

The system parameters chosen above allows maximum speed measurement of
1500,000 rpm. Now, in any practical implementation the maximum motor speed will be
significantly lower than this maximum measurable speed. So, for example, if the motor
used has a maximum operating speed of 23000 rpm, then the calculated speed can
be expressed as a normalized value with a base value of normalization of at least
23000 RPM. If we choose this base value of normalization as 23438 rpm, then the cor-
responding base value of normalization, in rad/sec, is,

�max1 �
23438 
 2�

60
� 2�(390)

Therefore, the scaled normalized speed is calculated as,

�N1 �
�

2�(390)
� 64

�
� 64 
 �N � speed_scaler 
 �N

This shows that in this case the scaling factor is 64.

The speed, in rpm, is calculated as,

N1 � 23438 
 �N1 � 23438 
 64
�

� rpm_max 
 �N1

The capture unit in 24x/24xx allows accurate time measurement (in multiples of clock
cycles and defined by a prescaler selection) between events. In this case the events
are selected to be the rising edge of the incoming pulse train. What we are interested
in is the delta time between events and hence for this implementation Timer 1 is al-
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lowed to free run with a prescale of 32 (1.6uS resolution for 20MHz CPU clock) and
the delta time ∆, in scaled clock counts, is calculated as shown in Figure 25.

t

f(t)

FFFFh

0

t1 t2 t1 t2

∆∆

1

2

Case 1

Case 2

Note: only true if

T f (t2) � f (t1)

� � f (t2) � f (t1)

f (t2) � f (t1)

� � 1 � f (t2) � f (t1)

t2 � t1 	 T

Figure 25.  Calculation of Speed

In Figure 25, the vertical axis f(t) represents the value of the Timer counter  which is
running in continuous up count mode and resetting when the period register = FFFFh.
Note that two cases need to be accounted for: the simple case where the Timer has
not wrapped around and where it has wrapped around. By keeping the current and pre-
vious capture values it is easy to test for each of these cases.

Once a “robust” period measurement is extracted from the averaging algorithm, the
speed is calculated using the appropriate equations explained before. In order to main-
tain high precision in the calculation for the full range of motor speeds, a 32-bit/16-bit
division is performed as shown in Figure 26 in the following.

s i i i i i i i
31 30 16

f f f f f f f f
15 01. . . . . .

fraction
sign

Speed =

Q31

1
period

�
7FFFFFFF(Q31)

period(Q0)
� speed(Q31 � 32bit)

Figure 26.  32-Bit/16-Bit Division

Once complete the result is a 32-bit value in Q31 format. This value is subsequently
scaled to a 16 bit, Q15 format value for later calculation of the speed error (see
Figure 26).

Table 65.  Variable Cross Ref Table

Variables in the Equations Variables in the Code

∆ event_period

ωN speed_prd_max

ωN1 speed_prd

N1 speed_rpm



 SVGEN_DQ 193

Space Vector with Quadrature ControlSVGEN_DQ

Description This module calculates the appropriate duty ratios needed to generate a given stator
reference voltage using space vector PWM technique. The stator reference voltage is
described by it’s (α,β) components, Ualfa and Ubeta.

SVGEN_DQ
Ta

Tc

Ualfa

Ubeta

Q15/Q15 Tb

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version.

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Direct ASM Version File Name: svgen_dq.asm

C-Callable Version File Names: svgen_dq.asm,svgen.h

Item ASM Only C-Callable ASM Comments

Code size 179 words 215 words†

Data RAM 12 words 0 words†

xDAIS module No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized SVGENDQ structure instance consumes 6 words in the data memory and 8 words in
the .cinit section.
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Direct ASM Interface

Table 66.  Module Terminal Variables/Functions

Name Description Format Range

Inputs Ualfa Component of reference stator
voltage vector on direct axis
stationary reference frame.

Q15 8000−7FFF

Ubeta Component of reference stator
voltage vector on quadrature
axis stationary reference frame.

Q15 8000−7FFF

Outputs Ta Duty ratio of PWM1(CMPR1
register value as a fraction of
associated period register,
TxPR, value).

Q15 8000−7FFF

Tb Duty ratio of PWM3(CMPR2
register value as a fraction of
associated period register,
TxPR, value).

Q15 8000−7FFF

Tc Duty ratio of PWM5(CMPR3
register value as a fraction of
associated period register,
TxPR, value).

Q15 8000−7FFF

Init / Config none

Variable Declaration:
In the system file include the following statements:

.ref SVGEN_DQ, SVGEN_DQ _INIT ;function call

.ref Ualfa, Ubeta, Ta, Tb, Tc ;input/output

Memory map:
All variables are mapped to an uninitialized named section ‘svgen_dq’

Example:

ldp #Ualfa ;Set DP for module input
bldd #input_var1, Ualfa ;Pass input variables to module inputs
bldd #input_var2, Ubeta
CALL SVGEN_DQ 
ldp #output_var1 ;Set DP for output variable
bldd #Ta, output_var1 ;Pass module outputs to output

;variables
bldd #Tb, output_var2 
bldd #Tc, output_var3
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C/C-Callable ASM Interface

Object Definition The structure of the SVGENDQ object is defined by the following structure definition

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Define the structure of the SVGENMF
(Magnitude and angular velocity based Space Vector Waveform Generator)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

typedef struct     {   int d;   /* Phase d input Q15               */
                       int q;   /* Phase q input Q15               */
                       int va;  /* Phase A output Q15              */
                       int vb;  /* Phase B output Q15              */
                       int vc;  /* Phase C output Q15              */
                       int (*calc)(); /*Ptr to calculation function*/
                   } SVGENDQ;

Table 67.  Module Terminal Variables/Functions

Name Description Format Range

Inputs d Component of reference stator voltage
vector on direct axis stationary
reference frame.

Q15 8000−7FFF

q Component of reference stator voltage
vector on quadrature axis stationary
reference frame.

Q15 8000−7FFF

Outputs va Duty ratio of PWM1(CMPR1 register
value as a fraction of associated
period register, TxPR, value).

Q15 8000−7FFF

vb Duty ratio of PWM3(CMPR2 register
value as a fraction of associated
period register, TxPR, value).

Q15 8000−7FFF

vc Duty ratio of PWM5(CMPR3 register
value as a fraction of associated
period register, TxPR, value).

Q15 8000−7FFF

Init / Config none

Special Constants and Datatypes

SVGENDQ
The module definition itself is created as a data type. This makes it convenient to
instance a Space Vector Generation module. To create multiple instances of the mod-
ule simply declare variables of type SVGENDQ

SVGENDQ_handle
Typedef’ed to SVGENDQ
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SVGENDQ_DEFAULTS
Initializer for the SVGENDQ object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers.

Methods void calc(SVGENMF_handle)
The default definition of the object implements just one method – the runtime compute
function for the generation of the space vector modulation functions. This is implement-
ed by means of a function pointer, and the default initializer sets this to svgenmf_calc.
The argument to this function is the address of the SVGENMF object.

Module Usage Instantiation:

SVGENDQ   sv1,sv2;

Initialization:
To instance a pre-initialized object

SVGENDQ  sv1=SVGENDQ_DEFAULTS;

Invoking the compute function:

sv1.calc(&sv1);

Example:
Lets instance two SVGENMF objects, otherwise identical, but running with different
freq values.

SVGENMF sv1=SVGENDQ_DEFAULTS; /* Instance the first object */
. . .  Other var declarations . . . 
main()
{
}
void interrupt periodic_interrupt_isr()
{

voltage_d=some_sine_wave_input;
voltage_q=signal_90_deg_off_phase_wrt_above;

sv1.d=voltage_d;
sv1.q=voltage_q;

/* Transform from quadrature sine inputs to three-phase & space vector */
sv1.calc(&sv1);

v1=sv1.va; /* Access the outputs of the svgendq */
v2=sv1.vb;
v3=sv1.vc;

. . .  Do something with v1,v2,v3 . . . 
}
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Background Information

The Space Vector Pulse Width Modulation (SVPWM) refers to a special switching se-
quence of the upper three power devices of a three-phase voltage source inverters
(VSI) used in application such as AC induction and permanent magnet synchronous
motor drives. This special switching scheme for the power devices results in 3 pseudo-
sinusoidal currents in the stator phases.

motor phases

VDC +

a cb

Q6Q4Q2

Q5Q3Q1

Va Vb Vc

c′a′ b′

Figure 27.  Power Circuit Topology for a Three-Phase VSI

It has been shown that SVPWM generates less harmonic distortion in the output volt-
ages or currents in the windings of the motor load and provides more efficient use of
DC supply voltage, in comparison to direct sinusoidal modulation technique.

c′a′ b′

VDC

a

A

b

B

c

C

Z

Z Z

N

ACI or PMSM

Figure 28.  Power Bridge for a Three-Phase VSI

For the three phase power inverter configurations shown in Figure 27 and Figure 28,
there are eight possible combinations of on and off states of the upper power transis-
tors. These combinations and the resulting instantaneous output line-to-line and
phase voltages, for a dc bus voltage of VDC, are shown in Table 68.
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Table 68.  Device On/Off Patterns and Resulting Instantaneous Voltages of a
3-Phase Power Inverter

c b a VAN VBN VCN VAB VBC VCA

0 0 0 0 0 0 0 0 0

0 0 1 2VDC/3 −VDC/3 −VDC/3 VDC 0 −VDC

0 1 0 −VDC/3 2VDC/3 −VDC/3 −VDC VDC 0

0 1 1 VDC/3 VDC/3 −2VDC/3 0 VDC −VDC

1 0 0 −VDC/3 −VDC/3 2VDC/3 0 −VDC VDC

1 0 1 VDC/3 −2VDC/3 VDC/3 VDC −VDC 0

1 1 0 −2VDC/3 VDC/3 VDC/3 −VDC 0 VDC

1 1 1 0 0 0 0 0 0

The quadrature quantities (in the (α,β) frame) corresponding to these 3 phase voltages
are given by the general Clarke transform equation:

Vs� � VAN

Vs� � (2VBN � VAN)� 3�

In matrix from the above equation is also expressed as,

�Vs�

Vs�
� � 2

3�
�

�

1

0

�1
2

3�
2

� 1
2

� 3�
2

�
�

�
�
�
�

VAN

VBN

VCN

�
�
�

Due to the fact that only 8 combinations are possible for the power switches, Vsα and
Vsβ can also take only a finite number of values in the (α,β) frame according to the sta-
tus of the transistor command signals (c,b,a). These values of Vsα and Vsβ for the corre-
sponding instantaneous values of the phase voltages (VAN, VBN, VCN) are listed in
Table 69.

Table 69.  Switching Patterns, Corresponding Space Vectors and their (α,β)
Components

c b a Vsα Vsβ Vector

0 0 0 0 0 O0

0 0 1 0 U0

0 1 0 U120

0 1 1 U60

1 0 0 U240

1 0 1 U300

1 1 0 0 U180

1 1 1 0 0 O111

2
3

VDC

VDC

3�
VDC

3
VDC

3
VDC

3�

�
VDC

3
�

VDC

3�
VDC

3
�

VDC

3�

� 2
3

VDC
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These values of Vsα and Vsβ, listed in Table 69, are called the (α,β) components of the
basic space vectors corresponding to the appropriate transistor command signal
(c,b,a). The space vectors corresponding to the signal (c,b,a) are listed in the last col-
umn in Table 69. For example, (c,b,a)=001 indicates that the space vector is U0.The
eight basic space vectors defined by the combination of the switches are also shown
in Figure 29.

�

�

U120(010)

U240(100)

U60(011)

U300(101)

U180(110) U0(001)
O111(111) O0(000)

Figure 29.  Basic Space Vectors

Projection of the stator reference voltage vector Uout

The objective of Space Vector PWM technique is to approximate a given stator refer-
ence voltage vector Uout by combination of the switching pattern corresponding to the
basic space vectors. The reference vector Uout is represented by its (α,β) components,
Ualfa and Ubeta. Figure 30 shows the reference voltage vector, it’s  (α,β) components
and two of the basic space vectors, U0 and U60.  The figure also indicates the resultant
α and β components for the space vectors U0 and U60.  ΣVsβ represents the sum of
the β components of U0 and U60, while ΣVsα represents the sum of the α components
of U0 and U60. Therefore,

�
��
�

�

�Vs� � 0 �
VDC

3�
�

VDC

3�

�Vs� �
2VDC

3
�

VDC

3
� VDC
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0

�

�Vs�

U60(011)

Ubeta
Uout

T3

T
U60

T1

T
U0

Ualfa U0(001) �Vs�

�60°

Figure 30.  Projection of the Reference Voltage Vector

For the case in Figure 30, the reference vector Uout is in the sector contained by U0 and
U60. Therefore Uout is represented by U0 and U60. So we can write,

���
T � T1 � T3 � T0

Uout �
T1

T
U0 �

T3

T
U60

where, T1  and T3 are the respective durations in time for which U0 and U60 are applied
within period T. T0  is the time duration for which the null vector is applied. These time
durations can be calculated as follows:

�
��
�

�

Ubeta �
T3

T
|U60| sin

Ualfa �
T1

T
|U0| �

T3

T
|U60| cos

(60°)

(60°)

From Table 69 and Figure 30 it is evident that the magnitude of all the space vectors
is 2VDC/3. When this is normalized by the maximum phase voltage(line to neutral),
VDC/√3, the magnitude of the space vectors become 2/√3 i.e., the normalized magni-
tudes are |U0| = |U60| =2/√3. Therefore, from the last two equations the time durations
are calculated as,

T1 �
T
2
� 3� Ualfa � Ubeta�

T3 � TUbeta

Where, Ualfa and Ubeta also represent the normalized (α,β) components of Uout with
respect to the maximum phase voltage(VDC/√3). The rest of the period is spent in applying
the null vector T0. The time durations, as a fraction of the total T, are given by,

t1 �
T1

T
� 3� Ualfa � Ubeta�

t2 �
T3

T
� Ubeta
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In a similar manner, if Uout is in sector contained by U60 and U120, then by knowing
|U60| = |U120| = 2/√3 (normalized with respect to VDC/√3), the time durations can be
derived as,

t1 �
T2

T
� 1

2
�� 3� Ualfa � Ubeta�

t2 �
T3

T
� 1

2
� 3� Ualfa � Ubeta�

where, T2 is the duration in time for which U120 is applied within period T

Now, if we define 3 variables X, Y and Z according to the following equations,

Y � 1
2
� 3� Ualfa � Ubeta�

Z � 1
2
�� 3� Ualfa � Ubeta�

X � Ubeta

Then for the first example, when Uout is in sector contained by U0 and U60, t1= −Z, t2=X.

For the second example, when Uout is in sector contained by U60 and U120, t1=Z, t2=Y.

In a similar manner t1 and t2 can be calculated for the cases when Uout is in sectors
contained by other space vectors. For different sectors the expressions for t1 and t2
in terms of X, Y and Z are listed in Table 70.

Table 70.  t1 and t2 Definitions for Different Sectors in Terms of X, Y and Z
Variables

Sector U0, U60 U60, U120 U120, U180 U180, U240 U240, U300 U300, U0

t1 −Z Z X −X −Y Y

t2 X Y Y Z −Z −X

In order to know which of the above variables apply, the knowledge of the sector con-
taining the reference voltage vector is needed. This is achieved by first converting the
(α,β) components of the reference vector Uout into a balanced three phase quantities.
That is, Ualfa and Ubeta are converted to a balanced three phase quantities Vref1, Vref1
and Vref1 according to the following inverse clarke transformation:

�
�
�
�

�

Vref1 � Ubeta

Vref2 �
�Ubeta � Ualfa 
 3�

2

Vref3 �
�Ubeta � Ualfa 
 3�

2

Note that, this transformation projects the quadrature or β component, Ubeta, into
Vref1. This means that the voltages Vref1 Vref2 and Vref3 are all phase advanced by 90O

when compared to the corresponding voltages generated by the conventional inverse
clarke transformation which projects the α component, Ualfa, into phase voltage VAN.
The following equations describe the (α,β) components and the reference voltages:
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�
�
�
�

�

Ualfa � sin�t
Ubeta � cos�t
Vref1 � cos�t
Vref2 � cos(�t � 120 )
Vref3 � cos(�t � 120 )

Note that, the above voltages are all normalized by the maximum phase volt-
age(VDC/√3).

90°
7FFFh

0

8000h

Ubeta

Ualfa

Figure 31.  (α,β) Components of Stator Reference Voltage

120°
7FFFh

0

8000h

Vref1 Vref2 Vref3

Figure 32.  Voltages Vref1 Vref2 and Vref3

From the last three equations the following decisions can be made on the sector infor-
mation:

If Vref1 > 0 then a=1, else a=0
If Vref2 > 0 then b=1, else b=0
If Vref3  > 0 then c=1, else c=0

The variable sector in the code is defined as, sector = 4∗c+2∗b+a

For example, in Figure 29 a=1 for the vectors U300, U0 and U60. For these vectors the
phase of Vref1 are ωt=300°, ωt=0 and ωt=60° respectively. Therefore, Vref1 > 0 when a=1.

The (α,β) components, Ualfa and Ubeta, defined above represent the output phase
voltages VAN, VBN and VCN. The following equations describe these phase voltages:

�
�
�

VAN � sin�t
VBN � sin(�t � )
VCN � sin(�t � )

120°
120°

The Space Vector PWM module is divided in several parts:

� Determination of the sector

� Calculation of X, Y and Z
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� Calculation of t1 and t2

� Determination of the duty cycle taon, tbon and tcon

� Assignment of the duty cycles to Ta, Tb and Tc

The variables taon, tbon and tcon are calculated using the following equations:

�
��
�

�

taon �
PWMPRD � t1 � t2

2
tbon � taon � t1

tcon � Tbon � t2

Then the right duty cycle (txon) is assigned to the right motor phase (in other words,
to Ta, Tb and Tc) according to the sector. Table 71 depicts this determination.

Table 71.  Assigning the Right Duty Cycle to the Right Motor Phase

Sector U0, U60 U60, U120 U120, U180 U180, U240 U240, U300 U300, U0

Ta taon tbon tcon tcon tbon taon

Tb tbon taon taon tbon tcon tcon

Tc tcon tcon tbon taon taon tbon

Example:
Sector contained by U0 and U60.

T

t

t

t

PWM1

PWM3

PWM5

t

Ta

Tc

Tb

tcon

tbon
taon

T0�4 T6�2 T6�2 T0�4 T0�4 T6�4 T4�4 T0�4

V0 V6 V4 V7 V7 V6 V4 V0

Figure 33.  PWM Patterns and Duty Cycles for Sector Contained by U0 and
U60

Table 72.  Variable Cross Ref Table

Variables in the Equations Variables in the Code

a r1

b r2

c r3

Vref1 Va
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Variables in the Equations Variables in the Code

Vref2 Vb

Vref3 Vc
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Space Vector Generator (Magnitude/Frequency Method)SVGEN_MF

Description This module calculates the appropriate duty ratios needed to generate a given stator
reference voltage using space vector PWM technique. The stator reference voltage is
described by it’s magnitude and frequency.

SVGEN_MF
Ta

Tc

sv_freq

sv_gain

Q15/Q15 Tbsv_offset

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version.

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Direct ASM Version File Name: svgen_mf.asm

C-Callable Version File Name: svgen_mf.asm

Item ASM Only C-Callable ASM Comments

Code size 427 words 454 words†

Data RAM 16 words 0 words†

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized SVGENMF structure consumes 11 words in the .cinit section instance and 9 words in
data memory.
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Direct ASM Interface

Table 73.  Module Terminal Variables/Functions

Name Description Format Range

Inputs sv_freq Normalized frequency of
reference voltage vector.

Q15 8000−7FFF

sv_gain Normalized gain of the reference
voltage vector.

Q15 8000−7FFF

sv_offset Normalized offset in the
reference voltage vector

Q15 8000−7FFF

Outputs Ta Duty ratio of PWM1(CMPR1
register value as a fraction of
associated period register,
TxPR, value).

Q15 8000−7FFF

Tb Duty ratio of PWM3(CMPR2
register value as a fraction of
associated period register,
TxPR, value).

Q15 8000−7FFF

Tc Duty ratio of PWM5(CMPR3
register value as a fraction of
associated period register,
TxPR, value).

Q15 8000−7FFF

Init / Config none

Variable Declaration:
In the system file include the following statements:

.ref SVGEN_MF, SVGEN_MF _INIT ;function call

.ref sv_freq, sv_gain, sv_offset, Ta, Tb, Tc ;input/output

Memory map:
All variables are mapped to an uninitialized named section ‘svgen_mf’

Example:

ldp #sv_freq ;Set DP for module input
bldd #input_var1, sv_freq ;Pass input variables to module inputs
bldd #input_var2, sv_gain
bldd #input_var2, sv_offset

CALL SVGEN_MF

ldp #output_var1 ;Set DP for output variable
bldd #Ta, output_var1 ;Pass module outputs to output variables
bldd #Tb, output_var2 
bldd #Tc, output_var3
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C/C-Callable ASM Interface

Object Definition The structure of the SVGENMF object is defined by the following structure definition

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Define the structure of the SVGENMF
(Magnitude and angular velocity based Space Vector Waveform Generator)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

typedef struct { int gain;      /* Waveform amplitude Q15 Input         */
int freq;      /* Frequency setting  Q15 Input         */
int freq_max;  /* Frequency setting  Q0  Input         */
int alpha;     /* Internal var − Sector angle history  */
int sector;    /* Internal var − Sector number history */
int va;        /* Phase A output Q15                   */
int vb;        /* Phase B output Q15                   */
int vc;        /* Phase C output Q15                   */
int (*calc)(); /* Pointer to calculation function      */

} SVGENMF;

Table 74.  Module Terminal Variables/Functions

Name Description Format Range

Inputs freq Fraction of Frequency of reference
voltage vector.

Q15 8000−7FFF

freq_max Frequency of reference voltage vector. Q0 8000−7FFF

gain Required gain for the desired
reference voltage vector.

Q15 8000−7FFF

Outputs va Duty ratio of PWM1(CMPR2 register
value as a fraction of associated
period register, TxPR, value).

Q15 8000−7FFF

vb Duty ratio of PWM3(CMPR2 register
value as a fraction of associated
period register, TxPR, value).

Q15 8000−7FFF

vc Duty ratio of PWM5(CMPR3 register
value as a fraction of associated
period register, TxPR, value).

Q15 8000−7FFF

Special Constants and Datatypes

SVGENMF
The module definition itself is created as a data type. This makes it convenient to
instance a Space Vector Generation module. To create multiple instances of the mod-
ule simply declare variables of type SVGENMF.

SVGENDQ_handle
Typedef’ed to SVGENMF *
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SVGENMF_DEFAULTS
Initializer for the SVGENMF Object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers.

Methods void calc(SVGENMF_handle)
The default definition of the object implements just one method – the runtime compute
function for the generation of the space vector modulation functions. This is implement-
ed by means of a function pointer, and the default initializer sets this to svgenmf_calc.
The argument to this function is the address of the SVGENMF object.

Module Usage Instantiation:
The following example instances two such objects:

SVGENMF   sv1,sv2;

Initialization:
To instance a pre-initialized object

SVGENMF  sv1=SVGEN_DEFAULTS,sv2=SVGEN_DEFAULTS;

Invoking the compute function:

sv1.calc(&sv1);

Example:
Lets instance two SVGENMF objects, otherwise identical, but running with different
freq values.

SVGENMF sv1=SVGEN_DEFAULTS; /* Instance the first object */
SVGENMF sv2=SVGEN_DEFAULTS; /* Instance the second object*/

main()
{

sv1.freq=1200; /* Set properties for sv1 */
sv2.freq=1800; /* Set properties for sv2 */

}
void interrupt periodic_interrupt_isr()
{

sv1.calc(&sv1); /* Call compute function for sv1 */
sv2.calc(&sv2); /* Call compute function for sv2 */

x=sv1.va; /* Access the outputs of sv1 */
y=sv1.vb;
z=sv1.vc;

p=sv2.va; /* Access the outputs of sv2 */
q=sv2.vb;
r=sv2.vc;

/* Do something with the outputs */

}
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Background Information

The Space Vector Pulse Width Modulation (SVPWM) refers to a special switching se-
quence of the upper three power devices of a three-phase voltage source inverters
(VSI) used in application such as AC induction and permanent magnet synchronous
motor drives. This special switching scheme for the power devices results in 3 pseudo-
sinusoidal currents in the stator phases.

motor phases

VDC +

a cb

Q6Q4Q2

Q5Q3Q1

c′a′ b′

VA VB VC

Figure 34.  Power Circuit Topology for a Three-Phase VSI

It has been shown that SVPWM generates less harmonic distortion in the output volt-
ages or currents in the windings of the motor load and provides more efficient use of
DC supply voltage, in comparison to direct sinusoidal modulation technique.

c′a′ b′

VDC

a

A

b

B

c

C

Z

Z Z

N

ACI or PMSM

Figure 35.  Power Bridge for a Three-Phase VSI

For the three phase power inverter configurations shown in Figure 34 and Figure 35,
there are eight possible combinations of on and off states of the upper power transis-
tors. These combinations and the resulting instantaneous output line-to-line and
phase voltages, for a dc bus voltage of VDC, are shown in Table 75.
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Table 75.  Device On/Off Patterns and Resulting Instantaneous Voltages of a
3-Phase Power Inverter

c b a VAN VBN VCN VAB VBC VCA

0 0 0 0 0 0 0 0 0

0 0 1 2VDC/3 −VDC/3 −VDC/3 VDC 0 −VDC

0 1 0 −VDC/3 2VDC/3 −VDC/3 −VDC VDC 0

0 1 1 VDC/3 VDC/3 −2VDC/3 0 VDC −VDC

1 0 0 −VDC/3 −VDC/3 2VDC/3 0 −VDC VDC

1 0 1 VDC/3 −2VDC/3 VDC/3 VDC −VDC 0

1 1 0 −2VDC/3 VDC/3 VDC/3 −VDC 0 VDC

1 1 1 0 0 0 0 0 0

The quadrature quantities (in d−q frame) corresponding to these 3 phase voltages are
given by the general Clarke transform equation:

Vds � VAN

Vqs �
(2VBN � VAN)

3�

In matrix from the above equation is also expressed as,

�Vds

Vqs
� � 2

3�
�

�

1

0

�1
2

3�
2

� 1
2

� 3�
2

�
�

�
�
�
�

VAN

VBN

VCN

�
�
�

Due to the fact that only 8 combinations are possible for the power switches, Vds and
Vqs can also take only a finite number of values in the (d−q) frame according to the sta-
tus of the transistor command signals (c,b,a). These values of Vds and Vqs for the corre-
sponding instantaneous values of the phase voltages (VAN, VBN, VCN) are listed in
Table 76.

Table 76.  Switching Patterns, Corresponding Space Vectors, and their (d−q)
Components

c b a Vds Vqs Vector

0 0 0 0 0 O0

0 0 1 0 U0

0 1 0 U120

0 1 1 U60

1 0 0 U240

1 0 1 U300

1 1 0 0 U180

1 1 1 0 0 O111

2VDC

3
VDC

3�
�

VDC

3
VDC

3
VDC

3�

�
VDC

3
�

VDC

3�
VDC

3
�

VDC

3�

�
2VDC

3
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These values of Vds and Vqs, listed in Table 76, are called the (d−q) components of the
basic space vectors corresponding to the appropriate transistor command signal
(c,b,a). The space vectors corresponding to the signal (c,b,a) are listed in the last col-
umn in Table 76. For example, (c,b,a)=001 indicates that the space vector is U0.The
eight basic space vectors defined by the combination of the switches are also shown
in Figure 36.

U120(010)

U240(100)

U60(011)

U300(101)

U180(110) U0(001)
O111(111) O0(000)

q

d

Figure 36.  Basic Space Vectors

In Figure 36, vectors corresponding to states 0 (000) and 7 (111) of the switching vari-
ables are called the zero vectors.

Decomposing the reference voltage vector V*

The objective of Space Vector PWM technique is to approximate a given stator refer-
ence voltage vector V* by combination of the switching pattern corresponding to the
basic space vectors. The reference voltage vector V* is obtained by mapping the de-
sired three phase output voltages(line to neutral) in the (d−q) frame through the Clarke
transform defined earlier. When the desired output phase voltages are balanced three
phase sinusoidal voltages, V* becomes a vector rotating around the origin of the (d−q)
plane with a frequency corresponding to that of the desired three phase voltages.

The magnitude of each basic space vector, as shown in Figure 37, is normalized by
the maximum value of the phase voltages. Therefore, when the maximum bus voltage
is VDC, the maximum line to line voltage is also VDC, and so the maximum phase volt-
age(line to neutral) is VDC/√3. From Table 76, the magnitude of the basic space vectors
is 2VDC/3. When this is normalized by the maximum phase voltage(VDC/√3), the mag-
nitude of the basic space vectors becomes  2/√3. These magnitudes of the basic space
vectors are indicated in Figure 37.
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U0
(001)

U60
(011)

U120
(010)

U180
(110)

U240
(100)

U300
(101)
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S5

S6

dyUy

dxUx

Sector

0000

FFFF

0000

FFFF

q

d

15

Integrator

8-bit sine
table lookup

V*

141312 11 10 9 8 7 6 5 4 3 2 1 0

V *� MVmax ej�
�

� 2
3�

� 2
3�

“Ux”“Uy”

Figure 37.  Projection of the Reference Voltage Vector

Representing the reference vector V* with the basic space vectors requires precise
control of both the vector magnitude M (also called the modulation index) and the angle
α. The aim here is to rotate V* in the d−q plane at a given angular speed (frequency)
ω. The vector magnitude M controls the resultant peak phase voltage generated by the
inverter.

In order to generate the reference vector V*, a time average of the associated basic
space vectors is required, i.e. the desired voltage vector V* located in a given sector,
can be synthesized as a linear combination of the two adjacent space vectors, Ux and
Uy which frame the sector, and either one of the two zero vectors. Therefore,

V *� dxUx � dyUy � dzUz

where Uz is the zero vector, and dx, dy and dz are the duty ratios of the states X, Y and
Z within the PWM switching interval. The duty ratios must add to 100% of the PWM
period, i.e: dx + dy + dz = 1.

Vector V* in Figure 37 can also be written as:

V *� MVmax ej� � dxUx � dyUy � dzUz

where M is the modulation index and Vmax is the maximum value of the desired phase
voltage.

By projecting V* along the two adjacent space vectors Ux and Uy, we have,


MVmax cos� � dx|Ux| � dy|Uy| cos
MVmax sin� � dy|Uy| sin 60°

60°

Since the voltages are normalized by the maximum phase voltage, Vmax=1. Then by
knowing |Ux| = |Uy|  = 2/√3 (when normalized by maximum phase voltage), the duty
ratios can be derived as,
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dx � M sin(60 � �)

dy � M sin(�)

These same equations apply to any sector, since the d−q reference frame, which has
here no specific orientation in the physical space, can be aligned with any space vector.

Implementation of sin function

In this implementation the angular speed ω is controlled by a precision frequency gen-
eration algorithm which relies on the modulo nature (i.e. wrap-around) of a finite length
register, called Integrator in Figure 37. The upper 8 bits of this integrator (a data
memory location in 24x/24xx) is used as a pointer to a 256 word Sine lookup table. By
adding a fixed value (step size) to this register, causes the 8 bit pointer to cycle at a
constant rate through the Sine table. In effect we are integrating angular velocity to give
angular position. At the end limit the pointer simply wraps around and continues at the
next modulo value given by the step size. The rate of cycling through the table is very
easily and accurately controlled by the value of step size.

As shown in Figure 37, sine of α is needed to decompose the reference voltage vector
onto the basic space vectors of the sector the voltage vector is in. Since this decom-
position is identical among the six sectors, only a 60� sine lookup table is needed. In
order to complete one revolution (360o) the sine table must be cycled through 6 times.

For a given step size the angular frequency (in cycles/sec) of V* is given by:

� � STEP 
 fs

6 
 2m

where

fs = sampling frequency (i.e. PWM frequency)

STEP = angle stepping increment

m = # bits in the integration register.

For example, if fs = 24KHz, m=16 bits & STEP ranges from 0à2048 then the resulting
angular frequencies will be as shown in Table 77.

Table 77.  Frequency Mapping

STEP Freq (Hz) STEP Freq (Hz) STEP Freq (Hz)

1 0.061 600 36.62 1700 103.76

20 1.22 700 42.72 1800 109.86

40 2.44 800 48.83 1900 115.97

60 3.66 900 54.93 2000 122.07

80 4.88 1000 61.04 2100 128.17

100 6.10 1100 67.14 2200 134.28

From the table it is clear that a STEP value of 1 gives a frequency of 0.061Hz, this de-
fines the frequency setting resolution, i.e. the actual line voltage frequency delivered
to the AC motor can be controlled to better than 0.1 Hz.

For a given fs the frequency setting resolution is determined by m the number of bits
in the integration register. Table 78 shows the theoretical resolution which results from
various sizes of m.
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Table 78.  Resolution of Frequency Mapping

m (# bits) Freq res (Hz) m (# bits) Freq res (Hz)

8 15.6250 17 0.0305

12 0.9766 18 0.0153

14 0.2441 19 0.0076

16 0.0610 20 0.0038

Another important parameter is the size of the lookup table. This directly effects the
harmonic distortion produced in the resulting synthesized sine wave. As mentioned
previously a 256 entry sine table is used which has a range of 60°. This gives an angle
lookup resolution of 60° / 256 = 0.23°. The table entries are given in Q15 format and
a summarized version is shown below.

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
;No. Samples: 256,  Angle Range: 60, Format: Q15
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
;            SINVAL ;   Index  Angle    Sin(Angle)
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
STABLE  .word 0  ; 0 0 0.00
        .word 134  ; 1 0.23 0.00
        .word 268  ; 2 0.47 0.01
        .word 402  ; 3 0.70 0.01
        .word 536  ; 4 0.94 0.02
        .word 670  ; 5 1.17 0.02

      ”         ”       ”       ”    ”
      ”         ”       ”       ”    ”
      ”         ”       ”       ”    ”

        .word 28106 ; 252 59.06 0.86
        .word 28175 ; 253 59.30 0.86
        .word 28243 ; 254 59.53 0.86
        .word 28311 ; 255 59.77 0.86

Realization of the PWM Switching Pattern

Once the PWM duty ratios dx, dy and dz are calculated, the appropriate compare val-
ues for the compare registers in 24x/24xx can be determined. The switching pattern
in Figure 38 is adopted here and is implemented with the Full Compare Units of
24x/24xx. A set of 3 new compare values, Ta, Tb and Tc, need to be calculated every
PWM period to generate this switching pattern.
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T

= 1 PWM period

Note:

d0 dx dv d7 d0 dx

Ta

Tb

Tc

d0 � d7 � dz

Figure 38.  PWM Output Switching Pattern

From Figure 38, it can be seen:

Ta �
(T � dx � dy)

2

Tb � dx � Ta

Tc � T � Ta

If we define an intermediate variable T1 using the following equation:

T1 �
T � dx � dy

2

Then for different sectors Ta, Tb and Tc can be expressed in terms of T1. Table 79
depicts this determination.

Table 79.  Calculation of Duty Cycle for Different Sectors

Sector U0, U60 U60, U120 U120, U180 U180, U240 U240, U300 U300, U0

Ta T1 dy+Tb T−Tb T−Tc dx+Tc T1

Tb dx+Ta T1 T1 dy+Tc T−Tc T−Ta

Tc T−Ta T−Tb dx+Tb T1 T1 dy+Ta

The switching pattern shown in Figure 38 is an asymmetric PWM implementation.
However, 24x/24xx devices can also generate symmetric PWM. Little change to the
above implementation is needed to accommodate for this change. The choice be-
tween the symmetrical and asymmetrical case depends on the other care-about in the
final implementation.
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Volts/Hertz Profile for AC Induction MotorV_HZ_PROFILE

Description This module generates an output command voltage for a specific input command fre-
quency according to the specified volts/hertz profile. This is used for variable speed
implementation of AC induction motor drives.

V_Hz_PROFILE

v_outvhz_freq

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version.

Module Properties Type: Target Independent/Application Dependent

Target Devices: x24x/x24xx

Direct ASM Version File Name: vhz_prof.asm

C-Callable Version File Names: vhzprof.asm, vhzprof.h

Item ASM Only C-Callable ASM Comments

Code size 42 words 48 words†

Data RAM 9 words 0 words†

xDAIS module No Yes

xDAIS component No No IALG layer not implemented

† Each pre-initialized VHZPROFILE struction consumes 10 words in the .cinit section instance and 8 words
in data memory.
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Direct ASM Interface

Table 80.  Module Terminal Variables/Functions

Name Description Format Range

Inputs vhz_freq Command frequency of the stator
voltage

Q15 0−7FFF

Outputs v_out Command stator output voltage Q15 0−7FFF

Init / Config FL† Low frequency point on v/f profile. Q15 Application
dependent

FH† High frequency point on v/f
profile.

Q15 Application
dependent

Fmax† Maximum frequency Q15 Application
dependent

vf_slope† Slope of the v/f profile Q12 Application
dependent

Vmax† Voltage corresponding to FH Q15 Application
dependent

Vmin† Voltage corresponding to FL Q15 Application
dependent

† These parameters are initialized to some default values in the module initialization routine. Initialize these
from the system file if the default values are not used.

Variable Declaration:
In the system file include the following statements:

.ref V_Hz_PROFILE, V_Hz_PROFILE _INIT ;function call

.ref vhz_freq, v_out ;input/output

Memory map:
All variables are mapped to an uninitialized named section ‘vhz_prof’

Example:

ldp #vhz_freq ;Set DP for module input
bldd #input_var1, vhz_freq ;Pass input variable to module

;input

CALL V_Hz_PROFILE

ldp #output_var1 ;Set DP for output variable
bldd #v_out, output_var1 ;Pass module output to output

; variable
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C/C-Callable ASM Interface

Object Definition The object is defined as

typedef struct { int freq;   /* Frequency input Q15 */
                 int fl;     /* Freq below which vout=vmin:Q15 Input  */
                 int fh;     /* Freq above which vout=vmax Q15 Input  */
                 int slope;  /* Slope of the Vhz profile:  Q15 Input  */
                 int vmax;   /* Voltage output above fmax  Q15 Input  */
                 int vmin;   /* Voltage output below fmin  Q15 Input  */
                 int vout;   /* Computed output voltage    Q15 Output */
                 int (*calc)();  /* Ptr to the calculation function   */
               } VHZPROFILE;

Table 81.  Module Terminal Variables/Functions

Name Description Format Range

Inputs freq Command frequency of the stator
voltage

Q15 0−7FFF

Outputs vout Command stator output voltage Q15 0−7FFF

Init / Config fl† Low frequency point on v/f profile. Q15 Application
dependent

fh† High frequency point on v/f
profile.

Q15 Application
dependent

slope† Slope of the v/f profile Q12 Application
dependent

vmax† Voltage corresponding to fl Q15 Application
dependent

vmin† Voltage corresponding to fh Q15 Application
dependent

† These parameters are initialized to some default values in the module initialization routine. Initialize these
from the system file if the default values are not used.

Special Constants and Datatypes

VHZPROFILE
The module definition itself is created as a data type. This makes it convenient to
instance a VHZ Profile module. To create multiple instances of the module simply de-
clare variables of type VHZPROFILE.

DEFAULT_PROFILE
Initializer for the SVGENMF Object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers.

Methods void calc(VHZPROFILE *)
The only method implemented for this object is the runtime compute function for the
calculation of the vout value depending on the object parameters. The argument to this
function is the address of the VHZPROFILE object.

Module Usage Instantiation:
The following example instances two such objects:

VHZPROFILE   vhz1,vhz2;
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Initialization:
To instance a pre-initialized object

VHZPROFILE   vhz1=DEFAULT_PROFILE;

Invoking the compute function:

vhz1.calc(&vhz1);

Example:
Lets instance two SVGENMF objects, otherwise identical, but running with different
freq values. These SVGENMF objects need the computed value of the envelope for
the SVGEN waveforms, and this is computed by the VHZPROFILE objects.

SVGENMF sv1=SVGEN_DEFAULTS; /* Instance the first object */
SVGENMF sv2=SVGEN_DEFAULTS; /* Instance the second object*/

VHZPROFILE vhz1=DEFAULT_PROFILE;
VHZPROFILE vhz2=DEFAULT_PROFILE;

main()
{

sv1.freq=1200; /* Set properties for sv1 */
sv2.freq=1800; /* Set properties for sv2 */

}

void interrupt periodic_interrupt_isr()
{

vhz1.freq=sv1.freq; /* Connect the sv1, sv2 freq to vhz1 and vhz2 */
vhz1.freq=sv1.freq;

vhz2.calc(&vhz1); /* Call the compute functions */
vhz2.calc(&vhz1);

sv1.gain=vhz1.gain; /* Pass the computed output voltages back to the svgens */

sv2.gain=vhz2.gain;

sv1.calc(&sv1); /* Call compute function for sv1 */
sv2.calc(&sv2); /* Call compute function for sv2 */

x=sv1.va; /* Access the outputs of sv1 */
y=sv1.vb;
z=sv1.vc;

p=sv2.va; /* Access the outputs of sv2 */
q=sv2.vb;
r=sv2.vc;

/* Do something with the outputs. Something is probably modulate PWMs to drive motors with.
*/

}
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Background Information

If the voltage applied to a three phase AC Induction motor is sinusoidal, then by ne-
glecting the small voltage drop across the stator resistor, we have, at steady state,

V
^
� j� 


^

i.e.,

V � � 


where V
^

and 

^
 are the phasor representations of stator voltage and stator flux,

and V and 
 are their magnitude, respectively. Thus, we get


 � V
� � 1

2�
V
f

From the last equation, it follows that if the ratio V/f remains constant for any change
in f, then flux remains constant and the torque becomes independent of the supply fre-
quency. In actual implementation, the ratio of the magnitude to frequency is usually
based on the rated values of these parameters, i.e., the motor rated parameters. How-
ever, when the frequency, and hence the voltage, is low, the voltage drop across the
stator resistor cannot be neglected and must be compensated for. At frequencies high-
er than the rated value, maintaining constant V/Hz means exceeding rated stator volt-
age and thereby causing the possibility of insulation break down. To avoid this,
constant V/Hz principle is also violated at such frequencies. This principle is illustrated
in Figure 39.
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Figure 39.  Voltage Versus Frequency Under the Constant V/Hz Principle

Since the stator flux is maintained constant (independent of the change in supply fre-
quency), the torque developed depends only on the slip speed. This is shown in
Figure 40. So by regulating the slip speed, the torque and speed of an AC Induction
motor can be controlled with the constant V/Hz principle.
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Figure 40.  Toque Versus Slip Speed of an Induction Motor With Constant
Stator Flux
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Both open and closed-loop control of the speed of an AC induction motor can be imple-
mented based on the constant V/Hz principle. Open-loop speed control is used when
accuracy in speed response is not a concern such as in HVAC (heating, ventilation and
air conditioning), fan or blower applications. In this case, the supply frequency is deter-
mined based on the desired speed and the assumption that the motor will roughly fol-
low its synchronous speed. The error in speed resulted from slip of the motor is consid-
ered acceptable.

In this implementation, the profile in Figure 39 is modified by imposing a lower limit on
frequency. This is shown in Figure 41. This approach is acceptable to applications
such as fan and blower drives where the speed response at low end is not critical. Since
the rated voltage, which is also the maximum voltage, is applied to the motor at rated
frequency, only the rated minimum and maximum frequency information is needed to
implement the profile.
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Figure 41.  Modified V/Hz Profile

The command frequency is allowed to go below the minimum frequency, fmin, with the
output voltage saturating at a minimum value, Vmin. Also, when the command frequen-
cy is higher than the maximum frequency, fmax, the output voltage is saturated at a
maximum value, Vmax.
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