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About This Manual

Preface

Read This First

This manual provides basic examples and optimization techniques for use
when writing code for the TMS320C54x0 DSPs.

Notational Conventions

This document uses the following conventions.

d
d

The device number TMS320C54x is often abreviated as C54x.

Program listings, program examples, and interactive displays are shown
inaspeci al typeface similar to a typewriter’'s. Examples use a bol d
ver si on of the special typeface for emphasis; interactive displays use a
bol d ver si on of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Here is an example of a system prompt and a command that you might
enter:

C. csr —a /user/ti/sinmuboard/utilities

In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect "section name”, address

.asect is the directive. This directive has two parameters, indicated by sec-
tion name and address. When you use .asect, the first parameter must be
an actual section name, enclosed in double quotes; the second parameter
must be an address.
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(1 Some directives can have a varying number of parameters. For example,

the .byte directive can have up to 100 parameters. The syntax for this di-
rective is:

.byte valueq [, ..., valuep]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

In most cases, hexadecimal numbers are shown with the suffix h. For ex-
ample, the following number is a hexadecimal 40 (decimal 64):

40h

Similarly, binary numbers are shown with the suffix b. For example, the fol-
lowing number is the decimal number 4 shown in binary form:

0100b

(1 Bits are sometimes referenced with the following notation:

Notation Description Example

Register(n—m) Bits n through m of Register ACO0(15-0) represents the 16

least significant bits of the regis-
ter ACO.

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.



Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

The following books describe the TMS320C54x devices and related support
tools. To obtain a copy of any of these Tl documents, call the Texas Instru-
ments Literature Response Center at (800) 477-8924. When ordering, please
identify the book by its title and literature number.

TMS320C54x DSP Reference Set, Volume 2: Mnemonic Instruction Set
(literature number SPRU172) describes the TMS320C54x0 digital
signal processor mnemonic instructions individually. Also includes a
summary of instruction set classes and cycles.

TMS320C54x DSP Reference Set, Volume 3: Algebraic Instruction Set
(literature number SPRU179) describes the TMS320C54x0 digital
signal processor algebraic instructions individually. Also includes a
summary of instruction set classes and cycles.

TMS320C54x DSP Reference Set, Volume 4: Applications Guide
(literature number SPRU173) describes software and hardware
applications for the TMS320C54x[ digital signal processor. Also
includes development support information, parts lists, and design
considerations for using the XDS5100 emulator.

TMS320C54x Simulator Getting Started Guide (literature number
SPRU137) describes how to install the TMS320C54x simulator and the
C source debugger for the C54x. The installation for Windows 3.1,
SunOS[O, and HP-UX[O systems is covered.

TMS320C54x Assembly Language Tools User’s Guide (literature number
SPRU102) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the TMS320C54x[] generation of devices.

TMS320C54x Optimizing C Compiler User’s Guide (literature number
SPRU103) describes the TMS320C54x[0 C compiler. This C compiler
accepts ANSI standard C source code and produces assembly language
source code for the TMS320C54x generation of devices.

TMS320C54x Code Generation Tools Getting Started Guide (literature
number SPRU147) describes how to install the TMS320C54x0
assembly language tools and the C compiler for the TMS320C54x
devices. The installation for MS-DOS[, 0S/20, SunOSO, SolarisJ, and
HP-UXO 9.0x systems is covered.

TMS320C54x DSP Library Programmer’s Reference (literature number
SPRU518) describes the optimized DSP Function Library for C program-
mers on the TMS320C54x DSP.

Read This First \Y;



Trademarks

Trademarks

Code Composer Studio, TMS320C54x, C54x, TMS320C55x%, and C55x are
trademarks of Texas Instruments.
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Chapter 1

TMS320C54x Architectural Overview

This chapter lists some of the key features of the TMS320C54x0 (C54x) DSP
architecture.
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1.2 TMS320C54x Key Features ............ouuiiiininnninnennnenn.. 1-3
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TMS320C54x Overview

1.1 TMS320C54x Overview

1-2

The C54x has a high degree of operational flexibility and speed. It combines
an advanced modified Harvard architecture (with one program memory bus,
three data memory buses, and four address buses), a CPU with application-
specific hardware logic, on-chip memory, on-chip peripherals, and a highly
specialized instruction set. Spinoff devices that combine the C54x CPU with
customized on chip memory and peripheral configurations have been, and
continue to be, developed for specialized areas of the electronics market.

The C54x devices offer these advantages:

a

4

Enhanced Harvard architecture built around one program bus, three data
buses, and four address buses for increased performance and versatility

Advanced CPU design with a high degree of parallelism and application-
specific hardware logic for increased performance

A highly specialized instruction set for faster algorithms and for optimized
high-level language operation

Modular architecture design for fast development of spinoff devices

Advanced IC processing technology for increased performance and low
power consumption

Low power consumption and increased radiation hardness because of
new static design techniques



TMS320C54x Key Features

1.2 TMS320C54x Key Features

Key CPU core and instruction set features of the C54x DSPs include:

g CPU

W Advanced multibus architecture with one program bus, three data
buses, and four address buses

B 40-bit arithmetic logic unit (ALU), including a 40-bit barrel shifter and
two independent 40-bit accumulators

B 17-bit x 17-bit parallel multiplier coupled to a 40-bit dedicated adder
for nonpipelined single-cycle multiply/accumulate (MAC) operation

B Compare, select, store unit (CSSU) for the add/compare selection of
the Viterbi operator

B Exponent encoder to compute the exponent of a 40-bit accumulator
value in a single cycle

B Two address generators, including eight auxiliary registers and two
auxiliary register arithmetic units

W Dual-CPU/core architecture on the 5420

] Instruction set

Single-instruction repeat and block repeat operations

Block memory move instructions for better program and data man-
agement

Instructions with a 32-bit long operand

Instructions with 2- or 3-operand simultaneous reads
Arithmetic instructions with parallel store and parallel load
Conditional-store instructions

Fast return from interrupt

TMS320C54x Architectural Overview 1-3



Chapter 2

Improving System Performance

This chapter introduces features of the TMS320C54x[] (C54x) DSP that im-
prove system performance. These features allow you to conserve power and
manage memory. You can improve the performance of any application through
efficient memory management.

Topic Page
2.1 Tips for Efficient Memory Allocation ............................ 2-2
2.2 Memory Alignment Requirements ...............ccoiiiiiienn.... E
2.3  Stack Initialization ......... ... E
2.4 Overlay Management . ... ...ttt 2-6
2.5 Memory-to-Memory MOVES . ... ...ttt 2-7
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Tips for Efficient Memory Allocation

2.1 Tips for Efficient Memory Allocation

[ Tip: Carefully plan your SARAM vs DARAM data allocation.

The C54x can access minimum 64K words of program and 64K words of
data memory. On-chip memory accesses are more efficient than off-chip
memory access, since there are eight different internal buses on the C54x
but there is only one external bus for off-chip accesses. This means that an
off-chip operation requires more cycles than that of an on-chip operation.

In cases where the DSP uses wait-state generators to interface to slower
memories, the system, cannot run at full speed. If on-chip memory con-
sists of dual access RAM (DARAM), accessing two operands from the
same block does not incur a penalty. Using single access RAM (SARAM),
however, incurs a cycle penalty.

Tip: For random-access variables, use direct addressing and
allocate them in the same 128-word page.

Random-access variables use direct addressing mode. Data-page rela-
tive direct memory addressing makes efficient use of memory resources.
Allocating all the random variables on a single data page saves some ex-
tra CPU cycles.

Sometimes data variables have an associated lifetime. When that lifecycle
is over, the data variables become useless.. Thus, if two data variables
have non-overlapping lifetimes, both can occupy the same physical
memory. The UNION directive in the linker command file allows two or
more data variables share the same physical memory location

Tip: If required, reserve CPU resources for the exclusive use of
interrupts.

The actual lifetime of a variable determines whether it is retained across
the application or only in the function. By careful organization of the code in
an application, resources can be used optimally. Aggregate variables,
such as arrays and structures, are accessed via pointers located within
that program’s data page, but the actual aggregate variables reside else
where in the data memory. Depending upon the lifetime of the arrays or
structures, these can also form unions accordingly.

Interrupt driven tasks require careful memory management. Often, pro-
grammers assume that all CPU resources are available when required.
This may not be the case if tasks are interrupted periodically. These inter-
rupts do not require many CPU resources, but they force the system to re-
spond within a certain time. To ensure that interrupts occur within the spe-
cified time and the interrupted code resumes as soon as possible, you



Tips for Efficient Memory Allocation

must use low overhead interrupts. If the application requires frequent in-
terrupts, you can set aside some of the CPU resources for these inter-
rupts. When all CPU resources are used, simply saving and restoring the
CPU'’s contents increases the overhead for an interrupt service routine
(ISR).

Dedicated auxiliary registers are useful for servicing interrupts. Allowing
interrupts at certain places in the code permits the various tasks of an ap-
plication to reuse memory. If the code is fully interruptible (that is, interrupts
can occur anywhere and interrupt response time is assured within a cer-
tain period), memory blocks must be kept separate from each other. On
the other hand, if a context switch occurs at the completion of a function
rather than in the middle of execution, the variables can be overlapped for
efficiency. This allows variables to use the same physical memory ad-
dresses at different times.

Improving System Performance 2-3



Memory Alignment Requirements

2.2 Memory Alignment Requirements

C54x data placement in memory must comply with the following requirements:

(1 Long words must be aligned at even boundaries for double-precision op-

erations; that is, the most significant word at an even address and the least
significant word at an odd address.

Circular buffers should be aligned at a K boundary, where K is the smallest
integer that satisfies 2K > R and R is the size of the circular buffer. Use the
align directive to align buffers to correct sizeslf an application uses circu-
lar buffers of different sizes, allocate the largest buffer size as the first
alignment, the next highest as the second alignment, and so forth.
Example 2—-1 shows the memory management alignment feature where
the largest circular buffer is 1024 words, and therefore, is assigned first.
A 256-word buffer is assigned next. Unused memory can be used for other
functions without conflict.

Example 2—-1. Memory Alignment Example

DRAM : origin = 0x0100, length = 0x1300
i npt_buf : {} > DRAM align(1024) PACGE 1
outdata : {} > DRAM align(1024)PAGE 1
UNI ON : > DRAM al i gn(1024) PAGE 1
{
fft_bffr
adpt _sct:
{
*(buf ferw)
. +=80h;
*(buf f er p)
} }
UNI ON . > DRAM al i gn(256) PAGE 1
{
fir_bfr
cir_bfr
coff_iir
buf ferh
twid_sin
}
UNI ON . > DRAM al i gn(256) PAGE 1
{
fir_coff
cir_bfrl
buf f er x
twid_cos
}



Stack Initialization

2.3 Stack Initialization

Stack allocation can also benefit from efficient memory management. The
stack grows from high to low memory addresses. The stack pointer (SP)
decrements by 1 before pushing a new element onto the stack and post incre-
ments after a pop. The bottom location of the stack added to the stack size
gives the actual starting location of the stack pointer. The last element on the
stack is always empty. Whether the stack is on chip or off chip affects the cycle
count during the stack accesses.

Example 2—-2 shows stack initialization when the application is written in as-
sembly. The variable SYSTEM_STACK holds the size of the stack. It is loaded
into the SP, which points to the end of the stack.

Example 2-2. Stack Initialization for Assembly Applications

K_STACK_SI ZE . set 100
STACK . usect “stack”, K _STACK SIZE
SYSTEM STACK . set STACK+K_STACK_SI ZE

.ref  SYSTEM STACK

STM #SYSTEM STACK, SP ; initialization

; of SP- this is done

; vectors.asm
cinitialization of stack
; in linker command file

stack : {} DRAM PAGE 1

Example 2—3 shows stack initialization by c¢_int00 routine from the C runtime
support library(rts.lib) when the application is written in C.The compiler uses
the stack to allocate local variables, pass arguments, and save the processor
status. The stack size is set by the linker and the default size is 1 K words. If
1K words of stack is more than necessary, allocate a smaller size stack by us-
ing the stack directive in the linker command file and utilize the freed up
memory for other data variables.

Example 2—3. Stack Initialization c_int0O routine

*
*
*

ext
i nt 00:

P T T I T T I T I T I I I I I >

Init Stack Pointer. Renenber stack grows fromhigh to | ow address *
R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR

STM #_st ack,

SP

; set to begging of stack nenory

ADDM #(_STACK SIZE — 1), *(SP) ; add size to get to the top

ANDM #0FFFEh,

*( SP) ; make sure it is an even address

Improving System Performance 2-5
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2.4 Overlay Management

Some systems use a memory configuration in which all or part of the memory
space is overlaid. This allows the system to map different banks of physical
memory into and out of a single address range. Multiple banks of physical
memory can overlay each other at the same address space. In the C54x, you
can:

[ Overlay on-chip program and data memory.

This is achieved by setting the OVLY bit in the PMST register. This is par-
ticularly useful in loading the coefficients of a filter, since program and data
use the same physical memory.

(1 Overlay off-chip memory to achieve more than 64K words.

If an application needs more than 64K words of either data or program
memory, two options are available: The first one is to use one of the C54x
derivatives that provides more than 16 address lines to access more than
64K words of program space. The other option is to use an external device
that provides upper addresses beyond the 16-bit memory range. The DSP
writes a value to a register located in its /O space, whose data lines are the
higher address bits. It implements bank switching to cross the 64K bound-
ary. Some devices have Bank Switch Control Register to select memory
bank boundary size. Since the bank switch requires action from the DSP,
frequent switching between the banks is not very efficient. It is more effi-
cient to partition tasks within a bank and switch banks only when starting
new tasks.



Memory-to-Memory Moves

2.5 Memory-to-Memory Moves

There are various reasons for performing memory-to-memory moves. These
reasons include making copies of buffers to preserve the original, moving con-
tents from ROM to RAM, and moving copies of code from their load location
to their execution location. Example 2—4 implements memory-to-memory
moves on the C54x using single-instruction repeat loops.

Example 2—4. Memory-to-Memory Block Moves Using the RPT Instruction

. M7 egs
. text

; This routine uses the MVDD instruction to nove
; information in data nenory to other data nmenory
; locations.

STM  #4000h, AR2 ;Load pointer to source in
; data nmenory.

STM  #100h, AR3 ; Load pointer to
;destination in data nenory.

RPT #(1024-1) : Move 1024 val ue.

WDD *AR2+, * AR3+

RET

; This routine uses the MVDP instruction to nove external
; data menmory to internal program nenory.

STI'M. #0EOOOh, AR1L ; Load pointer to source in
; data menory.

RPT #(8192-1) ; Move 8K to program nmenory space.
MVDP  * AR1+, #800h
RET

: This routine uses the MVPD instruction to nove external
; program nmenory to internal data nmenory.

STM  #0100h, ARl ;Load pointer to
;destination in data nenory.

RPT #(128-1) ; Move 128 words from external
MVPD #3800h, *ARl+ ;programto internal data

; Menory.
RET

Improving System Performance 2-7
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Example 2—4.Memory-to-Memory Block Moves Using the RPT Instruction (Continued)

; This routine uses the READA instruction to nmove externa
; program nmenory to internal data menory. This differs

: fromthe MVPD instruction in that the accunul ator

; contains the address in program nmenory from which to

; transfer. This allows for a calculated, rather than

; pre-determned, location in programmenory to be

; specified. READA can access locations in program menory
; beyond 64K word boundary

STM #0100h, AR1 ;Load pointer to
;destination in data nenory.

RPT #(128-1) ; Move 128 words from externa
READA * AR1+ ;programto internal data

; MENOry.
RET

; This routine uses the WRITA instruction to nove data
; menory to program nmenory. The calling routine nust

; contain the destination program menory address in the
; accumul ator. WRI TA can access program nmenory address
; beyond 64K word boundary

VWRI TE_A:
STM  #380h, ARL ;Load pointer to source in
; data menory.
RPT #(128-1) ; Move 128 words from data
VWRI TA *AR1+ ;menory to program nenory.
RET

2-8



Efficient Power Management

2.6 Efficient Power Management

The C54x family of DSPs exhibits very low power dissipation and flexible pow-
er management. This is important in developing applications for portable sys-
tems, particularly wireless and hand-held systems. Three aspects of power
management are discussed here: on- versus off-chip memory, the use of
HOLD, and the use of IDLE modes.

To fetch and execute instructions from on-chip memory requires less power
than accessing them from off-chip memory. The difference between these two
accesses becomes noteworthy if a large piece of code resides off chip and is
used more frequently than the on-chip code. The code can be partitioned so
that the code that consumes the most power and is used most frequently is
placed on-chip. (Masked ROM devices are another alternative for very high-
performance applications.)

If the program is executed from internal memory, activities on the external bus
during code access cycles can be disabled with the AVIS bit in the PMST regis-
ter. This feature saves a significant amount of power. However, once the AVIS
bit is set, the address bus is still driven in its previous state. The external bus
interface bit (EXIO) in the bank-switching control register (BSCR) controls the
states of the address, control, and data lines. If the function is disabled, the
address and data buses, along with the control lines, become inactive after the
current bus cycle.

The HOLD signal and the HM bit of the Status Register 1 (ST1) initiate a power-
down mode by either shutting off CPU execution or continuing internal CPU
execution if external access is not necessary. This makes external memory
available for other processors. The timers and serial ports are not used, and
the device can be interrupted and serviced.

Using the IDLE1, IDLE2, and IDLE3 modes can cut down the device power
consumption significantly The system clock and peripherals are not halted in
IDLE1 mode, but CPU activities are stopped. In IDLE1 mode peripherals and
timers can bring the device out of power-down mode. The system can use the
timer interrupt as a wake-up if the device needs to be in power-down mode pe-
riodically. In IDLE2 mode both CPU and peripherals are halted. The IDLE2
mode saves a significant amount of power, compared to IDLE1. The IDLE3
mode shuts off the entire chip along with the PLL circuitry and save even more
power than IDLE2 mode. Unlike the IDLE1 mode, an external interrupt is re-
quired to wake up the processor in IDLE2 or IDLE3 mode.

Improving System Performance 2-9



Chapter 3

Arithmetic and Logical Operations

This chapter shows how the TMS320C54x[1 (C54x) supports typical arithme-
tic and logical operations, including multiplication, addition, division, square
roots, and extended-precision operations.

Also, the C54x DSP Library (DSPLIB) (see Chapter 5) contains additional
math routines.

Topic Page
3.1 Division and Modulus Algorithm ....... ... ... ... ... .. ....... 3-2
3.2 Sinesand CoSINES ...ttt i, 3-9
3.3 SquUare ROOLS ... ... .. 3-14 |
3.4 Extended-Precision Arithmetic ............... ... ... ... ...... @
3.5 Floating-Point Arithmetic ............. ... .. ... .. ... ..., @
3.6 LOGical OPErations . .............ieeeeeeeeeeiiiiieaeann, [3-43 |
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Division and Modulus Algorithm

3.1 Division and Modulus Algorithm

3-2

The C54x implements division operations by using repeated conditional subtrac-
tion. Example 3—1 uses four types of integer division and modulus:

(1 Type I: 32-bit by 16-bit unsigned integer division and modulus
1 Type ll: 32-bit by 16-bit signed integer division and modulus

[ Type lll: 16-bit by 16-bit unsigned integer division and modulus
[ Type IV: 16-bit by 16-bit signed integer division and modulus

SUBC performs binary division like long division. For 16-bit by 16-bit integer
division, the dividend is stored in low part accumulator A. The program repeats
the SUBC command 16 times to produce a 16-bit quotient in low part accumu-
lator A and a 16-bit remainder in high part accumulator B. For each SUBC sub-
traction that results in a negative answer, you must left-shift the accumulator
by 1 bit. This corresponds to putting a 0 in the quotient when the divisor does
not go into the dividend. For each subtraction that produces a positive answer,
you must left shift the difference in the ALU output by 1 bit, add 1, and store
the result in accumulator A. This corresponds to putting a 1 in the quotient
when the divisor goes into the dividend.

Similarly, 32-bit by 16-bit integer division is implemented using two stages of
16-bit by 16-bit integer division. The first stage takes the upper 16 bits of the
32-bit dividend and the 16-bit divisor as inputs. The resulting quotient
becomes the higher 16 bits of the final quotient. The remainder is left shifted
by 16 bits and adds the lower 16 bits of the original dividend. This sum and the
16-bit divisor become inputs to the second stage. The lower 16 bits of the
resulting quotient is the final quotient and the resulting remainder is the final
remainder.

Both the dividend and divisor must be positive when using SUBC. The division
algorithm computes the quotient as follows:

1) The algorithm determines the sign of the quotient and stores this in
accumulator B.

2) The program determines the quotient of the absolute value of the numera-
tor and the denominator, using repeated SUBC commands.

3) The program takes the negative of the result of step 2, if appropriate, ac-
cording to the value in accumulator B.

For unsigned division and modulus (types | and Ill), you must disable the sign
extension mode (SXM = 0). For signed division and modulus (types Il and V),
turn on sign extension mode (SXM = 1). The absolute value of the numerator
must be greater than the absolute value of the denominator.



Division and Modulus Algorithm

Example 3-1. Unsigned/Signed Integer Division Examples

1

1

;. Modul e

Fil e Nane: DI V_ASM ASM

Title:

Di vide & Modulus — Assenmbly Math Utilities.

Oiginal draft: Alex Tessaral o
Modi fied for C54x: Sinmon Lau & Philip Jones
Texas I nstrunments |nc.

Tar get :

C54X

Contents: Di vModU 32

Di viMbdUI 16
Di vibdI 32

Di vibdI 16

32-bit By 16-bit Unsigned | nteger Divide

’
1

And Mbdul us.
16-bit By 16-bit Unsigned Integer Divide
And Mbdul us.

32-bit By 16-bit Signed Integer Divide

And Modul us.

16-bit By 16-bit Signed |nteger Divide

And Modul us.

Description O Changes.

Hi story: mi dd/yy | Wo
+ +

08/01/96 | Sinon L. | Original

draft.

Nane: Di vibdUl 32

Description: 32 Bit By 16 Bit Unsigned Integer Divide And Mdul us

Usage ASM
. bss d_NunH, 1 00000000h to FFFFFFFFh
. bss d _Nuni, 1
. bss d_Den, 1 0000h to FFFFh
- bss d_QuotH, 1 00000000h to FFFFFFFFh
. bss d_QuotlL,1
. bss d Rem 1 0000h to FFFFh
CALL Di viMbdUI 32
I nput: d_NunmH
d_NunL
d_Den

Modi fies: SXM
accunul ator A

Cut put :

d_QuotH
d QuotL
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Division and Modulus Algorithm

Example 3-1.Unsigned/Signed Integer Division Examples (Continued)
N d_Rem
Al gorithm Quot = Nunl Den ’
- Rem = Nunf®en
T NunmH = n3| n2 QuotH = @g3| g2
i NurrL = nl| nO QuotL = ql]|q0
- Den = d1|do Rem= r1|r0
: Phasel: t1|t0/q3|g2 = A (after repeating SUBC 16 times)
¥ d1]do ) 00] 00| N3] n2 = A (bef or e)
: Phase2: r1|r0|ql|q0 = A (after repeating SUBC 16 times)
¥ d1]do ) t1]t0] ni| no = A (before)
NOTES: Si gn extensi on node nust be turned off.
U def Di vMbdUI 32
.ref d_NurmH
.ref d_NunmL
.ref d_Den
.ref d _QuotH
.ref d_QuotL
.ref d_Rem
. text Di vivbdUl 32:
RSBX SXM ; sign extention node off
LD d_NunH, A
RPT #(16-1)
SUBC d_Den, A
STLA, d_QuotH
XOR d QuotH A ;. clear AL
OoR d_Nuni, A ; AL = NunmlL
RPT #(16-1)
SUBC d_Den, A
STL A, d_Quot L
STHA, d_Rem
RET

;. Modul e Nane: Di vModU 16

Description: 16 Bit By 16 Bit Unsigned |Integer Divide And Mdul us

Usage ASM
. bss
. bss
. bss
. bss

CALL

3-4

d_Num 1 © 0000h to FFFFh
d_Den, 1 © 0000h to FFFFh
d_Quot, 1 - 0000h to FFFFh
d_Rem 1 © 0000h to FFFFh
Di vMbdUI 16



Division and Modulus Algorithm

Example 3-1.Unsigned/Signed Integer Division Examples (Continued)

i ’nput : d_Num
d_Den

Modi fi es: SXM
i accunul ator A

7, Qutput: d_Quot

U d_Rem

Al’gorithm Quot = Num Den .
- Rem= Nun?®en

i Nume nl1| nO Quot = ql| q0

i Den= d1| dO Rem =rllr0

rijr0]gqljg0 = A (after repeating SUBC 16 ti nes)

> d1]do ) 00] 00] n1]n0 = A (bef ore)

NOTES: Sign extension nmode nmust be turned of f.

. def Di vivbdUI 16
.ref d_Num
. ref d_Den
.ref d_Quot
. ref d_Rem
. text

Di vModUI 16:
RSBX SXM ; sign extention node off
LD @_Num A
RPT #(16-1)
SUBC @_Den, A
STL A @_Quot
STH A @_Rem
RET

" Modul e Name: Di vibdl 32

;; Description: 32 Bit By 16 Bit Signed Integer Divide And Mdul us.

i, Usage ASM

b . bss d_NunH, 1 ; 80000001h to 7FFFFFFFh
M . bss d Nunmi, 1

i . bss d_Den, 1 ; 8000h to 7FFFh

b - bss d_QuotH 1 ; 80000001h to 7FFFFFFFh

s . bss d_QuotlL,1

D . bss d Rem 1 ; 8000h to 7FFFh

s CALL  Di vMbdl 32

; ’ I nput : d_NumH

Arithmetic and Logical Operations 3-5



Division and Modulus Algorithm

Example 3—-1.Unsigned/Signed Integer Division Examples (Continued)

Modi fies: SXM

T
- accunul ator A
;; accunul ator B

Qut put : d_QuotH
i d_QuotL
i d_Rem
Aigorithm Quot = Nun? Den
Rem = NunfPen

- Signed division is simlar to unsigned division except that
the sign of Num and Den nust be taken into account.

First the sign is deternmined by rultiplying Num by Den.

Then division is performed on the absol ute val ues.

NumH = n3| n2 QuotH = 93| Qg2
Numk = nl1| nO QuotL = ql|q0
Den= di| doO Rem =rl1|r0

Phasel: t1]t0|g3|qg2 (after repeating SUBC 16 times)

d1] do ) 00] 00| n3| n2

(before)

- Phase2: r1|r0|ql|q0 (after repeating SUBC 16 times)

d1]do ) t1]t0| ni|no

1
> >» >» >

(before)

- NOTES: Sign extension nust be turned on.

. def Di vibdI 32
.ref d_NurmH
.ref d_NumlL
.ref d_Den
.ref d_QuotH
.ref d_QuotL
.ref d_Rem
. text
Di vibdl 32:
SSBX SXM ; sign extention node on
LD d_Den, 16, A
MPYA d_NunH ; B has sign of quotient
ABS A
STHA ,d_Rem ; d_Rem = abs(Den) tenporarily
LD d_NunH, 16, A
ADDS d_Nuni, A
ABS A
STH A d_QuotH ; d_QuotH = abs(NunmH) tenporarily
STL A d_QuotL ; d_QuotL = abs(Nunl) tenporarily
LD d_QuotH, A
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Division and Modulus Algorithm

Example 3-1.Unsigned/Signed Integer Division Examples (Continued)

RPT  #(16-1)

SUBC d_Rem A

STL A d_QuotH ; AH = abs(Quot H)

XOR d_QuotH, A ; clear AL

OoR d QuotlL, A ; AL = abs(Nunl)

RPT  #(16-1)

SUBC d RemA

STL A d_QuotL ; AL = abs(Quotl)

STH A d_Rem ; AH = Rem

BCD Di vivbdl 32Ski p, BGEQ ; if B neg, then Quot =
; —abs(Quot)

LD d_Quot H, 16, A

ADDS d_QuotlL, A

NEG A

STH A d_QuotH

STL A d_QuotL

Di vModI 32Ski p:

1
)
1
)

1
’
)
’

RET

Modul e Nane: Di vMbdl 16

Description: 16 Bit By 16 Bit Signed Integer Divide And Mdul us.

Lstage ASM
. bss d Num 1 ; 8000h to 7FFFh (Q0.15 fornmat)
. bss d _Den, 1 ; 8000h to 7FFFh (Q0.15 fornat)
. bss d_Quot, 1 ; 8000h to 7FFFh (Q0.15 format)
. bss d Rem1 ; 8000h to 7FFFh (Q0.15 format)
CALL D vModl 16
i ’nput : d_Num .
d_Den
Modi fi es: AR2
T
accunul ator A
accunul ator B
SXM
Qut put : d_Quot
d_Rem
Ai gorithm Quot = Nuni Den
Rem = Nunt®en

Signed division is simlar to unsigned division except that
the sign of Num and Den nust be taken into account.

First the sign is determ ned by multiplying Num by Den.
Then division is performed on the absol ute val ues.

Num = nl| nO Quot = g1| q0
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Division and Modulus Algorithm

Example 3—-1.Unsigned/Signed Integer Division Examples (Continued)

- Den = di1|do Rem =rl|r0
P r1jro|ql| g0 = A (after repeating SUBC 16 tines)
s dl| do ) 00/ 00| n1|n0 = A (before)
- NOTES: Sign extension node nust be turned on.
. def Di vibdI 16
.ref d_Num
.ref d_Den
. ref d_Quot
.ref d_Rem
.text
Di vMbdlI 16:
SSBX SXM ; sign extention node on
ST™M #d_Quot , AR2
LD d_Den, 16, A
MPYA d_Num ; B has sign of quotient
ABS A
STH A d_Rem ; d_Rem = abs(Den) tenporarily
LD d_Num A
ABS A ; AL = abs(Num
RPT #(16-1) SUBC d_Rem A
STL A d_Quot ; AL = abs(Quot)
STH A d_Rem ; AH = Rem
LD #0, A
SUB d_Quot, 16, A ; AH = —abs(Quot)
SACCD A *AR2, BLT ; If B neg, Quot = —abs(Quot)
RET
End O File.

[
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Sines and Cosines

3.2 Sines and Cosines

Sine-wave generators are used in signal processing systems, such as com-
munications, instrumentation, and control. In general, there are two methods
to generate sine and cosine waves. The first is the table look-up method, which
is used for applications not requiring extreme accuracy. This method uses
large tables for precision and accuracy and requires more memory. The se-
cond method is the Taylor series expansion, which is more efficient. This meth-
od determines the sine and cosine of an angle more accurately and uses less
memory than table look-up, and it is discussed here.

The first four terms of the expansion compute the angle. The Taylor series ex-
pansions for the sine and cosine of an angle are:

. 3 5 7 9
sin(g) = x-X + XX X

3 571 o
oy X3 X8 X1 X2
= X3t 7!(1 8.9)

— X2 X (X2 (q_ X2
“ Xt 5!( 6.7(1 8.9))
= X[ X2 [q_X2[q_ X2
=X 3!(1 4.5(1 6.7(1 8.9)))

a5 05)

X X4 x8 , x8
COS(@) = 1—5 + E—a + g
— X2 x4 x8(, x2
=t 6!(1 7.8)
— X2 X4 x2 [, X2
=1 2.+4|( 5.6(1 78))

= 1 X[ X2 (X2 (X2
T2 (1 3.4(1 5.6(1 7.8)))
The following recursive formulas generate the sine and cosine waves:

sin n@ = 2 cos(0)sin{(n-1)6} — sin{(n—2)6}
cos nd = 2 cos(9)cos{(n-1)8} — cos{(n—2)6}

These equations use two steps to generate a sine or cosine wave. The first
evaluates cos(0) and the second generates the signal itself, using one multiply
and one subtract for a repeat counter, n.
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Sines and Cosines

Example 3-2. Generation of a Sine Wave

Example 3—-2 and Example 3-3 assume that the delayed cos((n—1)) and
cos((n-2)) are precalculated and are stored in memory. The Taylor series
expansion to evaluate the delayed cos((n—1)), cos((n—2))/sin((n-1)), and
sin((n—2)) values for a given 6 can also be used.

This function evaluates the sine of an angle using the Taylor series

X( 1-x"2/ 2* 3( 1—-x2/ 4* 5( 1-x"2/ 6* 7( 1-x2/ 8+9))))

d_x, d_squr_x,d_coff,d_sinx,C1

; Functional Description

; expansi on.

; sin(theta) =
. M egs
. def

d_coff .sect "coeff”
.word 0lc7h
.word 030bh
.word 0666h
.word 1556h

d_x . usect "sin_vars”, 1

d_squr_x .usect "sin_vars”, 1

d_tenp . usect
d_sinx .usect

cl1 . usect "sin_vars”, 1
.text

sin_start:
ST™M #d_cof f, AR3
ST™M #d_x, AR2
ST™M #C 1, AR4
sin_angl e
LD #d_x, DP
ST #6487h, d_x
ST #7fffh,C 1
SQUR *AR2+, A
ST A *AR2
|| LD *AR4, B
MASR *AR2+, * AR3+, B, A
MPYA A
STH A *AR2
MASR * AR2—, * AR3+, B,
MPYA * AR2+
ST B, * AR2
|| LD *AR4, B
MASR * AR2—, * AR3+, B,
MPYA * AR2+
ST B, * AR2
|| LD *AR4, B
MASR *AR2—, * AR3+, B, A
MPYA d_x
STH B, d_sinx ;
RET

3-10

"sin_vars”, 1
"sin_vars”, 1

)

)

c1=1/72, c2=1/ 42, c3=1/ 20
; c4=1/6

i nput val ue

Al, A2, A3, A4

; pil4

clet x*2 =P
AR2 — > x"2

(1-xn2)/72
;o 1—x"2(1-x72) /172
T = x™2

1-x"2/ 42(1-x"2/ 72)
XN2(1-xn2/ 72)

A
T
B = A(32-16)*x"2

w
I
@]

1
1-x"2/ 20( 1-x"2/ 42( 1-x"2/ 72)
A(32-16) *x"2

W >
ol

AR2 — > d_squr_x

sin(theta)



Sines and Cosines

Example 3-2.Generation of a Sine Wave (Continued)

. end
Functi onal Description
This function generates the sine of angle. Wsing the recursive given above, the
cosine of the angle is found and the recursive formula is used to generate the
sine wave. The sin(n-1) and sin(n-2) can be cal cul ated using the Tayl or
series expansion or can be pre-cal cul at ed.

. M egs
.ref cos_prog, cos_start
d_sin_del ayl . usect "cos_vars”, 1
d_sin_del ay2 .usect "cos_vars”, 1
K sin_delay_1. set OA57Eh ; sin(—pi/4)
K sin_delay_2. set 8000h ;o sin(=2*pi/4);
K 2 . set 2h ; cicular buffer size
K 256 . set 256 ; counter
K_THETA . set 6487h ;o pil4
. text

start:

LD #d_si n_del ayl, DP

CALL cos_start

STM#d_si n_del ayl, AR3 ;intialize the buffer

RPTZ A #3h

STL A, *AR3+

STM#1, ARO

STM#K_2, BK

STM#K_256-1, BRC

STM#d_si n_del ayl, AR3

ST #K sin_delay_1,*AR3+% ; load calculated initial values of sin((n-1) )

ST #K _sin_delay_2,*AR3+% ; load calculated initial values of sin((n-2) )

; this generates the sine_wave

sin_generate:

RPTB end_of _si ne

MPY * AR2, * AR3+0% A ; cos(theta)*sin{(n-1)theta}
SUB* AR3, 15, A ; 1/ 2*si n{(n-2) t het a)
SFTA A1, A ; sin(n*theta)
STHA, * AR3 . store
end_of _sine
NOP
NOP
B sin_generate
.end

Arithmetic and Logical Operations 3-11



Sines and Cosines

Example 3-3. Generation of a Cosine Wave

; Functional Description

; this conputes the cosine of an angle using the Taylor Series Expansion
. T egs
. def d_x, d_squr_x,d_coff,d_cosx, C_7FFF
. def cOSs_prog, cos_start

STHA, * AR3 ; Store
.word 024ah : 1/7.8
.word 0444h ; 1/5.6
.word QOaa%h 0 1/3. 4
d_x.usect "cos_vars”,1
d_squr _x .usect "cos_vars”, 1
d_cosx .usect "cos_vars”, 1
C 7FFF .usect "cos _vars”,1
K_THETA . set 6487h ; pila
K_7FFF . set 7FFFh
. text
cos_start:
STM #d_cof f, AR3 ;c1=1/56, c2=1/ 30, c3=1/ 12
STM #d_x, AR2 ; input theta
STM #C _TFFF, AR4 ; Al, A2, A3, A4
COS_prog:
LD #d_x, DP
ST #K_THETA, d_x ; input theta
ST #K_7FFF, C_7FFF
SQUR * AR2+, A i let xA2 =P
ST A *AR2 ; AR2  — > xN"2
|| LD *AR4, B ;
MASR *AR2+, *AR3+, B, A ; (1-x"2)/72
MPYA A ;o 1—x"2(1-x72) 172
T = x°2
STH A *AR2
MASR *AR2—, *AR3+, B, A ; A = 1-x"2/42(1-x"2/72)
;0 T =x"2(1-x72/72)
MPYA * AR2+ ; B = A(32-16) *x"2
ST B, * AR2 ;
|| LD *AR4, B ; B=C1
MASR *AR2—, *AR3+, B, A ; A = 1-x"2/20(1-x"2/42(1-x"2/72))
SFTA A -1 A ;o =1/2
NEG A
MPYA * AR2+ ; B = A(32-16) *x"2
RETD
ADD *AR4, 16, B
STH B, * AR2 ; cos(theta)
.end
. mT egs
.ref cos_prog, cos_start
d_cos_del ayl .usect "cos_vars”,1
d_cos_del ay2 .usect cos_vars”,1
d_theta .usect "cos_vars”, 1
K cos_delay_1. set 06ed9h ; cos(—pi/6)
K _cos_delay_2. set 4000h ; cos(—2*pi/6);
K2 . set 2h ; cicular buffer size
K 256 . set 256 ; counter
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Example 3-3.Generation of a Cosine Wave (Continued)

K theta . set 4303h ;
. text
start:
LD #d_cos_del ayl, DP
CALL cos_start
CALL cos_prog ;
STM #d_cos_del ayl, AR3
RPTZ A, #3h
STL A * AR3+
STM #d_cos_del ayl, AR3
ST #K _cos_del ay_1, * AR3+
ST #K _cos_del ay_2, *AR3
STM #d_cos_del ayl, AR3 ;
ST #K theta, d_theta
STM #1, ARO
STM #K 2, BK
STM #K_256-1, BRC
cos_gener at e:
RPTB end_of _cose
MPY *AR2, * AR3+0% A ;
SuUB *AR3, 15, A ;
SFTA AlA ;
STH A *AR3 ; store
PORTW * AR3, 56h ;
end_of _cose
NOP
NOP
B cos_generate ;

.end

Arithmetic and Logical Operations

Sines and Cosines

sin(pi/2-pi/6)= cos(pi/6)
cos( pi/ 2—pi/x)
. 052= 4303h

cal cul ate cos(theta)

out put vaues

cos(theta)*cos{(n-1)thet a}
1/ 2*cos{(n-2) t het a)

cos(n*t het a)

wite to a port

next sanple
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Square Roots

3.3 Square Roots

Example 3—4 uses a 6-term Taylor series expansion to approximate the square
root of a single-precision 32-bit number. A normalized, 32-bit, left-justified num-
ber is passed to the square root function. The output is stored in the upper half
of the accumulator, and the EXP and NORM instructions normalize the input
value. The EXP instruction computes an exponent value in a single cycle and
stores the result in T, allowing the NORM instruction to normalize the number
in a single cycle. If the exponent is an odd power, the mantissa is (multiplied by
1 divided by the square root of 2) to compensate after finding the square root
of the 32-bit number. The exponent value is negated to denormalize the number.

yos = (1 + x)*°

where :
X =y-1
_ X _ X2, x8 _ 5x* | 7x®
=1+5-%8%16 128 " 256
_ X _ X)2 X\3 _ X4 X5
=1+% 0.5(2) + 0.5(2> 0.625(2> + 0.875(2)
where :
05=x<1

Example 3—4. Square Root Computation
EIEE R O S S O O S O S R O O O R O O

* Six termTaylor Series is used here to conpute the square root of a nunber
* y*0.5 = (1+x)"0.5 where x = y-1

* = 1+(x/ 2)=0. 5% ((x/ 2) 22+0. 5* ((x/ 2) A3=0. 625* (( x/ 2) ~4+0. 875* ((x/ 2) "5)
*0.5<=x<1

R R I kR SRRk R Ik kb R SRR R O bk S I R R R R bk kO O R I O

. MmT egs
. sect "squr_var”
d_part_prod .word O
d_part_shift .word O
C_8000 .word O
C sgrt_one_half .word O
d_625 .word O
d_875 .word O
tnp_rgl .word O
K_i nput . set 800h ; input # = 0.0625
K_8000 . set 8000h . =1 or round off bit
K_4000 . set 4000h ; 0.5 coeff
K _SQRT_HALF . set 5a82h 7 1/sqrt2
K_625 .set -20480 ; coeff 0.625
K 875 . set 28672 ; coeff 0.875

. text
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Square Roots

Example 3—-4.Square Root Computation (Continued)

sqr oot :
LD #d_part _prod, DP
ST #K_8000, C_8000
ST #K_i nput, d_part _prod
ST #K_SQRT_HALF, C_sqrt _one_hal f
ST #K_875, d_875
ST #K_625, d_625
LD d_part_prod, 16, A ; load the #
EXPA
nop ; dead cycle
NORM A
ADDS C_ 8000, A ; round of f bit
STHA, d_part_prod ; normalized input
LDMT, B
SFTA B, -1,B ; check for odd or even power
BCDr es_even, NC
NE B ; negate the power
STLB, d_part_shift ; this shift is used to denornalize the #
LD d_part_prod, 16, B ; load the normalized input #
CALLD sq_r oot ; square root program
ABSB
NOP ; cycle for del ayed sl ot
LD B, A ;
BD res_conmmon
SUBB, B . zero B
MACAR C sqrt_one_hal f, B ; square root of 1/2
; odd power
res_even

LD d_part_prod, 16, B
CALLD sq_r oot

ABSB

NOP ; cycle for the del ayed sl ot
res_conmon

LD d_part_shift, T ; right shift value

RETD

STHB, d_part _prod

LD d_part_prod, TS, A ; denormmliize the #
sq_root:

SFTA B,-1,B ;o xI2 = y-1/2

SUB#K_4000, 16, B, B

STHB, t np_rgl ; tnp_rgl = x/2
SUB#K_8000, 16, B ; B = 1+x/2
SQUR tnp_rgl, A A (xI2)r2, T =x/2
NEGA ; = -A
ADDA, -1, B ; B = 1+x/2-.5(x/2)"2
SQUR A A A= (XI2)n
MACA d_625,B ; 0.625*A+B

; T =0.625
LD tnp_rol, T ; T =x/2
MPYA A ;o (x/2)n4*x[ 2
MACA d_875,B ; 0.875*A+B
SQUR tnp_rgl, A ;o x[272; T = x/2
MPYA A i A= x/2%x/ 272
RETD
ADDA, -1, B
ADDS C_8000,B : round off bit
.end
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Extended-Precision Arithmetic

3.4 Extended-Precision Arithmetic

3.4.1 Addition and

3-16

Numerical analysis, floating-point computations, and other operations may
require arithmetic operations with more than 32 bits of precision. Since the C54x
devices are 16/32-bit fixed-point processors, software is required for arithmetic
operations with extended precision. These arithmetic functions are performed
in parts, similar to the way in which longhand arithmetic is done.

The C54x has several features that help make extended-precision calcula-
tions more efficient. One of the features is the carry bit, which is affected by
most arithmetic ALU instructions, as well as the rotate and shift operations.
The carry bit can also be explicitly modified by loading STO and by instructions
that set or reset status register bits. For proper operation, the overflow mode
bit should be reset (OVM = 0) to prevent the accumulator from being loaded
with a saturation value.

The two C54x internal data buses, CB and DB, allow some instructions to han-
dle 32-bit operands in a single cycle. The long-word load and double-precision
add/subtract instructions use 32-bit operands and can efficiently implement
multi-precision arithmetic operations.

The hardware multiplier can multiply signed/unsigned numbers, as well as
multiply two signed numbers and two unsigned numbers. This makes 32-bit
multiplication efficient.

Subtraction

The carry bit, C, is setin STO if a carry is generated when an accumulator value
is added to:

[ The other accumulator
[ A data-memory operand
[ Animmediate operand

A carry can also be generated when two data-memory operands are added
or when a data-memory operand is added to an immediate operand. If a carry
is not generated, the carry bit is cleared.

The ADD instruction with a 16-bit shift is an exception because it only sets the
carry bit. This allows the ALU to generate the appropriate carry when adding
to the lower or upper half of the accumulator causes a carry.

Figure 3—1 shows several 32-bit additions and their effect on the carry bit.
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Figure 3—-1. 32-Bit Addition

C MSB LSB C MSB LSB

X FFFFFFFFFFAC X FFFFFFFFFFAC
+ 1 +tFFFFFFFFFEF

1 00000O0OO0O0OOCO 1 FFFFFFFFFE

C MsB LSB C MsB LSB

X 007FFFFFFFACC X 007FFFFFFFACC
+ 1 +tF FFFFFFFFEF

0O 0080000O0O0O 1 007FFFFFFE

C WMSB LSB C MsB LSB

X FF80000O0O0O ACC X FF8000O0O0O0O0OAC
+ 1 +tFFFFFFFFFEFEF

0 FF8000O0O0O01 1 FF7FFFFFFF

ADDC

C MsB LSB C MsB LSB

1 00000O0O0O0O0O0ACC 1 FFFFFFFFFFAC
+ 0 (ADDC) + 0 _(ADDC)

0O 000O0OO0OOO0OCOO1 1 00000O0O0OOO0CDO

ADD Snem 16, src

C MsB LSB C MsSB LSB

1 FF800O0OFFFFACC 1 FF80O00FFFTFACC
+0 000010000 +t0 0 7 FFFOOO0O

1 FF80O01FFFEF 1 FFFFFFFFFEF

Example 3-5 adds two 64-bit numbers to obtain a 64-bit result. The partial
sum of the 64-bit addition is efficiently performed by the DLD and DADD
instructions, which handle 32-bit operands in a single cycle. For the upper half
of a partial sum, the ADDC (ADD with carry) instruction uses the carry bit gen-
erated in the lower 32-bit partial sum. Each partial sum is stored in two memory
locations by the DST (long-word store) instruction.
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Example 3-5. Lit Number

3-18

64-bit Addition

; X3 X2 X1 XO

; + Y3 Y2 Y1 YO

; vV W W W

ADD64: DLD @Xx1, A ;A= X1 X0
DADD @1, A ;A= X1 X0 + Y1 YO
DST A @
DLD @x3, A ;A = X3 X2
ADDC @2, A ;A= X3 X2 +00 VY2 +C
ADD @3,16,A ;A= X3 X2 +Y3Y2+C
DST A, @B
RET

Similar to addition, the carry bit is reset if a borrow is generated when an accu-
mulator value is subtracted from:

[ The other accumulator
[ A data-memory operand
(1 Animmediate operand

A borrow can also be generated when two data-memory operands are sub-
tracted or when an immediate operand is subtracted from a data-memory
operand. If a borrow is not generated, the carry bit is set.

The SUB instruction with a 16-bit shift is an exception because it only resets
the carry bit. This allows the ALU to generate the appropriate carry when sub-
tracting from the lower or the upper half of the accumulator causes a borrow.

Figure 3—2 shows several 32-bit subtractions and their effect on the carry bit.
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Figure 3-2. 32-Bit Subtraction

C MSB LSB C MsSB LSB

X 000000O0O0O0O0O ACC X FFOOOOOOODO ACC
- 1 -FFFFFFFFFEF

0 FFFFFFFFFEF 0O 00O0OOOO0OOOO1

C MsB LSB C MsB LSB

X 007FFFFFFFACC X 007FFFFFFFACC
— 1 -FFFFFFFFFEF

1 007FFFFFFE C FF80000OO0OO0DO

C WMSB LSB C MsB LSB

X FF80000O0O0O ACC X FF80000O0O0O ACC
- 1 -FFFFFFFFEFEEF

1 FF7FFFFFFF 0O FF80000O0O01

SUBB

C MsB LSB C MsB LSB

0O 0000OO0OO0O0OO0O0O0O ACC 0 FFFFFFFFFFACC
— 0 (sSuBB) — 0( SUBB)

0O FFFFFFFFFF 1 FFFFFFFFFE

SUB Snmem 16, src

C MsB LSB C MsSB LSB

1 FF80O0O0OFFFFACC 0 FF8O00O0FFFTFACC
-0000010000 -FFFFFFOO0OOO

0 0O0O7FFFFFFF 0O FF8O0O0O1FFFF

Example 3—6 subtracts two 64-bit numbers on the C54x. The partial remainder
of the 64-bit subtraction is efficiently performed by the DLD (long word load)
and the DSUB (double precision subtract) instructions, which handle 32-bit
operands in a single cycle. For the upper half of a partial remainder, the SUBB
(SUB with borrow) instruction uses the borrow bit generated in the lower 32-bit
partial remainder. Each partial remainder is stored in two consecutive memory
locations by a DST.
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Example 3-6. 64-Bit Subtraction

3.4.2 Multiplication

3-20

64 bit Subtraction

: X3 X2 X1 X0

- Y3 Y2 Y1 YO
VB VW2 W W
DLD @x3, A A= X3 X2
SUBB @2, A ;A= X3 X2 - 00 Y2 — (inv Q
DST A @
SUB @3,16,A ;A= X3 X2 -Y3 Y2 - (inv Q
DST A, @B
RET

The MPYU (unsigned multiply) and MACSU (signed/unsigned multiply and accu-
mulate) instructions can also handle extended-precision calculations.

Figure 3—3 shows how two 32-bit numbers obtain a 64-bit product. The MPYU
instruction multiplies two unsigned 16-bit numbers and places the 32-bit result
in one of the accumulators in a single cycle. The MACSU instruction multiplies
a signed 16-bit number by an unsigned 16-bit number and accumulates the
result in a single cycle. Efficiency is gained by generating partial products of
the 16-bit portions of a 32-bit (or larger) value instead of having to split the val-
ue into 15-hit (or smaller) parts.
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Figure 3-3. 32-Bit Multiplication

X1 X0
Y1 YO
X
X0xYO

Unsigned multiplication

X1xYO

Signed/unsigned multiplication

X0xY1l

Signed/unsigned multiplication

X1xY1l

+ Signed multiplication

W3 w2 w1 WO

Final 64-bit result

The program in Example 3—7 shows that a multiply of two 32-bit integer num-
bers requires one multiply, three multiply/accumulates, and two shifts. The
product is a 64-bit integer number. Note in particular, the use of MACSU,
MPYU and LD instructions. The LD instruction can perform a right-shift in the
accumulator by 16 bits in a single cycle.
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Example 3—7. 32-Bit Integer Multiplication

This routine nmultiplies two 32-bit signed integers
; resulting; in a 64-bit product. The operands are fetched

fromdata nenory and the result is witten back to data

Entry Conditi ons:
SXM =1, OUM = 0

; menory.

; Data Storage:

: X1, X0 32-bit operand
; Y1, YO 32-bit operand
; W8, V2, W, W) 64-bit product

STM #X0, AR2 ;AR2 = X0 addr
STM #Y0, AR3 ; AR3 = YO addr
LD *AR2, T ;T = X0

MPYU *AR3+, A A = X0*YO
STL A @0 ; save W

LD A -16, A A= A>> 16

MACSU *AR2+, *AR3—, A A
MACSU *AR3+, *AR2, A P A

X0*Y0>>16 + X0*Y1l
X0*Y0>>16 + XO0*Y1l + X1*YO

STL A @M ;save W

LD A, =16, A A= A>> 16

MAC *AR2, *AR3, A ;A = (X0*YL + X1*Y0)>>16 + X1*Yl
STL A @2 ;save W2

STH A, @B ; save WB

Example 3-8 performs fractional multiplication. The operands are in Q31 format,
while the product is in Q30 format.
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Example 3-8. 32-Bit Fractional Multiplication

F I T T T T T O T T T T T T T T TN O T T O T T TN T TN T T T T O T O N T T T R T T O I TN B T T |

This routine multiplies two Q31 signed integers
resulting in a B0 product. The operands are fetched
fromdata menory and the result is witten back to data

nmenory.
X1, X0 @31 operand
Y1, YO @31 operand
WL, W @0 product

Entry Conditions:
SXM=1, OUWM = 0

; Data Storage:

STM #X0, AR2 ;AR2 = X0 addr

STM #Y1, AR3 ;AR3 = Y1 addr

LD #0, A ;clear A

MACSU *AR2+, *AR3—, A ;A = X0*VY1

MACSU *AR3+, *AR2, A ;A = X0*Y1 + X1*YO
LD A -16, A A= A>> 16

MAC *AR2, * AR3, A A= A+ X1*VYl

STL A @V ; save | ower product
STH A, @G\ ; save upper product
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3.5 Floating-Point Arithmetic

In fixed-point arithmetic, the binary point that separates the integer from the
fractional part of the number is fixed at a certain location. For example, if a
32-bit number places the binary point after the most significant bit (which is
also the sign bit), only fractional numbers (numbers with absolute values less
than 1), can be represented. The fixed-point system, although simple to imple-
ment in hardware, imposes limitations in the dynamic range of the represented
number. You can avoid this difficulty by using floating-point numbers.

A floating-point number consists of a mantissa, m, multiplied by a base, b,
raised to an exponent, e, as follows:

m * b€

To implement floating-point arithmetic on the C54x, operands must be con-
verted to fixed-point numbers and then back to floating-point numbers. Fixed-
point values are converted to floating-point values by normalizing the input
data.

Floating-point numbers are generally represented by mantissa and expo-
nent values. To multiply two numbers, add their mantissas, multiply the expo-
nents, and normalize the resulting mantissa. For floating-point addition, shift
the mantissa so that the exponents of the two operands match. Left-shift the
lower-power operand by the difference between the two exponents. Add the
exponents and normalize the result.

Figure 3—4 illustrates the IEEE standard format to represent floating-point
numbers. This format uses sign-magnitude notation for the mantissa, and the
exponent is biased by 127. In a 32-bit word representing a floating-point num-
ber, the first bit is the sign bit, represented by s. The next eight bits correspond
to the exponent, which is expressed in an offset-by-127 format (the actual ex-
ponent is e—127). The following 23 bits represent the absolute value of the
mantissa, with the most significant 1 implied. The binary point is placed after
this most significant 1. The mantissa, then, has 24 bits.

Figure 3—-4. |IEEE Floating-Point Format

3-24

1 8 23

S Biased Exponent — e Mantissa — f

The values of the numbers represented in the IEEE floating-point format are
as follows:

(~1)s * 26-127 % (01.f) IfO<e<255
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Special Cases:

(-1)s*0.0 Ife =0, and f =0 (zero)
(-1)s*2-126 * (0.f) If e = 0 and f <> 0 (denormalized)
(-2)3 * infinity If e = 255 and f = 0 (infinity)

NaN (not a number) Ife=255andf<>0

Example 3-9 through Example 3—11 illustrate how the C54x performs floating-
point addition, multiplication, and division.

Example 3-9. Add Two Floating-Point Numbers

EEEE R R I I R O I S I R S I I S R R O
)

*; FLOAT_ADD — add two floating point nunbers

*: Copyright (c) 1993-1994 Texas Instrunents | ncorporated

*: NOTE: The ordering of the locals are placed to take advantage of |ong word

*: | oads and stores which require the hi and | ow words to be at certain addresses.
*: Any future nodifications which involve the stack must take this quirk into

*, account

)
R O S R O O
)

Rk I kS IRk R O Sk S Rk kI kS Rk kR R S Rk kb ok R R bk kb Ok Rk R b

;Qperand 1 (OP1) and Cperand (OP2) are each packed into sign, exponent, and the
;words of nmantissa. If either exponent is zero special case processing is initiated.
;In the general case, the exponents are conpared and the nantissa of the | ower
;exponent is renornalized according to the nunber with the | arger exponent. The
;manti ssas are also converted to a two's conplenent format to performthe actua
;addition. The result of the addition is then renormalized with the correspondi ng
;adjustnent in the exponent. The resulting mantissa is converted back to its
;original sign-magnitude format and the result is repacked into the floating point

,representation.
kkkkhhhhhhhhhhhhhhhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkhkhkkkkkkkk kk k%

EEEE S O R R S Rk kS R R Sk S I S IR R R S o R S S b o R IR O o O S
)

* resource utilization: B accunulator, T-register
* status bits affected: TC, C, SXM OWM
* entry requirenents : CPL bit set

R S S R Rk R Sk ok S R S R IR R ok S kO S R Rk O R R R kS b b Rk
)

; Floating Point Format — Single Precision

*| 31| 30| 29| 28| 27| 26| 25| 24| 23| 22| 21| 20| 19| 18 | 17| 16 |

I I I I
*| S| E7| E6| E5| E4 | E3 | E2 | E1L | EO | M2 M21| M2O| ML9| ML8| ML7| ML6|

| I | I | I I I
M| M| M| M| M| M| M| M| M| M|
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Example 3-9.Add Two Floating-Point Numbers (Continued)

*; Single precision floating point format is a 32 bit format consisting of a 1 bit
sign field, an 8 bit exponent field, and a 23 bit mantissa field. The fields are
defined as foll ows
*;  Sign <S>

0 = positive values; 1 = negative val ue

*.  Exponent <E7-EO> of fset binary fornat
*; 00 = special cases (i.e. zero)
* 01 = exponent value + 127 = -126
*: FE = exponent value + 127 = +127
* FF = special cases (not inplenented)
*;  Mantissa <M22-MD> : fractional nmagnitude format with inplied 1
*, 1. M2M21. .. MIMD
*; Range —1.9999998 e+127 to —1. 0000000 e-126
*, +1. 0000000 e-126 to +1.9999998 e+127
* (where e represents 2 to the power of)
* —3.4028236 e+38 to —1.1754944 e-38
* +1. 1754944 e-38 to +3.4028236 e+38
*; (where e represents 10 to the power of)
*; EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S
res_hm .usect flt_add”,1 ; result high mantissa
res_Im .usect "flt_add”, 1 ; result |ow mantissa
res_exp .usect "flt_add”, 1 ; result exponent
res_sign .usect "flt_add",1 ; result sign
op2_hm .usect "flt_add”,1 ; OP2 high mantissa
op2_Im .usect "flt_add",1 ; OP2 | ow manti ssa
op2_se .usect "flt_add”,1 ; OP2 sign and exponent
opl_se .usect "flt_add", 1 ; OPl sign and exponent
opl_hm .usect "flt_add”, 1 ; OP1 high mantissa
opl_Im .usect "flt_add", 1 ; OP1 |l ow manti ssa
opl_msw .usect "flt_add",1 ; OP1l packed high word
opl_ I sw .usect "flt_add",1 ; OPl packed | ow word
op2_msw .usect "flt_add",1 ; OP2 packed high word
op2_l sw .usect "flt_add”, 1 ; OP2 packed | ow word
err_no .usect "flt_add”, 1 ;
. T egs

R R T S R R S Sk S S O A I R R O o R R o S R R O R R R S R R

* Floating point nunber 12.0 can be represented as 1100 = 1.100 x 23 => sign =0
* bi ased exponent = 127+3 = 130

* 130 = 10000010

* Manti ssa 10000000000000000000000

* Thus 12.0 can be represented as 01000001010000000000000000000000= 4140h

RE R R I bk S kR R IRk Ik S b ok R O R Rk R b b Sk R R O kR R R b ok kO R IRk I O o

*

K OP1_H GH . set 4140h ; floating point nunber 12.0
K_OP1_LOW. set 0000h
K_OP2_HI GH . set 4140h ; floating point nunber 12.0
K_OP2_LOW. set 0000h

. mT egs

. text
start _flt:

RSBX C16

LD #res_hm DP ; initialize the page pointer

LD #K_OP2_HI GH, A

3-26
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Example 3-9.Add Two Floating-Point Numbers (Continued)

STL A, op2_nsw

LD #K_OP2_LOW A

STLA op2_| sw

LD #K OP1 HIGH A ; load floating #1 — 12
STL A, opl_nsw

LD #K_OP1_LOW A

STLA opl_| sw

*
*;*****************************************************************************
* CONVERSI ON OF FLOATI NG PO NT FORVAT — UNPACK
* Test OP1 for special case treatnent of zero.
* Split the MSWof OPl in the accumul ator.
* Save the exponent on the stack [xxxx xxxx EEEE EEEE].
* Add the inplied one to the nantissa val ue.
* Store the mantissa as a signed val ue
*;*****************************************************************************
*
DLDopl_nsw, A ; load the OP1 high word
SFTA A8 ; shift right by 8
SFTA A -8
BC opl_zero, AEQ ; If opl is O, junp to special case
LD A B ; Copy OP1 to acc B
RSBX SXM ; Reset for right shifts used for nasking
SFTL A1l ; Renpbve sign bit
STH A, -8, 0pl_se ; Store exponent to stack
SFTL A8 ; Renmove exponent
SFTL A -9
ADD#080h, 16, A ; Add inplied 1 to nmantissa
XC 1, BLT ; Negate OP1 mantissa for negative val ues
NEGA
SSBX SXM ; Make sure OP2 is sign—extended
DSTA, opl_hm ; Store manti ssa
*
*;*****************************************************************************
*, CONVERSI ON OF FLOATI NG PO NT FORVAT — UNPACK
* Test OP1 for special case treatnent of zero.
* Split the MSWof OP1 in the accunul ator.
*; Save the exponent on the stack [xxxx xxxx EEEE EEEE].
* Add the inplied one to the nmantissa val ue.
* Store the mantissa as a signed val ue
*;*****************************************************************************
*
DLDop2_nsw, A ; Load acc with op2
BC op2_zero, AEQ ; If op2 is 0, junp to special case
LD A B ; Copy OP2 to acc B
SFTL A1l ; Renpbve sign bit
STHA, -8, op2_se ; Store exponent to stack
RSBX SXM ; Reset for right shifts used for nmasking
SFTL A 8 ; Renpbve exponent
SFTL A -9
ADD#080h, 16, A ; Add inplied 1 to nantissa
XC 1,BLT ; Negate OP2 nmantissa for negative val ues
NEGA
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Example 3-9.Add Two Floating-Point Numbers (Continued)

SSBX SXM ; Set sign extension node
DST A, op2_hm ; Store nmanti ssa

EE IR R b b R Rk O b ok Ok R R O R IR R S b ok R R R R b ok Sk b b R R R O b o O R R R
i

* EXPONENT COWVPARI SON
*; Conmpare exponents of OP1 and OP2 by subtracting: exp OP2 — exp OP1
*:  Branch to one of three bl ocks of processing
* Case 1. exp OPl is less than exp OP2
* Case 2: exp OPl is equal to exp OP2
*; Case 3: exp OPl is greater than exp OP2
*;*****************************************************************************
*

LD opl_se, A ; Load OP1l exponent

LD op2_se, B ; Load OP2 exponent
*

SUBA, B ; Exp OP2 — exp OP1 —> B

BC opl_gt_op2, BLT ; Process OP1 > OP2

BC op2_gt _opl, BGT ; Process OP2 > OP2

*
*;*****************************************************************************
*; exp OP1 = exp OP2

*;  Mantissas of OP1 and OP2 are nornualized identically.

*:  Add mantissas: mant OP1 + mant OP2

*. If result is zero, special case processing nust be executed.

*; Load exponent for possible adjustment during normalization of result

*

BEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE RS EEEEEEEEEEEEEEEEEEE

a_eq_b

DLDopl_hm A ; Load OP1 nantissa

DADD op2_hm A ; Add OP2 manti ssa

BC res_zero, AEQ ; If result is zero, process special case

LD opl_se, B ; Load exponent in preparation for normalizing
*
*;*****************************************************************************
* normal i ze THE RESULT
* Take the absolute value of the result.
*: Set up to nornmalize the result.
* The MSB may be in any of bits 24 through O.
*: Left shift by six bits; bit 24 nmoves to bit 30, etc.
* Normalize resulting manti ssa with exponent adjustnent.
*;*****************************************************************************
*
nornal i ze

STHA, res_si gn ; Save signed mantissa on stack

ABS A ; Create magni tude val ue of mantissa

SFTL A6 ; Pre—-normalize adjustment of nantissa

EXP A ; Get amount to adjust exp for normalization

NOP

NORM A ; Normalize the result

ST T, res_exp ; Store exp adjustnment val ue

ADD#1, B ; Increment exp to account for inplied carry

SUBres_exp, B ; Adj ust exponent to account for normalization
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Example 3-9.Add Two Floating-Point Numbers (Continued)

Bk R O I R O

POST—NORMALI ZATI ON ADJUSTMENT AND STORAGE
Test result for underflow and overfl ow.
Ri ght shift mantissa by 7 bits.
Mask inmplied 1
: Store manti ssa on stack.

B R R R I S O R R I O R R O R I R O R O

* 0% % Ok kX Ok Xk

nornmal i zed

STLB, res_exp ; Save result exponent on stack

BC under f | ow, BLEQ ; process underflow if occurs

SUB#0FFh, B ; adjust to check for overflow

BC over f | ow, BGEQ ; process overflow if occurs

SFTL A -7 ; Shift right to place nantissa for splitting
STLA res_Im : Store | ow manti ssa

AND#07FO00h, 8, A ; Elimnate inplied one

STHA, res_hm ; Save result mantissa on stack**

’
B I O S O R O O

1
Rk b b O b S R Rk R Rk b ok R O b O Sk R R bk kR R R R Rk I
’

*, CONVERSI ON OF FLOATI NG PO NT FORMAT — PACK
; Load sign.
;  Pack exponent.

*
*
* - 1
;. Pack nmanti ssa.
* EE I I S I I S I I S I S S I I S I I I I S I I S I S IR S S I S I S R S R I S I I S I
*

LD res_sign, 9, A ; 0000 000S 0000 0000 0000 0000 0000 0000
AND#100h, 16, A

ADDr es_exp, 16, A ; 0000 000S EEEE EEEE 0000 0000 0000 0000

SFTL A7 ; SEEE EEEE E000 0000 0000 0000 0000 0000
DADD res_hmA ; SEEE EEEE EMVWM MVWM MVWM MVWM MVWM MVWM

BRI Ik kb S b R R R Ok R IR O b S b S R R O kR bk R Rk kb O b R
’

; CONTEXT RESTORE
; Pop local floating point variables.
; Restore contents of B accumulator, T Register

BRI Ik ok kR I I IR O b S b R R O kR kR R O kb
’

* 0% X X X X F

return_val ue
NOP
NOP
RET

BRI b ok b Sk R I O R R S R R kO O R R O kb S O R R b ok kR R kO R R R R o

exp OP1 > exp OP2
Test if the difference of the exponents is larger than 24 (precision of the mantissa)
; Return OP1 as the result if OP2 is too snall.
Manti ssa of OP2 nust be right shifted to match normalization of OP1

Add nantissas: mant OP1 + mant op2
IR EEEEEEEEEE SR EEREEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE SRS

¥ %k X %k 3k 3k X X
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Example 3-9.Add Two Floating-Point Numbers (Continued)

opl_gt_op2

ABSB ; If exp OP1 >= exp OP2 + 24 then return OP1

SUB#24, B

BC return_opl, BGEQ

ADD#23, B ; Restore exponent difference val ue

STLB, res_sign ; Store exponent difference to be used as RPC

DLDop2_hm A ; Load OP2 manti ssa

RPTres_sign ; Normalize OP2 to match OP1

SFTA A -1

BD nornal i ze ; Delayed branch to normalize result

LD opl_se,B ; Load exponent value to prep for nornmaliza-
tion

DADD opl_hmA ; Add OP1 to OP2

EEE I O O S S O S O O S R O O O

*

*

*, OP1 < OP2

*, Test if the difference of the exponents is larger than 24 (precision of the mantissa).
*: Return OP2 as the result if OP1 is too snall.

*, Mantissa of OP1 nmust be right shifted to match normalization of OP2.

*, Add mantissas: mant OPl1 + mant OP2

)
EEEE R R S S S R R I R O R O
1

op2_gt_opl

SU B #24,B ; If exp OP2 >= exp OP1 + 24 then return OP2

BC return_op2, BGEQ

ADD#23, B ; Restore exponent difference val ue

STL B, res_sign ; Store exponent difference to be used as RPC

DLDopl_hm A ; Load OP1 nantissa

RPTres_sign ; Normalize OP1 to match OP2

SFTA A -1 BD nornualize ; Delayed branch to normalize result

LD op2_se, B ; Load exponent value to prep for nornalization

DADD op2_hmA ; Add OP2 to OP1
*;*****************************************************************************
*: OPl << OP2 or OP1L =0

EEEE R I R R R R I R R O I R I R I R O R O
1

*

return_op2

opl_zero
BD return_val ue
DLDop2_nsw, A ; Put OP2 as result into A
NOP

*

R b b R R R S bk b S b ok R R R ok kR R S R R R R b o R R R O b S R
)

*; CPl << OP2 or OCP1 =0

REEE Ik S R Sk kb ok b S R Rk R S S R R R O bk S R R I R R R R ok S R R O O R R b
1
*

op2_zero
return_opl
DLDopl_hm A ; Load signed high nmantissa of OP1
BC opl_pos, AGT ; If mantissa is negative .
NEGA ; Negate it to nake it a positive value
ADDM  #100h, opl_se ; Place the sign value back into opl_se
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Example 3-9.Add Two Floating-Point Numbers (Continued)

opl_pos

SUB#80h, 16, A ; Elimpate inplied one frommanti ssa

LD opl_se, 16, B ; Put OPl back together in acc A as a re-
sul t

BD return_val ue

SFTL B, 7

ADDB, A
*;*****************************************************************************
* over f| ow PROCESSI NG

*. Push errno onto stack.
*:  Load accumnul ator with return val ue.

EEEE S kR Rk Sk kR R O I R R I Sk kR R R R S b ok S b O R R I b o S R R
i

*

over fl ow
ST #2,err_no ; Load error no
LD res_sign, 16, A ; Pack sign of result
AND#8000, 16, A ; Mask to get sign
OorR #OFFFFh, A ; Result |ow manti ssa = OFFFFh
BD return_val ue ; Branch del ayed
ADD#07F7Fh, 16, A ; Result exponent = OFEh

; Result high mant = 07Fh
R R R R R SRS S S SRS SRS S SRR R SRR SRR R SRR EEEEEEEEEEEEEEEEREEEEEEEREEEEEEEEEEEEEEEEEEEEES
* under f | ow PROCESSI NG
*:  Push errno onto stack.
*.  Load accunul ator with return val ue.

R O I R O O
)

*

under f | ow
ST #1,err_no ; Load error no
RET
res_zero
BD return_val ue ; Branch del ayed
SUBA, A : For underflowresult =0
NOP

Example 3-10. Multiply Two Floating-Point Numbers

E R S R R O I O R O S R
)

*: Float_MJL — multiply two floating point nunbers
*;  Copyright (c) 1993-1994 Texas |nstruments |ncorporated

EEEE S b R S IR R Ik Ok ko Sk b S R R R b Sk S R R R Rk b ok R R Rk Ik b o O R
’

R S S O O O S O R
1

;This routine nultiplies two floating point nunbers. OP1 and OP2 are each unpacked
;into sign, exponent, and two words of mantissa. |f either exponent is zero
;special case processing is initiated. The exponents are summed. |If the result is
;less than zero underflow has occurred. If the result is zero, underflow may have
;occurred. If the result is equal to 254 overflow may have occurred. If the result
;is greater than 254 overfl ow has occurred. Underfl ow processing returns a val ue
;of zero. Overflow processing returns the | argest magni tude value along with the
;appropriate sign. If no special cases are detected, a 24x24-bit multiply is
;executed. The result of the exclusive OR of the sign bits, the sum of the
;exponents and the ;24 bit truncated nanti ssa are packed and returned

EEEE Sk kI R S R b O I R R kR
)
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Example 3-10. Multiply Two Floating-Point Numbers (Continued)

* resource utilization: B accumulator, T-register
* status bits affected: TC, C, SXM OYVM C16
* entry requirenents : CPL bit set

EEEE R bk kR R R Ik kO kR R R Rk O R R I O bk R Ok Rk kO O Rk
)

; Floating Point Format — Single Precision

| 31 ] 30| 29| 28| 27| 26| 25| 24| 23| 22| 21| 20| 19| 18| 17| 16 |
I I I I I I I I I I
| S| E7| E6 | E5| E4 | E3| E2 | E1 | EO | M2| M1| MO| M9 MS8| M7 M|
| 15| 14| 13| 12| 11| 10| 9| 8| 7| 6| 5] 4| 3] 2| 1] 0]
| | | | | | | | | | | | | | | | |
| ™ML5] M4 w3 M2 M1 Mo M| MB| M| M| M| M| MB3| M| M| M
Single precision floating point format is a 32 bit fornmat consisting of a *

1 bit sign field, an 8 bit exponent field, and a 23 bit nantissa field. The *

fields are defined as foll ows. *
Sign <S> : 0 = positive values; 1 = negative val ues
Exponent <E7-EO> of fset binary format

00 = special cases (i.e. zero)
01 = exponent value + 127 = -126
FE = exponent value + 127 = +127
FF = special cases (not inplenented)
Manti ssa <M22-MD> : fractional magnitude format with inplied 1

1. m22M1. .. MLMD

Range

—1.9999998 e+127 to
+1. 0000000 e-126 to
(where e represents
—3.4028236 e+38 to
+1.1754944 e-38 to
(where e represents

—1. 0000000 e-126
+1. 9999998 e+

2 to the power of)
—1.1754944 e-

+3. 4028236 e+38

10 to the power of)

L I S T S S N R N I S R T I R B

DR R EEEEEEE R EEEEEEEEEEEEEEEEEEEEEEEREEEEEEEE SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RSN
1

res_hm .usect "flt_add”, 1 ;result high mantissa
res_Im .usect "flt_add”, 1 ;result |ow nantissa
res_exp .usect "flt_add”, 1 ;result exponent
res_sign .usect "flt_add", 1 ; result sign

op2_hm .usect "flt_add”, 1 ; OP2 high mantissa
op2_Im .usect "flt_add”, 1 ; OP2 |l ow manti ssa

op2_se .usect "flt_add”, 1 ; OP2 sign and exponent
opl_se .usect "flt_add”, 1 ; OP1 sign and exponent
opl_hm .usect "flt_add”,1 ; OP1 high mantissa

opl Im .usect "flt_add”, 1 ; OP1 |l ow manti ssa
opl_msw .usect "flt_add", 1 ; OPl packed high word
opl_|sw .usect "flt_add”, 1 ; OPl packed | ow word
op2_msw .usect "flt_add", 1 ; OP2 packed high word
op2_I| sw .usect "flt_add", 1 ; OP2 packed | ow word
err_no .usect "flt_add”, 1 ;

R R R Rk I R R R b O O R O R Rk S Rk kb O O

* Fl oating point

*
*
*

3-32

nunber

12.0 can be represented as 1100 = 1.100 x 23 => sign =0

bi ased exponent = 127+3 = 130
130 = 10000010

Manti ssa 10000000000000000000000
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Example 3-10. Multiply Two Floating-Point Numbers (Continued)

* Thus 12.0 can be represented as 01000001010000000000000000000000= 4140h

Rk Ik kI b S R Rk kO kS Rk b Sk R R Rk Sk b S kR Rk Rk b ok S b bk o R R R O kR R

*

K OP1_H &H . set 4140h ; floating point nunber 12.0
K_OP1_LOW . set 0000h
K_OP2_H GH . set 4140h ; floating point nunber 12.0
K_OP2_LOW . set 0000h
. mr egs
.text
start _flt:
RSBX Cl16 ; Insure long adds for |ater
LD #res_hm DP ; initialize the page pointer
LD #K _OP2_H GH A ; load floating #2 — 12

STL A, op2_nsw

LD #K_OP2_LOW A

STL A op2_I sw

LD #K OP1 HIGH A ; load floating #1 — 12
STL A, opl_nsw

LD #K_OP1_LOW A

STLA opl_| sw

*
*;*****************************************************************************
* CONVERSI ON OF FLOATI NG PO NT FORVAT — UNPACK
*:  Test OP1 for special case treatnent of zero.
*; Split the MSWof A in the accumnul ator.
* Save the sign and exponent on the stack [xxxx xxxS EEEE EEEE].
* Add the inplied one to the nantissa val ue
* Store entire mantissa with a long word store
*;*****************************************************************************
DLDopl_nsw, A ;o OP1
SFTA A8
SFTA A -8
BC op_zero, AEQ ; if opl is 0, junp to special case
STHA, -7, opl_se ; store sign AND exponent to stack
STLA opl_Im ; store |ow mantissa
AND#07Fh, 16, A ; mask off sign & exp to get high mantissa
ADD#080h, 16, A ; ADD inplied 1 to nantissa
STHA, op1_hm ; store nmantissa to stack
*;*****************************************************************************
*; CONVERSI ON OF FLOATI NG PO NT FORVAT — UNPACK
*.  Test OP2 for special case treatnent of zero.
*; Split the MSWof A in the accumnul ator.
* Save the sign and exponent on the stack [xxxx xxxS EEEE EEEE].
*; Add the inplied one to the nantissa val ue.
* Store entire mantissa with a | ong word store
*;*****************************************************************************

DLDop2_msw, A

BC op_zero, AEQ
STHA, -7, op2_se
STLA op2_I m
AND#07Fh, 16, A
ADD#080h, 16, A
STHA, op2_hm

: load acc a with OP2
; if OP2 is 0, junp to special case
; store sign and exponent to stack
; store |ow mantissa
; mask of f sign & exp to get high mantissa
; add inplied 1 to mantissa
; store mantissa to stack
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Example 3-10. Multiply Two Floating-Point Numbers (Continued)

E R R b O S O R O S
l

*: S| GN EVALUATI ON
*:;  Exclusive OR sign bits of OP1 and OP2 to determi ne sign of result.

EEEE R O R O R O
1

LD opl_se, A ; load sign and exp of opl to acc
XORop2_se, A ; Xor with op2 to get sign of result
AND#00100h, A ; mask to get sign

STLA, res_sign ; save sign of result to stack

REE R R b b Sk S R Rk R R R b ok R R Rk Sk b ok O R R S Sk R IRk O kS kA S R

* .
*, EXPONENT SUMVATI ON

*;  Sumthe exponents of OP1 and OP2 to determine the result exponent. Since
*;  the exponents are biased (excess 127) the summation nust be decrenented
*; by the bias value to avoid double biasing the result

*:  Branch to one of three bl ocks of processing

*; Case 1. exp OP1 + exp OP2 results in underflow (exp < 0)

*, Case 2: exp OP1 + exp OP2 results in overflow (exp >= OFFh)

* Case 3: exp OP1 + exp OP2 results are in range (exp >= 0 & exp < OFFh)
* NOTE: Cases when result exp = 0 nay result in underflow unless there
*, is acarry in the result that increments the exponent to 1.

*, Cases when result exp = OFEh nay result in overflowif there
* is acarry in the result that increments the exponent to OFFh.
*

BRIk Sk b bk kR R Rk Ik kR Rk b O b O S O S R R O kO R R R O o O R S
)

LD opl_se, A ; Load OP1 sign and exponent
AND#00OFFh, A ; Mask OP1 exponent
LD op2_se, B ; Load OP2 sign and exponent
AND#OFFh, B ; Mask OP2 exponent
SUB#07Fh, B ; Subtract offset (avoid doubl e bias)
ADDB, A ; Add OP1 exponent
STLA res_exp ; Save result exponent on stack
BC under fl ow, ALT ; branch to underflow handler if exp <0
SUB#OFFh, A ; test for overflow
BC over f | ow, AGT ; branch to overflowis exp > 127
*;*****************************************************************************
*, MULTI PLI CATI ON
*» Multiplication is inplemented by parts. Mantissa for OP1 is three bytes
*: identified as Q R and S
*; (Qrepresents OP1 high mantissa and R and S represent the two bytes of OP1 | ow
*; mantissa). Mantissa for
*; OP2 is also 3 bytes identified as X, Y, and Z (X represents OP2 high nant and
*. Y and Z represent the two bytes
*. of OP2 low mantissa). Then
*, 0 Q R S (mantissa of OP1)
*, x 0 XY Zz (mantissa of OP2)
X
* RS* YZ <—— save only upper 16 bits of result
*; RS*0X
* (o]0 774
* 0Qr0X <—— upper 16 bits are always zero
* - e ——————
*; result <— result is always in the internal 32 bits
*; (which ends up in the accunul ator) of the possible 64 bit product
EEEE R R R R R R R R R S R I R R R R R T O

)
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Example 3-10. Multiply Two Floating-Point Numbers (Continued)

LD opl ImT ; load | ow mant of opl to T register

MPYU op2_ImA . RS * YZ

MPYU op2_hmB i RS * OX

ADDA, -16, B i B=(RS* YZ) + (RS * 0X

LD opl_hmT ; load high mant of opl to T register
MPYU op2_ImA 7 A=0Q* YZ

ADDB, A i A= (RS * YZ) + (RS* 0X) + (0Q* Y2

MPYU op2_hmB ; B=0Q* 0X

STLB,res_hm ; get lower word of 0Q * OX

ADDres_hm 16, A ; A= final result

R S S O S O R O O O

*e
* POST—NORMALI ZATI ON ADJUSTMENT AND STORAGE

*;  Set up to adjust the nornalized result.

* The MSB may be in bit 31. Test this case and increnent the exponent
* and right shift mantissa 1 bit so result is in bits 30 through 7

*. Right shift mantissa by 7 bits.

*- Store | ow manti ssa on stack.

*: Mask inplied 1 and store high nmanti ssa on stack.

*

; Test result for underfl ow and overfl ow.

EE R I R O S I R I S O R S O

ADD#040h, A ; Add rounding bit

SFTA A8 ; sign extend result to check if MSBis in 31
SFTA A -8

RSBX  SXM ; turn off sign extension for nornalization

LD res_exp, B ; load exponent of result

BC nornmal i zed, ACEQ ; check if MSBis in 31

SFTL A -1 ; Shift result so result is in bits 30:7
ADD #1, B ; increment exponent

STL B, res_exp ; save updated exponent normalized

BC under f | ow, BLEQ ;. check for underfl ow

SUB#0FFh, B ; adjust to check for overflow

BC over f | ow, BGEQ ; check for overflow

SFTL A -7 ; shift to get 23 nmsb bits of nmantissa result
STLA res_Im ; store |ow nantissa result

AND#07F00h, 8, A ; renmove inplied one

STHA, res_hm ; store the mantissa result

R R R R R R R R R R R R R R R R R R R R R EEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS
* CONVERSI ON OF FLOATI NG PO NT FORVAT — PACK

*.  Load sign.

*: Pack exponent.

*.  Pack mantissa.

BRIk S 2k O bk R R R Rk R b O R O R R O o Sk O R R R O
)

LD res_sign, 16, A ; 0000 000S 0000 0000 0000 0000 0000 0000

ADDr es_exp, 16, A ; 0000 000S EEEE EEEE 0000 0000 0000 0000

SFTL A7 ; SEEE EEEE EO00O 0000 0000 0000 0000 0000

DADD res_hmA ;  SEEE EEEE EMVW MVVWM MMVMWM MMWM MVWM MVWM
R AAEEEELEEEEEEEEEEEEEEEEEEEEEEEEEEEEEELEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
*; CONTEXT RESTCRE

EEEE S O O S I
)

return_val ue
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Example 3-10. Multiply Two Floating-Point Numbers (Continued)

op_zero

nop

nop

ret
*;*****************************************************************************
*. overfl ow PROCESSI NG
*:  Push errno onto stack.
*. Load accunul ator with return val ue.

EEEE R Ok kR S Ik Rk S R O Rk Rk I bk R b R R O O
)

overfl ow

ST #2,err_no : Load error no

LD res_sign, 16, B ; Load sign of result

LD #OFFFFh, A ; Result |ow nmanti ssa = OFFFFh
R B, 7,A ; Add sign bit

BD return_val ue ; Branch del ayed

ADD#07F7Fh, 16, A ; Result exponent = OFEh

; Result high mant = 07Fh
PR S SR SRS E S EE R SRR RS RS RS RS R EEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRS
* UNDERFL OW PROCESSI NG
*:  Push errno onto stack.
*.  Load accunul ator with return val ue.

EEEE R bk O R Ik kR b R R Sk kR R R kO O R
)

under f | ow

ST #1, err_no : Load error no

BD return_val ue ; Branch del ayed

SUBA, A : For underflowresult =0
NOP

Example 3-11. Divide a Floating-Point Number by Another
R Ik S R Sk bk R R R R R S S R Sk b b S S IR R R b b Sk b S R Rk I b

*. FLOAT_DIV — divide two floating point nunbers

*;  Copyright (c) 1993-1994 Texas Instrunents |ncorporated
;*****************************************************************************

;I mplementation: OP1 and OP2 are each unpacked into sign, exponent, and two words
;of mantissa. |If either exponent is zero special case processing is initiated.

; The difference of the exponents are taken. IF the result is less than zero underfl ow
;has occurred. If the result is zero, underflow may have occurred. |If the result
;is equal to 254 overflow may have occurred. |If the result is greater than 254
;overfl ow has occurred.

; Underfl ow processing returns a value of zero. Overflow processing returns the
;largest magni tude value along with the appropriate sign. |f no special cases are
detected, a 24x24-bit divide is ;executed. The result of the exclusive OR of the
;sign bits, the difference of the exponents and the 24 bit truncated nantissa are
; packed and returned.

R b bk R R Rk O bk b b ok R R Rk R R S bk O R R b S R R R R kO b
)

EEEE R R I I R I R R I O I R R I R O R O
1

*: resource utilization: B accunulator , T register
* status bits affected: TC, C, SXM OVM Cl6
*; entry requirenents : CPL bit set

B O O O O o O O R O O o O R o O o O o
1
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Example 3-11. Divide a Floating-Point Number by Another (Continued)

; Floating Point Format — Single Precision

w
-
w
o
N
©
N
[ee]
N
~

26| 25| 24| 23| 22| 21| 20| 19| 18 | 17 | 16 |

I I I I
E3 | E2 | E1 | EO | M22| M21| M20| ML9| ML8| ML7| ML6|

%
m
\l
m
(e}
m
o
AL

[EEY

0 9| 8| 7| 6] 5| 4| 3| 2| 1| 0|

ML1| MLO

I I I
I I I I I I I I I I I I I
I I | M| M| M| M| Mo | MA| MB| M| M | M |

; Single precision floating point format is a 32 bit format consisting of a 1
it sign field, an 8 bit exponent *
; field, and a 23 bit mantissa field. The fields are defined as foll ows

Si gn <S> : 0 = positive values; 1 = negative val ues
Exponent <E7-EO> : offset binary format
00 = special cases (i.e. zero)
01 = exponent value + 127 = -126
FE = exponent value + 127 = +127
FF = special cases (not inplenented)
Manti ssa <M22-MD> : fractional magnitude format with inplied 1
1. M22M21. .. MLIMD
Range : —1.9999998 e+127 to —-1.0000000 e-126
+1. 0000000 e-126 to +1.9999998 e+127
(where e represents 2 to the power of)
—3.4028236 e+38 to —1.1754944 e-38
+1. 1754944 e-38 to +3.4028236 e+
(where e represents 10 to the power of)

EEE I O S O R R R R R O I
)

0% ok ko 2k 2k Xk Xk kX X X X X T OF O F Xk kX X X X F

res_hm .usect "flt_div",1
res_Im .usect "flt_div",1
res_exp .usect "flt_div",1
res_sign .usect "flt_div",1
op2_hm .usect "flt _div", 1
op2_Im .usect "flt_div",1
op2_se .usect "flt _div”, 1
opl_se .usect "flt_div",1
opl_hm .usect "flt _div", 1
opl Im .usect "flt_div",1
opl_msw .usect "flt_div",1
opl_I sw .usect "flt_div",1
op2_msw .usect "flt_div",1
op2_l sw .usect "flt_div",1
err_no .usect "flt_div",1
. MT egs

*

*
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Example 3—-11. Divide a Floating-Point Number by Another (Continued)

K_di vi sor _hi gh . set 4140h
K _di vi sor _| ow . set 0000h
K_di vi dend_hi gh . set 4140h
K di vi dend_| ow . set 0000h
. sect "vectors”
B float _div
NOP
NOP
. text
float _div:
LD #res_hm DP ; initialize the page pointer
LD #K _di vi sor _hi gh, A ; load floating #2 — 12

STL A op2_msw

LD #K_di vi sor _| ow, A

STL A op2_I sw

LD #K_di vi dend_hi gh, A ; load floating #1 — 12
STLA opl_msw

LD #K_di vi dend_| ow, A

STLA, opl_| sw

***************;******************************************

RSBX Cl6 ; Insure long adds for |ater

*
*;*****************************************************************************
*, CONVERSI ON OF FLOATI NG PO NT FORMAT — UNPACK
*; Test OP1 for special case treatnent of zero.
*: Split the MSWof A in the accunul ator.
*, Save the sign and exponent on the stack [xxxx xxxS EEEE EEEE].
* Add the inplied one to the nmantissa val ue.
* Store entire nantissa with a long word store
*;*****************************************************************************
DLDopl_nsw, A ; load acc a with OP1
SFTA A8
SFTA A -8
BC opl_zero, AEQ ; if opl is 0, junp to special case
STHA, -7, opl_se ; store sign and exponent to stack
STLA opl_Im ; store | ow nmanti ssa
AND#07Fh, 16, A ; mask off sign & exp to get high nantissa
ADD#080h, 16, A ; ADD inplied 1 to nmantissa
STHA, opl_hm ; store mantissa to stack

*
*;*****************************************************************************
* CONVERSI ON OF FLOATI NG PO NT FORVAT — UNPACK
*.  Test OP1 for special case treatnent of zero.
*; Split the MSWof A in the accunul ator.
*; Save the sign and exponent on the stack [xxxx xxxS EEEE EEEE].
* Add the inplied one to the nanti ssa val ue.
* Store entire nantissa with a long word store
*;******************************************************************************
DLDop2_nsw, A ; load acc a with OP2
BC op2_zer o, AEQ ; if OP2 is 0, divide by zero
STHA, -7, op2_se ; store sign and exponent to stack
STLA op2_Im ; store |l ow nantissa
AND#07Fh, 16, A ; mask off sign & exp to get high mantissa
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Example 3-11. Divide a Floating-Point Number by Another (Continued)

ADD#080h, 16, A ; ADD inplied 1 to nantissa
STHA, op2_hm ; store mantissa to stack

*

E R S S O O R S S O R O L
1

* S| GN EVALUATI ON
*:  Exclusive OR sign bits of OP1 and OP2 to determine sign of result.
EEEE R O S O S O S O R O O O O O I S S O O o O O O
* LD opl_se, A ; load sign and exp of opl to acc
XORop2_se, A ; Xor with op2 to get sign of result
AND#00100h, A ; mask to get sign
STLA, res_sign ; save sign of result to stack
*
IR R RS EEEEEEEEEEEESEEEEEEEEEEEEEEEREEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
* EXPONENT SUMVATI ON
*. Find difference between operand exponents to determ ne the result exponent. *
* Since the subtraction process renoves the bhias it nust be re-added in. *
*
*;  Branch to one of three bl ocks of processing
*; Case 1. exp OP1 + exp OP2 results in underflow (exp < 0)
* Case 2: exp OP1 + exp OP2 results in overflow (exp >= OFFh)
* Case 3: exp OP1 + exp OP2 results are in range (exp >= 0 & exp < OFFh)
* NOTE: Cases when result exp = 0 may result in underflow unless there *
* is acarry in the result that increments the exponent to 1.
* Cases when result exp = OFEh may result in overflow if there is a carry *
* in the result that increnments the exponent to OFFh.
IR S ok O o R I O O O Ik O O O o O
*
LD opl_se, A ; Load OP1 sign and exponent
AND#OFFh, A ; Mask OP1 exponent
*
LD op2_se, B ; Load OP2 sign and exponent
AND#OFFh, B ; Mask OP2 exponent
*
ADD#07Fh, A ; Add offset (difference elimnates offset)
SUBB, A ; Take difference between exponents
STLA, res_exp ; Save result exponent on stack
*
BC under f | ow, ALT ; branch to underflow handler if exp <0
SUB#O0OFFh, A ; test for overflow
BC over f | ow, AGT ; branch to overflowis exp > 127

BRIk kR R O R I O R O O
)

; Di VI SI ON

; Division is inplenmented by parts. The mantissas for both CP1 and CP2 are left shifted
inthe 32 bit field to reduce the effect of secondary and tertiary contributions to
the final result. The left shifted results are identified as CPI'H, CP1'LO OP2'H,
and CP2' LO where CP1'H and OP2'H have the xx nost significant bits of the mantissas
and CP1'LO and OP2'LO contain the remaining bits * of each mantissa. Let H and QO
represent the two portions of the resultant mantissa. Then

_OPI'H + CPI'LO_ OPI'H + CPI'LO, 1
H +AO0= 7 + orz'Lo oP2'H 1+

OP2'HI

* 0% % F 2k X X X %

*
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Example 3—-11. Divide a Floating-Point Number by Another (Continued)

*; Now | et X = OP2' LO OP2' HI
*; Then by Taylor’s Series Expansion
1 2_y3
* — —
(m)— 1-X + X=X+ .. ......
* Since OP2'H contains the first xx significant bits of the OP2 mantissa,*
X = 0P2’LOOP2'H < 2-yy*; Therefore the X2 termand all subsequent terms are |ess
than the |east significant
* bit of the 24-bit result and can be dropped. The result then becones
CPl'H + CPI'LO oP2'LO
* I+ = N 1-=""
o Q0 OP2'H + OP2'LO ( OP2'HI )
—(oH + 0.0 * [1-9P2'LO
& & OP2'HI
*; where QH and Q LO represent the first approximtion of the result. Al so since
* QLOand OP2' LOOP2'H are less significant the 24th bit of the result, this
* product term can be dropped so
OPI'H + CPI'LO _ OPI'HI + OPI'LO 1
* I + = = *
o Q0 OP2'H + OP2'LO OP2'HI (1 + OPZ’LO)
t hat OP2'H
EEEE I S R R S I R R S I I R S R S
DLDopl_hm A ; Load dividend mantissa
SFTL A6 ; Shift dividend in preparation for division
*
DLDop2_hm B ; Load divisor mantissa
SFTL B, 7 ; Shift divisor in preparation for division
DST B, op2_hm ; Save off divisor
*
RPT #14 ;o QH = OP1'HI/ OP2' HI
SUBC op2_hmA
STLA, res_hm ; Save CHI
*
SUBS res_hmA ; Cear (H from ACC
RPT #10 ; QLO=0P1'LO/ OP2'HI
SUBC op2_hmA
STLA 5, res Im ; Save Q LO
LD res_hmT ; T=QH
MPYU op2_ImA ; Store QH * OP2’LOin acc A
SFTL A -1 V*
RPT #11 ; Calculate QH * OP2’LO/ OP2'H
SUBC op2_hmA ; (correction factor)
SFTL A 4 ; Left shift to bring it to proper range
AND#OFFFFh, A ;. Mask off correction factor
*
NEGA ; Subtract correction factor
ADDS res_ImA ; Add Q LO
ADDres_hm 16, A ; Add QHI
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Example 3-11. Divide a Floating-Point Number by Another (Continued)
EEEE S R S I kO S O

* POST—NORMALI ZATI ON ADJUSTMENT AND STORAGE

*: Set up to adjust the normalized result. The MSB may be in bit 31. Test this
case and increnent the exponent and right shift nantissa 1 bit so result is in
bits 30 through 7. Right shift mantissa by 7 bits. Store | ow manti ssa on stack.
Mask inmplied 1 and store high nmantissa on stack. Test result for underflow and

overfl ow.
EEEE I S R I S I I T I I S I I S I S I S I S I I S I I I S I S
;

*

LD res_exp, B ; Load resul t exponent

EXP A ; Get amount to adjust exp for nornalizati onNCP

NCRM A ; Normalize the result

ST T, res_exp ; Store the exponent adjustment val ue

SUB res_exp, B ; Adjust exponent (add either zero or one)

SFTL A -1 ; Pre-scal e adjustnent for rounding

ADD #1,B Adj ust exponent

ADD #020h, A ; Add roundi ng bit

EXP A ; Nornalize after rounding NCOP

NCRM A ;

ST T, res_exp ; Adjust exponent for nornalization

SUB res_exp, B ;

STL B, res_exp ; Save exponent

BC under f | ow, BLEQ ; process underflow if occurs

SUB #0FFh, B ; adjust to check for overflow

BC over f | ow, BGEQ ; process overflow if occurs

SFTL A -7 ; Shift right to place mantissa for splitting

STL Ares Im ; Save result |ow nmantissa

AND #07F0O0h, 8, ; Elimnate inplied one

STH A res_hm : Save result mantissa on stack
*
*;*****************************************************************************
* CONVERSI ON OF FLOATI NG PO NT FORMAT — PACK
*.  Load sign.
*: Pack exponent.
*-  Pack manti ssa.
*;*****************************************************************************
*

LD res_sign, 16, A ; 0000 000S 0000 0000 0000 0000 0000 0000

ADDr es_exp, 16, A ; 0000 000S EEEE EEEE 0000 0000 0000 0000

SFTL A7 ; SEEE EEEE EO000 0000 0000 0000 0000 0000

DADD res_hmA ; SEEE EEEE EMVWM MVMWVM MVVWM MVWM MVWM MVIVM
**;*****************************************************************************
* CONTEXT RESTORE

1
R R S kR Rk Sk ko Rk R R b ok S R S S Rk R I b o kR Rk Sk b o O R R o O R
)

return_val ue
opl_zero
ret

*
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Example 3—-11. Divide a Floating-Point Number by Another (Continued)

REEE b b kR Rk Rk bk b O b ok kb R R R R S O bk R R Sk O R R O R kO R
)

*, OVERFLOW PROCESSI NG
*:  Push errno onto stack.
*. Load accunul ator with return val ue.

EEEE b bk R SRRk R bk b ok R R R R I O R R R I bk O R b R R R R I
)

overfl ow
ST #2,err_no : Load error no
SATA ; Result exponent = OFEh
SUB#081h, 16, A ; Result high mant = 07Fh
BD return_val ue ; Branch del ayed
LD res_sign, 16, B ; Load sign of result
OoR B, 7, A ; Pack sign*

EEEE R bk kR I R R R Ik R R O O R I
)

* .

UNDERFLON PRCOCESSI NG
*:  Push errno onto stack.
*.  Load accunul ator with return val ue.

R EEE R Ok R Rk R Ik kR R Rk kb R R Rk Ik b O R R R b S R O O kO b
)

*

under f | ow
ST #1,err_no ; Load error no
BD return_val ue ; Branch del ayed
sub A, A ; For underflow result =0
nop
* K .

)
EEE R S O bk I R O S O R R S R O O S O

*. DI VI DE BY ZERO
*:  Push errno onto stack.
*:  Load accunulator with return val ue.

EEEE R O R R I R O S O R O O I
1

op2_zero
ST #3,err_no ; Load error no
SATA ; Result exponent = FEh
; Result |ow mant = FFFFh
LD opl_se, 16, B ; Load sign and exponent of OP1
AND#100h, 16, B ; Mask to get sign of OP1
OR B, 7,A ; Pack sign
BD return_val ue ; Branch del ayed
SUB#081h, 16, A ; Result high mant = 7Fh
NOP
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3.6 Logical Operations

DSP-application systems perform many logical operations, including bit manipu-
lation and packing and unpacking data. A digital modem uses a scrambler and
a descrambler to perform bit manipulation. The input bit stream is in a packed for-
mat of 16 bits. Each word is unpacked into 16 words of 16-bit data, with the most
significant bit (MSB) as the original input bit of each word. The unpack buffer con-
tains either 8000h or 0000h, depending upon the bit in the original input-packed
16-bit word. The following polynomial generates a scrambled output, where the
@ sign represents modulus 2 additions from the bitwise exclusive OR of the
data values:

Scrambler output = 1 @ x 18 @ x—23

The same polynomial sequence in the descrambler section reproduces the
original 16-bit input sequence. The output of the descrambler is a 16-bit word
in packed format.

Example 3-12. Pack/Unpack Data in the Scrambler/Descrambler of a Digital Modem
; TEXAS | NSTRUVENTS | NCORPORATED

. T egs

d_scrambffr
d_de_scram bffr
d_unpack_buf fer
d_input _bit
d_pack_out
d_asm count
K_BFFR_SI ZE

K 16

; Functional Description
; This routine illustrates the pack and unpack of a data stream and

al so bit manipulation. A digital scranbler and descranbler does the
bit mani pul ation and the input to the scrambler is in unpacked format
and the output of the descranbler is in packed 16-bit word.

scranbl er _out put
additions are nodulus 2 additions or bitw se exclusive OR of data
val ues. The same polynomi al is used to generate the descranbl er

out put .

. asg AR1, UNPACK_BFFR

. asg AR3, SCRAM DATA 18

. asg AR4, SCRAM DATA 23

. asg AR2, DE_SCRAM DATA 18

. asg AR5, DE_SCRAM DATA 23
. usect "scrmdat”, 30
. usect "dscrmdt”, 30
. usect "scrmyvar”, 100

. usect "scrmyvar”, 1

. usect "scrmyvar”, 1

. usect "scrmvar”, 1

. set 24

. set 16

. def d_i nput _bi t

def d_asm count

= 1+x~-18+x"-23

. sect "scranbl r”
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Example 3-12. Pack/Unpack Data in the Scrambler/Descrambler of a Digital Modem
(Continued)

scranbler_init:
STM #d_unpack_buf f er , UNPACK_BFFR
ST™M #d_scram bf f r, SCRAM DATA 23
RPTZ A, #K_BFFR_SI ZE
STL A, * SCRAM DATA 23+
STM #d_scram bf f r +K_BFFR_SI ZE-1, SCRAM DATA 23
ST™M #d_scram bf fr+17, SCRAM DATA 18
STM  #d_de_scram bffr+K BFFR_SI ZE-1, DE_ SCRAM DATA 23
STM #d_de_scram bf fr+17, DE_SCRAM DATA 18
LD #d_input _bit, Dp
ST #-K_16+1, d_asm count
scraml er _task:
; the unpack data buffer has either 8000h or 0000h since the bit stream
; is either 1 or O
unpack_dat a:
ST™M #K_16-1, BRC

RPTB end_| oop-1 ; unpack the data into 16-bit
; word
PORTR 1h, d_i nput _bit ; read the serial bit stream
LD d_i nput _bit, 15 A ; mask thel ower 15 bits
; the MBB is the serial bit
; stream
STL A, * UNPACK_BFFR ; store the 16 bit word
unpack_16_wor ds
scranbl er:
LD * SCRAM DATA 18-% A
XOR * SCRAM DATA 23, A ;A = x"-18+x"-23
XOR * UNPACK_BFFR, A ;A= A+x"M0
STL A, * SCRAM DATA 23-% ; newest sanple, for next
; cycle it will be x(n-1)
STL A, * UNPACK_BFFR ; store the scranbled data

scranbl e_word
descranbl er:

LD * DE_SCRAM DATA 18-% A
XOR *DE_SCRAM DATA 23, A ;A = x"-18+x"-23
XOR * UNPACK_BFFR, A A= A+X"0
STL A, * DE_SCRAM DATA 23-% ; newest sanple, for next
; cycle it will be x(n-1)
STL A, * UNPACK BFFR ; store the scranbl ed data

de_scranbl e_word
; ASMfield shifts the descranbler output MSB into proper bit position

pack_dat a
RSBX SXM ; reset the SXM bit
LD d_asm count , ASM
LD * UNPACK_BFFR+, A
LD A ASM A
OR d_pack_out, A ; start pack the data
STLA, d_pack_out
ADDM #1,d _asm count
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Example 3-12. Pack/Unpack Data in the Scrambler/Descrambler of a Digital Modem

(Continued)
pack_word
SSBX SXM ; enabl e SXM node
end_| oop
NOP ; dummy instructions nothing
; with the code
NOP
.end
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Chapter 4

Application-Specific Instructions
and Examples

This chapter shows examples of application-specific instructions that the
TMS320C54x 0 (C54x) offers and the typical functions where they are used.
Functions like codebook search and viterbi are widely used for speech coding
and telecommunications.

Topic Page
4.1 Codebook Search for Excitation Signal in Speech Coding ........ 4-2
4.2 Viterbi Algorithm for Channel Decoding ........................ 4-5
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Codebook Search for Excitation Signal in Speech Coding

4.1 Codebook Search for Excitation Signal in Speech Coding

A code-excited linear predictive (CELP) speech coder is widely used for applica-
tions requiring speech coding with a bit rate under 16K bps. The speech coder
uses a vector quantization technigue from codebooks to an excitation signal.
This excitation signal is applied to a linear predictive-coding (LPC) synthesis fil-
ter. To obtain optimum code vectors from the codebooks, a codebook search
is performed, which minimizes the mean-square error generated from weighted
input speech and from the zero-input response of a synthesis filter. Figure 4-1
shows a block diagram of a CELP-based speech coder.

Figure 4-1. CELP-Based Speech Coder

Input speech

o] Weighting
filter

Codebook o(n)
LN D +

1 Synthesis —
2 filter
g(n)

Gain

Mean-square error
minimization

A

To locate an optimum code vector, the codebook search uses Equation 4-1
to minimize the mean-square error.

Equation 4-1. Optimum Code Vector Localization
N-1
E = Z{p(n) - yg, )Y N : Subframe
i=0
The variable p(n) is the weighted input speech, g;(n) is the zero-input response

of the synthesis filter, and ; is the gain of the codebook.

The cross-correlation (¢) of p(n) and g;j(n) is represented by Equation 4-2. The
energy (G;) of gij(n) is represented by Equation 4-3.

Equation 4-2. Cross Correlation Variable (¢)

N-1

¢ = > g* pn

i=0
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Equation 4-3. Energy Variable (G))

c?
|
Equation 4-1 is minimized by maximizing 6, Therefore, assuming that a code
vector with i = opt is optimal, Equation 4-4 is always met for any i. The code-
book search routine evaluates this equation for each code vector and finds the
optimum one.

Equation 4—4. Optimal Code Vector Condition

A
C5i Gopt

Example 4-1 shows the implementation algorithm for codebook search on
C54x. The square (SQUR), multiply (MPYA), and conditional store (SRCCD,
STRCD, SACCD) instructions are used to minimize the execution cycles. AR5

points to ¢jand AR2 points to G;. AR3 points to the locations of Gypt and Copte

The value of i(opt) is stored at the location addressed by ARA4.
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Example 4-1. Codebook Search

4-4

SEARCH

Srh_End:

title
. mr eg
.text
ST™M
STM

STM
STM

MAS
SRCCD
STRCD
SACCD
NOP

RET
.end

" CODEBOOK SEARCH’

S

#C, AR5
#G, AR2
#OPT, AR3
#1 OPT, AR4
#0, * AR4
#1, * AR3+
#0, * AR3—
#N-1, BRC
Srh_End-1
* ARG+, A

* AR3+
*AR2+, * AR3—, B

* AR4, BGEQ
* AR3+, BGEQ
A, * AR3—, BGEQ

; Set
; Set
; Set
; Set
clnit
clnit
clnit

i)
B
t
B
Gopt
;1 f(B

T T 0

C(i) address
Qi) address
OPT address
| OPT address
ialize | ag

ialize Gopt

ialize C2opt

Qi) * Qi)
c(i)r2 * Gopt
C(i)r2 * Gopt
>

= 0) then
BRC

>= 0) then
=T

>= 0) then

;C20pt = A NCP

; To save

; *AR4

—> opti mal

Copt, T = i)

current BCR
i ndex



Viterbi Algorithm for Channel Decoding

4.2 Viterbi Algorithm for Channel Decoding

Convolutional encoding with the Viterbi decoding algorithm is widely used in
telecommunication systems for error control coding. The Viterbi algorithm
requires a computationally intensive routine with many add-compare-select
(ACS) iterations. The C54x can perform fast ACS operations because of dedi-
cated hardware and instructions that support the Viterbi algorithm on chip. This
implementation allows the channel decoder and the equalizer in communica-
tion systems to be used efficiently.

In the global system for mobile communications (GSM) cellular radio, the poly-
nomials in Equation 4-5 are used for convolutional encoding.

Equation 4-5. Polynomials for Convolutional Encoding
G1(D) =1 + D3 + D4 G2(D)=1+D + D3 + D?

This convolutional encoding can be represented in a trellis diagram, which
forms a butterfly structure as shown in Figure 4—2. The trellis diagram illus-
trates all possible transformations of convolutional encoding from one state to
another, along with their corresponding path states. There are 16 states, or
eight butterflies, in every symbol time interval. Two branches are input to each
state. Decoding the convolutional code involves finding the optimal path by
iteratively selecting possible paths in each state through a predetermined
number of symbol time intervals. Two path metrics are calculated by adding
branch metrics to two old-state path metrics and the path metric (J) for the new
state is selected from these two path metrics.

Equation 4-6 defines a branch metric.

Figure 4—2. Butterfly Structure of the Trellis Diagram

Old state New state

2xJ

2xJ+1

J+8

Equation 4—6. Branch Metric
M = SD(2xi) x B(J,0) + SD(2xi+1) x B(J,1)
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SD(2xi) is the first symbol that represents a soft-decision input and SD(2xi+1)
is the second symbol. B(J,0) and B(J,1) correspond to the code generated by
the convolutional encoder as shown in Table 4-1.

Table 4-1. Code Generated by the Convolutional Encoder

J B(J,0) B(J,1)
0 1 1

1 -1 -1

2 1 1

3 -1 -1

4 1 -1

5 -1 1

6 1 -1

7 -1 1

The C54x can compute a butterfly quickly by setting the ALU to dual 16-bit
mode. To determine the new path metric (J), two possible path metrics from 2xJ
and 2xJ+1 are calculated in parallel with branch metrics (M and —M) using the
DADST instruction. The path metrics are compared by the CMPS instruction.

To calculate the new path metric (J+8), the DSADT instruction calculates two
possible path metrics using branch metrics and old path metrics stored in the
upper half and lower half of the accumulator. The CMPS instruction determines
the new path metric.

The CMPS instruction compares the upper word and the lower word of the
accumulator and stores the larger value in memory. The 16-bit transition regis-
ter (TRN) is updated with every comparison so you can track the selected path
metric. The TRN contents must be stored in memory locations after proces-
sing each symbol time interval. The back-track routine uses the information in
memory locations to find the optimal path.

Example 4-2 shows the Viterbi butterfly macro. A branch metric value is
stored in T before calling the macro. During every butterfly cycle, two macros
prevent T from receiving opposite sign values of the branch metrics.
Figure 4-3 illustrates pointer management and the storage scheme for the
path metrics used in Example 4-2.

In one symbol time interval, eight butterflies are calculated for the next 16 new
states. This operation repeats over a number of symbol time intervals. At the
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end of the sequence of time intervals, the back-track routine is performed to
find the optimal path out of the 16 paths calculated. This path represents the
bit sequence to be decoded.

Figure 4-3. Pointer Management and Storage Scheme for Path Metrics

Pointer Location (relative)
AR5 —p 0
Metrics
2x18&2xJ+1 Old state
15 —
AR4 —» 16—
Metrics
J
24 New state
AR3 —»
Metrics
J+ 8
31

Example 4-2. Viterbi Operator for Channel Coding

VI TRBF. MACRO ;
DADST *AR5,A ;A = OLD_ M 2*J)+T//COLD_(2*J+1)-T
DSADT * AR5+, B ;B = OLD_M2*J)-T//OLD_(2*J+1) +T
CWPS A *AR4+ s NEWMJ) = MAX(A H GH A LOW
; TRNk<1, TRN(O0,0) = TC
CWPS B, *AR3+ ; NEW M J+8) = MAX(B_H GH B_LOW
; TRNk<1, TRN(O,) = TC
. ENDM
VI TRBR. MACRO ;
DSADT *AR5,A ;A = OLD M 2*J)-T//COLD_(2*J+1)+T
DADST * AR5+, B ;B = OLD_M2*J)+T//O.D_(2*J+1)-T
CWPS A *AR4+ s NEWMJ) = MAX(A H GH A LOW
; TRNk<1, TRN(O0,0) = TC
CWPS B, *AR3+  NEW M J+8) = MAX(B_H GH B_LOW
; TRNk<1, TRN(O,) = TC
. ENDM
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Chapter 5

TI C54x DSPLIB

The Tl C54x DSPLIB is an optimized DSP function library for C programmers
on TMS320C54x[] (C54x) DSP devices. It includes over 50 C-callable assem-
bly-optimized general-purpose signal processing routines. These routines are
typically used in computationally intensive real-time applications where opti-
mal execution speed is critical. By using these routines you can achieve exe-
cution speeds considerably faster than equivalent code written in standard
ANSI C language. In addition, by providing ready-to-use DSP functions, Tl
DSPLIB can shorten significantly your DSP application development time.

The Tl DSPLIB includes commonly used DSP routines. Source code is pro-
vided to allow you to modify the functions to match your specific needs
and is shipped as part of the C54x Code Composer Studio product under
the c:\ti\C5400\dsplib\54x_src directory.

Full documentation on C54x DSPLIB can be found in the TMS320C54x DSP
Library Programmer’s Reference (SPRU518).

Topic Page
5.1 Featuresand Benefits ......... ... i 5-2
5.2 DSPLIB DAta TYPES - .ttt e [5-2]
5.3 DSPLIB ATQUMENTS . ...\ttt e et [5-2]
5.4 Calling aDSPLIB Functionfrom C ......... ... .. ... ... 5-3
5.5 Calling a DSPLIB Function from Assembly Language

SOUrCE COOE ...ttt 5-4
5.6 Whereto Find SampleCode ............... ..., E
5.7 DSPLIB FUNCLIONS ... e e 5-5
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Features and Benefits / DSPLIB Data Types / DSPLIB Arguments

5.1 Features and Benefits

(] Hand-coded assembly optimized routines
C-callable routines fully compatible with the C54x DSP compiler

Fractional Q15-format operands supported

U
a
(1 Complete set of examples on usage provided
[ Benchmarks (cycles and code size) provided
U

Tested against MatlabO scripts

5.2 DSPLIB Data Types

DSPLIB functions generally operate on Q15-fractional data type elements:

O Q.15 (DATA): A Q.15 operand is represented by a short data type (16 bit)
that is predefined as DATA, in the dsplib.h header file.

Certain DSPLIB functions use the following data type elements:

0 Q.31 (LDATA): A Q.31 operand is represented by a long data type (32 bit)
that is predefined as LDATA, in the dsplib.h header file.

[0 Q.3.12: Contains 3 integer bits and 12 fractional bits.

5.3 DSPLIB Arguments

DSPLIB functions typically operate over vector operands for greater efficiency.
Though these routines can be used to process short arrays or scalars (unless
a minimum size requirement is noted), the execution times will be longer in
those cases.

(1 Vector stride is always equal 1: vector operands are composed of vector
elements held in consecutive memory locations (vector stride equal to 1).

[ Complex elements are assumed to be stored in a Real-Imaginary (Re-
Im) format.

[ In-place computation is allowed (unless specifically noted): Source
operand can be equal to destination operand to conserve memory.



5.4 Calling a DSPLIB Function from C

Calling a DSPLIB Function from C

In addition to installing the DSPLIB software, to include a DSPLIB function in
your code you have to:

a
EI
d

Include the dsplib.h include file

Link your code with the DSPLIB object code library, 54xdsp.lib.

Use a correct linker command file describing the memory configuration
available in your C54x DSP board.

For example, the following code contains a call to the recipl6 and q15tofl rou-
tines in DSPLIB:

#i ncl ude "dsplib. h”

DATA x[3] = { 12398 , 23167, 564};

rINX;

rexp[ NX;
rf1[NX];
rf2[NX] ;

DATA
DATA
fl oat
fl oat

void main()

}

short i;
for (i=0;i<NXi++)
{
rfi] =0;
rexp[i] = 0;

reci plé(x, r, rexp,
glstofl(r, rfl, NX);

for (i=0; i<NX; i++)

rf2[i] = (float)rexp[i] * rfl[i];

return;

In this example, the g15tofl DSPLIB function is used to convert Q15 fractional
values to floating-point fractional values. However, in many applications, your
data is always maintained in Q15 format so that the conversion between float-
ing point and Q15 is not required.
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5.5 Calling a DSPLIB Function from Assembly Language Source Code

The DSPLIB functions were written to be used from C. Calling the functions
from assembly language source code is possible as long as the calling-func-
tion conforms with the C54x DSP C compiler calling conventions. Refer to the
TMS320C54x Optimizing C Compiler User’s Guide (SPRU103), if a more in-
depth explanation is required.

Realize that the DSPLIB is not an optimal solution for assembly-only program-
mers. Even though DSPLIB functions can be invoked from an assembly pro-
gram, the resulting execution times and code size may not be optimal due to
unnecessary C-calling overhead.

5.6 Where to Find Sample Code

You can find examples on how to use every single function in DSPLIB, in the
examples subdirectory. This subdirectory contains one subdirectory for each
function. For example, the c:\ti\cstools\dsplib\examples directory contains the
following files:

(1 araw_t.c: main driver for testing the DSPLIB acorr (raw) function.

[J test.h: contains input data(a) and expected output data(yraw) for the acorr
(raw) function as. This test.h file is generated by using Matlab scripts.

[J test.c: contains function used to compare the output of araw function with
the expected output data.

(1 ftest.c: contains function used to compare two arrays of float data types.

(]

Itest.c: contains function used to compare two arrays of long data types.

[ 54x.cmd: an example of a linker command you can use for this function.



DSPLIB Functions

5.7 DSPLIB Functions
DSPLIB provides functions in the following 8 functional catagories:
Fast-Fourier Transforms (FFT)
Filtering and convolution

Adaptive filtering

U

l:l

EI

[ Correlation
] Math

[J Trigonometric
1 Miscellaneous
1 Matrix

For specific DSPLIB function API descriptions, refer to the TMS320C54x DSP
Library Programmer’s Reference (SPRU518).
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