
TMS320C6000 DSP
Ethernet Media Access Controller (EMAC)/

Management Data Input/Output (MDIO) Module
Reference Guide

Literature Number: SPRU628A
March 2004

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2004, Texas Instruments Incorporated

http:\\amplifier.ti.com
http:\\dataconverter.ti.com
http:\\dsp.ti.com
http:\\interface.ti.com
http:\\logic.ti.com
http:\\power.ti.com
http:\\microcontroller.ti.com
http:\\www.ti.com\audio
http:\\www.ti.com\automotive
http:\\www.ti.com\broadband
http:\\www.ti.com\digitalcontrol
http:\\www.ti.com\military
http:\\www.ti.com\opticalnetwork
http:\\www.ti.com\security
http:\\www.ti.com\telephony
http:\\www.ti.com\video
http:\\www.ti.com\wireless

iiiRead This FirstSPRU628A

Preface

Read This First

About This Manual

This document discusses the Ethernet Media Access Controller (EMAC) and
Physical layer (PHY) device Management Data Input/Output (MDIO) module
in the digital signal processors (DSPs) of the TMS320C6000 DSP family.

The EMAC controls the flow of packet data from the DSP to the PHY. The
MDIO module controls PHY configuration and status monitoring.

Although the entire feature set of the EMAC and MDIO module is described
here, the feature set supported on each C6000 device may vary. Please see
the device-specific datasheet for a listing of supported EMAC and MDIO fea-
tures.

Notational Conventions

This document uses the following conventions.

� Hexadecimal numbers are shown with the suffix h. For example, the
following number is 40 hexadecimal (decimal 64): 40h.

Related Documentation From Texas Instruments

The following documents describe the C6000 devices and related support
tools. Copies of these documents are available on the Internet at www.ti.com.
Tip: Enter the literature number in the search box provided at www.ti.com.

TMS320C6000 CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the TMS320C6000 CPU architecture,
instruction set, pipeline, and interrupts for these digital signal processors.

TMS320C6000 DSP Peripherals Overview Reference Guide (literature
number SPRU190) describes the peripherals available on the
TMS320C6000 DSPs.

TMS320C6000 Technical Brief (literature number SPRU197) gives an
introduction to the TMS320C62x and TMS320C67x DSPs, develop-
ment tools, and third-party support.

Trademarks

iv SPRU628A

TMS320C64x Technical Overview (SPRU395) gives an introduction to the
TMS320C64x DSP and discusses the application areas that are
enhanced by the TMS320C64x VelociTI.

TMS320C6000 Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the
TMS320C6000 DSPs and includes application program examples.

TMS320C6000 Code Composer Studio Tutorial (literature number
SPRU301) introduces the Code Composer Studio integrated develop-
ment environment and software tools.

Code Composer Studio Application Programming Interface Reference
Guide (literature number SPRU321) describes the Code Composer
Studio application programming interface (API), which allows you to
program custom plug-ins for Code Composer.

TMS320C6x Peripheral Support Library Programmer’s Reference
(literature number SPRU273) describes the contents of the
TMS320C6000 peripheral support library of functions and macros. It
lists functions and macros both by header file and alphabetically,
provides a complete description of each, and gives code examples to
show how they are used.

TMS320C6000 Chip Support Library API Reference Guide (literature
number SPRU401) describes a set of application programming interfaces
(APIs) used to configure and control the on-chip peripherals.

Trademarks

Code Composer Studio, C6000, C62x, C64x, C67x, TMS320C6000,
TMS320C62x, TMS320C64x, TMS320C67x, and VelociTI are trademarks of
Texas Instruments.

Related Documentation From Texas Instruments / Trademarks

Contents

vContentsSPRU628A

Contents

1 Overview 1-1.
Provides an overview of the EMAC and MDIO modules. Included are the features of the EMAC
and MDIO modules, an overview of their operation, how these modules connect to the outside
world, and definitions of terms used within this document.

1.1 EMAC Control Module 1-2.
1.2 Ethernet Media Access Controller (EMAC) Module 1-3.
1.3 Management Data Input/Output (MDIO) Module 1-4.
1.4 System Level Connections 1-4.
1.5 Architecture Overview 1-6.
1.6 Definition of Terms 1-7.

2 EMAC Module 2-1.
Discusses the architecture and basic function of the EMAC module.

2.1 EMAC Module Components 2-2.
2.1.1 Receive DMA Engine 2-2.
2.1.2 Receive FIFO 2-2.
2.1.3 MAC Receiver 2-3.
2.1.4 Transmit DMA Engine 2-3.
2.1.5 Transmit FIFO 2-3.
2.1.6 MAC Transmitter 2-3.
2.1.7 Statistics Logic and RAM 2-3.
2.1.8 Control Registers and Logic 2-3.

2.2 EMAC Control Module 2-4.
2.2.1 Internal Memory 2-4.
2.2.2 Bus Arbiter 2-5.
2.2.3 Transfer Node Priority 2-5.
2.2.4 Reset Control 2-5.
2.2.5 Interrupt Control 2-6.

2.3 EMAC Module Operational Overview 2-7.
2.3.1 Packet Buffer Descriptors 2-8.
2.3.2 Transmit and Receive Descriptor Queues 2-10.
2.3.3 Transmit and Receive EMAC Interrupts 2-12.
2.3.4 Transmit Buffer Descriptor Format 2-13.
2.3.5 Receive Buffer Descriptor Format 2-18.

2.4 Media Independent Interface (MII) 2-25.
2.4.1 Data Reception 2-25.
2.4.2 Data Transmission 2-27.

Contents

vi SPRU628A

2.5 Packet Receive Operation 2-31.
2.5.1 Receive DMA Host Configuration 2-31.
2.5.2 Receive Channel Enabling 2-31.
2.5.3 Receive Channel Addressing 2-32.
2.5.4 Hardware Receive QOS Support 2-32.
2.5.5 Host Free Buffer Tracking 2-33.
2.5.6 Receive Channel Teardown 2-33.
2.5.7 Receive Frame Classification 2-34.
2.5.8 Promiscuous Receive Mode 2-35.
2.5.9 Receive Overrun 2-37.

2.6 Packet Transmit Operation 2-39.
2.6.1 Transmit DMA Host Configuration 2-39.
2.6.2 Transmit Channel Teardown 2-39.

2.7 EMAC Module Interrupts 2-41.
2.7.1 Transmit and Receive Interrupts 2-41.
2.7.2 Statistics Interrupt 2-41.
2.7.3 Host Error Interrupt 2-42.
2.7.4 Proper Interrupt Processing 2-42.

2.8 Receive and Transmit Latency 2-42.

3 MDIO Module 3-1.
Discusses the architecture and basic function of the MDIO module.
3.1 MDIO Introduction 3-2.
3.2 MDIO Module Components 3-2.

3.2.1 MDIO Clock Generator 3-3.
3.2.2 Global PHY Detection and Link State Monitoring 3-3.
3.2.3 Active PHY Monitoring 3-3.
3.2.4 PHY Register User Access 3-3.

3.3 MDIO Module Operational Overview 3-4.
3.3.1 Initializing the MDIO Module 3-5.
3.3.2 Writing Data to a PHY Register 3-6.
3.3.3 Reading Data From a PHY Register 3-6.

3.4 MDIO Module Interrupts 3-7.
3.4.1 Link Change Interrupt 3-7.
3.4.2 User Access Completion Interrupt 3-7.
3.4.3 Proper Interrupt Processing 3-8.

4 Software Operation 4-1.
Discusses the software interface used to operate the EMAC and MDIO modules. Describes
how to initialize and maintain Ethernet operation in a software application or device driver.
4.1 Module Function Overview 4-2.

4.1.1 EMAC Control Module 4-2.
4.1.2 EMAC Module 4-2.
4.1.3 MDIO Module 4-2.

4.2 Target Environment 4-3.
4.3 EMAC Control Module Operation 4-4.

4.3.1 Initialization 4-4.
4.3.2 Monitoring 4-4.

Contents

viiContentsSPRU628A

4.4 MDIO Module Operation 4-6.
4.4.1 Initialization 4-6.
4.4.2 Selecting and Configuring a PHY 4-7.
4.4.3 Negotiation Results and Link Indication 4-10.
4.4.4 Monitoring (Event Processing) 4-11.
4.4.5 MDIO Register Access 4-13.

4.5 EMAC Module Operation 4-14.
4.5.1 Initialization 4-14.
4.5.2 Configuration 4-18.
4.5.3 Receive 4-21.
4.5.4 Transmit 4-31.
4.5.5 Interrupt Processing 4-41.
4.5.6 Shutdown and Restarts 4-46.

5 Registers 5-1.
Describes the registers of the EMAC control module, EMAC module, and MDIO module.

5.1 EMAC Control Module Registers 5-2.
5.1.1 EMAC Control Module Transfer Control Register (EWTRCTRL) 5-2.
5.1.2 EMAC Control Module Interrupt Control Register (EWCTL) 5-4.
5.1.3 EMAC Control Module Interrupt Timer Count Register (EWINTTCNT) 5-5.

5.2 EMAC Module Registers 5-6.
5.2.1 Transmit Identification and Version Register (TXIDVER) 5-9.
5.2.2 Transmit Control Register (TXCONTROL) 5-10.
5.2.3 Transmit Teardown Register (TXTEARDOWN) 5-11.
5.2.4 Receive Identification and Version Register (RXIDVER) 5-12.
5.2.5 Receive Control Register (RXCONTROL) 5-13.
5.2.6 Receive Teardown Register (RXTEARDOWN) 5-14.
5.2.7 Receive Multicast/Broadcast/Promiscuous Channel Enable Register

(RXMBPENABLE) 5-15.
5.2.8 Receive Unicast Set Register (RXUNICASTSET) 5-20.
5.2.9 Receive Unicast Clear Register (RXUNICASTCLEAR) 5-22.
5.2.10 Receive Maximum Length Register (RXMAXLEN) 5-24.
5.2.11 Receive Buffer Offset Register (RXBUFFEROFFSET) 5-25.
5.2.12 Receive Filter Low Priority Packets Threshold Register

(RXFILTERLOWTHRESH) 5-26.
5.2.13 Receive Channel 0−7 Flow Control Threshold Registers

(RXnFLOWTHRESH) 5-27.
5.2.14 Receive Channel 0−7 Free Buffer Count Registers

(RXnFREEBUFFER) 5-28.
5.2.15 MAC Control Register (MACCONTROL) 5-29.
5.2.16 MAC Status Register (MACSTATUS) 5-31.
5.2.17 Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) 5-35.
5.2.18 Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED) 5-36.
5.2.19 Transmit Interrupt Mask Set Register (TXINTMASKSET) 5-37.
5.2.20 Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) 5-39.

Contents

viii SPRU628A

5.2.21 MAC Input Vector Register (MACINVECTOR) 5-41.
5.2.22 Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW) 5-42.
5.2.23 Receive Interrupt Status (Masked) Register (RXINTSTATMASKED) 5-43.
5.2.24 Receive Interrupt Mask Set Register (RXINTMASKSET) 5-44.
5.2.25 Receive Interrupt Mask Clear Register (RXINTMASKCLEAR) 5-46.
5.2.26 MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) 5-48.
5.2.27 MAC Interrupt Status (Masked) Register (MACINTSTATMASKED) 5-49.
5.2.28 MAC Interrupt Mask Set Register (MACINTMASKSET) 5-50.
5.2.29 MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) 5-51.
5.2.30 MAC Address Channel 0−7 Lower Byte Registers (MACADDRLn) 5-52.
5.2.31 MAC Address Middle Byte Register (MACADDRM) 5-52.
5.2.32 MAC Address High Bytes Register (MACADDRH) 5-53.
5.2.33 MAC Address Hash 1 Register (MACHASH1) 5-54.
5.2.34 MAC Address Hash 2 Register (MACHASH2) 5-55.
5.2.35 Backoff Test Register (BOFFTEST) 5-56.
5.2.36 Transmit Pacing Test Register (TPACETEST) 5-57.
5.2.37 Receive Pause Timer Register (RXPAUSE) 5-58.
5.2.38 Transmit Pause Timer Register (TXPAUSE) 5-59.
5.2.39 Transmit Channel 0−7 DMA Head Descriptor Pointer Registers

(TXnHDP) 5-60.
5.2.40 Receive Channel 0−7 DMA Head Descriptor Pointer Registers

(RXnHDP) 5-60.
5.2.41 Transmit Channel 0−7 Interrupt Acknowledge Registers (TXnINTACK) 5-61. . . .
5.2.42 Receive Channel 0−7 Interrupt Acknowledge Registers (RXnINTACK) 5-62.
5.2.43 Network Statistics Registers 5-62.

5.3 MDIO Module Registers 5-76.
5.3.1 MDIO Version Register (VERSION) 5-77.
5.3.2 MDIO Control Register (CONTROL) 5-78.
5.3.3 MDIO PHY Alive Indication Register (ALIVE) 5-80.
5.3.4 MDIO PHY Link Status Register (LINK) 5-81.
5.3.5 MDIO Link Status Change Interrupt Register (LINKINTRAW) 5-82.
5.3.6 MDIO Link Status Change Interrupt (Masked) Register

(LINKINTMASKED) 5-83.
5.3.7 MDIO User Command Complete Interrupt Register (USERINTRAW) 5-84.
5.3.8 MDIO User Command Complete Interrupt (Masked) Register

(USERINTMASKED) 5-85.
5.3.9 MDIO User Command Complete Interrupt Mask Set Register

(USERINTMASKSET) 5-86.
5.3.10 MDIO User Command Complete Interrupt Mask Clear Register

(USERINTMASKCLEAR) 5-87.
5.3.11 MDIO User Access Register 0 (USERACCESS0) 5-88.
5.3.12 MDIO User Access Register 1 (USERACCESS1) 5-90.
5.3.13 MDIO User PHY Select Register 0 (USERPHYSEL0) 5-92.
5.3.14 MDIO User PHY Select Register 1 (USERPHYSEL1) 5-93.

A Revision History A-1.
Lists the changes made since the previous version of this document.

Figures

ixFiguresSPRU628A

Figures

1−1 EMAC Control Module Block Diagram 1-2.
1−2 Typical Ethernet Configuration 1-4.
1−3 EMAC and MDIO Block Diagram 1-6.
1−4 Ethernet Frame 1-7.
2−1 EMAC Module Block Diagram 2-2.
2−2 EMAC Control Module Block Diagram 2-4.
2−3 Basic Descriptor Format 2-8.
2−4 Typical Descriptor Linked List 2-10.
2−5 Transmit Descriptor Format 2-13.
2−6 Transmit Descriptor in C Structure Format 2-14.
2−7 Receive Descriptor Format 2-18.
2−8 Receive Descriptor in C Structure Format 2-19.
3−1 MDIO Module Block Diagram 3-2.
4−1 EMAC Control Module Initialization Code 4-5.
4−2 MDIO Module Initialization Code 4-6.
4−3 PHY Search Code 4-7.
4−4 PHY Initial Configuration Code 4-9.
4−5 Link Indication Code 4-11.
4−6 Link Status Monitoring Code 4-12.
4−7 MDIO Register Access Macros 4-14.
4−8 EMAC Module Initialization Code 4-16.
4−9 Setting the Receive Filter Code 4-19.
4−10 Setting the Multicast List Code 4-20.
4−11 Receive Descriptor Linked List 4-22.
4−12 Receive Packets Example Code 4-24.
4−13 Initialization Code That Allocates Descriptor Slots 4-25.
4−14 Enqueue Receive Descriptor Function Code 4-27.
4−15 Dequeue Receive Descriptor Function Code 4-29.
4−16 Transmit Packets Example Code 4-33.
4−17 Send Function Code 4-34.
4−18 Enqueue Transmit Descriptor Function Code 4-36.
4−19 Dequeue Transmit Descriptor Function Code 4-40.
4−20 Interrupt Processing Example Code 4-45.
4−21 Device Shutdown Example Code 4-47.

Figures

x SPRU628A

5−1 EMAC Control Module Transfer Control Register (EWTRCTRL) 5-2.
5−2 EMAC Control Module Interrupt Control Register (EWCTL) 5-4.
5−3 EMAC Control Module Interrupt Timer Count Register (EWINTTCNT) 5-5.
5−4 Transmit Identification and Version Register (TXIDVER) 5-9.
5−5 Transmit Control Register (TXCONTROL) 5-10.
5−6 Transmit Teardown Register (TXTEARDOWN) 5-11.
5−7 Receive Identification and Version Register (RXIDVER) 5-12.
5−8 Receive Control Register (RXCONTROL) 5-13.
5−9 Receive Teardown Register (RXTEARDOWN) 5-14.
5−10 Receive Multicast/Broadcast/Promiscuous Channel Enable Register

(RXMBPENABLE) 5-15.
5−11 Receive Unicast Set Register (RXUNICASTSET) 5-20.
5−12 Receive Unicast Clear Register (RXUNICASTCLEAR) 5-22.
5−13 Receive Maximum Length Register (RXMAXLEN) 5-24.
5−14 Receive Buffer Offset Register (RXBUFFEROFFSET) 5-25.
5−15 Receive Filter Low Priority Packets Threshold Register (RXFILTERLOWTHRESH) 5-26. . .
5−16 Receive Channel n Flow Control Threshold Registers (RXnFLOWTHRESH) 5-27.
5−17 Receive Channel n Free Buffer Count Registers (RXnFREEBUFFER) 5-28.
5−18 MAC Control Register (MACCONTROL) 5-29.
5−19 MAC Status Register (MACSTATUS) 5-31.
5−20 Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) 5-35.
5−21 Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED) 5-36.
5−22 Transmit Interrupt Mask Set Register (TXINTMASKSET) 5-37.
5−23 Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) 5-39.
5−24 MAC Input Vector Register (MACINVECTOR) 5-41.
5−25 Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW) 5-42.
5−26 Receive Interrupt Status (Masked) Register (RXINTSTATMASKED) 5-43.
5−27 Receive Interrupt Mask Set Register (RXINTMASKSET) 5-44.
5−28 Receive Interrupt Mask Clear Register (RXINTMASKCLEAR) 5-46.
5−29 MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) 5-48.
5−30 MAC Interrupt Status (Masked) Register (MACINTSTATMASKED) 5-49.
5−31 MAC Interrupt Mask Set Register (MACINTMASKSET) 5-50.
5−32 MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) 5-51.
5−33 MAC Address Channel n Lower Byte Register (MACADDRLn) 5-52.
5−34 MAC Address Middle Byte Register (MACADDRM) 5-52.
5−35 MAC Address High Bytes Register (MACADDRH) 5-53.
5−36 MAC Address Hash 1 Register (MACHASH1) 5-54.
5−37 MAC Address Hash 2 Register (MACHASH2) 5-55.
5−38 Backoff Test Register (BOFFTEST) 5-56.
5−39 Transmit Pacing Test Register (TPACETEST) 5-57.
5−40 Receive Pause Timer Register (RXPAUSE) 5-58.
5−41 Transmit Pause Timer Register (TXPAUSE) 5-59.
5−42 Transmit Channel n DMA Head Descriptor Pointer Register (TXnHDP) 5-60.
5−43 Receive Channel n DMA Head Descriptor Pointer Register (RXnHDP) 5-60.

Figures

xiFiguresSPRU628A

5−44 Transmit Channel n Interrupt Acknowledge Register (TXnINTACK) 5-61.
5−45 Receive Channel n Interrupt Acknowledge Register (RXnINTACK) 5-62.
5−46 Statistics Register 5-63.
5−47 MDIO Version Register (VERSION) 5-77.
5−48 MDIO Control Register (CONTROL) 5-78.
5−49 MDIO PHY Alive Indication Register (ALIVE) 5-80.
5−50 MDIO PHY Link Status Register (LINK) 5-81.
5−51 MDIO Link Status Change Interrupt Register (LINKINTRAW) 5-82.
5−52 MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED) 5-83.
5−53 MDIO User Command Complete Interrupt Register (USERINTRAW) 5-84.
5−54 MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED) 5-85. . .
5−55 MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET) 5-86. .
5−56 MDIO User Command Complete Interrupt Mask Clear Register

(USERINTMASKCLEAR) 5-87.
5−57 MDIO User Access Register 0 (USERACCESS0) 5-88.
5−58 MDIO User Access Register 1 (USERACCESS1) 5-90.
5−59 MDIO User PHY Select Register 0 (USERPHYSEL0) 5-92.
5−60 MDIO User PHY Select Register 1 (USERPHYSEL1) 5-93.

Tables

xii SPRU628A

Tables

1−1 EMAC and MDIO Interface Signals 1-5.
1−2 Terms and Definitions 1-7.
2−1 Receive Frame Treatment Summary 2-35.
2−2 Middle of Frame Overrun Treatment 2-38.
4−1 Reasons EMAC Control Module Generates Interrupt 4-43.
5−1 EMAC Control Module Registers 5-2.
5−2 EMAC Control Module Transfer Control Register (EWTRCTRL) Field Descriptions 5-3. . . .
5−3 EMAC Control Module Interrupt Control Register (EWCTL) Field Descriptions 5-4.
5−4 EMAC Control Module Interrupt Timer Count Register (EWINTTCNT)

Field Descriptions 5-5.
5−5 EMAC Module Registers 5-6.
5−6 Transmit Identification and Version Register (TXIDVER) Field Descriptions 5-9.
5−7 Transmit Control Register (TXCONTROL) Field Descriptions 5-10.
5−8 Transmit Teardown Register (TXTEARDOWN) Field Descriptions 5-11.
5−9 Receive Identification and Version Register (RXIDVER) Field Descriptions 5-12.
5−10 Receive Control Register (RXCONTROL) Field Descriptions 5-13.
5−11 Receive Teardown Register (RXTEARDOWN) Field Descriptions 5-14.
5−12 Receive Multicast/Broadcast/Promiscuous Channel Enable Register

(RXMBPENABLE) Field Descriptions 5-15.
5−13 Receive Unicast Set Register (RXUNICASTSET) Field Descriptions 5-20.
5−14 Receive Unicast Clear Register (RXUNICASTCLEAR) Field Descriptions 5-22.
5−15 Receive Maximum Length Register (RXMAXLEN) Field Descriptions 5-24.
5−16 Receive Buffer Offset Register (RXBUFFEROFFSET) Field Descriptions 5-25.
5−17 Receive Filter Low Priority Packets Threshold Register (RXFILTERLOWTHRESH)

Field Descriptions 5-26.
5−18 Receive Channel n Flow Control Threshold Registers (RXnFLOWTHRESH)

Field Descriptions 5-27.
5−19 Receive Channel n Free Buffer Count Registers (RXnFREEBUFFER)

Field Descriptions 5-28.
5−20 MAC Control Register (MACCONTROL) Field Descriptions 5-29.
5−21 MAC Status Register (MACSTATUS) Field Descriptions 5-32.
5−22 Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW)

Field Descriptions 5-35.
5−23 Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED)

Field Descriptions 5-36.
5−24 Transmit Interrupt Mask Set Register (TXINTMASKSET) Field Descriptions 5-37.
5−25 Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) Field Descriptions 5-39.
5−26 MAC Input Vector Register (MACINVECTOR) Field Descriptions 5-41.
5−27 Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW)

Field Descriptions 5-42.
5−28 Receive Interrupt Status (Masked) Register (RXINTSTATMASKED)

Field Descriptions 5-43.

Tables

xiiiTablesSPRU628A

5−29 Receive Interrupt Mask Set Register (RXINTMASKSET) Field Descriptions 5-44.
5−30 Receive Interrupt Mask Clear Register (RXINTMASKCLEAR) Field Descriptions 5-46.
5−31 MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW)

Field Descriptions 5-48.
5−32 MAC Interrupt Status (Masked) Register (MACINTSTATMASKED)

Field Descriptions 5-49.
5−33 MAC Interrupt Mask Set Register (MACINTMASKSET) Field Descriptions 5-50.
5−34 MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) Field Descriptions 5-51.
5−35 MAC Address Channel n Lower Byte Register (MACADDRLn)

Field Descriptions 5-52.
5−36 MAC Address Middle Byte Register (MACADDRM) Field Descriptions 5-52.
5−37 MAC Address High Bytes Register (MACADDRH) Field Descriptions 5-53.
5−38 MAC Address Hash 1 Register (MACHASH1) Field Descriptions 5-54.
5−39 MAC Address Hash 2 Register (MACHASH2) Field Descriptions 5-55.
5−40 Backoff Test Register (BOFFTEST) Field Descriptions 5-56.
5−41 Transmit Pacing Test Register (TPACETEST) Field Descriptions 5-57.
5−42 Receive Pause Timer Register (RXPAUSE) Field Descriptions 5-58.
5−43 Transmit Pause Timer Register (TXPAUSE) Field Descriptions 5-59.
5−44 Transmit Channel n DMA Head Descriptor Pointer Register (TXnHDP)

Field Descriptions 5-60.
5−45 Receive Channel n DMA Head Descriptor Pointer Register (RXnHDP)

Field Descriptions 5-60.
5−46 Transmit Channel n Interrupt Acknowledge Register (TXnINTACK)

Field Descriptions 5-61.
5−47 Receive Channel n Interrupt Acknowledge Register (RXnINTACK)

Field Descriptions 5-62.
5−48 MDIO Module Registers 5-76.
5−49 MDIO Version Register (VERSION) Field Descriptions 5-77.
5−50 MDIO Control Register (CONTROL) Field Descriptions 5-78.
5−51 MDIO PHY Alive Indication Register (ALIVE) Field Descriptions 5-80.
5−52 MDIO PHY Link Status Register (LINK) Field Descriptions 5-81.
5−53 MDIO Link Status Change Interrupt Register (LINKINTRAW) Field Descriptions 5-82.
5−54 MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED)

Field Descriptions 5-83.
5−55 MDIO User Command Complete Interrupt Register (USERINTRAW)

Field Descriptions 5-84.
5−56 MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED)

Field Descriptions 5-85.
5−57 MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET)

Field Descriptions 5-86.
5−58 MDIO User Command Complete Interrupt Mask Clear Register

(USERINTMASKCLEAR) Field Descriptions 5-87.
5−59 MDIO User Access Register 0 (USERACCESS0) Field Descriptions 5-88.
5−60 MDIO User Access Register 1 (USERACCESS1) Field Descriptions 5-90.
5−61 MDIO User PHY Select Register 0 (USERPHYSEL0) Field Descriptions 5-92.
5−62 MDIO User PHY Select Register 1 (USERPHYSEL1) Field Descriptions 5-93.
A−1 Document Revision History A-1.

1-1OverviewSPRU628A

Overview

This chapter provides an overview of the Ethernet Media Access Controller
(EMAC) and Physical layer (PHY) device Management Data Input/Output
(MDIO) module in the digital signal processors (DSPs) of the
TMS320C6000 DSP family. Included are the features of the EMAC and
MDIO modules, an overview of their operation, how these modules connect
to the outside world, and definitions of terms used within this document.
Although the entire feature set of the EMAC and MDIO module is described
here, the feature set supported on each C6000 device may vary. Please see
the device-specific datasheet for a listing of supported EMAC and MDIO
features.

The EMAC controls the flow of packet data from the DSP to the PHY. The
MDIO module controls PHY configuration and status monitoring.

Both the EMAC and the MDIO modules interface to the DSP through a custom
interface that allows efficient data transmission and reception. This custom
interface is referred to as the EMAC control module, and is considered integral
to the EMAC/MDIO peripheral. The control module is also used to control
device reset, interrupts, and system priority.

Topic Page

1.1 EMAC Control Module 1-2.

1.2 Ethernet Media Access Controller (EMAC) Module 1-3.

1.3 Management Data Input/Output (MDIO) Module 1-4.

1.4 System Level Connections 1-4.

1.5 Architecture Overview 1-6.

1.6 Definition of Terms 1-7.

Chapter 1

EMAC Control Module

Overview1-2 SPRU628A

1.1 EMAC Control Module

The EMAC control module (Figure 1−1) is the main interface between the DSP
core processor and the EMAC module and MDIO module. The EMAC control
module contains the necessary components to allow the EMAC to make effi-
cient use of DSP memory, plus it controls device reset, interrupts, and memory
interface priority. The memory interface priority is used to balance the opera-
tion of the EMAC device with other memory transfer peripherals on the DSP.
The EMAC control module includes the following features:

� Maps EMAC and MDIO registers into DSP configuration space.

� Controls EMAC and MDIO device reset and priority.

� Provides 4K byte local EMAC descriptor memory that allows the EMAC
to operate on descriptors without affecting the DSP. (The descriptor
memory holds enough information to transfer up to 256 Ethernet packets
without DSP intervention.)

� Programmable interrupt logic allows the software driver to restrict the
generation of back to back interrupts, allowing more work to be performed
in a single call to the interrupt service routine.

Figure 1−1. EMAC Control Module Block Diagram

Peripheral bus

EMAC control module

EMAC module MDIO module

MII bus MDIO bus

DSP

Ethernet Media Access Controller (EMAC) Module

1-3OverviewSPRU628A

1.2 Ethernet Media Access Controller (EMAC) Module

Note:

The feature set of the EMAC module may vary between C6000 devices.
Please see the device-specific datasheet for a listing of supported features.

The ethernet media access controller (EMAC) module provides an efficient
interface between the DSP core processor and the networked community. The
EMAC supports both 10Base-T (10Mbits/sec) and 100BaseTX (100Mbits/
sec), in either half or full duplex, with hardware flow control and quality-of-
service (QOS) support.

The basic feature set of the EMAC module is:

� EMAC acts as DMA master to either internal or external DSP memory space.

� Standard Media Independent Interface (MII) to physical layer device (PHY).

� Eight receive channels with VLAN tag discrimination for receive quality of
service (QOS) support.

� Eight transmit channels with round-robin or fixed priority for transmit quality
of service (QOS) support.

� Synchronous 10/100 Mbit operation.

� Ether-Stats and 802.3-Stats statistics gathering.

� Transmit CRC generation selectable on a per channel basis

� Broadcast frames selection for reception on a single channel.

� Multicast frames selection for reception on a single channel.

� Promiscuous receive mode frames selection for reception on a single
channel (all frames, all good frames, short frames, error frames).

� Hardware flow control.

Management Data Input/Output (MDIO) Module

Overview1-4 SPRU628A

1.3 Management Data Input/Output (MDIO) Module

The management data input/output (MDIO) module implements the 802.3 serial
management interface to interrogate and control Ethernet PHY(s) using a
shared two-wire bus. Host software uses the MDIO module to configure the
auto-negotiation parameters of each PHY attached to the EMAC, retrieve the
negotiation results, and configure required parameters in the EMAC module
for correct operation. The module is designed to allow almost transparent
operation of the MDIO interface, with very little maintenance from the core
processor.

1.4 System Level Connections

Figure 1−2 shows a DSP with integrated EMAC and MDIO interfaced in a typical
system.

Figure 1−2. Typical Ethernet Configuration

MTCLK

MTXD(3−0)

MTXEN

MCOL

MCRS

MRCLK

MRXD(3−0)

MRXDV

MRXER

MDCLK

MDIO

Physical
layer

device
(PHY)

DSP
XFMR

2.5 MHz
or

25 MHz

RJ−45

E
M

A
C

M
D

IO

The individual EMAC and MDIO signals are summarized in Table 1−1. For
more information, refer to either the IEEE 802.3 standard or ISO/IEC
8802−3:2000(E).

The EMAC module does not include a transmit error (MTXER) pin. In the case
of transmit error, CRC inversion is used to negate the validity of the transmitted
frame.

Management Data Input/Output (MDIO) Module / System Level Connections

System Level Connections

1-5OverviewSPRU628A

Table 1−1. EMAC and MDIO Interface Signals

Signal Name I/O Description

MTCLK I Transmit clock (MTCLK). The transmit clock is a continuous clock that provides the
timing reference for transmit operations. The MTXD and MTXEN signals are tied to
this clock. The clock is generated by the PHY and is 2.5 MHz at 10Mb/s operation
and 25 MHz at 100Mb/s operation.

MTXD(3−0) O Transmit data (MTXD). The transmit data pins are a collection of 4 data signals
comprising 4 bits of data. MTDX0 is the least-significant bit (LSB). The signals are
synchronized by MTCLK and valid only when MTXEN is asserted.

MTXEN O Transmit enable (MTXEN). The transmit enable signal indicates that the MTXD pins
are generating nibble data for use by the PHY. It is driven synchronously to MTCLK.

MCOL I Collision detected (MCOL). The MCOL pin is asserted by the PHY when it detects a
collision on the network. It remains asserted while the collision condition persists.
This signal is not necessarily synchronous to MTCLK nor MRCLK. This pin is used
in half-duplex operation only.

MCRS I Carrier sense (MCRS). The MCRS pin is asserted by the PHY when the network is
not idle in either transmit or receive. The pin is deasserted when both transmit and
receive are idle. This signal is not necessarily synchronous to MTCLK nor MRCLK.
This pin is used in half-duplex operation only.

MRCLK I Receive clock (MRCLK). The receive clock is a continuous clock that provides the
timing reference for receive operations. The MRXD, MRXDV, and MRXER signals
are tied to this clock. The clock is generated by the PHY and is 2.5 MHz at 10Mb/s
operation and 25 MHz at 100Mb/s operation.

MRXD(3−0) I Receive data (MRXD). The receive data pins are a collection of 4 data signals
comprising 4 bits of data. MRDX0 is the least-significant bit (LSB). The signals are
synchronized by MRCLK and valid only when MRXDV is asserted.

MRXDV I Receive data valid (MRXDV). The receive data valid signal indicates that the MRXD
pins are generating nibble data for use by the EMAC. It is driven synchronously to
MRCLK.

MRXER I Receive error (MRXER). The receive error signal is asserted for one or more
MRCLK periods to indicate that an error was detected in the received frame. This is
meaningful only during data transmission when MRXDV is active.

MDCLK O Management data clock (MDCLK). The MDIO data clock is sourced by the MDIO
module on the DSP. It is used to synchronize MDIO data access operations done on
the MDIO pin. The frequency of this clock is controlled by the CLKDIV bits in the
MDIO control register (CONTROL).

MDIO I/O Management data input output (MDIO). The MDIO pin drives PHY management
data into and out of the PHY by way of an access frame consisting of start of frame,
read/write indication, PHY address, register address, and data bit cycles. The MDIO
pin acts as an output for all but the data bit cycles at which time it is an input for read
operations.

Architecture Overview

Overview1-6 SPRU628A

1.5 Architecture Overview

Figure 1−3 shows the three main functional modules of the EMAC/MDIO
peripheral: EMAC control module, EMAC module, and MDIO module. The
main interface between the EMAC control module and the DSP core is also
shown. The following connections are made to the DSP:

� The peripheral bus connection from the EMAC control module allows the
EMAC module to read and write both internal and external memory
through the DSP�s memory transfer controller (similar to an EDMA).

� The EMAC control module, EMAC, and MDIO all have control registers.
These registers are memory mapped into DSP memory space via the DSP
config bus. Along with these registers, the control module�s internal RAM
is mapped into this same range.

� The EMAC and MDIO interrupts are combined into a single interrupt within
the control module. The interrupt from the control module then goes to the
DSP�s interrupt mux.

The EMAC and MDIO interrupts are combined within the control module, so
only the control module interrupt needs to be monitored by the application soft-
ware or device driver. The interrupt is mapped to a specific DSP interrupt
through the use of the interrupt mux. The interrupt selection number of the
combined EMAC/MDIO interrupt for use with the mux is 11000b.

Figure 1−3. EMAC and MDIO Block Diagram

DSP configuration bus
DSP memory

transfer controller

Peripheral bus

EMAC control module

EMAC module MDIO module

Interrupt
MUX

MII bus MDIO bus

Interrupt
selection

number
(11000b)

EMAC/MDIO
interrupt

Definition of Terms

1-7OverviewSPRU628A

1.6 Definition of Terms

Table 1−2 lists the terms used throughout this document that relate to the op-
eration of the EMAC or MDIO.

Table 1−2. Terms and Definitions

Term Definition

Descriptor A small memory structure that describes a larger block of memory in terms of
size, location, and state. Descriptors are used by the EMAC and application to
describe the memory buffers used to hold Ethernet data.

Ethernet packet (packet) The collection of bytes that represents the data portion of a single Ethernet frame
on the wire. The format of an Ethernet frame is shown in Figure 1−4. The Ethernet
packet is shown outlined in bold.

The frame check sequence covers the 60 to 1514 bytes shown in the bolded
region (defined to be the packet data). Note that the 4-byte FCS field may or may
not be included as part of the packet data, depending on how the EMAC is
configured.

Ethernet MAC address
(MAC address)

A unique 6-byte address that identifies an Ethernet device on the network. In an
Ethernet packet, a MAC address is used twice, first to identify the packet�s
destination and second to identify the packet�s sender or source. An Ethernet
MAC address is normally specified in hexadecimal, using dashes to separate
bytes, for example : 08h−00h−28h−32h−17h−42h.

The first three bytes normally designate the manufacturer of the device. However,
when the first byte of the address is odd (LSB is 1), the address is a group
address (broadcast or multicast). The second bit specifies whether the address is
globally or locally administrated (not considered in this document).

Broadcast MAC address A special Ethernet MAC address used to send data to all Ethernet devices on the
local network. The broadcast address is FFh−FFh−FFh−FFh−FFh−FFh. The LSB
of the first byte is odd qualifying it as a group address; however, its value is
reserved for broadcast. It is classified separately by the EMAC.

Multicast MAC address A class of MAC address used to send a packet to potentially more than one
recipient. A group address is specified by setting the LSB of the first MAC address
byte to 1. Thus 01h−02h−03h−04h−05h−06h is a valid multicast address.
Typically, an Ethernet MAC looks for only certain multicast addresses on a
network in order to reduce traffic load. The multicast address list of acceptable
packets is specified by the application.

Figure 1−4. Ethernet Frame

Number of bytes

7 1 6 6 2 46−1500 4

Preamble SFD Destination Source Len Data FCS

Legend: SFD = Start Frame Delimiter; FCS = Frame Check Sequence (CRC)

2-1

EMAC Module

This chapter discusses the architecture and basic function of the EMAC module.
Although the entire feature set of the EMAC module is described here, the
feature set supported on each C6000 device may vary. Please see the
device-specific datasheet for a listing of supported EMAC features.

Topic Page

2.1 EMAC Module Components 2-2.

2.2 EMAC Control Module 2-4.

2.3 EMAC Module Operational Overview 2-7.

2.4 Media Independent Interface (MII) 2-25.

2.5 Packet Receive Operation 2-31.

2.6 Packet Transmit Operation 2-39.

2.7 EMAC Module Interrupts 2-41.

2.8 Receive and Transmit Latency 2-42.

Chapter 2

EMAC Module Components

EMAC Module2-2 SPRU628A

2.1 EMAC Module Components

The EMAC module (Figure 2−1) interfaces to the outside world through the
Media Independent Interface (MII) interface and interfaces to the DSP core
through the EMAC control module. The EMAC consists of the following logical
components:

� Receive DMA engine
� Receive FIFO
� MAC receiver
� Transmit DMA engine
� Transmit FIFO
� MAC transmitter
� Statistics logic and RAM
� Control registers and logic

All logic is clocked synchronously with the CPUclk/4 peripheral clock except
for the Ethernet MII synchronization logic.

Figure 2−1. EMAC Module Block Diagram

EMAC
control
module

Receive DMA
engine

Control
registers
and logic

Transmit DMA
engine FIFO

Transmit

RAM
Statistics

FIFO
Receive

Receiver
MAC

Transmitter
MAC

SYNC MII

2.1.1 Receive DMA Engine

The receive DMA engine is the interface between the receive FIFO and the
DSP core. It interfaces to the DSP through the bus arbiter in the EMAC control
module.

2.1.2 Receive FIFO

The receive FIFO consists of three 64-byte FIFOs and associated control
logic. The FIFO buffers received data in preparation for writing into packet buff-
ers in DSP memory.

EMAC Module Components

2-3EMAC ModuleSPRU628A

2.1.3 MAC Receiver

The MAC receiver detects and processes incoming network frames, deframes
them, and puts them into the receive FIFO. The MAC receiver also detects
errors and passes statistics to the statistics RAM.

2.1.4 Transmit DMA Engine

The transmit DMA engine is the interface between the transmit FIFO and the
DSP core. It interfaces to the DSP through the bus arbiter in the EMAC control
module.

2.1.5 Transmit FIFO

The transmit FIFO consists of three 64-byte FIFOs and associated control
logic. The FIFO buffers data in preparation for transmission.

2.1.6 MAC Transmitter

The MAC transmitter formats frame data from the transmit FIFO and transmits
the data using the CSMA/CD access protocol. Frame CRC can be automati-
cally appended, if required. The MAC transmitter also detects transmission
errors and passes statistics to the statistics RAM.

2.1.7 Statistics Logic and RAM

The Ethernet statistics are counted and stored in the statistics logic and FIFO
RAM. This statistics RAM keeps track of 36 different Ethernet packet statistics.

2.1.8 Control Registers and Logic

The EMAC is controlled by a set of memory-mapped registers. The control
logic also signals transmit, receive, and status related interrupts to the DSP
through the EMAC control module.

EMAC Control Module

EMAC Module2-4 SPRU628A

2.2 EMAC Control Module

The basic functions of the EMAC control module (Figure 2−2) are to interface
the EMAC and MDIO modules to the DSP, and to provide for a local memory
space to hold EMAC packet buffer descriptors. Local memory is used to help
avoid contention to DSP memory spaces. Other functions include; the bus
arbiter, transfer node priority control, reset control, and interrupt logic control.

Figure 2−2. EMAC Control Module Block Diagram

Arbiter and
bus switches

DSPEMAC/MDIO
registers

4K byte
descriptor
memory

Configuration
registers

Interrupt
logic

logic
Reset

Single interrupt
to DSP

Reset from DSP

EMAC interrupts

MDIO interrupts

EMAC reset

MDIO reset

2.2.1 Internal Memory

The control module includes 4K bytes of internal memory. The internal
memory block is essential for allowing the EMAC to operate more indepen-
dently of the DSP. It also prevents memory underflow conditions when the
EMAC issues read or write requests to descriptor memory. (Memory accesses
to read or write the actual Ethernet packet data are protected by the EMACs
internal FIFOs.)

A descriptor is a 16 byte memory structure which holds information about a
single Ethernet packet buffer (that may contain a full or partial Ethernet packet).
Thus with the 4K memory block provided for descriptor storage, the EMAC
module can send and received up to a combined 256 packets before it needs
to be serviced by application or driver software.

EMAC Control Module

2-5EMAC ModuleSPRU628A

2.2.2 Bus Arbiter

The control module�s bus arbiter operates transparently to the rest of the system.
It is used for the following:

� Arbitrate between the DSP and EMAC buses for access to internal
descriptor memory

� Arbitrate between internal EMAC buses for access to DSP system
memory

� Map control module, EMAC module, and MDIO module registers into DSP
memory space

2.2.3 Transfer Node Priority

The control module contains a register called EWTRCTRL that is used to set
the priority of the transfer node used in issuing memory transfer requests to
DSP system memory.

Although the EMAC has internal FIFOs to help alleviate memory transfer
arbitration problems, the average transfer rate of data read and written by the
EMAC to internal or external DSP memory must be at least that of the Ethernet
wire rate. In addition, the internal FIFO system can not withstand a single
memory latency event greater than the time it takes to fill or empty 2 internal
64 byte FIFOs.

For 100 Mb/s operation, these restrictions translate into the following rules:

� The short-term average, each 64 byte memory read/write request from the
EMAC must be serviced in no more than 5.12 µs.

� Any single latency event in request servicing can be no longer than
10.24 µs.

The EMAC control module transfer control register (EWTRCTRL) is used to
set the transfer node priority and the number of transfer requests that can be
queued at any given time. The priority mechanism is identical to that used for
cache and EDMA operations. It is important to have a balance between all
peripherals. In most cases, the default priorities will not need adjustment. See
section 5.1.1 for the description of EWTRCTRL.

2.2.4 Reset Control

The EMAC control module control register (EWCTL) can be used to individual-
ly reset either the EMAC or MDIO modules. Although a module reset is not part
of normal system operation, there are some fatal error conditions (usually
resulting from programming errors) that can only be corrected by resetting the
module.

EMAC Control Module

EMAC Module2-6 SPRU628A

2.2.5 Interrupt Control

The EMAC control module combines multiple interrupt conditions generated
by the EMAC and MDIO modules into a single interrupt signal that is mapped
to a DSP interrupt via the DSP interrupt mux.

The control module uses two registers to control the interrupt signal to the DSP.
First, the INTEN bit in EWCTL globally enables and disables the interrupt signal
to the DSP. The INTEN bit is used to drive the interrupt line low during interrupt
processing so that upon re-enabling the bit, the interrupt signal will rise if
another interrupt condition exists thus creating a rising edge detectable by the
DSP.

The EMAC control module interrupt timer count register (EWINTTCNT) is
programmed with a value that counts down once EMAC/MDIO interrupts are
enabled using EWCTL. The DSP interrupt signal is prevented from rising
again until this count reaches zero.

The EWINTTCNT has no effect on interrupts once the count reaches zero, so
there is no induced interrupt latency on random sporadic interrupts. However,
the count will delay the issuance of a second interrupt immediately after a first.
This protects the system from getting into an interrupt thrashing mode where
the software interrupt service routine (ISR) completes processing just in time
to get another interrupt. By postponing subsequent interrupts in a back-to-
back condition, the software application or driver can get more work done in
its ISR.

The EWINTTCNT reset value can be adjusted from within the ISR according
to current system load, or simply set to a fixed value that assures a maximum
number of interrupts per second.

The counter counts at a frequency of CPUclock/4; its default reset count is 0
(inactive), its maximum value is 1 FFFFh (131 071).

EMAC Module Operational Overview

2-7EMAC ModuleSPRU628A

2.3 EMAC Module Operational Overview

The EMAC module operates independently of the DSP. It is configured and
controlled by its register set mapped into DSP memory. Information about data
packets is communicated by use of 16-byte descriptors that are placed in a
4K-byte block of RAM in the EMAC control module.

For transmit operations, each 16-byte descriptor describes a packet or packet
fragment in DSP internal or external memory. For receive operations, each
16-byte descriptor represents a free packet buffer or buffer fragment. On both
transmit and receive, an Ethernet packet is allowed to span one or more
memory fragments, represented by one 16-byte descriptor per fragment. In
typical operation, there is only one descriptor per receive buffer, but transmit
packets may be fragmented, depending on the software architecture.

An interrupt is issued to the DSP whenever a transmit or receive operation has
completed. However, it is not necessary for the DSP to service the interrupt
while there are additional resources available. In other words, the EMAC
continues to receive Ethernet packets until its receive descriptor list has been
exhausted. On transmit operations, the transmit descriptors need only be
serviced to recover their associated memory buffer. Thus, it is possible to delay
servicing of the EMAC interrupt if there are real-time tasks to perform.

Eight channels are supplied for both transmit and receive operations. On
transmit, the eight channels represent eight independent transmit queues.
The EMAC can be configured to treat these channels as an equal priority
�round-robin� queue, or as a set of eight fixed-priority queues. On receive, the
eight channels represent eight independent receive queues with packet
classification. Packets are classified based on the destination MAC address.
Each of the eight channels is assigned its own MAC address. Also, specific
types of frames can be sent to specific channels. For example; multicast,
broadcast, or other (promiscuous, error, etc.), can each be received on a
specific receive channel queue.

The EMAC keeps track of 36 different statistics, plus keeps the status of each
individual packet in its corresponding packet descriptor.

EMAC Module Operational Overview

EMAC Module2-8 SPRU628A

2.3.1 Packet Buffer Descriptors

The buffer descriptor is a central part of the EMAC module and is how the
application software describes Ethernet packets to be sent and empty buffers
to be filled with incoming packet data.

The basic descriptor format is shown in Figure 2−3.

Figure 2−3. Basic Descriptor Format

Word
Offset Bit Fields

31 16 15 0

0 Next Descriptor Pointer

1 Buffer Pointer

2 Buffer Offset Buffer Length

3 Flags Packet Length

Next Descriptor Pointer

The next descriptor pointer is used to create a single-linked list of descriptors.
Each descriptor describes to a packet or a packet fragment. When a descriptor
points to a single buffer packet or the first fragment of a packet, the start of
packet (SOP) flag is set in the flags field. When a descriptor points to a single
buffer packet or the last fragment of a packet, the end of packet (EOP) flag is
set. When a packet is fragmented, each fragment must have its own descriptor
and appear sequentially in the descriptor linked list.

Buffer Pointer

The buffer pointer points to the actual memory buffer that contains packet data
during transmit operations, or is an empty buffer ready to receive packet data
during receive operations.

Buffer Offset

The buffer offset is the offset from the start of the packet buffer to the first byte
of valid data. This field only has meaning when the buffer descriptor points to
a buffer that actually contains data.

Buffer Length

The buffer length is the actual number of valid packet data bytes stored in the
buffer. If the buffer is empty and waiting to receive data, this field represents
the size of the empty buffer.

EMAC Module Operational Overview

2-9EMAC ModuleSPRU628A

Flags

The flags field contains more information about the buffer, such as, is it the first
fragment in a packet (SOP), the last fragment in a packet (EOP), or contains
an entire contiguous Ethernet packet (both SOP and EOP). The flags are
described in sections 2.3.4 and 2.3.5.

Packet Length

The packet length only has meaning for buffers that both contain data and are
the start of a new packet (SOP). In the case of SOP descriptors, the packet
length field contains the length of the entire Ethernet packet, regardless if it is
contained in a single buffer or fragmented over several buffers.

Example

For example, consider three packets to be transmitted, Packet A is a single
fragment (60 bytes), Packet B is fragmented over three buffers (1514 bytes),
and Packet C is a single fragment (1514 bytes). The linked list of descriptors
to describe these three packets is shown in Figure 2−4.

EMAC Module Operational Overview

EMAC Module2-10 SPRU628A

Figure 2−4. Typical Descriptor Linked List

SOP | EOP 60

0 60

pBuffer

pNext

Packet A
60 bytes

0

SOP
Fragment 1
Packet B

512

1514

pBuffer

pNext

512 bytes

EOP

0

0

−−−

Packet B
Fragment 3
500 bytes

502

pBuffer

−−−

500

pNext

−−−

pBuffer

pNext

Packet B
Fragment 2
502 bytes

SOP | EOP

0
1514 bytes
Packet C

1514

pBuffer

pNext (NULL)

1514

2.3.2 Transmit and Receive Descriptor Queues

The EMAC module processes descriptors in linked list chains as discussed in
section 2.3.1. The lists controlled by the EMAC are maintained by the applica-
tion software though the use of the head descriptor pointer (HDP) registers.
Since the EMAC supports eight channels for both transmit and receive, there
are eight head descriptor pointer registers for both. They are designated as:

� TXnHDP − Transmit Channel n DMA Head Descriptor Pointer Register
� RXnHDP − Receive Channel n DMA Head Descriptor Pointer Register

After EMAC reset, and before enabling the EMAC for send or receive, all
16 head descriptor pointer registers must be initialized to zero.

EMAC Module Operational Overview

2-11EMAC ModuleSPRU628A

There is a simple system that the EMAC uses to determine if a descriptor is
currently owned by the EMAC or by the application software. There is a flag
in the descriptor Flags field called OWNER. When this flag is set, the packet
that is referenced by the descriptor is considered to be owned by the EMAC.
Note that ownership is done on a packet based granularity, not on descriptor
granularity, so only SOP descriptors make use of the OWNER flag. As packets
are processed, the EMAC will patch the SOP descriptor of the corresponding
packet and clear the OWNER flag. This is an indication that the EMAC has
finished processing all descriptors up to and including the first with the EOP
flag set indicating the end of the packet (note this may only be one descriptor
with both the SOP and EOP flags set).

To first add a descriptor or a linked list of descriptors to an EMAC descriptor
queue, the software application simply writes the pointer to the descriptor or
first descriptor of a list to the corresponding HDP register. Note that the last
descriptor in the list must have its �next� pointer cleared to zero. This is the only
way the EMAC has of detecting the end of the list. So in the case where only
a single descriptor is added, its �next descriptor� pointer must be initialized to
zero.

The HDP register must never be written to a second time while a previous list
is active. To add additional descriptors to a descriptor list already owned by the
EMAC, the NULL �next� pointer of the last descriptor of the previous list is
patched with a pointer to the first descriptor in the new list. The list of new
descriptors to be appended to the existing list must itself be NULL terminated
before the pointer patch is performed.

There is a potential race condition where the EMAC may read the �next� point-
er of a descriptor as NULL in the instant before an application appends addi-
tional descriptors to the list by patching the pointer. This case is handled by the
software application always examining the Flags field of all EOP packets, look-
ing for a special flag called end of queue (EOQ). The EOQ flag is set by the
EMAC on the last descriptor of a packet when the descriptor�s �next� pointer
is NULL. This is the way the EMAC indicates to the software application that
it believes it has reached the end of the list. When the software application
sees the EOQ flag set, and there are more descriptors to process, the applica-
tion may at that time submit the new list, or the portion of the appended list that
was missed, by writing the new list pointer to the same HDP register that
started the process.

This process applies when adding packets to a transmit list, and empty buffers
to a receive list.

EMAC Module Operational Overview

EMAC Module2-12 SPRU628A

2.3.3 Transmit and Receive EMAC Interrupts

The EMAC processes descriptors in linked list chains as discussed in sec-
tion 2.3.1, using the linked list queue mechanism discussed in section 2.3.2.

The EMAC synchronizes descriptor list processing though the use of inter-
rupts to the software application. The interrupts are controlled by the applica-
tion by using the interrupt masks, global interrupt enable, and the interrupt
acknowledge register (INTACK).

Since the EMAC supports eight channels for both transmit and receive, there
are eight INTACK registers for both. They are designated as:

� TXnINTACK − Transmit Channel n Interrupt Acknowledge Register
� RXnINTACK − Receive Channel n Interrupt Acknowledge Register

These registers serve two purposes. When read, they return the pointer to the
last descriptor that the EMAC has processed. When written by the software
application, the value represents the last descriptor processed by the software
application. When these two values do not match, the interrupt is active.

Whether or not an active interrupt actually interrupts the DSP is determined
by the system configuration. This is covered more in Chapter 4, Software
Operation, but in general, the global interrupt for all EMAC and MDIO must be
enabled in the EMAC control module, and it also must be mapped in the DSP
interrupt MUX and enabled as a DSP interrupt. Given the system is configured
properly, the interrupt for a specific receive or transmit channel executes under
the previously described conditions when the corresponding interrupt is
enabled in the EMAC using the RXINTMASKSET or TXINTMASKSET registers.

Whether or not the interrupt is enabled, the current state of the receive or trans-
mit channel interrupt can be examined directly by the software application by
reading the RXINTSTATRAW and TXINTSTATRAW registers.

Interrupts are acknowledged when the application software updates the value
of TXnINTACK or RXnINTACK with a value that matches the internal value
kept by the EMAC.

This mechanism ensures that the application software never misses an EMAC
interrupt, since the interrupt and its acknowledgment are tied directly to the
actual buffer descriptors processing done by each.

EMAC Module Operational Overview

2-13EMAC ModuleSPRU628A

2.3.4 Transmit Buffer Descriptor Format

A transmit (TX) buffer descriptor (Figure 2−5) is a contiguous block of four
32-bit data words aligned on a 32-bit boundary that describes a packet or a
packet fragment. Figure 2−6 shows the transmit descriptor described by a
C structure.

Figure 2−5. Transmit Descriptor Format

(a) Word 0

31 0

Next Descriptor Pointer

(b) Word 1

31 0

Buffer Pointer

(c) Word 2

31 16 15 0

Buffer Offset Buffer Length

(d) Word 3

31 30 29 28 27 26 25 24

SOP EOP OWNER EOQ TDOWNCMPLT PASSCRC Reserved

23 16

Reserved

15 0

Packet Length

EMAC Module Operational Overview

EMAC Module2-14 SPRU628A

Figure 2−6. Transmit Descriptor in C Structure Format

/*
// EMAC Descriptor
//
// The following is the format of a single buffer descriptor
// on the EMAC.
*/
typedef struct _EMAC_Desc {
 struct _EMAC_Desc *pNext; /* Pointer to next descriptor in chain */
 Uint8 *pBuffer; /* Pointer to data buffer */
 Uint32 BufOffLen; /* Buffer Offset(MSW) and Length(LSW) */
 Uint32 PktFlgLen; /* Packet Flags(MSW) and Length(LSW) */
} EMAC_Desc;

/* Packet Flags (some used for RX only) */
#define EMAC_DSC_FLAG_SOP 0x80000000u
#define EMAC_DSC_FLAG_EOP 0x40000000u
#define EMAC_DSC_FLAG_OWNER 0x20000000u
#define EMAC_DSC_FLAG_EOQ 0x10000000u
#define EMAC_DSC_FLAG_TDOWNCMPLT 0x08000000u
#define EMAC_DSC_FLAG_PASSCRC 0x04000000u
#define EMAC_DSC_FLAG_JABBER 0x02000000u
#define EMAC_DSC_FLAG_OVERSIZE 0x01000000u
#define EMAC_DSC_FLAG_FRAGMENT 0x00800000u
#define EMAC_DSC_FLAG_UNDERSIZED 0x00400000u
#define EMAC_DSC_FLAG_CONTROL 0x00200000u
#define EMAC_DSC_FLAG_OVERRUN 0x00100000u
#define EMAC_DSC_FLAG_CODEERROR 0x00080000u
#define EMAC_DSC_FLAG_ALIGNERROR 0x00040000u
#define EMAC_DSC_FLAG_CRCERROR 0x00020000u
#define EMAC_DSC_FLAG_NOMATCH 0x00010000u

EMAC Module Operational Overview

2-15EMAC ModuleSPRU628A

Next Descriptor Pointer

This pointer points to the 32-bit word aligned memory address of the next buff-
er descriptor in the transmit queue. This pointer is used to create a linked list
of buffer descriptors. If the value of this pointer is zero, then the current buffer
is the last buffer in the queue. The software application must set this value prior
to adding the descriptor to the active transmit list. This pointer is not altered
by the EMAC.

The value of pNext should never be altered once the descriptor in an active
transmit queue, unless its current value is NULL. If the pNext pointer is in initial-
ly NULL, and more packets need to be queued for transmit, the software
application may alter this pointer to point to a newly appended descriptor. The
EMAC will use the new pointer value and proceed to the next descriptor unless
the pNext value has already been read. In this latter case, the transmitter will
halt on the transmit channel in question, and the software application may
restart it at that time. The software can detect this case by checking for an end
of queue (EOQ) condition flag on the updated packet descriptor when it is
returned by the EMAC.

Buffer Pointer

The buffer pointer is the byte-aligned memory address of the memory buffer
associated with the buffer descriptor. The software application must set this
value prior to adding the descriptor to the active transmit list. This pointer is not
altered by the EMAC.

Buffer Offset

This 16-bit field indicates how many unused bytes are at the start of the buffer.
For example, a value of 0000h indicates that no unused bytes are at the start
of the buffer and that valid data begins on the first byte of the buffer, while a
value of 000Fh indicates that the first 15 bytes of the buffer are to be ignored
by the EMAC and that valid buffer data starts on byte 16 of the buffer. The soft-
ware application must set this value prior to adding the descriptor to the active
transmit list. This field is not altered by the EMAC.

Note that this value is only checked on the first descriptor of a given packet
(where the start of packet (SOP) flag is set). It can not be used to specify the
offset of subsequent packet fragments. Also, since the buffer pointer may point
to any byte-aligned address, this field may be entirely superfluous, depending
on the device driver architecture.

The range of legal values for this field is 0 to (Buffer Length � 1).

EMAC Module Operational Overview

EMAC Module2-16 SPRU628A

Buffer Length

This 16-bit field indicates how many valid data bytes are in the buffer. On single
fragment packets, this value is also the total length of the packet data to be
transmitted. If the buffer offset field is used, the offset bytes are not counted
as part of this length. This length counts only valid data bytes. The software
application must set this value prior to adding the descriptor to the active
transmit list. This field is not altered by the EMAC.

Packet Length

This 16-bit field specifies the number of data bytes in the entire packet. Any
leading buffer offset bytes are not included. The sum of the buffer length fields
of each of the packet�s fragments (if more than one) must be equal to the pack-
et length. The software application must set this value prior to adding the des-
criptor to the active transmit list. This field is not altered by the EMAC. This
value is only checked on the first descriptor of a given packet (where the start
of packet (SOP) flag is set).

Start of Packet (SOP) Flag

When set, this flag indicates that the descriptor points to a packet buffer that
is the start of a new packet. In the case of a single fragment packet, both the
SOP and end of packet (EOP) flags are set. Otherwise; the descriptor pointing
to the last packet buffer for the packet sets the EOP flag. This bit is set by the
software application and is not altered by the EMAC.

End of Packet (EOP) Flag

When set, this flag indicates that the descriptor points to a packet buffer that
is last for a given packet. In the case of a single fragment packet, both the start
of packet (SOP) and EOP flags are set. Otherwise; the descriptor pointing to
the last packet buffer for the packet sets the EOP flag. This bit is set by the soft-
ware application and is not altered by the EMAC.

Ownership (OWNER) Flag

When set, this flag indicates that all the descriptors for the given packet (from
SOP to EOP) are currently owned by the EMAC. This flag is set by the software
application on the SOP packet descriptor before adding the descriptor to the
transmit descriptor queue. For a single fragment packet, the SOP, EOP, and
OWNER flags are all set. The OWNER flag is cleared by the EMAC once it is
finished with all the descriptors for the given packet. Note that this flag is valid
on SOP descriptors only.

EMAC Module Operational Overview

2-17EMAC ModuleSPRU628A

End of Queue (EOQ) Flag

When set, this flag indicates that the descriptor in question was the last des-
criptor in the transmit queue for a given transmit channel, and that the transmit-
ter has halted. This flag is initially cleared by the software application prior to
adding the descriptor to the transmit queue. This bit is set by the EMAC when
the EMAC identifies that a descriptor is the last for a given packet (the EOP
flag is set), and there are no more descriptors in the transmit list (next descrip-
tor pointer is NULL).

The software application can use this bit to detect when the EMAC transmitter
for the corresponding channel has halted. This is useful when the application
appends additional packet descriptors to a transmit queue list that is already
owned by the EMAC. Note that this flag is valid on EOP descriptors only.

Teardown Complete (TDOWNCMPLT) Flag

This flag is used when a transmit queue is being torn down, or aborted, instead
of allowing it to be transmitted. This would happen under device driver reset
or shutdown conditions. The EMAC sets this bit in the SOP descriptor of each
packet as it is aborted from transmission.

Note that this flag is valid on SOP descriptors only. Also note that only the first
packet in an unsent list has the TDOWNCMPLT flag set. Subsequent descrip-
tors are not even processed by the EMAC.

Pass CRC (PASSCRC) Flag

This flag is set by the software application in the SOP packet descriptor before
it adds the descriptor to the transmit queue. Setting this bit indicates to the
EMAC that the 4 byte Ethernet CRC is already present in the packet data, and
that the EMAC should not generate its own version of the CRC.

When the CRC flag is cleared, the EMAC generates and appends the 4-byte
CRC. The buffer length and packet length fields do not include the CRC bytes.
When the CRC flag is set, the 4-byte CRC is supplied by the software applica-
tion and is already appended to the end of the packet data. The buffer length
and packet length fields include the CRC bytes, as they are part of the valid
packet data. Note that this flag is valid on SOP descriptors only.

EMAC Module Operational Overview

EMAC Module2-18 SPRU628A

2.3.5 Receive Buffer Descriptor Format

A receive (RX) buffer descriptor (Figure 2−7) is a contiguous block of four
32-bit data words aligned on a 32-bit boundary. Figure 2−8 shows the receive
descriptor described by a C structure.

Figure 2−7. Receive Descriptor Format

(a) Word 0

31 0

Next Descriptor Pointer

(b) Word 1

31 0

Buffer Pointer

(c) Word 2

31 16 15 0

Buffer Offset Buffer Length

(d) Word 3

31 30 29 28 27 26 25 24

SOP EOP OWNER EOQ TDOWNCMPLT PASSCRC JABBER OVERSIZE

23 22 21 20 19 18 17 16

FRAGMENT UNDERSIZED CONTROL OVERRUN CODEERROR ALIGNERROR CRCERROR NOMATCH

15 0

Packet Length

EMAC Module Operational Overview

2-19EMAC ModuleSPRU628A

Figure 2−8. Receive Descriptor in C Structure Format

/*
// EMAC Descriptor
//
// The following is the format of a single buffer descriptor
// on the EMAC.
*/
typedef struct _EMAC_Desc {
 struct _EMAC_Desc *pNext; /* Pointer to next descriptor in chain */
 Uint8 *pBuffer; /* Pointer to data buffer */
 Uint32 BufOffLen; /* Buffer Offset(MSW) and Length(LSW) */
 Uint32 PktFlgLen; /* Packet Flags(MSW) and Length(LSW) */
} EMAC_Desc;

/* Packet Flags (some used for RX only) */
#define EMAC_DSC_FLAG_SOP 0x80000000u
#define EMAC_DSC_FLAG_EOP 0x40000000u
#define EMAC_DSC_FLAG_OWNER 0x20000000u
#define EMAC_DSC_FLAG_EOQ 0x10000000u
#define EMAC_DSC_FLAG_TDOWNCMPLT 0x08000000u
#define EMAC_DSC_FLAG_PASSCRC 0x04000000u
#define EMAC_DSC_FLAG_JABBER 0x02000000u
#define EMAC_DSC_FLAG_OVERSIZE 0x01000000u
#define EMAC_DSC_FLAG_FRAGMENT 0x00800000u
#define EMAC_DSC_FLAG_UNDERSIZED 0x00400000u
#define EMAC_DSC_FLAG_CONTROL 0x00200000u
#define EMAC_DSC_FLAG_OVERRUN 0x00100000u
#define EMAC_DSC_FLAG_CODEERROR 0x00080000u
#define EMAC_DSC_FLAG_ALIGNERROR 0x00040000u
#define EMAC_DSC_FLAG_CRCERROR 0x00020000u
#define EMAC_DSC_FLAG_NOMATCH 0x00010000u

EMAC Module Operational Overview

EMAC Module2-20 SPRU628A

Next Descriptor Pointer

This pointer points to the 32-bit word aligned memory address of the next buff-
er descriptor in the receive queue. This pointer is used to create a linked list
of buffer descriptors. If the value of this pointer is zero, then the current buffer
is the last buffer in the queue. The software application must set this value prior
to adding the descriptor to the active receive list. This pointer is not altered by
the EMAC.

The value of pNext should never be altered once the descriptor in an active
receive queue, unless its current value is NULL. If the pNext pointer is in initially
NULL, and more empty buffers can be added to the pool, the software applica-
tion may alter this pointer to point to a newly appended descriptor. The EMAC
will use the new pointer value and proceed to the next descriptor unless the
pNext value has already been read. In this latter case, the receiver will halt the
receive channel in question, and the software application may restart it at that
time. The software can detect this case by checking for an end of queue (EOQ)
condition flag on the updated packet descriptor when it is returned by the
EMAC.

Buffer Pointer

The buffer pointer is the byte-aligned memory address of the memory buffer
associated with the buffer descriptor. The software application must set this
value prior to adding the descriptor to the active receive list. This pointer is not
altered by the EMAC.

Buffer Offset

This 16-bit field must be initialized to zero by the software application before
adding the descriptor to a receive queue.

Whether or not this field is updated depends on the setting of the RXBUFFER-
OFFSET register. When the offset register is set to a non-zero value, the
received packet is written to the packet buffer at an offset given by the value
of the register, and this value is also written to the buffer offset field of the
descriptor.

When a packet is fragmented over multiple buffers because it does not fit in
the first buffer supplied, the buffer offset only applies to the first buffer in the
list, which is where the start of packet (SOP) flag is set in the corresponding
buffer descriptor. In other words, the buffer offset field is only updated by the
EMAC on SOP descriptors.

The range of legal values for the BUFFEROFFSET register is 0 to (Buffer
Length � 1) for the smallest value of buffer length for all descriptors in the list.

EMAC Module Operational Overview

2-21EMAC ModuleSPRU628A

Buffer Length

This 16-bit field is used for two purposes:

1) Before the descriptor is first placed on the receive queue by the application
software, the buffer length field is first initialized by the software to be the
physical size of the empty data buffer pointed to by the buffer pointer field.

2) After the empty buffer has been processed by the EMAC and filled with
received data bytes, the buffer length field is updated by the EMAC to
reflect the actual number of valid data bytes written to the buffer.

Packet Length

This 16-bit field specifies the number of data bytes in the entire packet. This
value is initialized to zero by the software application for empty packet buffers.
The value is filled in by the EMAC on the first buffer used for a given packet.
This is signified by the EMAC setting a start of packet (SOP) flag. The packet
length is set by the EMAC on all SOP buffer descriptors.

Start of Packet (SOP) Flag

When set, this flag indicates that the descriptor points to a packet buffer that
is the start of a new packet. In the case of a single fragment packet, both the
SOP and end of packet (EOP) flags are set. Otherwise; the descriptor pointing
to the last packet buffer for the packet has the EOP flag set. This flag is initially
cleared by the software application before adding the descriptor to the receive
queue. This bit is set by the EMAC on SOP descriptors.

End of Packet (EOP) Flag

When set, this flag indicates that the descriptor points to a packet buffer that
is last for a given packet. In the case of a single fragment packet, both the start
of packet (SOP) and EOP flags are set. Otherwise; the descriptor pointing to
the last packet buffer for the packet has the EOP flag set. This flag is initially
cleared by the software application before adding the descriptor to the receive
queue. This bit is set by the EMAC on EOP descriptors.

EMAC Module Operational Overview

EMAC Module2-22 SPRU628A

Ownership (OWNER) Flag

When set, this flag indicates that the descriptor is currently owned by the
EMAC. This flag is set by the software application before adding the descriptor
to the receive descriptor queue. This flag is cleared by the EMAC once it is
finished with a given set of descriptors, associated with a received packet. The
flag is updated by the EMAC on SOP descriptor only. So when the application
identifies that the OWNER flag is cleared on an SOP descriptor, it may assume
that all descriptors up to and including the first with the EOP flag set have been
released by the EMAC. (Note that in the case of single buffer packets, the
same descriptor will have both the SOP and EOP flags set.)

End of Queue (EOQ) Flag

When set, this flag indicates that the descriptor in question was the last des-
criptor in the receive queue for a given receive channel, and that the corre-
sponding receiver channel has halted. This flag is initially cleared by the soft-
ware application prior to adding the descriptor to the receive queue. This bit
is set by the EMAC when the EMAC identifies that a descriptor is the last for
a given packet received (also sets the EOP flag), and there are no more
descriptors in the receive list (next descriptor pointer is NULL).

The software application can use this bit to detect when the EMAC receiver
for the corresponding channel has halted. This is useful when the application
appends additional free buffer descriptors to an active receive queue. Note
that this flag is valid on EOP descriptors only.

Teardown Complete (TDOWNCMPLT) Flag

This flag is used when a receive queue is being torn down, or aborted, instead
of being filled with received data. This would happen under device driver reset
or shutdown conditions. The EMAC sets this bit in the descriptor of the first free
buffer when the tear down occurs. No additional queue processing is performed.

Pass CRC (PASSCRC) Flag

This flag is set by the EMAC in the SOP buffer descriptor if the received packet
includes the 4-byte CRC. This flag should be cleared by the software applica-
tion before submitting the descriptor to the receive queue.

Jabber Flag

This flag is set by the EMAC in the SOP buffer descriptor, if the received packet
is a jabber frame and was not discarded because the RXCEFEN bit was set
in the RXMBPENABLE register.

EMAC Module Operational Overview

2-23EMAC ModuleSPRU628A

Oversize Flag

This flag is set by the EMAC in the SOP buffer descriptor, if the received packet
is an oversized frame and was not discarded because the RXCEFEN bit was
set in the RXMBPENABLE register.

Fragment Flag

This flag is set by the EMAC in the SOP buffer descriptor, if the received packet
is only a packet fragment and was not discarded because the RXCEFEN bit
was set in the RXMBPENABLE register.

Undersized Flag

This flag is set by the EMAC in the SOP buffer descriptor, if the received packet
is undersized and was not discarded because the RXCSFEN bit was set in the
RXMBPENABLE register.

Control Flag

This flag is set by the EMAC in the SOP buffer descriptor, if the received packet
is a jabber frame and was not discarded because the RXCMFEN bit was set
in the RXMBPENABLE register.

Overrun Flag

This flag is set by the EMAC in the SOP buffer descriptor, if the received packet
was aborted due to a receive overrun.

Code Error (CODEERROR) Flag

This flag is set by the EMAC in the SOP buffer descriptor, if the received packet
contained a code error and was not discarded because the RXCEFEN bit was
set in the RXMBPENABLE register.

Alignment Error (ALIGNERROR) Flag

This flag is set by the EMAC in the SOP buffer descriptor, if the received packet
contained an alignment error and was not discarded because the RXCEFEN
bit was set in the RXMBPENABLE register.

CRC Error (CRCERROR) Flag

This flag is set by the EMAC in the SOP buffer descriptor, if the received packet
contained a CRC error and was not discarded because the RXCEFEN bit was
set in the RXMBPENABLE register.

EMAC Module Operational Overview

EMAC Module2-24 SPRU628A

No Match (NOMATCH) Flag

This flag is set by the EMAC in the SOP buffer descriptor, if the received packet
did not pass any of the EMACs address match criteria and was not discarded
because the RXCAFEN bit was set in the RXMBPENABLE register. Although
the packet is a valid Ethernet data packet, it was only received because the
EMAC is in promiscuous mode.

Media Independent Interface (MII)

2-25EMAC ModuleSPRU628A

2.4 Media Independent Interface (MII)

The following sections discuss operation of the Media Independent Interface
(MII) in 10 Mbps and 100 Mbps mode. An IEEE 802.3 compliant Ethernet MAC
controls the interface.

2.4.1 Data Reception

2.4.1.1 Receive Control

Data received from the PHY is interpreted and output to the EMAC receive
FIFO. Interpretation involves detection and removal of the preamble and start
of frame delimiter, extraction of the address and frame length, data handling,
error checking and reporting, cyclic redundancy checking (CRC), and statistics
control signal generation. Address detection and frame filtering is performed
outside the MII interface.

2.4.1.2 Receive Inter-Frame Interval

The 802.3 required inter-packet gap (IPG) is 24 MII clocks (96-bit times). How-
ever, the EMAC can tolerate a reduced IPG (2 MII clocks or 8-bit times) with
a correct preamble and start frame delimiter. This interval between frames
must comprise (in the following order):

1) An Inter-Packet Gap (IPG).
2) A seven octet preamble (all octets 55h).
3) A one octet start frame delimiter (5Dh).

2.4.1.3 Receive Flow Control

When enabled and triggered, receive flow control is initiated to limit the EMAC
from further frame reception. Two forms of receive flow control are implement-
ed, collision based for half-duplex mode, and IEEE 802.3X pause frames for
full-duplex mode. In either case, receive flow control prevents frame reception
by issuing the flow control appropriate for the current mode of operation.
Receive flow control prevents reception of frames on the EMAC until all of the
triggering conditions clear, at which time frames may again be received by the
EMAC.

Receive flow control is enabled by the RXFLOWEN bit in the MACCONTROL
register. The EMAC is configured for collision or IEEE 802.3X flow control via
the FULLDUPLEX bit in the MACCONTROL register. Receive flow control is
triggered when the number of free buffers in any enabled receive channel
(RXnFREEBUFFER) is less than or equal to the channel flow control threshold
register (RXnFLOWTHRESH) value. Receive flow control is independent of
receive QOS, except that both use the free buffer values.

Media Independent Interface (MII)

EMAC Module2-26 SPRU628A

2.4.1.4 Collision-Based Receive Flow Control

Collision-based receive flow control provides a means of preventing frame
reception when the EMAC is operating in half-duplex mode (FULLDUPLEX bit
is cleared in MACCONTROL register). When receive flow control is enabled
and triggered, the EMAC generates collisions for received frames. The jam
sequence transmitted is the twelve byte sequence
C3.C3.C3.C3.C3.C3.C3.C3.C3.C3.C3.C3h. The jam sequence begins no
later than the source address starts to be received. Note that these forced
collisions are not limited to a maximum of 16 consecutive collisions, and are
independent of the normal back-off algorithm.

Receive flow control does not depend on the value of the incoming frame
destination address. A collision is generated for any incoming packet, regard-
less of the destination address, if any EMAC enabled channel�s free buffer
register value is less than or equal to the channel�s flow threshold value.

2.4.1.5 IEEE 802.3X Based Receive Flow Control

IEEE 802.3x based receive flow control provides a means of preventing frame
reception when the EMAC is operating in full-duplex mode (FULLDUPLEX bit
is set in MACCONTROL register). When receive flow control is enabled and
triggered, the EMAC transmits a pause frame to request that the sending sta-
tion stop transmitting for the period indicated within the transmitted pause
frame.

The EMAC transmits a pause frame to the reserved multicast address at the
first available opportunity (immediately if currently idle, or following the
completion of the frame currently being transmitted). The pause frame con-
tains the maximum possible value for the pause time (FFFFh). The EMAC
counts the receive pause frame time (decrements FF00h to 0) and retransmits
an outgoing pause frame, if the count reaches zero. When the flow control
request is removed, the EMAC transmits a pause frame with a zero pause time
to cancel the pause request.

Note that transmitted pause frames are only a request to the other end station
to stop transmitting. Frames that are received during the pause interval are
received normally (provided the receive FIFO is not full).

Pause frames are transmitted if enabled and triggered, regardless of whether
or not the EMAC is observing the pause time period from an incoming pause
frame.

The EMAC transmits pause frames as described:

� The 48-bit reserved multicast destination address 01.80.C2.00.00.01h.

Media Independent Interface (MII)

2-27EMAC ModuleSPRU628A

� The 48-bit source address equal to the EMAC channel 0 address, regard-
less of whether channel 0 is enabled for reception or not (MACADDRL0).

� The 16-bit length/type field containing the value 88.08h.

� The 16-bit pause opcode equal to 00.01h.

� The 16-bit pause time value of FF.FFh. A pause-quantum is 512 bit-times.
Pause frames sent to cancel a pause request have a pause time value of
00.00h.

� Zero padding to 64-byte data length (EMAC transmits only 64-byte pause
frames).

� The 32-bit frame-check sequence (CRC word).

All quantities are hexadecimal and are transmitted most-significant-byte first.
The least-significant-bit (LSB) is transferred first in each byte.

If the RXFLOWEN bit, in the MACCONTROL register, is cleared to 0 while the
pause time is nonzero, then the pause time is cleared to zero and a zero count
pause frame is sent.

2.4.2 Data Transmission

The EMAC passes data to the PHY from the transmit FIFO (when enabled).
Data is synchronized to the transmit clock rate. Transmission begins when
there are 128 bytes, or a complete packet, in the FIFO in both 10 Mbps and
100 Mbps mode. The smallest frame that can be sent is two bytes of data with
four bytes of CRC (6-byte frame).

2.4.2.1 Transmit Control

A jam sequence is output if a collision is detected on a transmit packet. If the
collision was late (after the first 64 bytes have been transmitted), the collision
is ignored. If the collision is not late, the controller will back off before retrying
the frame transmission. When operating in full-duplex mode, the carrier sense
(CRS) and collision-sensing modes are disabled.

2.4.2.2 CRC Insertion

The MAC generates and appends a 32-bit Ethernet CRC onto the transmitted
data, if the SOP buffer descriptor PASSCRC flag is cleared. For the EMAC-
generated CRC case, a CRC (or placeholder) at the end of the data is allowed
but not required. The buffer byte count value should not include the CRC bytes,
if they are present.

Media Independent Interface (MII)

EMAC Module2-28 SPRU628A

If the SOP buffer descriptor PASSCRC flag is set, then the last four bytes of
the transmit data are transmitted as the frame CRC. The four CRC data bytes
should be the last four bytes of the frame and should be included in the buffer
byte count value. The MAC performs no error checking on the outgoing CRC.

2.4.2.3 MTXER

The MII_MTXER signal is not used. If an underflow condition occurs on a trans-
mitted frame, the frame CRC is inverted to indicate the error to the network.

2.4.2.4 Adaptive Performance Optimization (APO)

The EMAC incorporates adaptive performance optimization (APO) logic that
may be enabled by setting the TXPACE bit in the MACCONTROL register.
Transmission pacing to enhance performance is enabled when the TXPACE
bit is set. Adaptive performance pacing introduces delays into the normal
transmission of frames, delaying transmission attempts between stations, re-
ducing the probability of collisions occurring during heavy traffic (as indicated
by frame deferrals and collisions); thereby, increasing the chance of success-
ful transmission.

When a frame is deferred, suffers a single collision, multiple collisions, or
excessive collisions, the pacing counter is loaded with an initial value of 31.
When a frame is transmitted successfully (without experiencing a deferral,
single collision, multiple collision, or excessive collision), the pacing counter
is decremented by 1, down to 0.

With pacing enabled, a new frame is permitted to immediately (after one IPG)
attempt transmission only if the pacing counter is zero. If the pacing counter
is non-zero, the frame is delayed by the pacing delay of approximately four
interpacket gap delays. APO only affects the IPG preceding the first attempt
at transmitting a frame; APO does not affect the back-off algorithm for retrans-
mitted frames.

2.4.2.5 Interpacket-Gap (IPG) Enforcement

The measurement reference for the IPG of 96 bit times is changed depending
on frame traffic conditions. If a frame is successfully transmitted without colli-
sion and MCRS is deasserted within approximately 48 bit times of MTXEN
being deasserted, then 96 bit times is measured from MTXEN. If the frame
suffered a collision or MCRS is not deasserted until more than approximately
48 bit times after MTXEN is deasserted, then 96 bit times (approximately, but
not less) is measured from MCRS.

2.4.2.6 Back Off

The EMAC implements the 802.3 binary exponential back-off algorithm.

Media Independent Interface (MII)

2-29EMAC ModuleSPRU628A

2.4.2.7 Transmit Flow Control

Incoming pause frames are acted upon, when enabled, to prevent the EMAC
from transmitting any further frames. Incoming pause frames are only acted
upon when the FULLDUPLEX and TXFLOWEN bits in the MACCONTROL
register are set. Pause frames are not acted upon in half-duplex mode. Pause
frame action is taken if enabled, but normally the frame is filtered and not trans-
ferred to memory. MAC control frames are transferred to memory, if the
RXCMFEN bit in the RXMBPENABLE register is set. The TXFLOWEN and
FULLDUPLEX bits affect whether or not MAC control frames are acted upon,
but they have no affect upon whether or not MAC control frames are trans-
ferred to memory or filtered.

Pause frames are a subset of MAC control frames with an opcode field of
0001h. Incoming pause frames are only acted upon by the EMAC if:

� TXFLOWEN bit is set in MACCONTROL register
� The frame�s length is 64 to RXMAXLEN bytes inclusive
� The frame contains no CRC error or align/code errors

The pause time value from valid frames is extracted from the two bytes follow-
ing the opcode. The pause time is loaded into the EMAC�s transmit pause timer
and the transmit pause time period begins.

If a valid pause frame is received during the transmit pause time period of a
previous transmit pause frame then:

� If the destination address is not equal to the reserved multicast address
or the address in the MACADDRH, MACADDRM, and MACADDRLn reg-
isters, then the transmit pause timer immediately expires, or

� If the new pause time value is 0, then the transmit pause timer immediately
expires, else

� The EMAC transmit pause timer immediately is set to the new pause
frame pause time value. (Any remaining pause time from the previous
pause frame is discarded).

If the TXFLOWEN bit in MACCONTROL is cleared, then the pause-timer im-
mediately expires.

The EMAC does not start the transmission of a new data frame any sooner
than 512-bit times after a pause frame with a non-zero pause time has finished
being received (MRXDV going inactive). No transmission begins until the
pause timer has expired (the EMAC may transmit pause frames in order to initi-
ate outgoing flow control). Any frame already in transmission when a pause
frame is received is completed and unaffected.

Media Independent Interface (MII)

EMAC Module2-30 SPRU628A

Incoming pause frames consist of:

� A 48-bit destination address equal to one of the following:

� the reserved multicast destination address 01.80.C2.00.00.01h

� Any EMAC unicast 48-bit address (MACADDRH, MACADDRM,
MACADDRLn). Pause frames are accepted, regardless of whether
the channel is enabled or not.

� The 48-bit source address of the transmitting device.

� The 16-bit length/type field containing the value 88.08h.

� The 16-bit pause opcode equal to 00.01h.

� The 16-bit pause_time. A pause-quantum is 512 bit-times.

� Padding to 64-byte data length.

� The 32-bit frame-check sequence (CRC word).

All quantities are hexadecimal and are transmitted most-significant-byte first.
The least-significant-bit (LSB) is transferred first in each byte.

The padding is required to make up the frame to a minimum of 64 bytes. The
standard allows pause frames longer than 64 bytes to be discarded or inter-
preted as valid pause frames. The EMAC recognizes any pause frame
between 64 bytes and RXMAXLEN bytes in length.

2.4.2.8 Speed, Duplex, and Pause Frame Support

The MAC can operate at 10 Mbps or 100 Mbps, in half-duplex or full-duplex
mode, and with or without pause frame support as configured by the host.

Packet Receive Operation

2-31EMAC ModuleSPRU628A

2.5 Packet Receive Operation

2.5.1 Receive DMA Host Configuration

To configure the receive DMA for operation the host must perform:

� Write the receive base address to the MACADDRH, MACADDRM, and
MACADDRLn registers.

� Initialize the RXnHDP registers to zero.

� Write the MACHASH1 and MACHASH2 registers, if multicast addressing
is desired.

� Initialize the RXnFREEBUFFER, RXnFLOWTHRESH, and RXFILTER-
LOWTHRESH registers, if flow control is to be enabled.

� Enable the desired receive interrupts using the RXINTMASKSET and
RXINTMASKCLEAR registers.

� Set the appropriate configuration bits in the MACCONTROL register.

� Write the RXBUFFEROFFSET register value (typically zero).

� Setup the receive channel(s) buffer descriptors and initialize RXnHDP
registers.

� Enable the receive DMA controller by setting the RXEN bit in the
RXCONTROL register.

� Configure and enable the receive operation, as desired, in the RXMBPEN-
ABLE register and by using the RXUNICASTSET and RXUNICASTCLEAR
registers.

2.5.2 Receive Channel Enabling

Each of the eight receive channels has an enable bit (RXCHnEN) that is
controlled using the RXUNICASTSET and RXUNICASTCLEAR registers.
The RXCHnEN bits determine whether the given channel is enabled (when set
to 1) to receive frames with a matching destination address. The receive chan-
nels must be enabled starting with channel 0 and moving up without skipping
channels. If only a single channel is to be used, then only channel 0 should be
enabled. If two receive channels are used, then channels 0 and 1 should be
enabled. If three channels are used, then channels 0 through 2 should be
enabled, etc.

Packet Receive Operation

EMAC Module2-32 SPRU628A

The BROADEN and MULTEN bits in the RXMBPENABLE register determine
if broadcast and multicast frames, respectively, are enabled or filtered. If
broadcast and multicast frames are enabled, then they are copied to only a
single channel selected by the BROADCH and MULTCH bits of RXMBPENA-
BLE. The PROMCH bits select the promiscuous channel to receive frames
selected by the RXCMFEN, RXCSFEN, RXCEFEN, and RXCAFEN bits.
These four bits allow reception of MAC control frames, short frames, error
frames, and all frames (promiscuous), respectively.

2.5.3 Receive Channel Addressing

The 48-bit address for each receive channel is determined by concatenating
the 32-bit MACADDRH register value, the 8-bit MACADDRM register value,
and the 8-bit MACADDRLn register value. All eight MACADDRLn registers
should be initialized, because pause frames are acted upon regardless of
whether a channel is enabled or disabled. If only one channel is to be enabled,
it is permissible to replicate the MAC address of that channel across multiple
MACADDRLn registers to avoid consuming multiple MAC addresses.

Incoming group addresses (multicast) are hashed into an index in the hash
table. If the indexed bit is set, the frame is copied to the selected channel
memory (MULTCH) when multicast frames are enabled by setting the
MULTEN bit in the RXMBPENABLE register. The multicast hash bits are set
in the MACHASH1 and MACHASH2 registers.

2.5.4 Hardware Receive QOS Support

Hardware receive quality of service (QOS) is supported, when enabled, by the
Tag Protocol Identifier format and the associated Tag Control Information (TCI)
format priority field. When the incoming frame length/type value is equal to
81.00h, the EMAC recognizes the frame as an Ethernet Encoded Tag Protocol
Type. The two octets immediately following the protocol type contain the 16-bit
TCI field. Bits 15−13 of the TCI field contain the received frames priority (0 to
7). The received frame is a low-priority frame, if the priority value is 0 to 3; the
received frame is a high-priority frame, if the priority value is 4 to 7. All frames
that have a length/type field value not equal to 81.00h are low-priority frames.

Received frames that contain priority information are determined by the EMAC as:

� A 48-bit (6-octet) destination address equal to:

� The destination station�s individual address (MACADDRH,
MACADDRM, and MACADDRLn registers).

� The destination station�s multicast address (MACHASH1 and
MACHASH2 registers).

� The broadcast address of all ones.

Packet Receive Operation

2-33EMAC ModuleSPRU628A

� A 48-byte (6-octet) source address.

� The 16-bit (2-octet) length/type field containing the value 81.00h.

� The 16-bit (2-octet) TCI field with the priority field in the upper 3 bits.

� Data octets

� The 4-octet CRC.

The RXFILTERLOWTHRESH and the RXnFREEBUFFER registers are used
in conjunction with the priority information to implement receive hardware
QOS. Low-priority frames are filtered, if the number of free buffers
(RXnFREEBUFFER) for the frame channel is less than or equal to the filter low
threshold (RXFILTERLOWTHRESH) value. Hardware QOS is enabled by the
RXQOSEN bit in the RXMBPENABLE register.

2.5.5 Host Free Buffer Tracking

The host must track free buffers for each enabled channel (including unicast,
multicast, broadcast, and promiscuous), if receive QOS or receive flow control
is used. Disabled channel free buffer values are don�t cares. During initializa-
tion, the host should write the number of free buffers for each enabled channel
to the appropriate RXnFREEBUFFER register. The EMAC decrements the
appropriate channel�s free buffer value for each buffer used. When the host
reclaims the frame buffers, the host should write the channel free buffer regis-
ter with the number of reclaimed buffers (write to increment). There are a
maximum of 65 535 free buffers available. The RXnFREEBUFFER registers
only need to be updated by the host if receive QOS or flow control is used.

2.5.6 Receive Channel Teardown

The host commands a receive channel teardown by writing the channel number
to the RXTEARDOWN register. When a teardown command is issued to an
enabled receive channel, the following occurs:

� Any current frame in reception completes normally.

� The TDOWNCMPLT flag is set in the next buffer descriptor in the chain,
if there is one.

� The channel head descriptor pointer is cleared to 0.

� A receive interrupt for the channel is issued to the host.

� The corresponding RXnINTACK register contains the value FFFF FFFCh.

� The host should acknowledge a teardown interrupt with an FFFF FFFCh
acknowledge value.

Packet Receive Operation

EMAC Module2-34 SPRU628A

Channel teardown may be commanded on any channel at any time. The host
is informed of the teardown completion by the set teardown complete buffer
descriptor bit. The EMAC does not clear any channel enables due to a teardown
command. A teardown command to an inactive channel issues an interrupt
that software should acknowledge with an FFFF FFFCh acknowledge value
to RXnINTACK (note that there is no buffer descriptor in this case). Software
may read RXnINTACK to determine if the interrupt was due to a commanded
teardown. The read value is FFFF FFFCh, if the interrupt was due to a tear-
down command.

2.5.7 Receive Frame Classification

Received frames are proper (good) frames, if they are between 64 and
RXMAXLEN in length (inclusive) and contain no errors (code/align/CRC).

Received frames are long frames, if their frame count exceeds the value in the
RXMAXLEN register. The RXMAXLEN register reset (default) value is 5EEh
(1518). Long received frames are either oversized or jabber frames. Long
frames with no errors are oversized frames; long frames with CRC, code, or
alignment errors are jabber frames.

Received frames are short frames, if their frame count is less than 64 bytes.
Short frames that address match and contain no errors are undersized frames;
short frames with CRC, code, or alignment errors are fragment frames. If the
frame count is less than or equal to 20, then the frame CRC is passed regard-
less of whether the RXPASSCRC bit is set or cleared in the RXMBPENABLE
register.

A received long packet always contains RXMAXLEN number of bytes trans-
ferred to memory (if the RXCEFEN bit is set in RXMBPENABLE) regardless
of the value of the RXPASSCRC bit. An example with RXMAXLEN set to 1518:

� If the frame length is 1518, then the packet is not a long packet and there
are 1514 or 1518 bytes transferred to memory depending on the value of
the RXPASSCRC bit.

� If the frame length is 1519, there are 1518 bytes transferred to memory
regardless of the the RXPASSCRC bit value. The last three bytes are the
first three CRC bytes.

� If the frame length is 1520, there are 1518 bytes transferred to memory
regardless of the RXPASSCRC bit value. The last two bytes are the first
two CRC bytes.

� If the frame length is 1521, there are 1518 bytes transferred to memory
regardless of the RXPASSCRC bit value. The last byte is the first CRC
byte.

Packet Receive Operation

2-35EMAC ModuleSPRU628A

� If the frame length is 1522, there are 1518 bytes transferred to memory.
The last byte is the last data byte.

2.5.8 Promiscuous Receive Mode

When the promiscuous receive mode is enabled, nonaddress matching
frames that would normally be filtered are transferred to the promiscuous
channel and address matching frames that would normally be filtered are
transferred to the address match channel. A frame is considered to be an
address matching frame only if it is enabled to be received on a unicast, multi-
cast, or broadcast channel. Frames received to disabled unicast, multicast, or
broadcast channels are considered nonaddress matching. A single channel
is selected as the promiscuous channel by the PROMCH bits in the
RXMBPENABLE register. The promiscuous receive mode is enabled by the
RXCMFEN, RXCEFEN, RXCSFEN, and RXCAFEN bits in RXMBPENABLE.
Table 2−1 shows the effects of the promiscuous enable bits. Proper frames are
frames that are between 64 and RXMAXLEN bytes in length inclusive and
contain no errors (code/align/CRC).

Table 2−1. Receive Frame Treatment Summary

RXMBPENABLE Bits

ADDR
MATCH RXCAFEN RXCEFEN RXCMFEN RXCSFEN Frame Treatment

0 0 0 0 0 No frames transferred

0 0 0 0 1 Undersized frames (not fragments)
transferred to promiscuous channel.

0 0 0 1 0 Control frames (without errors) transferred
to promiscuous channel.

0 0 0 1 1 Control/undersize frames (without errors)
transferred to promiscuous channel

0 0 1 0 0 All frames with errors transferred to
promiscuous channel
(jabber/fragment/CRC/code/align).

0 0 1 0 1 All frames with errors and undersize frames
transferred to promiscuous channel.

0 0 1 1 0 All frames with errors and control frames
transferred to promiscuous channel.

Packet Receive Operation

EMAC Module2-36 SPRU628A

Table 2−1. Receive Frame Treatment Summary (Continued)

RXMBPENABLE Bits

ADDR
MATCH Frame TreatmentRXCSFENRXCMFENRXCEFENRXCAFEN

0 0 1 1 1 All frames with errors, control frames, and
short frames transferred to promiscuous
channel.

0 1 0 0 0 Proper frames transferred to promiscuous
channel. All other frames filtered.

0 1 0 0 1 Proper/undersized frames (no errors)
transferred to promiscuous channel. All
others filtered.

0 1 0 1 0 Proper/control frames (no errors)
transferred to promiscuous channel. All
others filtered.

0 1 0 1 1 Proper/undersized/control frames (no
errors) transferred to promiscuous channel.
All error frames filtered
(oversize/jabber/fragment/code/align/CRC).

0 1 1 0 0 Proper/oversize/jabber/fragment/code/align/
CRC frames transferred to promiscuous
channel. Control and undersized frames
with no errors filtered.

0 1 1 0 1 Proper/undersized/fragment/oversize/jabber
/code/align/CRC frames transferred to
promiscuous channel. Control frames with
no errors filtered.

0 1 1 1 0 Proper/fragment/control/oversize/jabber/
code/align/CRC frames transferred to
promiscuous channel. Undersized frames
filtered.

0 1 1 1 1 All non-address matching frames with and
without errors transferred to promiscuous
channel.

1 X 0 0 0 Proper frames transferred to address match
channel. All others filtered.

1 X 0 0 1 Proper/undersized frames transferred to
address match channel. All others filtered

Packet Receive Operation

2-37EMAC ModuleSPRU628A

Table 2−1. Receive Frame Treatment Summary (Continued)

RXMBPENABLE Bits

ADDR
MATCH Frame TreatmentRXCSFENRXCMFENRXCEFENRXCAFEN

1 X 0 1 0 Proper/control frames (no errors)
transferred to address match channel. All
others frames filtered.

1 X 0 1 1 Proper/control/undersized frames
transferred to address match channel. All
other frames filtered.

1 X 1 0 0 Proper/oversize/jabber/fragment/code/align/
CRC frames transferred to address match
channel. Undersized/control frames (no
errors) filtered.

1 X 1 0 1 Proper/oversize/jabber/fragment/undersized
/code/align/CRC frames transferred to
address match channel. Control frames (no
errors) filtered.

1 X 1 1 0 Proper/oversize/jabber/fragment/control/cod
e/align/CRC frames transferred to address
match channel. Undersized frames (no
errors) filtered.

1 X 1 1 1 All address matching frames with and
without errors transferred to the address
match channel

2.5.9 Receive Overrun

The types of receive overrun are:

� FIFO start of frame overrun (FIFO_SOF)
� FIFO middle of frame overrun (FIFO_MOF)
� DMA start of frame overrun (DMA_SOF)
� DMA middle of frame overrun (DMA_MOF)

The statistics counters used to track the types of receive overrun are:

� Receive Start of Frame Overruns Register (RXSOFOVERRUNS)
� Receive Middle of Frame Overruns Register (RXMOFOVERRUNS)
� Receive DMA Overruns Register (RXDMAOVERRUNS)

Packet Receive Operation

EMAC Module2-38 SPRU628A

Start of frame overruns have no resources available when frame reception
begins. Start of frame overruns increment the appropriate overrun statistic(s)
and the frame is filtered.

Middle of frame overruns have the resources to start the frame reception, but
run out of resources during frame reception. In normal operation, a frame that
overruns after starting the frame reception is filtered and the appropriate statis-
tic(s) are incremented; however, the RXCEFEN bit in the RXMBPENABLE
register affects overrun frame treatment. Table 2−2 shows how the overrun
condition is handled for the middle of frame overrun.

Table 2−2. Middle of Frame Overrun Treatment

ADDR
MATCH RXCEFEN Middle of Frame Overrun Treatment

0 0 Overrun frame filtered.

0 1 As much frame data as possible is transferred to the promiscuous channel until
overrun. The appropriate overrun statistic(s) is incremented and the OVERRUN
and NOMATCH flags are set in the SOP buffer descriptor. Note that the
RXMAXLEN number of bytes cannot be reached for an overrun to occur (it would
be truncated and be a jabber or oversize).

1 0 Overrun frame filtered with the appropriate overrun statistic(s) incremented.

1 1 As much frame data as possible is transferred to the address match channel until
overrun. The appropriate overrun statistic(s) is incremented and the OVERRUN
flag is set in the SOP buffer descriptor. Note that the RXMAXLEN number of bytes
cannot be reached for an overrun to occur (it would be truncated).

Packet Transmit Operation

2-39EMAC ModuleSPRU628A

2.6 Packet Transmit Operation

The transmit DMA is an eight channel interface. Priority between the eight
queues may be either fixed or round robin as selected by TXPTYPE bit in the
MACCONTROL register. If the priority type is fixed, then channel 7 has the
highest priority and channel 0 has the lowest priority. Round robin priority
proceeds from channel 0 to channel 7.

2.6.1 Transmit DMA Host Configuration

To configure the transmit DMA for operation the host must perform:

� Write the base address to the MACADDRH, MACADDRM, and
MACADDRLn registers (used for pause frames on transmit).

� Initialize the TXnHDP registers to zero.

� Enable the desired transmit interrupts using the TXINTMASKSET and
TXINTMASKCLEAR registers.

� Set the appropriate configuration bits in the MACCONTROL register.

� Enable the transmit DMA controller by setting the TXEN bit in the
TXCONTROL register.

� Setup the transmit buffer descriptors and write the appropriate TXnHDP
registers with the pointer to the first descriptor to start transmit operations.

2.6.2 Transmit Channel Teardown

The host commands a transmit channel teardown by writing the channel number
to the TXTEARDOWN register. When a teardown command is issued to an
enabled transmit channel, the following occurs:

� Any current frame in transmission completes normally.

� The TDOWNCMPLT flag is set in the next SOP buffer descriptor in the
chain, if there is one.

� The channel head descriptor pointer is cleared to 0.

� An interrupt is issued to inform the host of the channel teardown.

� The corresponding TXnINTACK register contains the value FFFF FFFCh.

� The host should acknowledge a teardown interrupt with an FFFF FFFCh
acknowledge value.

Packet Transmit Operation

EMAC Module2-40 SPRU628A

Channel teardown may be commanded on any channel at any time. The host
is informed of the teardown completion by the set teardown complete buffer
descriptor bit. The EMAC does not clear any channel enables due to a teardown
command. A teardown command to an inactive channel issues an interrupt
that software should acknowledge with an FFFF FFFCh acknowledge value
to TXnINTACK (note that there is no buffer descriptor in this case). Software
may read TXnINTACK to determine if the interrupt was due to a commanded
teardown. The read value is FFFF FFFCh, if the interrupt was due to a tear-
down command.

EMAC Module Interrupts

2-41EMAC ModuleSPRU628A

2.7 EMAC Module Interrupts

The EMAC control module combines different interrupt signals from both the
EMAC and MDIO modules and generates a single interrupt signal that is wired
to the DSP interrupt mux. Once this interrupt is generated, the reason for the
interrupt can be read from the MACINVECTOR register. MACINVECTOR
combines the following interrupt signals: TXPENDn, RXPENDn, STATPEND,
HOSTPEND, LINKINT, and USERINT.

The LINKINT and USERINT interrupt bits are associated with MDIO operation
and are explained in Chapter 3, MDIO Module.

2.7.1 Transmit and Receive Interrupts

When the EMAC completes the reception or transmission of a frame, the
EMAC writes the appropriate interrupt acknowledgement register (RXnINTACK
or TXnINTACK) with the address of the last buffer descriptor used for the trans-
fer of the frame data. The appropriate host interrupt pending (RXPENDn or
TXPENDn), is then issued if enabled by the interrupt mask. On an interrupt
from the EMAC, the host processes the buffer chain. When the host completes
the buffer chain processing, the host writes the address of the last processed
buffer descriptor to the appropriate interrupt acknowledge register. The host
write does not actually change the register value. The data written by the host
(buffer descriptor address of the last processed buffer) is compared to the data
in the register written by the EMAC (address of last buffer descriptor used by
the EMAC). If the two values are not equal, the channel pending interrupt
signal remains asserted; if the two values are equal, the pending interrupt is
cleared. The actual memory value is changed only by the EMAC. The value
that the EMAC is expecting can be found by reading RXnINTACK or TXnINTACK.

If the two values are not equal, the EMAC has received or transmitted more
frame(s) since the interrupt was issued, or the host did not process all buffers
in the chain that were available to be processed when the interrupt was issued,
so the pending interrupt remains asserted.

2.7.2 Statistics Interrupt

The statistics interrupt (STATPEND) is issued if enabled when any statistics
value is greater than or equal to 8000 0000h (if enabled by the STATINT bit in
the MACINTMASKSET register). The statistics interrupt is removed by writing
to decrement any statistics value greater than 8000 0000h. So long as the
most-significant-bit of any statistics value is set, the interrupt remains
asserted.

Receive and Transmit Latency

EMAC Module2-42 SPRU628A

2.7.3 Host Error Interrupt

The host error interrupt (HOSTPEND) is issued under any of several error
conditions, dealing with the handling of buffer descriptors. The failure of the
software application to supply properly formatted descriptors results in this
error. The error bit can only be cleared by resetting the EMAC module.

2.7.4 Proper Interrupt Processing

All the interrupts signaled from the EMAC module are level driven, so if they
remain active, their level remains constant; the DSP core requires edge-triggered
interrupts. In order to properly convert the level-driven interrupt signal to an
edge-triggered signal, the application software must make use of the interrupt
control logic contained in the EMAC control module.

Section 2.2.5, Interrupt Control, discusses the EWCTL register contained in
the EMAC control module. For safe interrupt processing, upon entry to the ISR,
the software application should disable interrupts using the EWCTL register,
and then reenable them upon leaving the ISR. If any interrupt signals are active
at that time, this creates another rising edge on the interrupt signal going to the
DSP interrupt mux, thus triggering another interrupt. The EWCTL register also
uses the EWINTTCNT register to implement interrupt pacing.

2.8 Receive and Transmit Latency

The transmit and receive FIFOs each contains three 64-byte cells. The EMAC
begins transmission of a packet on the wire after two FIFO cells, or a complete
packet, are available in the FIFO. Transmit underrun cannot occur for packet
sizes of 128 bytes or less. For larger packet sizes, transmit underrun can occur
if the memory latency is greater than 5.12 µs in 100 Mbit mode (51.2 µs in
10 Mbit mode). The memory latency is the time required to transmit the next
64-byte cell into the FIFO. The latency time includes any required buffer
descriptor reads for the cell data.

Receive overrun is prevented if the receive memory cell latency is 5.12 µs
maximum. The latency time includes any required buffer descriptor reads for
the cell data. Latency to DSP internal and external RAM can be controlled
through the use of the transfer node priority setting in the EMAC control
module. Latency to descriptor RAM is low because RAM is local to the EMAC,
as it is part of the EMAC control module.

EMAC Module Interrupts / Receive and Transmit Latency

3-1

MDIO Module

This chapter discusses the architecture and basic function of the MDIO module.
Although the entire feature set of the MDIO module is described here, the
feature set supported on each C6000 device may vary. Please see the
device-specific datasheet for a listing of supported MDIO features.

Topic Page

3.1 MDIO Introduction 3-2.

3.2 MDIO Module Components 3-2.

3.3 MDIO Module Operational Overview 3-4.

3.4 MDIO Module Interrupts 3-7.

Chapter 3

MDIO Introduction

MDIO Module3-2 SPRU628A

3.1 MDIO Introduction

The management data input/output (MDIO) module is used to manage up to
32 physical layer (PHY) devices connected to the ethernet media access con-
troller (EMAC). The MDIO module is designed to allow almost transparent
operation of the MDIO interface with little maintenance from the DSP.

The MDIO module continuously polls all 32 MDIO addresses in order to
enumerate all PHY devices in the system. Once a PHY device has been
selected by the DSP, the MDIO module reads the PHY status register to
monitor the PHY link state. Link change events are stored in the MDIO module,
which can interrupt the DSP. This storing of the events allows the DSP to poll
the link status of the PHY device without continuously performing MDIO
module accesses. However, when the DSP must access the MDIO module for
configuration and negotiation, the MDIO module performs the MDIO read or
write operation independent of the DSP. This independent operation allows the
DSP to poll for completion or interrupting the DSP once the operation has
completed.

3.2 MDIO Module Components

The MDIO module (Figure 3−1) interfaces to the outside world through two
MDIO pins (MDCLK and MDIO), and to the DSP core through the EMAC
control module. The MDIO module consists of the following logical components:

� MDIO clock generator
� Global PHY detection and link state monitoring
� Active PHY monitoring
� PHY register user access

Figure 3−1. MDIO Module Block Diagram

EMAC
control
module

Control
registers
and logic

PHY
monitoring

Peripheral
clock MDIO

clock
generator

INT
MDIO

interface

polling
PHY

MDCLK

MDIO

INT

MDIO Introduction / MDIO Module Components

MDIO Module Components

3-3MDIO ModuleSPRU628A

3.2.1 MDIO Clock Generator

The MDIO clock generator controls the MDIO clock based from a divide-down
of the peripheral clock (CPUclk/4) in the EMAC control module. The MDIO
clock is specified to run up to 2.5 MHz, although typical operation would be
1.0 MHz. Since the peripheral clock frequency is variable (CPU/4), the
application software or driver controls the divide-down amount.

3.2.2 Global PHY Detection and Link State Monitoring

The MDIO module continuously polls all 32 MDIO addresses in order to
enumerate all PHY devices in the system. The module tracks whether or not
a PHY on a particular address has responded, and whether or not the PHY
currently has a link. Using this information allows the software application to
quickly determine which MDIO address a PHY is using and when more than
one PHY is used in a system, quickly switch between PHYs based on their
current link status.

3.2.3 Active PHY Monitoring

Once a PHY candidate has been selected for use, the MDIO module transpar-
ently monitors its link state by reading the PHY status register. Link change
events are stored on the MDIO device and can optionally interrupt the DSP.
This allows the DSP to poll the link status of the device without continuously
performing costly MDIO accesses. Up to two PHY devices can be actively
monitored at any given time.

3.2.4 PHY Register User Access

When the DSP must access MDIO for configuration and negotiation, the PHY
access module performs the actual MDIO read or write operation independent
of the DSP. This allows the DSP to poll for completion or receive an interrupt
when the read or write operation has been performed. There are two user
access registers (USERACCESS0 and USERACCESS1), allowing the soft-
ware to submit up to two access requests simultaneously. (The requests are
processed sequentially.)

MDIO Module Operational Overview

MDIO Module3-4 SPRU628A

3.3 MDIO Module Operational Overview

The MDIO module implements the 802.3 serial management interface to
simultaneously interrogate and control up to two ethernet PHYs simulta-
neously using a shared two-wire bus. It separately performs autodetection and
records the current link status of up to 32 PHYs, polling all 32 MDIO addresses.

Host software uses the MDIO module to configure the autonegotiation param-
eters of the primary PHY attached to the EMAC, retrieve the negotiation
results, and configure required parameters in the EMAC.

Up to two ethernet PHYs can be directly controlled and queried. The Media
Independent Interface (MII) addresses of these two PHY devices are specified
in the PHYADDR bits of the USERPHYSELn register. The module can be
programmed to trigger a DSP interrupt on a PHY link change event, by setting
the LINKINTENB bit in USERPHYSELn.

Reads and writes to registers in these PHY devices is performed using the
USERACCESSn register.

The MDIO module powers up in an idle state until specifically enabled by set-
ting the ENABLE bit in the CONTROL register. At this time, the MDIO clock
divider and preamble mode selection is also configured. The MDIO preamble
can be disabled when none of the connected PHYs require it (it is enabled by
default).

Once the MDIO module is enabled, the MDIO interface state machine continu-
ously polls the PHY link status (by reading the Generic Status Register) of all
possible 32 PHY addresses and records the results in the ALIVE and LINK reg-
isters. The corresponding bit for each PHY (0−31) is set in the ALIVE register,
if the PHY responded to the read request; the bit is set in the LINK register, if
the PHY responded and also is currently linked. In addition, any PHY register
read transactions initiated by the application software using the USERACCESSn
register also causes the ALIVE register to be updated.

The link status of two of the 32 possible PHY addresses is tracked through the
use of the USERPHYSELn register. A change in the link status of the two PHYs
being monitored sets the appropriate bit in the LINKINTRAW and LINKINT-
MASKED registers, if enabled by the LINKINTENB bit in USERPHYSELn.

MDIO Module Operational Overview

3-5MDIO ModuleSPRU628A

While the MDIO module is enabled, the host can issue a read or write trans-
action over the MII management interface using the DATA, PHYADR,
REGADR, and WRITE bits in the USERACCESSn register. When the application
sets the GO bit in USERACCESSn, the MDIO module begins the transaction
without any further intervention from the DSP. Upon completion, the MDIO
module clears the GO bit and sets the MACn bit in the USERINTRAW register
corresponding to USERACCESSn used. The corresponding MACn bit in the
USERINTMASKED register may also be set, depending on the mask setting
configured in the USERINTMASKSET and USERINTMASKCLEAR registers.
A round-robin arbitration scheme is used to schedule transactions that may be
queued using both USERACCESS0 and USERACCESS1. The application
software must check the status of the GO bit in USERACCESSn before initiat-
ing a new transaction, to ensure that the previous transaction has completed.
The application software can use the ACK bit in USERACCESSn to determine
the status of a read transaction.

3.3.1 Initializing the MDIO Module

The following steps are performed by the application software or device driver
to initialize the MDIO device:

1) Configure the PREAMBLE and CLKDIV bits in the CONTROL register.

2) Enable the MDIO module by setting the ENABLE bit in the CONTROL register.

3) The ALIVE register can be read after a delay to determine which PHYs
responded, and the LINK register can determine which of those (if any)
already have a link.

4) Setup the appropriate PHY addresses in the USERPHYSELn register(s),
and set the LINKINTENB bit to enable a link change event interrupt is
desirable.

5) If an interrupt on general MDIO register access is desired, set the MACn
bit in the USERINTMASKSET register for the USERACCESSn register to
be used. If only one PHY is to be used, one of the USERACCESSn regis-
ters can be setup to trigger a completion interrupt and the other register
is not setup.

MDIO Module Operational Overview

MDIO Module3-6 SPRU628A

3.3.2 Writing Data to a PHY Register

The MDIO module includes a user access register (USERACCESSn) to directly
access a specified PHY device. To write a PHY register, perform the following:

1) Check to ensure that the GO bit in the USERACCESSn register is cleared.

2) Write to the GO, WRITE, REGADR, PHYADR, and DATA bits in USERAC-
CESSn corresponding to the PHY and PHY register you wish to write to.

3) The write operation to the PHY is scheduled and completed by the MDIO
module. Completion of the write operation can be determined by polling
the GO bit in USERACCESSn for a 0.

4) Completion of the operation sets the MACn bit in the USERINTRAW regis-
ter for the USERACCESSn used. If interrupts have been enabled on this
bit using the USERINTMASKSET register, then the bit is also set in the
USERINTMASKED register and an interrupt is triggered on the DSP.

3.3.3 Reading Data From a PHY Register

The MDIO module includes a user access register (USERACCESSn) to directly
access a specified PHY device. To read a PHY register, perform the following:

1) Check to ensure that the GO bit in the USERACCESSn register is cleared.

2) Write to the GO, REGADR, and PHYADR bits in USERACCESSn corre-
sponding to the PHY and PHY register you wish to read from.

3) The read data value is available in the data bits of USERACCESSn after
the module completes the read operation on the serial bus. Completion of
the read operation can be determined by polling the GO and ACK bits in
USERACCESSn. Once the GO bit has cleared, the ACK bit is set on a
successful read.

4) Completion of the operation sets the MACn bit in the USERINTRAW regis-
ter for the USERACCESSn used. If interrupts have been enabled on this
bit using the USERINTMASKSET register, then the bit is also set in the
USERINTMASKED register and an interrupt is triggered on the DSP.

MDIO Module Interrupts

3-7MDIO ModuleSPRU628A

3.4 MDIO Module Interrupts

The EMAC control module combines different interrupt signals from both the
EMAC and MDIO modules and generates a single interrupt signal that is wired
to the DSP interrupt mux. Once this interrupt is generated, the reason for the
interrupt can be read from the MACINVECTOR register in the EMAC. MACIN-
VECTOR combines the following interrupt signals: TXPENDn, RXPENDn,
STATPEND, HOSTPEND, LINKINT, and USERINT.

The TXPENDn, RXPENDn, STATPEND, and HOSTPEND interrupt bits are
associated with EMAC operation and are explained in Chapter 2, EMAC Module.

3.4.1 Link Change Interrupt

The MDIO module asserts a link change interrupt (LINKINT) if there is a
change in the link state of the PHY corresponding to the address in the PHYADDR
bits in the USERPHYSELn register and the LINKINTENB bit is also set in
USERPHYSELn. This interrupt event is also captured in the MACn bits of the
LINKINTRAW register. MAC0 and MAC1 correspond to USERPHYSEL0 and
USERPHYSEL1, respectively.

When the interrupt is enabled and generated, the corresponding MACn bit is
also set in the LINKINTMASKED register. The interrupt is cleared writing back
the same bit to LINKINTMASKED (write to clear).

3.4.2 User Access Completion Interrupt

When the GO bit in one of the USERACCESSn registers transitions from 1 to
0 (indicating completion of a user access) and the MACn bit in the USERINT-
MASKSET register corresponding to USERACCESS0 or USERACCESS1 is
set, a user access completion interrupt (USERINT) is asserted. This interrupt
event is also captured in the MACn bits of the USERINTRAW register. MAC0
and MAC1 correspond to USERACCESS0 and USERACCESS1, respectively.

When the interrupt is enabled and generated, the corresponding MACn bit is
also set in the USERINTMASKED register. The interrupt is cleared writing
back the same bit to USERINTMASKED (write to clear).

MDIO Module Interrupts

MDIO Module3-8 SPRU628A

3.4.3 Proper Interrupt Processing

All the interrupts signaled from the MDIO module are level driven, so if they
remain active, their level remains constant; the DSP core requires edge-triggered
interrupts. In order to properly convert the level-driven interrupt signal to an
edge-triggered signal, the application software must make use of the interrupt
control logic contained in the EMAC control module.

Section 2.2.5, Interrupt Control, discusses the EWCTL register contained in
the EMAC control module. For safe interrupt processing, upon entry to the ISR,
the software application should disable interrupts using the EWCTL register,
and then reenable them upon leaving the ISR. If any interrupt signals are active
at that time, this creates another rising edge on the interrupt signal going to the
DSP interrupt mux, thus triggering another interrupt. The EWCTL register also
uses the EWINTTCNT register to implement interrupt pacing.

4-1

Software Operation

This chapter discusses the software interface used to operate the EMAC and
MDIO modules. It describes in detail how to initialize and maintain Ethernet
operation in a software application or device driver.

The example code excerpts are taken from EMAC and MDIO Chip Support
Library (CSL) functions. The full source code that includes these examples
can be found in the CSL library source.

There are may different approaches in structuring an Ethernet software
applications or device driver. It is important to keep in mind that this chapter
documents the particular approach to programming the EMAC used by CSL,
and it is not intended to show the only possible methodology.

This chapter is broken down into the EMAC control module, EMAC module,
and MDIO module. The operation of these modules is described in Chapters 2
and 3. This chapter illustrates one software application approach based on
that information.

Topic Page

4.1 Module Function Overview 4-2.

4.2 Target Environment 4-3.

4.3 EMAC Control Module Operation 4-4.

4.4 MDIO Module Operation 4-6.

4.5 EMAC Module Operation 4-14.

Chapter 4

Module Function Overview

Software Operation4-2 SPRU628A

4.1 Module Function Overview

This section summarizes the function of each module.

4.1.1 EMAC Control Module

The EMAC control module is used for global reset control, global interrupt
enable, and to pace back to back interrupts using an interrupt retrigger count
based on the peripheral clock (CPUclk/4). There is also a register to configure
the priority of EMAC global memory accesses at the DSP�s transfer controller,
and a 4K block of RAM local to the EMAC that is used to hold packet buffer
descriptors.

Note that although the EMAC control module and the EMAC module have
slightly different functions, they are not distinguished from each other in the
CSL API. The CSL HAL and function libraries refer to both as EMAC. Also, in
practice, the type of maintenance performed on the EMAC control module is
more commonly conducted from the EMAC module software (as opposed to
the MDIO module).

4.1.2 EMAC Module

The EMAC module is used to send and receive Ethernet packets. This is done
by maintaining up to 8 transmit and receive descriptor queues. The EMAC
module configuration must also be kept up-to-date based on PHY negotiation
results returned from the MDIO module.

4.1.3 MDIO Module

The MDIO module is used to initially configure the external PHY device, moni-
tor the PHY, and relay any changes back to the software controlling the EMAC
module. The MDIO module software can be a simple implementation to
maintain one specific PHY or can maintain the status of multiple PHYs and
autoselect the best PHY for use at any given time.

Target Environment

4-3Software OperationSPRU628A

4.2 Target Environment

For the purposes of this example code in this chapter, some assumptions are
made about the target environment. These assumptions are based on most
commonly used configuration of the device (and actually go beyond the base
functionality of a device driver). The desired feature set of the target environ-
ment is listed below. This is not intended to represent all the potential features
of the EMAC system, but only those most commonly used in an application.

� The EMAC module uses a DSP interrupt for servicing transmit, receive,
and EMAC status.

� The MDIO module uses a half-second polling loop to update PHY selection
and status monitoring.

� There can be one or more PHYs connected to the DSP (although only one
is in use at any given time).

� There is a single receive channel for unicast, broadcast, multicast, and
promiscuous packets.

� The driver will not receive any type error packets.

� There are eight transmit channels. These can be placed in round-robin or
fixed-priority mode. The mode is selected at run time.

EMAC Control Module Operation

Software Operation4-4 SPRU628A

4.3 EMAC Control Module Operation

The EMAC control module is used to reset the EMAC and MDIO modules, set-
up the memory access priority at the DSP transfer controller, and control
device interrupts. The EMAC control module registers are considered part of
the EMAC module, and its initialization is combined with that of the EMAC
module.

4.3.1 Initialization

The initialization of the EMAC control module consists of two parts:

� Configuration of the interrupt on the DSP.
� Initialization of the EMAC control module:

� Resetting the EMAC and MDIO modules (using EWCTL)
� Configuring the transfer node priority (using EWTRCTRL)
� Setting the interrupt pace count (using EWINTTCNT)
� Initializing the EMAC and MDIO modules.
� Enabling interrupts in the EMAC control module (using EWCTL)

The code to perform these actions may appear as in Figure 4−1.

The process of mapping the EMAC interrupts to one of the DSP�s interrupts
is done using the DSP interrupt mux. For details, see Interrupt Selector and
External Interrupts in the TMS320C6000 DSP Peripherals Overview Reference
Guide (SPRU190). The interrupt mux code for the EMAC is 11000b.

Once the interrupt is mapped to a DSP interrupt, general masking and
unmasking of the interrupt (to control reentrancy) should be done at the DSP
level by manipulating the DSP interrupt enable mask. The EMAC control
module control register (EWCTL) should only be used to enable and disable
interrupts from within the EMAC interrupt service routine (ISR). This is because
disabling and reenabling the interrupt in EWCTL also resets the interrupt pace
counter.

4.3.2 Monitoring

There is little monitoring that needs to be done on the EMAC control module.
The EMAC driver uses the EMAC control module internal RAM for its packet
buffer descriptors, and EWCTL and EMAC control module interrupt timer
count register (EWINTTCNT) are used to control interrupts and interrupt
pacing from within the EMAC ISR.

In the event of a fatal error condition, EWCTL can also be used to reset the
EMAC and/or MDIO module.

EMAC Control Module Operation

4-5Software OperationSPRU628A

Figure 4−1. EMAC Control Module Initialization Code

Uint32 tmpval;

/*
// Globally disable EMAC/MDIO interrupts in wrapper and put both
// EMAC and MDIO modules into reset
*/
EMAC_RSET(EWCTL, EMAC_FMKS(EWCTL, INTEN, DISABLE) |
 EMAC_FMKS(EWCTL, EMACRST, YES) |
 EMAC_FMKS(EWCTL, MDIORST, YES));

/* Wait about 100 cycles */
for(i=0; i<5; i++)
 tmpval = EMAC_RGET(EWCTL);

/* Leave EMAC/MDIO interrupts disabled and take both
 EMAC and MDIO modules out of reset */
EMAC_RSET(EWCTL, EMAC_FMKS(EWCTL, INTEN, DISABLE) |
 EMAC_FMKS(EWCTL, EMACRST, NO) |
 EMAC_FMKS(EWCTL, MDIORST, NO));

/* Wait about 100 cycles */
for(i=0; i<5; i++)
 tmpval = EMAC_RGET(EWCTL);

/* Set EMAC Priority to ”1”, allocation reqs ”3” */
EMAC_RSET(EWTRCTRL, 0x13);

/* Set Interrupt Timer Count (CPUclk/4) */
EMAC_RSET(EWINTTCNT, 1500);

/*
// Initialize MDIO and EMAC Module
*/

[Discussed Later in this document]

/* Enable global interrupt in wrapper */
EMAC_FSETS(EWCTL, INTEN, ENABLE);

MDIO Module Operation

Software Operation4-6 SPRU628A

4.4 MDIO Module Operation

The MDIO module is used to configure and monitor one or more PHY devices
that are connected to the EMAC module.

The software described is written to be a stand-alone module that acts as a
slave to the EMAC software. After being initially configured, the MDIO software
is entirely autonomous. Changes in PHYs or PHY link state are communicated
back to the EMAC module as a return value from the MDIO event processor.
The EMAC module can then retrieve the current MDIO state by calling a status
function.

This section is not intended to be a primer on PHYs nor PHY control registers.
It is intended to document the operation of the MDIO hardware module. It is
assumed you have some knowledge of PHY operation. See your PHY device
documentation for more information on PHY control registers.

4.4.1 Initialization

Other than initializing the software state machine (that is beyond the scope of
this document), all that needs to be done for the MDIO module is to enable the
MDIO engine and to configure the clock divider. To set the clock divider, supply
an MDIO clock of 1 MHz. Since the base clock used is the peripheral clock
(CPUclk/4), the divider can be set to 150 for a 600 MHz device, with the slower
MDIO clocks for slower CPU frequencies being perfectly acceptable.

Both the state machine enable and the MDIO clock divider are both controlled
through the MDIO control register (CONTROL). If none of the potentially
connected PHYs require the access preamble, the PREAMBLE bit can also
be set in CONTROL to speed up PHY register access. The code for this may
appear as in Figure 4−2.

Figure 4−2. MDIO Module Initialization Code

#define PCLK 150

...

/* Enable MDIO and setup divider */
MDIO_RSET(CONTROL, MDIO_FMKS(CONTROL,ENABLE,YES) |
 MDIO_FMK(CONTROL,CLKDIV,PCLK));

If the MDIO module is to operate on an interrupt basis, the interrupts can be
enabled at this time using the USERINTMASKSET register for register access
and the USERPHYSELn register if a target PHY is already known.

MDIO Module Operation

4-7Software OperationSPRU628A

However, to run the software state machine, a real-time-based timer event is
required. For this example, the entire MDIO software engine is powered off a
0.5-second timer. Also, the software autoselects a PHY to use so that the PHY
address on the MDIO bus does not have to be specified at run time.

4.4.2 Selecting and Configuring a PHY

Once the MDIO state machine has been enabled, it starts polling all 32 PHY
addresses on the MDIO bus, looking for active PHYs. Since this can take up
to 50 us to read one register, it can be some time before the MDIO state
machine provides an accurate representation of all the PHYs available. Also,
a PHY can take up to 3 seconds to negotiate a link. Thus, it is advisable to run
the MDIO software off a time-based event rather than polling.

4.4.2.1 PHY Search

The code in Figure 4−3 is run when the software state machine is in its initiali-
zation state. It reads the MDIO PHY alive indication register (ALIVE) to get a
representation of the PHYs that are currently present on the MDIO bus. Over
time, the value of this register can change. Thus, the software must reread the
ALIVE register whenever it needs to find a new PHY.

If the corresponding bit is set in the ALIVE register, this code attempts to
initialize the PHY based on the input configuration. If the configuration was
successful, the PHY search halts while the software state machine waits for
a link indication on the target PHY.

Figure 4−3. PHY Search Code

// Try the next PHY if anything but a MDIOINIT condition
ltmp1 = MDIO_RGET(ALIVE);
for(tmp1=0; tmp1<32; tmp1++)
{
 if(ltmp1 & (1<<pd−>phyAddr))
 {
 if(EMIMDIO_initPHY(pd, pd−>phyAddr))
 break;
 }

 if(++pd−>phyAddr == 32)
 pd−>phyAddr = 0;
}

MDIO Module Operation

Software Operation4-8 SPRU628A

4.4.2.2 Initial PHY Configuration

The code in Figure 4−3 calls a software function named EMIMDIO_initPHY().
This function initializes the PHY and the software state machine. An edited
portion of the code is shown in Figure 4−4. The basic process in PHY initial
configuration is:

1) Write to the control register all other active PHY devices (determined by
reading the ALIVE register) to isolate them from the MII bus. Although
multiple PHYs can share the MDIO bus, they can not share the MII bus.

2) Write to the control register on the target PHY to reset. Wait and verify that
the reset completes. This verifies that the PHY is truly alive.

3) Read the PHY�s capabilities from the PHY status register. Select auto-
negotiation or fix a PHY configuration based on the PHY�s ability and the
your preference.

4) Begin waiting for negotiation to complete, or a link condition.

MDIO Module Operation

4-9Software OperationSPRU628A

Figure 4−4. PHY Initial Configuration Code

Uint16 tmp1,tmp2;
Uint32 ltmp1;
uint i;

/* Shutdown all other PHYs */
ltmp1 = MDIO_RGET(ALIVE);
for(i=0; ltmp1; i++,ltmp1>>=1)
{

if((ltmp1 & 1) && (i != phyAddr))
{

PHYREG_write(PHYREG_CONTROL, i, PHYREG_CONTROL_ISOLATE |
 PHYREG_CONTROL_POWERDOWN);
PHYREG_wait();

}
}

/* Reset the PHY we plan to use */
PHYREG_write(PHYREG_CONTROL, phyAddr, PHYREG_CONTROL_RESET);
PHYREG_wait();

/* Wait for reset to go low (but not forever) */
for(i=0; i<5000; i++)
{

PHYREG_read(PHYREG_CONTROL, phyAddr);
PHYREG_waitResults(tmp1);
if(!(tmp1 & PHYREG_CONTROL_RESET))
 break;

}
if(i == 5000)

return(0);

/* Read the STATUS reg to check autonegotiation capability */
PHYREG_read(PHYREG_STATUS, phyAddr);
PHYREG_waitResults(tmp1);

/* See if we auto-neg or not */
if((pd−>ModeFlags & EMIMDIO_MODEFLG_AUTONEG) &&
 (tmp1 & PHYREG_STATUS_AUTOCAPABLE))
{

/* We will use NWAY */
/* We then “wait” for negotiation to complete */

}
else
{

/* We will use a fixed configuration */
/* We then “wait” for a link indication */

}

return(1);

MDIO Module Operation

Software Operation4-10 SPRU628A

4.4.3 Negotiation Results and Link Indication

Once a PHY has been configured and is either awaiting negotiation or link
status, the same state machine checks the status at any given point. The
negotiation wait state simply waits for the PHY negotiation to complete. Once
this is done, the results of the negotiation are saved and the software state
machine enters the link wait state.

The link wait software state just waits for a good link indication from the PHY.
This is done by reading the PHY control register. Note that at all times, the
MDIO hardware is polling the link state of all PHY devices. The current link
state is stored in the MDIO PHY link status register (LINK). The software
process for establishing links is:

1) Verify a good link by both reading the PHY status register and by examin-
ing the LINK register.

2) Setup to monitor the target PHY using the USERPHYSELn register. This
enables tracking of any link state changes using the LINKINTRAW register.
Even when polling, it is not possible to miss a link change event.

3) Clear any previously pending LINKINTRAW bit. No race condition, since
link would have to go down and comeback up between these two opera-
tions. Since it takes thousands of CPU cycles to read the PHY, it can not
happen.

4) Begin periodic polling of the LINKINTRAW and LINK registers to look for
further link changes. There is no need to access the PHY directly from this
point forward.

5) On a timeout, begin using the ALIVE register to select a PHY candidate.

The code in Figure 4−5 performs this operation using USERPHYSEL0.

MDIO Module Operation

4-11Software OperationSPRU628A

Figure 4−5. Link Indication Code

/* Read the STATUS reg to check for ”link” */
PHYREG_read(PHYREG_STATUS, pd−>phyAddr);
PHYREG_waitResults(tmp1);
if(!(tmp1 & PHYREG_STATUS_LINKSTATUS))
 goto CheckTimeout;

/* Make sure we’re linked in the MDIO module as well */
ltmp1 = MDIO_RGET(LINK);
if(!(ltmp1&(1<<pd−>phyAddr)))
 goto CheckTimeout;

/* Start monitoring this PHY */
MDIO_RSET(USERPHYSEL0, pd−>phyAddr);

/* Clear the link change flag so we can detect a ”re−link” later */
MDIO_RSET(LINKINTRAW, 1);

4.4.4 Monitoring (Event Processing)

The MDIO software module from which the code examples are taken is written
such that a central event function handles all parts of the PHY operation. This
event function is called every half second. When in the �linked� software state,
the only operation to be performed is to check the status of the LINKINTRAW
register for link status changes. When the LINKINTRAW register indicates a
change of status or the LINK register indicates no current link, the following
operations are performed:

1) If using autonegotiation and the link is currently down, then restart negoti-
ation; otherwise, reread negotiation results.

2) Wait for negotiation results when appropriate, or just wait for link.

3) (Execute the same code as in section 4.4.3).

The code in Figure 4−6 performs this operation. Most of the actions taken on
a link change event is executed by code from section 4.4.3.

MDIO Module Operation

Software Operation4-12 SPRU628A

Figure 4−6. Link Status Monitoring Code

/*
// Here we check for a ”link-change” status indication or a link
// down indication.
*/
ltmp1 = MDIO_RGET(LINKINTRAW) & 1;
MDIO_RSET(LINKINTRAW, ltmp1);
if(ltmp1 || !(MDIO_RGET(LINK)&(1<<pd−>phyAddr)))
{

/*
// There has been a change in link (or it is down)
// If we do not auto-neg, then we just wait for a new link
// Otherwise, we enter NWAYSTART or NWAYWAIT
*/

/* If not NWAY, just wait for link */
if(!(pd−>ModeFlags & EMIMDIO_MODEFLG_NWAYACTIVE))

pd−>phyState = PHYSTATE_LINKWAIT;
else
{

/* Handle NWAY condition */

/* First see if link is really down */
PHYREG_read(PHYREG_STATUS, pd−>phyAddr);
PHYREG_wait();
PHYREG_read(PHYREG_STATUS, pd−>phyAddr);
PHYREG_waitResults(tmp1);
if(!(tmp1 & PHYREG_STATUS_LINKSTATUS))
{

/* No Link − restart NWAY */
pd−>phyState = PHYSTATE_NWAYSTART;

PHYREG_write(PHYREG_CONTROL, pd−>phyAddr,
 PHYREG_CONTROL_AUTONEGEN |
 PHYREG_CONTROL_AUTORESTART);

PHYREG_wait();
}
else
{
/* We have a Link − re-read NWAY params */
pd−>phyState = PHYSTATE_NWAYWAIT;
}

}
}

MDIO Module Operation

4-13Software OperationSPRU628A

4.4.5 MDIO Register Access

All of the routines previously described use the MDIO module to access PHY
control registers. This is done by using the USERACCESSn register. This
register access process is described in sections 3.3.2 and 3.3.3. The software
functions that implement the access process are four macros:

� PHYREG_read(regadr, phyadr) − start the process of reading a PHY
register

� PHYREG_write(regadr, phyadr, data) − start the process of writing a PHY
register

� PHYREG_wait() − synchronize operation (make sure read/write is idle)

� PHYREG_waitResults(results) − wait for read to complete and return
data read

Note that it is not necessary for a wait after a write operation, as long as the
status is checked before every operation to make sure the MDIO hardware is
idle. An alternative approach is to call PHYREG_wait() after every write, and
PHYREG_waitResults() after every read, then the hardware can be assumed
to be idle when starting a new operation.

The macros are defined in Figure 4−7 (USERACCESS0 is assumed).

Note that the ACK bit is not checked on PHY register reads (does not follow
the procedure outlined in section 3.3.3). Since the ALIVE register is used to
initially select a PHY, it is assumed that the PHY is acknowledging read opera-
tions. It is possible that a PHY could become inactive at a future point in time.
An example of this would be a PHY than can have its MDIO addresses
changed while the system is running. Not very likely, but this condition can be
tested by periodically checking the PHY state in the ALIVE register.

EMAC Module Operation

Software Operation4-14 SPRU628A

Figure 4−7. MDIO Register Access Macros

#define PHYREG_read(regadr, phyadr) \
MDIO_RSET(USERACCESS0, \

MDIO_FMK(USERACCESS0,GO,1u) | \
MDIO_FMK(USERACCESS0,REGADR,regadr) | \
MDIO_FMK(USERACCESS0,PHYADR,phyadr))

#define PHYREG_write(regadr, phyadr, data) \
MDIO_RSET(USERACCESS0, \

MDIO_FMK(USERACCESS0,GO,1u) | \
MDIO_FMK(USERACCESS0,WRITE,1) | \
MDIO_FMK(USERACCESS0,REGADR,regadr) | \
MDIO_FMK(USERACCESS0,PHYADR,phyadr) | \
MDIO_FMK(USERACCESS0,DATA, data))

#define PHYREG_wait() \
while(MDIO_FGET(USERACCESS0,GO))

#define PHYREG_waitResults(results) \
while(MDIO_FGET(USERACCESS0,GO)); \
results = MDIO_FGET(USERACCESS0,DATA)

4.5 EMAC Module Operation

The EMAC module is used to send and receive data packets over the network.
Most of the work in developing an application or device driver for Ethernet is
programming this module. The software described is written to implement a
basic Ethernet driver. The code is straight forward and non-reentrant. It is
assumed that all reentrancy exclusion methods are handled external to this
module.

4.5.1 Initialization

The following the initialization procedure to get the EMAC to the state where
it is ready to receive and send Ethernet packets. Some of these steps are not
necessary when performed immediately after device reset.

1) If enabled, clear the device interrupt enable in EWCTL.

2) Clear the MACCONTROL, RXCONTROL, and TXCONTROL registers
(not necessary immediately after reset).

3) Initialize all 16 HDP registers (RXnHDP and TXnHDP) to 0.

4) Clear all 36 statistics registers by writing 0 (not necessary immediately
after reset).

MDIO Module Operation / EMAC Module Operation

EMAC Module Operation

4-15Software OperationSPRU628A

5) Setup the local Ethernet MAC address by programming the
MACADDRLn, MACADDRM, and MACADDRH registers. Be sure to
program all eight MAC addresses � whether the receive channel is to be
enabled or not. Duplicate the same MAC address across all unused
channels. When using more than one receive channel, start with
channel 0 and progress upwards. Write all MACADDRLn values first, then
MACADDRM and MACADDRH.

6) Initialize the RXnFREEBUFFER, RXnFLOWTHRESH, and RXFILTER-
LOWTHRESH registers, if flow control is to be enabled (not used here).

7) Most device drivers open with no multicast addresses, so clear
MACHASH1 and MACHASH2 registers to 0.

8) Write the RXBUFFEROFFSET register value (typically zero).

9) Initially clear all unicast channels by writing FFh to the RXUNICAST-
CLEAR register. If unicast is desired, it can be enabled now by writing the
RXUNICASTSET register. Some drivers will default to unicast on device
open while others will not.

10) Setup the RXMBPENABLE register with an initial configuration. The con-
figuration is based on the current receive filter settings of the device driver.
Some drivers may enable things like broadcast and multicast packets
immediately, while others may not.

11) Set the appropriate configuration bits in the MACCONTROL register (do
not set the MIIEN bit).

12) Clear all unused channel interrupt bits by writing RXINMASKCLEAR and
TXINTMASKCLEAR.

13) Enable the receive and transmit channel interrupt bits in RXINTMASKSET
and TXINTMASKSET for the channels to be used, and enable the
HOSTERRINT and STATINT bits using the MACINTMASKSET register.

14) Initialize the receive and transmit descriptor list queues. There is an infinite
number of way this can be done using the 4K descriptor memory block
contained in the EMAC control module. One particular method is detailed
later in this chapter.

15) Prepare receive by writing a pointer to the head of the receive buffer des-
criptor list to RXnHDP. In this example we use only RX0HDP.

16) Enable the receive and transmit DMA controllers by setting the RXEN bit
in the RXCONTROL register and the TXEN bit in the TXCONTROL regis-
ter. Then set the MIIEN bit in MACCONTROL.

17) Enable the device interrupt in EWCTL.

EMAC Module Operation

Software Operation4-16 SPRU628A

The code in Figure 4−8 implements the initialization steps. Some simplifica-
tions have been made, but the full source code to the Ethernet module is avail-
able in the Chip Support Library (CSL).

Figure 4−8. EMAC Module Initialization Code

/*
// Disable receive, transmit, and clear MACCONTROL
// This is not really necessary if we assume EMAC was just reset
*/
EMAC_FSETS(TXCONTROL, TXEN, DISABLE);
EMAC_FSETS(RXCONTROL, RXEN, DISABLE);
EMAC_RSET(MACCONTROL, 0);

/* Must manually init HDPs to NULL */
pRegAddr = EMAC_ADDR(TX0HDP);
for(i=0; i<8; i++)
 *pRegAddr++ = 0;
pRegAddr = EMAC_ADDR(RX0HDP);
for(i=0; i<8; i++)
 *pRegAddr++ = 0;

/*
// While MIIEN is clear in MACCONTROL, we can write directly to
// the statistics registers (there are 36 of them).
*/
pRegAddr = EMAC_ADDR(RXGOODFRAMES);
for(i=0; i<36; i++)
 *pRegAddr++ = 0;

/* Setup device MAC address */
pRegAddr = EMAC_ADDR(MACADDRL0);
for(i=0; i<8; i++)
 *pRegAddr++ = localDev.Config.MacAddr[5];
EMAC_RSET(MACADDRM, localDev.Config.MacAddr[4]);
tmpval = 0;
for(i=3; i>=0; i−−)
 tmpval = (tmpval<<8) | localDev.Config.MacAddr[i];
EMAC_RSET(MACADDRH, tmpval);

/* Clear multicast hash bits */
EMAC_RSET(MACHASH1, 0);
EMAC_RSET(MACHASH2, 0);

/* For us buffer offset will always be zero */
EMAC_RSET(RXBUFFEROFFSET, 0);

/* Clear Unicast receive on channel 0−7 */
EMAC_RSET(RXUNICASTCLEAR, 0xFF);

/* Reset receive (M)ulticast (B)roadcast (P)romiscuous Enable register */
EMAC_RSET(RXMBPENABLE, 0);

EMAC Module Operation

4-17Software OperationSPRU628A

Figure 4−8. EMAC Module Initialization Code (Continued)

/* Set the pass receive CRC mode and adjust max buffer accordingly */
if(localDev.Config.ModeFlags & EMI_CONFIG_MODEFLG_RXCRC)
{
 EMAC_FSETS(RXMBPENABLE, RXPASSCRC, INCLUDE);
 localDev.PktMTU = 1518;
}
else
 localDev.PktMTU = 1514;

/* Set the channel configuration to priority if requested */
if(localDev.Config.ModeFlags & EMI_CONFIG_MODEFLG_CHPRIORITY)
 EMAC_FSETS(MACCONTROL, TXPTYPE, CHANNELPRI);

/*
// Enable transmit and receive channel interrupts (set mask bits)
// We only ever use on receive channel, but up to 8 transmit channels
// Enable Host interrupts
*/
EMAC_RSET(RXINTMASKCLEAR, 0xFF);
EMAC_RSET(TXINTMASKCLEAR, 0xFF);
EMAC_RSET(RXINTMASKSET, 1);
for(i=0; i<localDev.Config.TxChannels; i++)
EMAC_RSET(TXINTMASKSET, (1<<i));
EMAC_RSET(MACINTMASKSET, EMAC_FMK(MACINTMASKSET,HOSTERRINT,1) |
 EMAC_FMK(MACINTMASKSET,STATINT,1));

/*
// Setup Receive Buffers and Transmit Buffers
*/

[Discussed Later in this document]

/* Prepare receive */
EMAC_RSET(RX0HDP, (Uint32)localDev.RxCh.pDescRead);

/*
// Enable receive, transmit, and MII
*/
EMAC_FSETS(TXCONTROL, TXEN, ENABLE);
EMAC_FSETS(RXCONTROL, RXEN, ENABLE);
EMAC_FSETS(MACCONTROL, MIIEN, ENABLE);

/* Enable global interrupt in control module */
EMAC_FSETS(EWCTL, INTEN, ENABLE);

EMAC Module Operation

Software Operation4-18 SPRU628A

4.5.2 Configuration

The example code given in the previous section assumes that the EMAC is
being initialized in a (mostly) idle state, and that it can not receive any type of
Ethernet packet (unicast, broadcast, or multicast) in its default state. The soft-
ware interface from which the example code is taken provides two functions
to configure packet reception, setReceiveFilter() and setMulticast().

4.5.2.1 Setting the Receive Filter

There are two approaches to a receive filter in an Ethernet device driver. One
approach is to treat unicast, broadcast, and multicast packets as all individual
entities. The second approach is to treat each receive level as being inclusive
of the previous level. This example takes the second approach.

Regardless of the software approach, to control unicast, broadcast, multicast,
and promiscuous operations, the RXUNICASTSET, RXUNICASTCLEAR,
RXMBPENABLE, and MACHASHn registers are used.

This code example assumes a filer value set as follows. Each successive filter
is includes the previous, so the effect is cumulative:

#define EMI_RXFILTER_NOTHING 0 /* Receive nothing */
#define EMI_RXFILTER_DIRECT 1 /* Receive unicast packets */
#define EMI_RXFILTER_BROADCAST 2 /* Above plus broadcast packets */
#define EMI_RXFILTER_MULTICAST 3 /* Above plus specified multicast */
#define EMI_RXFILTER_ALLMULTICAST 4 /* Above plus all multicast */
#define EMI_RXFILTER_ALL 5 /* Any non-error packet */

The code to set the filter setting (stored in the variable ReceiveFilter) is
shown in Figure 4−9. The logic is to disable anything that is not set, and then
enable anything that is set. When receiving a specified list of multicast
addresses, the bits representing the specified list are stored in
pd−>MacHash1 and pd−>MacHash2. The code to calculate these values is
discussed in the next section.

EMAC Module Operation

4-19Software OperationSPRU628A

Figure 4−9. Setting the Receive Filter Code

/*
// The following code relies on the numeric relation of the filter
// value such that the higher filter values receive more types of
// packets.
*/

/* Disable Section */
if(ReceiveFilter < EMI_RXFILTER_ALL)
 EMAC_FSETS(RXMBPENABLE, RXCAFEN, DISABLE);
if(ReceiveFilter < EMI_RXFILTER_ALLMULTICAST)
{
 EMAC_RSET(MACHASH1, pd−>MacHash1);
 EMAC_RSET(MACHASH2, pd−>MacHash2);
}
if(ReceiveFilter < EMI_RXFILTER_MULTICAST)
 EMAC_FSETS(RXMBPENABLE, MULTEN, DISABLE);
if(ReceiveFilter < EMI_RXFILTER_BROADCAST)
 EMAC_FSETS(RXMBPENABLE, BROADEN, DISABLE);
if(ReceiveFilter < EMI_RXFILTER_DIRECT)
 EMAC_RSET(RXUNICASTCLEAR, 1);

/* Enable Section */
if(ReceiveFilter >= EMI_RXFILTER_DIRECT)
 EMAC_RSET(RXUNICASTSET, 1);
if(ReceiveFilter >= EMI_RXFILTER_BROADCAST)
 EMAC_FSETS(RXMBPENABLE, BROADEN, ENABLE);
if(ReceiveFilter >= EMI_RXFILTER_MULTICAST)
 EMAC_FSETS(RXMBPENABLE, MULTEN, ENABLE);
if(ReceiveFilter >= EMI_RXFILTER_ALLMULTICAST)
{
 EMAC_RSET(MACHASH1, 0xffffffff);
 EMAC_RSET(MACHASH1, 0xffffffff);
}
if(ReceiveFilter == EMI_RXFILTER_ALL)
 EMAC_FSETS(RXMBPENABLE, RXCAFEN, ENABLE);

pd−>RxFilter = ReceiveFilter;

4.5.2.2 Setting the Multicast List

Sometimes in a device driver, adding and removing addresses from a multi-
cast list can be a single entry at a time. In other device drivers or mini-drivers,
the multicast list is maintained by a parent driver or the application and always
passed down as a list as in this example.

EMAC Module Operation

Software Operation4-20 SPRU628A

The code in Figure 4−10 has a very specific function. It take a list of Ethernet
MAC addresses and for each address hashes it to calculate a bit to set in the
MACHASHn register to allow the EMAC to receive packets destined for that
address. The accumulated set of bits to set in MACHASH0 and MACHASH1
are stored in the variables pd−>MacHash1 and pd−>MacHash2 for use in the
setReceiveFilter() function.

In Figure 4−10, AddrCnt is the number of 6-byte MAC addresses in the
address list, and pMCastList is a pointer to a Uint8, pointing to a concate-
nated list of MAC addresses (each being 6 bytes in length).

Figure 4−10. Setting the Multicast List Code

Uint8 HashVal,tmpval;

/* Clear the hash bits */
pd−>MacHash1 = 0;
pd−>MacHash2 = 0;

/* For each address in the list, hash and set the bit */
for(tmp1=0; tmp1<AddrCnt; tmp1++)
{
 HashVal=0;

 for(tmp2=0; tmp2<2; tmp2++)
 {
 tmpval = *pMCastList++;
 HashVal ^= (tmpval>>2)^(tmpval<<4);
 tmpval = *pMCastList++;
 HashVal ^= (tmpval>>4)^(tmpval<<2);
 tmpval = *pMCastList++;
 HashVal ^= (tmpval>>6)^(tmpval);
 }

 if(HashVal & 0x20)
 pd−>MacHash2 |= (1<<(HashVal&0x1f));
 else
 pd−>MacHash1 |= (1<<(HashVal&0x1f));
}

/* We only write the hash table if the filter setting allows */
if(pd−>RxFilter < EMI_RXFILTER_ALLMULTICAST)
{
 EMAC_RSET(MACHASH1, pd−>MacHash1);
 EMAC_RSET(MACHASH2, pd−>MacHash2);
}

EMAC Module Operation

4-21Software OperationSPRU628A

4.5.3 Receive

The reception of Ethernet packets is performed through the use of a buffer
descriptor system where the application software or device driver describes
empty memory buffers to the EMAC to which Ethernet packet data can be
written. The buffer descriptor is a 16-byte memory structure that is stored in
a 4K-byte memory space contained in the EMAC control module. The EMAC
control module has space for up to 256 descriptors. You should be familiar with
the EMAC operational overview in section 2.3 and the detailed description of
the receive buffer descriptor fields in section 2.3.5.

There are a number of ways in which the descriptor memory contained in the
EMAC control module can be managed. One option would be to write a
memory allocation system where 16-byte descriptors are allocated and freed
as needed, so that a descriptor may be used for an receive buffer at one point,
and then a totally different transmit buffer the next. Another option would be
to statically allocate packet buffers and permanently assign a descriptor slot
to each. This way, the descriptor�s pointer to the packet buffer would never
have to be updated.

The method used in this example code uses a third option. Here, the 256 des-
criptor slots available in the control module are divided in an arbitrary method
where each receive or transmit channel has its own set of descriptors. The
descriptor structure is:

/*
// Transmit/Receive Descriptor Channel Structure
*/
typedef struct _EMI_DescCh {
 struct _EMI_Device *pd; /* Pointer to parent structure */
 PKTQ DescQueue; /* Packets queued as desc */
 PKTQ WaitQueue; /* Packets waiting for transmit desc */
 uint ChannelIndex; /* Channel index 0−7 */
 uint DescMax; /* Max number of desc (buffers) */
 uint DescCount; /* Current number of desc */
 EMAC_Desc *pDescFirst; /* First desc location */
 EMAC_Desc *pDescLast; /* Last desc location */
 EMAC_Desc *pDescRead; /* Location to read next desc */
 EMAC_Desc *pDescWrite; /* Location to write nest desc */
} EMI_DescCh;

For a receive channel, each descriptor refers to a fixed length buffer that is
always at least 1514 or 1518 bytes in length (depending on whether CRC is
included in the data or not). Thus each descriptor represents one packet.
There is a fixed number of descriptors and that number represents the maxi-
mum number of packets that can be received before the receive interrupt
needs to be serviced.

EMAC Module Operation

Software Operation4-22 SPRU628A

Figure 4−11 illustrates some of the descriptor fields. Each receive channel has
a fixed number of slots. When a packet is received and handed over to the soft-
ware for processing, a fresh empty buffer is pulled from a central pool, and the
descriptor slot is reused to point to the new buffer. The DescQueue field in the
structure is a queue of physical packet buffers (in DSP memory) that are
current being �described� by the descriptor list. Since there is no queue of free
buffers for any given receive channel (other than those already contained in
the descriptor list), the WaitQueue is not used.

The descriptors are tracked via the variables, pDestFirst, pDestLast,
pDescRead, and pDescWrite. The pDescFirst and pDescLast pointers
just point to the first and last descriptors in the fixed circular queue. These
never change. The pDescRead pointer points to the next descriptor buffer that
may contain a new packet received from the network. The pDescWrite point-
er points to the descriptor to use when adding the next empty buffer to the
queue.

Figure 4−11.Receive Descriptor Linked List

SOP | EOP 1024

0 1024

pBuffer

pNext

0

SOP | EOP
packet

Received
600

600

pBuffer

pNext

(600 bytes)

OWNER

0

0

OWNER

Empty
buffer

1514

pBuffer

−−−

1514

pNext (NULL)

−−−

pBuffer

pNext

Empty
buffer

packet
Received

(1024 bytes)

�pDescFirst�

�pDescWrite�

�pDescRead�

�pDescLast�

EMAC Module Operation

4-23Software OperationSPRU628A

In Figure 4−11, there are four descriptors allocated to the receive channel. Of
these, only three descriptors are in use. One of the descriptors has already
received a packet that has been handed up to the software. This descriptor is
current not in use. The next descriptor has received a packet, but has not been
serviced yet by the software. The final two descriptors point to empty data buff-
ers and are waiting to receive packet data from the EMAC.

In practice, the software always tries to keep all descriptors pointing to empty
buffers. This allows the EMAC to run longer without being serviced and without
experiencing a packet overrun condition.

For servicing a receive channel, there are two basic functions. The first func-
tion is called EnqueueRx(). Its job is to fill all possible receive descriptor slots
so that they point to empty packet buffers. The second function is called
DequeueRx(). Its job is to pull buffers from the list that have received packet
data, and to update the corresponding descriptor so that is points to a new
empty buffer.

It is helpful to consider the how packet buffers are represented in the code. The
example code in Figure 4−12 uses a structure of type EMI_Pkt to define a
packet. This structure has little to do with the EMAC hardware, but must be
understood to follow the software examples. The structure and its related flags
are defined below. Note that it is significantly similar to the descriptor format.

EMAC Module Operation

Software Operation4-24 SPRU628A

Figure 4−12. Receive Packets Example Code

typedef struct _EMI_Pkt {
 struct _EMI_Pkt *pPrev; /* Previous record */
 struct _EMI_Pkt *pNext; /* Next record */
 Uint8 *pDataBuffer; /* Pointer to Data Buffer */
 Uint32 BufferLen; /* Phys Length of buffer (read only) */
 Uint32 Flags; /* Packet Flags */
 Uint32 ValidLen; /* Length of valid data in buffer */
 Uint32 DataOffset; /* Byte offset to valid data */
 Uint32 PktChannel; /* Transmit Channel/Priority 0−7 (SOP only)*/
 Uint32 PktLength; /* Length of Packet (SOP only) */
 Uint32 PktFrags; /* Num frags in packet (SOP only) */
 } EMI_Pkt;

/*
// Packet Buffer Flags set in Flags
*/
#define EMI_PKT_FLAGS_SOP 0x80000000u /* Start of packet */
#define EMI_PKT_FLAGS_EOP 0x40000000u /* End of packet */

/*
// The Following Packet flags are set in Flags on receive packets only
*/
#define EMI_PKT_FLAGS_HASCRC 0x04000000u /* RxCrc: PKT has 4byte CRC*/
#define EMI_PKT_FLAGS_JABBER 0x02000000u /* RxErr: Jabber */
#define EMI_PKT_FLAGS_OVERSIZE 0x01000000u /* RxErr: Oversize */
#define EMI_PKT_FLAGS_FRAGMENT 0x00800000u /* RxErr: Fragment */
#define EMI_PKT_FLAGS_UNDERSIZED 0x00400000u /* RxErr: Undersized */
#define EMI_PKT_FLAGS_CONTROL 0x00200000u /* RxCtl: Control Frame */
#define EMI_PKT_FLAGS_OVERRUN 0x00100000u /* RxErr: Overrun */
#define EMI_PKT_FLAGS_CODEERROR 0x00080000u /* RxErr: Code Error */
#define EMI_PKT_FLAGS_ALIGNERROR 0x00040000u /* RxErr: Alignment Error */
#define EMI_PKT_FLAGS_CRCERROR 0x00020000u /* RxErr: Bad CRC */
#define EMI_PKT_FLAGS_NOMATCH 0x00010000u /* RxPrm: No Match */

EMAC Module Operation

4-25Software OperationSPRU628A

4.5.3.1 Enqueue Receive Descriptor Function

In an ideal system, the only call to an EnqueueRx() function would occur during
initialization. This is because part of the DequeueRx() function is to keep the
descriptor list full of pointers to empty buffers. However, at any given time, an
empty buffer may not be available, so one or more descriptor slots allocated
to an receive channel can become empty. This was shown in Figure 4−11 that
had one empty descriptor.

To fully understand the enqueue function, Figure 4−13 shows the code from
the initialization function that allocates descriptor slots to the one receive
channel and multiple transmit channels in the driver environment. Also, the
calls for EnqueueRx() to fill the descriptors with pointers to empty buffers is
shown.

In this code, the variable localDev.RxCh is a structure of type EMI_DescCh
described earlier.

Figure 4−13. Initialization Code That Allocates Descriptor Slots

/*
// Setup Receive Buffers
*/

/*
// We give the first descriptors to receive The rest of the descriptors
// will be divided evenly among the transmit channels. Odds are this
// will leave transmit with a very large number of transmit descriptors, but
// we’ll only use what we need (driven from the application send
// requests). The receive descriptors are always kept fully populated.
*/

/* Pointer to first descriptor to use on receive */
pDesc = (EMAC_Desc *)_EMAC_DSC_BASE_ADDR;

/* Number of descriptors for receive channel */
utemp1 = localDev.Config.RxMaxPktPool;

/* Init receive */
localDev.RxCh.pd = &localDev;
localDev.RxCh.DescMax = utemp1;
localDev.RxCh.pDescFirst = pDesc;
localDev.RxCh.pDescLast = pDesc + (utemp1 − 1);
localDev.RxCh.pDescRead = pDesc;
localDev.RxCh.pDescWrite = pDesc;

/* Fill the descriptor table */
EnqueueRx(&localDev.RxCh, 0);

EMAC Module Operation

Software Operation4-26 SPRU628A

The second calling parameter to EnqueueRx, is a flag indicating that the func-
tion is being called at initialization time, and it should not restart the receiver.
The only other time the function can be called if from a half second polling loop
(the same that drives the MDIO software state machine). This is done so that
if a buffer shortfall occurs, the system looks for new buffers every half second.

Now here is the enqueue function. The process for enqueuing a packet buffer
to the descriptor ring is:

1) If the descriptor set is not full, call an application callback to get a free pack-
et buffer.

2) If the packet buffer was obtained, get a pointer to the descriptor to fill from
pDescWrite and advance the pDescWrite pointer while bumping the
DescCount.

3) Fill in the descriptor with the pointer to the packet buffer. The size is fixed
at max packet size (1514 or 1518). Also set the OWNER flag in the
descriptor so that the EMAC knows it can use it.

4) Make the pNext pointer for the new descriptor NULL because it is always
the end of the list. Make the previous descriptor in the set point to the new
descriptor.

5) Push a structure pointer (handle) to the packet buffer (the thing the
descriptor points to) onto its own software queue. The software queue of
packet buffer handles is kept synchronized with the list of buffer descrip-
tors. Thus the packet buffer handle can be given back to the application
once a packet has been received into the buffer.

6) Return to step 1 until full or no more free buffers.

7) As a final step (if not called during initialization); if when the function was
called, all the receive descriptors were used, then the receive engine must
be stopped. If new descriptors have been added, then restart the receive
engine by posting the head of the descriptor list (pDescRead) to RX0HDP.

The source code to implement this function is shown in Figure 4−14.

EMAC Module Operation

4-27Software OperationSPRU628A

Figure 4−14. Enqueue Receive Descriptor Function Code

static void EnqueueRx(EMI_DescCh *pdc, uint fRestart)
{
 EMI_Pkt *pPkt;
 EMAC_Desc *pDesc;
 uint CountOrg;

 /* Keep the old count around */
 CountOrg = pdc−>DescCount;

 /* Fill receive Packets Until Full */
 while(pdc−>DescCount < pdc−>DescMax)
 {
 /* Get a buffer from the application */
 pPkt = (*localDev.Config.pfcbGetPacket)(pdc−>pd−>hApplication);

 /* If no more buffers are available, break out of loop */
 if(!pPkt) break;

 /* Fill in the descriptor for this buffer */
 pDesc = pdc−>pDescWrite;

 /* Move the write pointer and bump count */
 if(pdc−>pDescWrite == pdc−>pDescLast)
 pdc−>pDescWrite = pdc−>pDescFirst;
 else
 pdc−>pDescWrite++;
 pdc−>DescCount++;

 /* Supply buffer pointer with application supplied offset */
 pDesc−>pNext = 0;
 pDesc−>pBuffer = pPkt−>pDataBuffer + pPkt−>DataOffset;
 pDesc−>BufOffLen = localDev.PktMTU;
 pDesc−>PktFlgLen = EMAC_DSC_FLAG_OWNER;

 /* Make the previous buffer point to us */
 if(pDesc == pdc−>pDescFirst)
 pdc−>pDescLast−>pNext = pDesc;
 else
 (pDesc−1)−>pNext = pDesc;

 /* Push the packet buffer on the local descriptor queue */
 pqPush(&pdc−>DescQueue, pPkt);
 }

 /* Restart receive if we had ran out of descriptors and got some here */
 if(fRestart && !CountOrg && pdc−>DescCount)
 EMAC_RSET(RX0HDP, (Uint32)pdc−>pDescRead);
}

EMAC Module Operation

Software Operation4-28 SPRU628A

4.5.3.2 Dequeue Receive Descriptor Function

The DequeueRx() function is the more interesting of the two receive descrip-
tor-based functions. This function is to process new packets as they are
received by the EMAC, and keep the receive descriptor set always pointing to
fresh empty packet buffers.

To understand this function better, it is important to know what happens during
a device interrupt. The ISR code relating to the receive operation is:

/* Look for receive interrupt (channel 0) */
if(intflags & EMAC_FMK(MACINVECTOR, RXPEND, 1<<0))
{

Desc = EMAC_RGET(RX0INTACK);
EMAC_RSET(RX0INTACK, Desc);
DequeueRx(&pd−>RxCh, (EMAC_Desc *)Desc);

}

First, the RXPEND register is examined to determine which receive channels
have had new activity. In this code, only receive channel 0 is used. Next the
last descriptor to process can be read from RX0INTACK. This is also the regis-
ter we write the value of the last descriptor processed. Since the DequeueRx()
function processes all descriptors up to the one that it is passed, the receive
interrupt can be immediately acknowledged by writing the value back to the
RX0INTACK register. Finally the DequeueRx() function is called with a pointer
to the receive descriptor channel structure and a pointer to the last descriptor
to service.

The DequeueRx() function is shown in Figure 4−15. The functions it needs to
perform are:

1) The next descriptor to process is always available at the pDescRead
pointer. The flags for that descriptor are read. Also, the packet buffer that
corresponds to the descriptor is popped of the software queue.

2) The EMI_Pkt structure fields are filled in based of the information in the
buffer descriptor. If the driver is configured to receive error packets, then
the error bits are potentially set in the flags field as well.

3) A pointer to the completed EMI_Pkt structure is passed to the application
via a callback function. This function should return a pointer to an identical
structure containing a new empty buffer.

4) If this is the last descriptor to process (pDescRead == pDescAck), then
a flag is set to prevent the loop from executing again.

5) The pDescRead pointer is incremented and the DescCount is decremented.

EMAC Module Operation

4-29Software OperationSPRU628A

6) If the application did supply a new empty buffer, the buffer is added to the
next available descriptor as read from the pDescWrite pointer. Under
ideal circumstances, this will be the same descriptor that just contained
the received packet. However if there is a free buffer shortage, the read
and write pointers will not be synchronized.

7) Next the descriptor is initialized to point to the empty packet buffer. This
code is very similar to that described in section 4.5.3.1.

8) Continue until all the descriptors have been processed up to and including
that indicated by the caller (in this case the ISR).

9) As a final step, if the last descriptor processed had the
EMAC_DSC_FLAG_EOQ flag set in its flags field, this means that the
EMAC interpreted the descriptor as being the last in the descriptor chain
(its next pointer was NULL). This should not happen under normal opera-
tion, but can occur if the system runs out of receive buffer. Since the
receive engine stops on this descriptor, it can only happen on the last
descriptor to process. When the bit is set, and there are some free buffer
descriptors ready, then restart the receive engine by posting the head of
the descriptor list (pDescRead) RX0HDP.

The source code to implement this function is in Figure 4−15.

Figure 4−15. Dequeue Receive Descriptor Function Code

static void DequeueRx(EMI_DescCh *pdc, EMAC_Desc *pDescAck)
{
 EMI_Pkt *pPkt;
 EMI_Pkt *pPktNew;
 EMAC_Desc *pDesc;
 uint tmp;
 Uint32 PktFlgLen;

 /* Pop & Free Buffers ’till the last Descriptor */
 for(tmp=1; tmp;)
 {
 /* Get the status of this descriptor */
 PktFlgLen = pdc−>pDescRead−>PktFlgLen;

 /* Recover the buffer and free it */
 pPkt = pqPop(&pdc−>DescQueue);
 if(pPkt)
 {
 /* Fill in the necessary packet header fields */
 pPkt−>Flags = PktFlgLen & 0xFFFF0000;
 pPkt−>ValidLen = pPkt−>PktLength = PktFlgLen & 0xFFFF;
 pPkt−>PktChannel = 0;
 pPkt−>PktFrags = 1;

EMAC Module Operation

Software Operation4-30 SPRU628A

Figure 4−15. Dequeue Receive Descriptor Function Code (Continued)

 /* Pass the packet to the application */
 pPktNew = (*localDev.Config.pfcbRxPacket)
 (pdc−>pd−>hApplication,pPkt);
 }

 /* See if this was the last buffer */
 if(pdc−>pDescRead == pDescAck)
 tmp = 0;

 /* Move the read pointer and decrement count */
 if(pdc−>pDescRead == pdc−>pDescLast)
 pdc−>pDescRead = pdc−>pDescFirst;
 else
 pdc−>pDescRead++;
 pdc−>DescCount−−;

 /* See if we got a replacement packet */
 if(pPktNew)
 {
 /* We know we can immediately queue this packet */

 /* Fill in the descriptor for this buffer */
 pDesc = pdc−>pDescWrite;

 /* Move the write pointer and bump count */
 if(pdc−>pDescWrite == pdc−>pDescLast)
 pdc−>pDescWrite = pdc−>pDescFirst;
 else
 pdc−>pDescWrite++;
 pdc−>DescCount++;

 /* Supply buffer pointer with application supplied offset */
 pDesc−>pNext = 0;
 pDesc−>pBuffer = pPktNew−>pDataBuffer + pPktNew−>DataOffset;
 pDesc−>BufOffLen = localDev.PktMTU;
 pDesc−>PktFlgLen = EMAC_DSC_FLAG_OWNER;

 /* Make the previous buffer point to us */
 if(pDesc == pdc−>pDescFirst)
 pdc−>pDescLast−>pNext = pDesc;
 else
 (pDesc−1)−>pNext = pDesc;

 /* Push the packet buffer on the local descriptor queue */
 pqPush(&pdc−>DescQueue, pPktNew);
 }
 }
 /* If the receiver stopped and we have more descriptors, then restart */
 if((PktFlgLen & EMAC_DSC_FLAG_EOQ) && pdc−>DescCount)
 EMAC_RSET(RX0HDP, (Uint32)pdc−>pDescRead);
}

EMAC Module Operation

4-31Software OperationSPRU628A

4.5.4 Transmit

The transmission of Ethernet packets is performed through the use of a buffer
descriptor system where the application software or device driver describes
packet to send using one or more memory buffers descriptors. There is one
descriptor for each noncontiguous block of memory in the packet (packet frag-
ment). The buffer descriptor is a 16-byte memory structure that is stored in a
4K-byte memory space contained in the EMAC control module. The control
module has space for up to 256 descriptors. You should be familiar with the
EMAC operational overview in section 2.3 and the detailed description of the
transmit buffer descriptor fields in section 2.3.4.

As with the receive operation, there are a number of options for implementing
the transmit operation on the EMAC hardware. The example code described
here supports up to 8 different transmit channels. Each channel is allocated
a static number of buffer descriptor slots from the EMAC control module
memory block at initialization. The algorithm chosen for the example code is:

(256 less those required by receive) / number of transmit channels

Note that since a packet must fit entirely in the descriptor list in order to be sent,
the maximum number of packet fragments that make up a packet can not
exceed the total number of buffer descriptors allocated for a particular
channel. For example, in a system that uses 64 buffer slots for receive and has
eight transmit channels, each transmit channel would be allocated 24 buffer
descriptor slots. Thus a single packet in such an environment could not contain
more than 24 packet fragments. If only 2 transmit channels were used, each
would have 96 buffer descriptors available. In environments where a static
descriptor allocation does not yield acceptable results, a dynamic allocation
method can be used.

In practice, there are usually more transmit descriptor slots available that are
ever needed. However the software should be written to deal with transmit
descriptor slot shortfalls. It is not necessary to have the transmit descriptor list
as �deep� as receive because additional transmit packets can always be
queued in software. Worst case for transmit is that there is a small delay in
sending out the next packet, while the worst case for receive is a dropped
packet.

EMAC Module Operation

Software Operation4-32 SPRU628A

Each transmit channel has its own channel descriptor structure. The structure
is identical to that used for packet receive:

/*
// Transmit/Receive Descriptor Channel Structure
*/
typedef struct _EMI_DescCh {
 struct _EMI_Device *pd; /* Pointer to parent structure */
 PKTQ DescQueue; /* Packets queued as desc */
 PKTQ WaitQueue; /* Packets waiting for transmit desc */
 uint ChannelIndex; /* Channel index 0−7 */
 uint DescMax; /* Max number of desc (buffers) */
 uint DescCount; /* Current number of desc */
 EMAC_Desc *pDescFirst; /* First desc location */
 EMAC_Desc *pDescLast; /* Last desc location */
 EMAC_Desc *pDescRead; /* Location to read next desc */
 EMAC_Desc *pDescWrite; /* Location to write nest desc */
} EMI_DescCh;

For a transmit channel, each descriptor refers to a full packet or a partial a
packet (packet fragment). For each buffer descriptor, there is a corresponding
packet structure. The packet structures are kept in two queues. The Desc-
Queue represents packets or packet fragments that are already represented
by buffer descriptors in the channel. The WaitQueue is a queue of packet
structures that are waiting to be placed into buffer descriptors.

The descriptors are tracked using the variables, pDestFirst, pDestLast,
pDescRead, and pDescWrite. The pDescFirst and pDescLast pointers
just point to the first and last descriptors in the fixed circular queue; these never
change. The pDescRead pointer points to the next descriptor whose packet
buffer is the next to be sent out on the network. The pDescWrite pointer
points to the descriptor to use when adding the next packet to be transmitted.

It is helpful to consider the how packet buffers are represented in the code. The
example code in Figure 4−16 uses a structure of type EMI_Pkt to define a
packet. This structure has little to do with the EMAC hardware, but must be
understood to follow the software examples. The structure and its related flags
are defined below. Note that it is significantly similar to the descriptor format.

EMAC Module Operation

4-33Software OperationSPRU628A

Figure 4−16. Transmit Packets Example Code

typedef struct _EMI_Pkt {
 struct _EMI_Pkt *pPrev; /* Previous record */
 struct _EMI_Pkt *pNext; /* Next record */
 Uint8 *pDataBuffer; /* Pointer to Data Buffer */
 Uint32 BufferLen; /* Phys Length of buffer (read only) */
 Uint32 Flags; /* Packet Flags */
 Uint32 ValidLen; /* Length of valid data in buffer */
 Uint32 DataOffset; /* Byte offset to valid data */
 Uint32 PktChannel; /* transmit Channel/Priority 0−7 (SOP only)*/
 Uint32 PktLength; /* Length of Packet (SOP only) */
 Uint32 PktFrags; /* Num frags in packet (SOP only) */
 } EMI_Pkt;

/*
// Packet Buffer Flags set in Flags
*/
#define EMI_PKT_FLAGS_SOP 0x80000000u /* Start of packet */
#define EMI_PKT_FLAGS_EOP 0x40000000u /* End of packet */

4.5.4.1 Send Function

Since the packet send process starts with the send function, we need to under-
stand how the send function works in order to understand the rest. In some
applications or drivers, it may not be necessary to support fragmented pack-
ets. For example, some TCP/IP stacks will never build a packet for transmis-
sion that spans more than one memory buffer. However, since fragmented
packets are still somewhat common, the example software we show here does
support them.

The code in Figure 4−17 is taken from the packet send function in the example
code. Much of the packet validation checking has been removed from this
code. For purposes of sending the packet using the EMAC, the following
operations are performed in the send function:

1) Make sure the first fragment of the packet has the SOP flag set in its flags
member.

2) Count the number of packet fragments by parsing the packet until the EOP
flag is found. This also verifies the correctness of the packet buffer chain.
Note that only the first packet fragment can have the SOP flag set. This
is also checked.

3) Get a pointer (in pdc) to the descriptor channel structure corresponding
to the transmit channel specified by the caller.

EMAC Module Operation

Software Operation4-34 SPRU628A

4) Make sure the total number of fragments in the packet does not exceed
DescMax; otherwise, the entire packet would never fit in the buffer
descriptor list allocated for this channel.

5) Push the packet buffer(s) onto the WaitQueue. This is the queue for pack-
er buffers waiting to be written out to the descriptor chain. At this point we
do not know if the packet can be written or not. Even if it can, it must be
placed in the queue behind any potential previously pending packets.

6) Call the Enqueuetransmit() function to remove as may packets as possible
from the WaitQueue and write them into the buffer descriptor list.

The source code to implement this function is shown in Figure 4−17. The
EMI_Pkt structure of the first fragment of the packet to send is pointed to by
pPkt.

Figure 4−17. Send Function Code

uint fragcnt;
EMI_Pkt *pPktLast;
EMI_DescCh *pdc;

/* Do some packet validation */
if(!(pPkt−>Flags & EMI_PKT_FLAGS_SOP))
 return(EMI_ERROR_BADPACKET);

/* Count the number of frags in this packet */
fragcnt = 1;
pPktLast = pPkt;
while(!(pPktLast−>Flags & EMI_PKT_FLAGS_EOP))
{
 if(!pPktLast−>pNext)
 return(EMI_ERROR_INVALID);
 pPktLast = pPktLast−>pNext;
 fragcnt++;

 /* At this point we can’t have another SOP */
 if(pPktLast−>Flags & EMI_PKT_FLAGS_SOP)
 return(EMI_ERROR_INVALID);}

/* Get a local pointer to the descriptor channel */
pdc = &(pd−>TxCh[pPkt−>PktChannel]);

/* Make sure this packet does not have too many frags to fit */
if(fragcnt > pdc−>DescMax)
 return(EMI_ERROR_BADPACKET);

/*
// Queue and packet and service transmitter
*/
pqPushChain(&pdc−>WaitQueue, pPkt, pPktLast, fragcnt);
EnqueueTx(pdc);

EMAC Module Operation

4-35Software OperationSPRU628A

4.5.4.2 Enqueue Transmit Descriptor Function

The EnqueueTX() function is pretty simple mostly because the work of struc-
turing the packet buffers has already been done. The process for enqueuing
a packet to the descriptor ring for transmit is:

1) Record the state of the descriptor set (first writable descriptor and the
current count). The pointer to the first writable descriptor is saved so that
is can be linked to the currently active list (if any) once descriptors for all
waiting packets (or packet fragments) have been written. Unlike receive,
we can not chain as we go because it is illegal to have a partial packet in
the active transmit list at any given time. The save count tells us if the trans-
mitter was running when we first began to add buffer descriptors.

2) Access the WaitQueue count to see if there are any packets waiting. We
try to read all the packets from the WaitQueue and write their buffers into
the descriptor list. If at any time, there is not room in the descriptor list for
all the fragments of the next waiting packet, we stop.

3) The number of packet fragments is known and part of the packet header.
For each buffer in the packet, pop the packer header off WaitQueue and
the fill in the descriptor list with the pointer to the packet (or packet frag-
ment buffer). The next buffer descriptor to write is found in pDescWrite.
The value of pDescWrite is then incremented.

4) When filling in the descriptor, the OWNER bit is added to all descriptors.
Any SOP and EOP bits are also retained. On the SOP packet buffer, the
total size of the packet is also written to the buffer descriptor.

5) The packet buffer head is then pushed onto the DescQueue. This queue
is the holding spot for packet buffers that currently occupy slots in the buff-
er descriptor list, and the two are always kept synchronized.

6) Once all the packets have been written to descriptors, or when there is no
more room in the descriptor list, the process stops. Next, the list must be
appended onto any previously existing list, or if there was no list, the new
entries written become the active list.

7) First verify that new entries have been written. If so, check to see if there
were previous entries. If there were previous entries, chain the descriptor
before the first new descriptor written to the new list..

8) If there were new entries written, but there were no previous entries, then
the new entries constitute a net transmit descriptor list for the channel in
question. Start the transmitter by writing a pointer to the head of the new
list (the saved pDescOrg value) to TXnHDP. The correct index to use is
based on the transmit channel being processed.

The source code to implement this function is in Figure 4−18.

EMAC Module Operation

Software Operation4-36 SPRU628A

Figure 4−18. Enqueue Transmit Descriptor Function Code

static void EnqueueTx(EMI_DescCh *pdc)
{
 EMAC_Desc *pDescOrg,*pDescThis;
 EMI_Pkt *pPkt;
 uint PktFrags;
 uint CountOrg;

 /*
 // We need to be careful that we don’t post half a packet to
 // the list. Otherwise; we just fill in as much packet descriptor
 // stuff as we can.
 */
 pDescOrg = pdc−>pDescWrite;
 CountOrg = pdc−>DescCount;

 /* Try to post any waiting packets */
 while(pdc−>WaitQueue.Count)
 {
 /* See if we have enough room for a new packet */
 pPkt = pdc−>WaitQueue.pHead;
 PktFrags = pPkt−>PktFrags;

 /* If we don’t have room, break out */
 if((PktFrags+pdc−>DescCount) > pdc−>DescMax)
 break;

 /* The next packet will fit, post it. */
 while(PktFrags)
 {
 /* Pop the next frag off the wait queue */
 pPkt = pqPop(&pdc−>WaitQueue);

 /* Assign the pointer to ”this” desc */
 pDescThis = pdc−>pDescWrite;

 /* Move the write pointer and bump count */
 if(pdc−>pDescWrite == pdc−>pDescLast)
 pdc−>pDescWrite = pdc−>pDescFirst;
 else
 pdc−>pDescWrite++;
 pdc−>DescCount++;

 /*
 // If this is the last frag, the forward pointer is NULL
 // Otherwise; this desc points to the next frag’s desc
 */

EMAC Module Operation

4-37Software OperationSPRU628A

Figure 4−18. Enqueue Transmit Descriptor Function Code (Continued)

 if(PktFrags==1)
 pDescThis−>pNext = 0;
 else
 pDescThis−>pNext = pdc−>pDescWrite;

 pDescThis−>pBuffer = pPkt−>pDataBuffer + pPkt−>DataOffset;
 pDescThis−>BufOffLen = pPkt−>ValidLen;

 if(pPkt−>Flags & EMI_PKT_FLAGS_SOP)
 pDescThis−>PktFlgLen =
 ((pPkt−>Flags &
 (EMI_PKT_FLAGS_SOP|EMI_PKT_FLAGS_EOP))
 |pPkt−>PktLength|EMAC_DSC_FLAG_OWNER);
 else
 pDescThis−>PktFlgLen =
 (pPkt−>Flags&
 EMI_PKT_FLAGS_EOP)
 |EMAC_DSC_FLAG_OWNER;

 /* Enqueue this frag onto the desc queue */
 pqPush(&pdc−>DescQueue, pPkt);
 PktFrags−−;
 }
 }

 /* If we posted anything, chain on the list or start the transmitter */
 if(CountOrg != pdc−>DescCount)
 {
 if(CountOrg)
 {
 /*
 // Transmitter is already running. Just tack this packet on
 // to the end of the list (we need to ”back up” one descriptor)
 */
 if(pDescOrg == pdc−>pDescFirst)
 pDescThis = pdc−>pDescLast;
 else
 pDescThis = pDescOrg − 1;
 pDescThis−>pNext = pDescOrg;
 }
 else
 {
 /* Transmitter is not running, start it up */
 EMAC_RSETI(TXHDP, pdc−>ChannelIndex, (Uint32)pDescOrg);
 }
 }
}

EMAC Module Operation

Software Operation4-38 SPRU628A

4.5.4.3 Dequeue Transmit Descriptor Function

Once the EMAC has finished transmitting a packet, it returns the packet buff-
ers associated with packet to the software application in much the same way
the newly received receive packets are indicated. The DequeueTX() function
removes the completed transmit buffers, returning the buffers to the software
application, and marking the descriptors from transmit channel the descriptor
list free for use for more transmit operations.

To understand this function better, it is important to know what happens during
a device interrupt. The ISR code relating to the receive operation is:

/* Look for transmit interrupt (channel 0−max) */
for(tmp=0; tmp<pd−>Config.TxChannels; tmp++)
 if(intflags & EMAC_FMK(MACINVECTOR, TXPEND, 1<<tmp))
 {
 Desc = EMAC_RGETI(TXINTACK, tmp);
 EMAC_RSETI(TXINTACK, tmp, Desc);

 DequeueTx(&pd−>TxCh[tmp], (EMAC_Desc *)Desc);
 }

For each active channel in the system, the TXPEND register is examined to
see if the particular channel has seen new activity. Next the last descriptor to
process in the given channel can be read from TXnINTACK register, where the
index is based on the channel number. This is also the register where we write
value of the last descriptor processed. Since the DequeueTx() function pro-
cesses all descriptors up to the one that it is passed, the transmit interrupt can
be immediately acknowledged by writing the value back to the TXnINTACK
register. Finally the DequeueTx() function is called with a pointer to the trans-
mit descriptor channel structure and a pointer to the last descriptor to service.

The DequeueTx() function is shown in Figure 4−19. The functions it needs to
perform are:

1) The next descriptor to process is always available at the pDescRead
pointer. The flags for that descriptor are read. The only flag that is impor-
tant here is the EMAC_DSC_FLAG_EOQ flag that is checked at the end
of the loop.

2) The EMI_Pkt structure corresponding to the descriptor is recovered from
the DescQueue. This buffer is returned to the application by use of a call-
back function.

3) If this is the last descriptor to process (pDescRead == pDescAck), then
a flag is set to prevent the loop from executing again.

4) The pDescRead pointer is incremented and the DescCount is decremented.

EMAC Module Operation

4-39Software OperationSPRU628A

5) Continue until all the descriptors have been processed up to and including
that indicated by the caller (in this case the ISR).

6) As a final step, if the last descriptor processed had the
EMAC_DSC_FLAG_EOQ flag set in its flags field, this means that the
EMAC interpreted the descriptor as being the last in the descriptor chain
(its next pointer was NULL). This occurs if there are no more packets to
transmit, or if any newly chained packets were chained on after the
transmitter stopped. If the EOQ flag was set and there are more packet
descriptors waiting, then restart the transmitter by posting the head of the
descriptor list (pDescRead) to TXnHDP.

7) As a final step, since descriptor entries have been freed, if there are more
transmit packets waiting on the WaitQueue (waiting to be added to the
descriptor list), then call the EnqueueTX() function to enqueue these packets.

The source code to implement this function is in Figure 4−19.

EMAC Module Operation

Software Operation4-40 SPRU628A

Figure 4−19. Dequeue Transmit Descriptor Function Code

static void DequeueTx(EMI_DescCh *pdc, EMAC_Desc *pDescAck)
{
 EMI_Pkt *pPkt;
 uint tmp;
 Uint32 PktFlgLen;

 /* Pop & Free Buffers ’till the last Descriptor */
 for(tmp=1; tmp;)
 {
 /* Get the status of this descriptor */
 PktFlgLen = pdc−>pDescRead−>PktFlgLen;

 /* Recover the buffer and free it */
 pPkt = pqPop(&pdc−>DescQueue);
 if(pPkt)
 (*localDev.Config.pfcbFreePacket)(pdc−>pd−>hApplication,pPkt);

 /* See if this was the last buffer */
 if(pdc−>pDescRead == pDescAck)
 tmp = 0;

 /* Move the read pointer and decrement count */
 if(pdc−>pDescRead == pdc−>pDescLast)
 pdc−>pDescRead = pdc−>pDescFirst;
 else
 pdc−>pDescRead++;
 pdc−>DescCount−−;
 }

 /* If the transmitter stopped and we have more descriptors, then restart */
 if((PktFlgLen & EMAC_DSC_FLAG_EOQ) && pdc−>DescCount)
 EMAC_RSETI(TXHDP, pdc−>ChannelIndex, (Uint32)pdc−>pDescRead);

 /* Try to post any waiting transmit packets */
 if(pdc−>WaitQueue.Count)
 EnqueueTx(pdc);
}

EMAC Module Operation

4-41Software OperationSPRU628A

4.5.5 Interrupt Processing

The interrupt signals on the EMAC and MDIO are combined into a single inter-
rupt inside the EMAC control module. The interrupt is used to signal the
application or device driver that work needs to be done on the EMAC or MDIO.

All the interrupt signals are combined in the EMAC control module, and this
combined set is also fed back into the EMAC module and can be examined
by software by reading the MACINVECTOR register. Note that this register
represents the masked set of interrupt bits. If an interrupt is not enabled in its
corresponding register on the EMAC or the MDIO, then its interrupt bit in the
MACINVECTOR register will never be set.

The example software does not use interrupts on the MDIO module. This is
because the same operations can be performed as a timer event driven state
machine. There is no need for real time caliber response times in servicing
MDIO.

4.5.5.1 Interrupt Deferral

Depending on the run-time environment, an application or device driver may
or may not do any actual processing in its ISR. For example, consider a system
that calls a function like netISR(), where the job of the function is just to turn
off the device ISR and return TRUE if the device generated the interrupt, and
FALSE if it did not. In a system like this, another work function would be called
to actually do the ISR servicing, but not at interrupt time. An implementation
of netISR() may look like:

netISR()
{
 Uint32 intflags;

/* Read the interrupt cause */
if((intflags = EMAC_RGET(MACINVECTOR)) != 0)

 {
 /* Disable EMAC/MDIO interrupts in the control module */
 EMAC_FSETS(EWCTL, INTEN, DISABLE);

 /* Tell the caller it was our interrupt */
 return(1);
 }

/* Tell the caller it was not our interrupt */
return(0);

}

EMAC Module Operation

Software Operation4-42 SPRU628A

Note that this function disables the device interrupt if it is going to return TRUE.
The interrupt is then reenabled once processing is done.

When interrupt pacing is used (programmed using the EWINTTCNT register),
the interrupt pace counter does not start counting down until interrupts are
reenabled in EWCTL. Thus, if a static pace time is used (where the value of
EWINTTCNT is not changed), the delay from the time netISR() is called to the
time the interrupts are reenabled in EWCTL can alter interrupt timing. If a static
count in EWINTTCNT is used, and the interrupts are certain to be serviced in
that amount of time allotted via this register, then it is acceptable to rewrite the
previous function as follows:

netISR()
{
 Uint32 intflags;

 /* Read the interrupt cause */
 if((intflags = EMAC_RGET(MACINVECTOR)) != 0)
 {
 /* Disable EMAC/MDIO interrupts in the control module */
 EMAC_FSETS(EWCTL, INTEN, DISABLE);

 /* Start counter to Re-Enable EMAC/MDIO interrupts */
 EMAC_FSETS(EWCTL, INTEN, ENABLE);

 /* Tell the caller it was our interrupt */
 return(1);
 }

 /* Tell the caller it was not our interrupt */
 return(0);
}

Keep in mind that this is only one approach to handling interrupts. In the exam-
ple code, the interrupt processing is done directly by the ISR, and not deferred.

EMAC Module Operation

4-43Software OperationSPRU628A

4.5.5.2 Interrupt Handling

As can be seen in the definition of the MACINVECTOR register, there are six
reasons the EMAC control module interrupt can fire. They are listed in
Table 4−1.

Table 4−1. Reasons EMAC Control Module Generates Interrupt

Name Description

USERINT The MDIO has completed a read or write access to a PHY control register.

LINKINT The link status of a PHY monitored by the MDIO has changed.

HOSTPEND A host interrupt is pending on the EMAC. This signifies an error condition.

STATPEND One of the EMAC statistics registers is in danger of overflow (has its MSB set).

RXPEND One or more of the 8 receive channels needs servicing.

TXPEND One or more of the 8 transmit channels needs servicing.

The sample code does not use either the USERINT or LINKINT interrupt signals.
The USERINT signal is only good for accessing PHY configuration registers
as a background task through the MDIO module. Although accessing PHY
configuration register does take many cycles, it is only done at initialization,
and does not need to be a general background task. The LINKINT interrupt
generates when the link status changes on a monitored PHY. However, since
link status can take up to 3 seconds to change, it is perfectly acceptable to poll
for this condition. An interrupt is not necessary. This is discussed more in sec-
tion 4.4.

An excerpt form the sample code interrupt processing is shown in
Figure 4−20. Note that is processing is independent of the DSP interrupt. The
DSP interrupt is handled in the normal fashion. This interrupt processing code
performs:

� Disable device interrupts by writing the EWCTL register. Note that this
serves two purposes. It drives the interrupt signal low, so that the next rise
triggers an interrupt on the DSP (that is edge triggered). Also, disabling
then reenabling interrupts in the EWCTL register restarts the pace counter
(when used) that determines when another interrupt can be generated to
the DSP.

� The MACINVECTOR register is read into a temporary register. This value
contains flags representing the state of every possible interrupt source on
the EMAC and MDIO modules.

EMAC Module Operation

Software Operation4-44 SPRU628A

� When the HOSTPEND bit is set, the EMAC has encountered an error
caused by the host software. The error status is reported to the application
using a callback so that the application can correct the problem and reset
the device.

� When the STATPEND bit is set, one of the EMAC statistics registers is in
danger of overflow. Thus, the software calls a function to read and reset
all the statistics values and keep a soft copy locally. It then notifies the
application using a callback so that the application can read the new statis-
tics values. However, since the EMAC statistics registers have already
been read and cleared, the sample code does not need to rely on the
application responding to the callback to clear the interrupt condition.

� Next check for each of the eight possible TXPEND bits, depending on how
many transmit channels are in use. For each transmit channel requiring
servicing, service it in accordance with the procedure outlined in
section 4.5.4.

� Next check for each of the eight possible RXPEND bits, depending on how
many receive channels are in use. This sample code only uses a single
receive channel, so there is no for-next loop. If the receive channel
requires servicing, service it in accordance with the procedure outlined in
section 4.5.3.

� As a final step, interrupts are reenabled by writing the EWCTL register. If
an interrupt is still pending, this causes another rising edge and retriggers
the DSP interrupt. Interrupts are rearmed immediately, if interrupt pacing
is not used. If a count is programmed into the EWINTTCNT register, then
interrupts are not rearmed until that value of peripheral clock cycles have
expired. The peripheral clock is CPUclk/4.

The source code to perform this operation is in Figure 4−20. The function
UpdateStats() is used to read the statistics and then clear the statistics
register. This is done by writing back the value for each statistic read to its
corresponding register. The registers are write-to-decrement, so no stats are
lost.

EMAC Module Operation

4-45Software OperationSPRU628A

Figure 4−20. Interrupt Processing Example Code

Uint32 intflags,Desc;
uint tmp;

/* Disable EMAC/MDIO interrupts in the control module */
EMAC_FSETS(EWCTL, INTEN, DISABLE);

/* Read the interrupt cause */
intflags = EMAC_RGET(MACINVECTOR);

/* Look for fatal errors first */
if(intflags & EMAC_FMK(MACINVECTOR, HOSTPEND, 1))
{
 /* Read the error status − we’ll decode it by hand */
 pd−>FatalError = EMAC_RGET(MACSTATUS);
 /* Tell the application */
 (*localDev.Config.pfcbStatus)(pd−>hApplication);
 /* return with interrupts still disabled in the control module */
 return;
}

/* Look for statistics interrupt */
if(intflags & EMAC_FMK(MACINVECTOR, STATPEND, 1))
{
 /* Read the stats and write−decrement what we read */
 /* This is necessary to clear the interrupt */
 UpdateStats(pd);
 /* Tell the application */
 (*localDev.Config.pfcbStatistics)(pd−>hApplication); /*
}

/* Look for transmit interrupt (channel 0−max) */
for(tmp=0; tmp<pd−>Config.TxChannels; tmp++)
 if(intflags & EMAC_FMK(MACINVECTOR, TXPEND, 1<<tmp))
 {
 Desc = EMAC_RGETI(TXINTACK, tmp);
 EMAC_RSETI(TXINTACK, tmp, Desc);
 DequeueTx(&pd−>TxCh[tmp], (EMAC_Desc *)Desc);
 }

/* Look for receive interrupt (channel 0) */
if(intflags & EMAC_FMK(MACINVECTOR, RXPEND, 1<<0))
{
 Desc = EMAC_RGET(RX0INTACK);
 EMAC_RSET(RX0INTACK, Desc);
 DequeueRx(&pd−>RxCh, (EMAC_Desc *)Desc);
}

/* Enable EMAC/MDIO interrupts in the control module */
EMAC_FSETS(EWCTL, INTEN, ENABLE);

EMAC Module Operation

Software Operation4-46 SPRU628A

4.5.6 Shutdown and Restarts

A shutdown is necessary to make sure the EMAC does not continue to access
DSP memory (or generate interrupts) after the device is closed. Also, a grace-
ful shutdown is the first stage of a proper device restart.

The example software discussed in this chapter implements device restart and
a call to its close function followed by a second call to open. The open opera-
tion and device initialization steps are discussed earlier in this chapter. This
section describes the device close procedure. The steps for shutting down the
device are:

1) Disable device interrupts by writing the EWCTL register. This prevents
further interrupts from the device. It is assumed that the DSP interrupt to
which the EMAC control module is mapped has also been masked, and
any pending condition cleared after this close function is complete (and
most likely remain masked).

2) Initiate a teardown of each channel in use by using the RXTEARDOWN
and TXTEARDOWN registers. In the example code, there is only one
receive channel, but up to eight transmit channels.

3) When the HOSTPEND bit is set in the ISR, a fatal error occurs. If this close
operation was started after a fatal error, then the teardown operations will
never complete. Thus, the fatal error status of the device is checked before
waiting for teardown to complete.

4) If no fatal error occurred, then the software should wait for the shutdown
operation to complete on each channel by reading the RXnINTACK and
TXnINTACK registers for each corresponding channel. The register reads
FFFF FFFCh when the teardown operation is complete. This value is then
written back to RXnINTACK or TXnINTACK by the software to acknowl-
edge the teardown completion indication.

5) Clear the MACCCONTROL, RXCONTROL, and TXCONTROL registers.

6) Finally, clean up the software environment. In the example code, this
involves releasing all memory buffers back to the application using a call-
back function.

The source code to implement this operation is shown in Figure 4−21.

EMAC Module Operation

4-47Software OperationSPRU628A

Figure 4−21. Device Shutdown Example Code

/* Disable EMAC/MDIO interrupts in wrapper */
EMAC_FSETS(EWCTL, INTEN, DISABLE);

/*
// The close process consists of tearing down all the active
// channels (receive and transmit) and then waiting for the teardown
// complete indication from the MAC. Then, all queued packets
// will be returned.
*/

/* Teardown receive */
EMAC_RSET(RXTEARDOWN, 0);

/* Teardown transmit channels in use */
for(i=0; i<pd−>Config.TxChannels; i++)
 EMAC_RSET(TXTEARDOWN, i);

/* Only check teardown status if there was no fatal error */
/* Otherwise; the EMAC is halted and can’t be shutdown gracefully */
if(!pd−>FatalError)
{
 /* Wait for the teardown to complete */
 for(tmp=0; tmp!=0xFFFFFFFC; tmp=EMAC_RGET(RX0INTACK));
 EMAC_RSET(RX0INTACK, tmp);
 for(i=0; i<pd−>Config.TxChannels; i++)
 {
 for(tmp=0; tmp!=0xFFFFFFFC; tmp=EMAC_RGETI(TXINTACK,i));
 EMAC_RSETI(TXINTACK, i, tmp);
 }
}
/* Disable RX, transmit, and clear MACCONTROL */
EMAC_FSETS(TXCONTROL, TXEN, DISABLE);
EMAC_FSETS(RXCONTROL, RXEN, DISABLE);
EMAC_RSET(MACCONTROL, 0);

/* Free all receive buffers */
while(pPkt = pqPop(&pd−>RxCh.DescQueue))
 (*pd−>Config.pfcbFreePacket)(localDev.hApplication, pPkt);

/* Free all transmit buffers */
for(i=0; i<pd−>Config.TxChannels; i++)
{
 while(pPkt = pqPop(&pd−>TxCh[i].DescQueue))
 (*pd−>Config.pfcbFreePacket)(localDev.hApplication, pPkt);
 while(pPkt = pqPop(&pd−>TxCh[i].WaitQueue))
 (*pd−>Config.pfcbFreePacket)(localDev.hApplication, pPkt);
}

5-1

Registers

This chapter describes the registers of the EMAC control module, EMAC module,
and MDIO module. As the supported feature set may vary between C6000
devices, all of the registers and fields described in this chapter are not
supported on each C6000 device. Please see the device-specific datasheet
for a listing of supported features.

Topic Page

5.1 EMAC Control Module Registers 5-2.

5.2 EMAC Module Registers 5-6.

5.3 MDIO Module Registers 5-76.

Chapter 5

EMAC Control Module Registers

Registers5-2 SPRU628A

5.1 EMAC Control Module Registers

Control registers for the EMAC control module are summarized in Table 5−1.
See the device-specific datasheet for the memory address of these registers.

Table 5−1. EMAC Control Module Registers

Acronym Register Name Section

EWTRCTRL EMAC Control Module Transfer Control Register 5.1.1

EWCTL EMAC Control Module Interrupt Control Register 5.1.2

EWINTTCNT EMAC Control Module Interrupt Timer Count Register 5.1.3

5.1.1 EMAC Control Module Transfer Control Register (EWTRCTRL)

The EMAC control module transfer control register (EWTRCTRL) is shown in
Figure 5−1 and described in Table 5−2. EWTRCTRL is used to control the
priority and allocation of transfer requests generated by the EMAC.
EWTRCTRL should be written only when the EMAC is idle or when being held
in reset using the EWCTL register.

Figure 5−1. EMAC Control Module Transfer Control Register (EWTRCTRL)

31 8

Reserved

R-0

7 6 4 3 0

Reserved PRIORITY ALLOC

R-0 R/W-2h R/W-3h

Legend: R = Read only; R/W = Read/Write; -n = value after reset

EMAC Control Module Registers

5-3RegistersSPRU628A

Table 5−2. EMAC Control Module Transfer Control Register (EWTRCTRL) Field Descriptions

Bit field� sym_val� Value Description

31−7 Reserved − 0 Reserved. The reserved bit location is always read as 0.
A value written to this field has no effect.

6−4 PRIORITY 0−7h Priority bits specify the relative priority of EMAC packet
data transfers relative to other memory operations in the
system. Although the default value is medium priority,
since the EMAC data transfer is real time (once a packet
transfer begins), this priority may need to be raised in
some system.

0 Urgent priority

1h High priority

2h Medium priority

3h Low priority

4h−7h Reserved

3−0 ALLOC 0−Fh Allocation bits specifiy the number of outstanding EMAC
requests that can be pending at any given time. Since the
EMAC has only three internal FIFOs, an allocation
amount of 3 is ideal.

� For CSL implementation, use the notation EMAC_EWTRCTRL_field_symval

EMAC Control Module Registers

Registers5-4 SPRU628A

5.1.2 EMAC Control Module Interrupt Control Register (EWCTL)

The EMAC control module interrupt control register (EWCTL) is shown in
Figure 5−2 and described in Table 5−3. EWCTL is used to enable and disable
the central interrupt from the EMAC and MDIO modules and to reset both mod-
ules or either module independently.

It is expected that any time, the EMAC and MDIO interrupt is being serviced,
the software disables the INTEN bit in EWCTL. This ensures that the interrupt
line goes back to zero. The software reenables the INTEN bit after clearing all
the pending interrupts and before leaving the interrupt service routine. At this
point, if the EMAC control module monitors any interrupts still pending, it
reasserts the interrupt line, and generates a new edge that the DSP can recognize.

Figure 5−2. EMAC Control Module Interrupt Control Register (EWCTL)

31 16

Reserved

R-0

15 3 2 1 0

EMACRST MDIORST INTEN

R-0 R/W-0 R/W-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−3. EMAC Control Module Interrupt Control Register (EWCTL) Field Descriptions

Bit field� sym_val� Value Description

31−3 Reserved − 0 Reserved. The reserved bit location is always read as 0.
A value written to this field has no effect.

2 EMACRST EMAC reset bit.

NO 0 EMAC is not in reset.

YES 1 EMAC is held in reset.

1 MDIORST MDIO reset bit.

NO 0 MDIO is not in reset.

YES 1 MDIO is held in reset.

0 INTEN EMAC and MDIO interrupt enable bit.

DISABLE 0 EMAC and MDIO interrupts are disabled.

ENABLE 1 EMAC and MDIO interrupts are enabled.

� For CSL implementation, use the notation EMAC_EWCTL_field_symval

EMAC Control Module Registers

5-5RegistersSPRU628A

5.1.3 EMAC Control Module Interrupt Timer Count Register (EWINTTCNT)

The EMAC control module interrupt timer count register (EWINTTCNT) is
shown in Figure 5−3 and described in Table 5−4. EWINTTCNT is used to
control the generation of back-to-back interrupts from the EMAC and MDIO
modules. The value of this timer count is loaded into an internal counter every
time interrupts are enabled using the EWCTL register. A second interrupt can-
not be generated until this count reaches 0. The counter is decremented at a
frequency of CPUclock/4; its default reset count is 0 (inactive), its maximum
value is 1 FFFFh (131 071).

Figure 5−3. EMAC Control Module Interrupt Timer Count Register (EWINTTCNT)

31 17 16 0

Reserved EWINTTCNT

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−4. EMAC Control Module Interrupt Timer Count Register (EWINTTCNT)
Field Descriptions

Bit Field sym_val� Value Description

31−17 Reserved − 0 Reserved. The reserved bit location is always read as 0.
A value written to this field has no effect.

16−0 EWINTTCNT 0−1 FFFFh Interrupt timer count.

� For CSL implementation, use the notation EMAC_EWINTTCNT_EWINTTCNT_symval

EMAC Module Registers

Registers5-6 SPRU628A

5.2 EMAC Module Registers

Control registers for the EMAC module are summarized in Table 5−5. See the
device-specific datasheet for the memory address of these registers. Please
see the device-specific datasheet for a listing of supported registers.

Table 5−5. EMAC Module Registers

Acronym Register Name Section

TXIDVER Transmit Identification and Version Register 5.2.1

TXCONTROL Transmit Control Register 5.2.2

TXTEARDOWN Transmit Teardown Register 5.2.3

RXIDVER Receive Identification and Version Register 5.2.4

RXCONTROL Receive Control Register 5.2.5

RXTEARDOWN Receive Teardown Register 5.2.6

RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register 5.2.7

RXUNICASTSET Receive Unicast Set Register 5.2.8

RXUNICASTCLEAR Receive Unicast Clear Register 5.2.9

RXMAXLEN Receive Maximum Length Register 5.2.10

RXBUFFEROFFSET Receive Buffer Offset Register 5.2.11

RXFILTERLOWTHRESH Receive Filter Low Priority Packets Threshold Register 5.2.12

RXnFLOWTHRESH Receive Channel 0−7 Flow Control Threshold Registers 5.2.13

RXnFREEBUFFER Receive Channel 0−7 Free Buffer Count Registers 5.2.14

MACCONTROL MAC Control Register 5.2.15

MACSTATUS MAC Status Register 5.2.16

TXINTSTATRAW Transmit Interrupt Status (Unmasked) Register 5.2.17

TXINTSTATMASKED Transmit Interrupt Status (Masked) Register 5.2.18

TXINTMASKSET Transmit Interrupt Mask Set Register 5.2.19

TXINTMASKCLEAR Transmit Interrupt Mask Clear Register 5.2.20

MACINVECTOR MAC Input Vector Register 5.2.21

RXINTSTATRAW Receive Interrupt Status (Unmasked) Register 5.2.22

RXINTSTATMASKED Receive Interrupt Status (Masked) Register 5.2.23

RXINTMASKSET Receive Interrupt Mask Set Register 5.2.24

EMAC Module Registers

5-7RegistersSPRU628A

Table 5−5. EMAC Module Registers (Continued)

Acronym SectionRegister Name

RXINTMASKCLEAR Receive Interrupt Mask Clear Register 5.2.25

MACINTSTATRAW MAC Interrupt Status (Unmasked) Register 5.2.26

MACINTSTATMASKED MAC Interrupt Status (Masked) Register 5.2.27

MACINTMASKSET MAC Interrupt Mask Set Register 5.2.28

MACINTMASKCLEAR MAC Interrupt Mask Clear Register 5.2.29

MACADDRLn MAC Address Channel 0−7 Lower Byte Register 5.2.30

MACADDRM MAC Address Middle Byte Register 5.2.31

MACADDRH MAC Address High Bytes Register 5.2.32

MACHASH1 MAC Address Hash 1 Register 5.2.33

MACHASH2 MAC Address Hash 2 Register 5.2.34

BOFFTEST Backoff Test Register 5.2.35

TPACETEST Transmit Pacing Test Register 5.2.36

RXPAUSE Receive Pause Timer Register 5.2.37

TXPAUSE Transmit Pause Timer Register 5.2.38

TXnHDP Transmit Channel 0−7 DMA Head Descriptor Pointer Registers 5.2.39

RXnHDP Receive Channel 0−7 DMA Head Descriptor Pointer Registers 5.2.40

TXnINTACK Transmit Channel 0−7 Interrupt Acknowledge Registers 5.2.41

RXnINTACK Receive Channel 0−7 Interrupt Acknowledge Registers 5.2.42

RXGOODFRAMES Good Receive Frames Register 5.2.43

RXBCASTFRAMES Broadcast Receive Frames Register 5.2.43

RXMCASTFRAMES Multicast Receive Frames Register 5.2.43

RXPAUSEFRAMES Pause Receive Frames Register 5.2.43

RXCRCERRORS Receive CRC Errors Register 5.2.43

RXALIGNCODEERRORS Receive Alignment/Code Errors Register 5.2.43

RXOVERSIZED Receive Oversized Frames Register 5.2.43

RXJABBER Receive Jabber Frames Register 5.2.43

RXUNDERSIZED Receive Undersized Frames Register 5.2.43

RXFRAGMENTS Receive Frame Fragments Register 5.2.43

EMAC Module Registers

Registers5-8 SPRU628A

Table 5−5. EMAC Module Registers (Continued)

Acronym SectionRegister Name

RXFILTERED Filtered Receive Frames Register 5.2.43

RXQOSFILTERED Receive QOS Filtered Frames Register 5.2.43

RXOCTETS Receive Octet Frames Register 5.2.43

RXSOFOVERRUNS Receive Start of Frame Overruns Register 5.2.43

RXMOFOVERRUNS Receive Middle of Frame Overruns Register 5.2.43

RXDMAOVERRUNS Receive DMA Overruns Register 5.2.43

TXGOODFRAMES Good Transmit Frames Register 5.2.43

TXBCASTFRAMES Broadcast Transmit Frames Register 5.2.43

TXMCASTFRAMES Multicast Transmit Frames Register 5.2.43

TXPAUSEFRAMES Pause Transmit Frames Register 5.2.43

TXDEFERRED Deferred Transmit Frames Register 5.2.43

TXCOLLISION Collision Register 5.2.43

TXSINGLECOLL Single Collision Transmit Frames Register 5.2.43

TXMULTICOLL Multiple Collision Transmit Frames Register 5.2.43

TXEXCESSIVECOLL Excessive Collisions Register 5.2.43

TXLATECOLL Late Collisions Register 5.2.43

TXUNDERRUN Transmit Underrun Register 5.2.43

TXCARRIERSLOSS Transmit Carrier Sense Errors Register 5.2.43

TXOCTETS Transmit Octet Frames Register 5.2.43

FRAME64 Transmit and Receive 64 Octet Frames Register 5.2.43

FRAME65T127 Transmit and Receive 65 to 127 Octet Frames Register 5.2.43

FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register 5.2.43

FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register 5.2.43

FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames Register 5.2.43

FRAME1024TUP Transmit and Receive 1024 or Above Octet Frames Register 5.2.43

NETOCTETS Network Octet Frames Register 5.2.43

EMAC Module Registers

5-9RegistersSPRU628A

5.2.1 Transmit Identification and Version Register (TXIDVER)

The transmit identification and version register (TXIDVER) is shown in
Figure 5−4 and described in Table 5−6.

Figure 5−4. Transmit Identification and Version Register (TXIDVER)

31 16

TXIDENT

R-0004h

15 8 7 0

TXMAJORVER TXMINORVER

R-x� R-x�

Legend: R = Read only; -n = value after reset
� See the device-specific datasheet for the default value of this field.

Table 5−6. Transmit Identification and Version Register (TXIDVER) Field Descriptions

Bit field� sym_val� Value Description

31−16 TXIDENT Transmit identification value bits.

4h EMAC

15−8 TXMAJORVER Transmit major version value is the major version number.

x See the device-specific datasheet for the value.

7−0 TXMINORVER Transmit minor version value is the minor version number.

x See the device-specific datasheet for the value.

� For CSL implementation, use the notation EMAC_TXIDVER_field_symval

EMAC Module Registers

Registers5-10 SPRU628A

5.2.2 Transmit Control Register (TXCONTROL)

The transmit control register (TXCONTROL) is shown in Figure 5−5 and de-
scribed in Table 5−7.

Figure 5−5. Transmit Control Register (TXCONTROL)

31 1 0

Reserved TXEN

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−7. Transmit Control Register (TXCONTROL) Field Descriptions

Bit Field sym_val� Value Description

31−1 Reserved − 0 Reserved. The reserved bit location is always read as 0. A value
written to this field has no effect.

0 TXEN Transmit enable bit.

DISABLE 0 Transmit is disabled.

ENABLE 1 Transmit is enabled.

� For CSL implementation, use the notation EMAC_TXCONTROL_TXEN_symval

EMAC Module Registers

5-11RegistersSPRU628A

5.2.3 Transmit Teardown Register (TXTEARDOWN)

The transmit teardown register (TXTEARDOWN) is shown in Figure 5−6 and
described in Table 5−8.

Figure 5−6. Transmit Teardown Register (TXTEARDOWN)

31 3 2 0

Reserved TXTDNCH

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−8. Transmit Teardown Register (TXTEARDOWN) Field Descriptions

Bit Field sym_val� Value Description

31−3 Reserved − 0 Reserved. The reserved bit location is always read as 0. A value
written to this field has no effect.

2−0 TXTDNCH 0−7h Transmit teardown channel bits determine the transmit channel to
be torn down. The teardown register is read as 0.

0 Teardown transmit channel 0.

1h Teardown transmit channel 1.

2h Teardown transmit channel 2.

3h Teardown transmit channel 3.

4h Teardown transmit channel 4.

5h Teardown transmit channel 5.

6h Teardown transmit channel 6.

7h Teardown transmit channel 7.

� For CSL implementation, use the notation EMAC_TXTEARDOWN_TXTDNCH_symval

EMAC Module Registers

Registers5-12 SPRU628A

5.2.4 Receive Identification and Version Register (RXIDVER)

The receive identification and version register (RXIDVER) is shown in
Figure 5−7 and described in Table 5−9.

Figure 5−7. Receive Identification and Version Register (RXIDVER)

31 16

RXIDENT

R-0004h

15 8 7 0

RXMAJORVER RXMINORVER

R-x� R-x�

Legend: R = Read only; -n = value after reset
� See the device-specific datasheet for the default value of this field.

Table 5−9. Receive Identification and Version Register (RXIDVER) Field Descriptions

Bit field� sym_val� Value Description

31−16 RXIDENT Receive identification value bits.

4h EMAC

15−8 RXMAJORVER Receive major version value is the major version number.

x See the device-specific datasheet for the value.

7−0 RXMINORVER Receive minor version value is the minor version number.

x See the device-specific datasheet for the value.

� For CSL implementation, use the notation EMAC_RXIDVER_field_symval

EMAC Module Registers

5-13RegistersSPRU628A

5.2.5 Receive Control Register (RXCONTROL)

The receive control register (RXCONTROL) is shown in Figure 5−8 and de-
scribed in Table 5−10.

Figure 5−8. Receive Control Register (RXCONTROL)

31 1 0

Reserved RXEN

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−10. Receive Control Register (RXCONTROL) Field Descriptions

Bit Field sym_val� Value Description

31−1 Reserved − 0 Reserved. The reserved bit location is always read as 0. A value
written to this field has no effect.

0 RXEN Receive DMA enable bit.

DISABLE 0 Receive is disabled.

ENABLE 1 Receive is enabled.

� For CSL implementation, use the notation EMAC_RXCONTROL_RXEN_symval

EMAC Module Registers

Registers5-14 SPRU628A

5.2.6 Receive Teardown Register (RXTEARDOWN)

The receive teardown register (RXTEARDOWN) is shown in Figure 5−9 and
described in Table 5−11.

Figure 5−9. Receive Teardown Register (RXTEARDOWN)

31 3 2 0

Reserved RXTDNCH

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−11. Receive Teardown Register (RXTEARDOWN) Field Descriptions

Bit Field sym_val� Value Description

31−3 Reserved − 0 Reserved. The reserved bit location is always read as 0. A value
written to this field has no effect.

2−0 RXTDNCH 0−7h Receive teardown channel bits determine the receive channel to
be torn down. The teardown register is read as 0.

0 Teardown receive channel 0.

1h Teardown receive channel 1.

2h Teardown receive channel 2.

3h Teardown receive channel 3.

4h Teardown receive channel 4.

5h Teardown receive channel 5.

6h Teardown receive channel 6.

7h Teardown receive channel 7.

� For CSL implementation, use the notation EMAC_RXTEARDOWN_RXTDNCH_symval

EMAC Module Registers

5-15RegistersSPRU628A

5.2.7 Receive Multicast/Broadcast/Promiscuous Channel Enable Register
(RXMBPENABLE)

The receive multicast/broadcast/promiscuous channel enable register
(RXMBPENABLE) is shown in Figure 5−10 and described in Table 5−12.

Figure 5−10. Receive Multicast/Broadcast/Promiscuous Channel Enable Register
(RXMBPENABLE)

31 30 29 28 27 25 24

Reserved RXPASSCRC RXQOSEN RXNOCHAIN Reserved RXCMFEN

R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0

23 22 21 20 19 18 16

RXCSFEN RXCEFEN RXCAFEN Reserved PROMCH

R/W-0 R/W-0 R/W-0 R-0 R/W-0

15 14 13 12 11 10 8

Reserved BROADEN Reserved BROADCH

R-0 R/W-0 R-0 R/W-0

7 6 5 4 3 2 0

Reserved MULTEN Reserved MULTCH

R-0 R/W-0 R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−12. Receive Multicast/Broadcast/Promiscuous Channel Enable Register
(RXMBPENABLE) Field Descriptions

Bit field� sym_val� Value Description

31 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

30 RXPASSCRC Pass received CRC enable bit.

DISCARD 0 Received CRC is discarded for all channels and is not included
in the buffer descriptor packet length field.

INCLUDE 1 Received CRC is transferred to memory for all channels and
is included in the buffer descriptor packet length.

� For CSL implementation, use the notation EMAC_RXMBPENABLE_field_symval

EMAC Module Registers

Registers5-16 SPRU628A

Table 5−12. Receive Multicast/Broadcast/Promiscuous Channel Enable Register
(RXMBPENABLE) Field Descriptions (Continued)

Bit DescriptionValuesym_val�field�

29 RXQOSEN Receive quality of service (QOS) enable bit.

DISABLE 0 Receive QOS is disabled.

ENABLE 1 Receive QOS is enabled.

28 RXNOCHAIN Receive no buffer chaining bit.

DISABLE 0 Received frames can span multiple buffers.

ENABLE 1 Receive DMA controller transfers each frame into a single
buffer regardless of the frame or buffer size. All remaining
frame data after the first buffer is discarded.

27−25 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

24 RXCMFEN Receive copy MAC control frames enable bit. Enables MAC
control frames to be transferred to memory. MAC control
frames are normally acted upon (if enabled), but not copied to
memory. MAC control frames that are pause frames will be
acted upon if enabled in MACCONTROL, regardless of the
value of RXCMFEN. Frames transferred to memory due to
RXCMFEN will have the control bit set in their EOP buffer
descriptor.

DISABLE 0 MAC control frames are filtered (but acted upon if enabled).

ENABLE 1 MAC control frames are transferred to memory.

23 RXCSFEN Receive copy short frames enable bit. Enables frames or
fragments shorter than 64 bytes to be copied to memory.
Frames transferred to memory due to RXCSFEN will have the
fragment or undersized bit set in their EOP buffer descriptor.
Fragments are short frames that contain CRC/align/code
errors and undersized are short frames without errors.

DISABLE 0 Short frames are filtered.

ENABLE 1 Short frames are transferred to memory.

� For CSL implementation, use the notation EMAC_RXMBPENABLE_field_symval

EMAC Module Registers

5-17RegistersSPRU628A

Table 5−12. Receive Multicast/Broadcast/Promiscuous Channel Enable Register
(RXMBPENABLE) Field Descriptions (Continued)

Bit DescriptionValuesym_val�field�

22 RXCEFEN Receive copy error frames enable bit. Enables frames
containing errors to be transferred to memory. The appropriate
error bit will be set in the frame EOP buffer descriptor.

DISABLE 0 Frames containing errors are filtered.

ENABLE 1 Frames containing errors are transferred to memory.

21 RXCAFEN Receive copy all frames enable bit. Enables frames that do not
address match (includes multicast frames that do not hash
match) to be transferred to the promiscuous channel selected
by PROMCH bits. Such frames will be marked with the
no_match bit in their EOP buffer descriptor.

DISABLE 0

ENABLE 1 Frames that do not address match (includes multicast frames
that do not hash match) are transferred to the promiscuous
channel selected by PROMCH bits.

20−19 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

18−16 PROMCH 0−7h Receive promiscuous channel select bits.

0 Select channel 0 to receive promiscuous frames.

1h Select channel 1 to receive promiscuous frames.

2h Select channel 2 to receive promiscuous frames.

3h Select channel 3 to receive promiscuous frames.

4h Select channel 4 to receive promiscuous frames.

5h Select channel 5 to receive promiscuous frames.

6h Select channel 6 to receive promiscuous frames.

7h Select channel 7 to receive promiscuous frames.

15−14 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

� For CSL implementation, use the notation EMAC_RXMBPENABLE_field_symval

EMAC Module Registers

Registers5-18 SPRU628A

Table 5−12. Receive Multicast/Broadcast/Promiscuous Channel Enable Register
(RXMBPENABLE) Field Descriptions (Continued)

Bit DescriptionValuesym_val�field�

13 BROADEN Receive broadcast enable bit. Enable received broadcast
frames to be copied to the channel selected by BROADCH
bits.

DISABLE 0 Broadcast frames are filtered.

ENABLE 1 Broadcast frames are copied to the channel selected by
BROADCH bits.

12−11 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

10−8 BROADCH 0−7h Receive broadcast channel select bits. Selects the receive
channel for reception of all broadcast frames when enabled by
BROADEN bit.

0 Select channel 0 to receive broadcast frames.

1h Select channel 1 to receive broadcast frames.

2h Select channel 2 to receive broadcast frames.

3h Select channel 3 to receive broadcast frames.

4h Select channel 4 to receive broadcast frames.

5h Select channel 5 to receive broadcast frames.

6h Select channel 6 to receive broadcast frames.

7h Select channel 7 to receive broadcast frames.

7−6 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

5 MULTEN Receive multicast enable bit. Enable received hash matching
multicast frames to be copied to the channel selected by
MULTCH bits.

DISABLE 0 Multicast (group addressed) frames are filtered.

ENABLE 1 Multicast frames are copied to the channel selected by
MULTCH bits.

� For CSL implementation, use the notation EMAC_RXMBPENABLE_field_symval

EMAC Module Registers

5-19RegistersSPRU628A

Table 5−12. Receive Multicast/Broadcast/Promiscuous Channel Enable Register
(RXMBPENABLE) Field Descriptions (Continued)

Bit DescriptionValuesym_val�field�

4−3 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

2−0 MULTCH 0−7h Receive multicast channel select bits selects the receive
channel for reception of all hash matching multicast frames
when enabled by MULTEN bit.

0 Select channel 0 to receive hash matching multicast frames.

1h Select channel 1 to receive hash matching multicast frames.

2h Select channel 2 to receive hash matching multicast frames.

3h Select channel 3 to receive hash matching multicast frames.

4h Select channel 4 to receive hash matching multicast frames.

5h Select channel 5 to receive hash matching multicast frames.

6h Select channel 6 to receive hash matching multicast frames.

7h Select channel 7 to receive hash matching multicast frames.

� For CSL implementation, use the notation EMAC_RXMBPENABLE_field_symval

EMAC Module Registers

Registers5-20 SPRU628A

5.2.8 Receive Unicast Set Register (RXUNICASTSET)

The receive unicast set register (RXUNICASTSET) is shown in Figure 5−11
and described in Table 5−13.

Each unicast channel is disabled by a write to the corresponding
MACADDRLn, regardless of the setting of the corresponding bit in
RXUNICASTCLEAR. Each unicast channel is enabled by a write to the
MACADDRH, if the corresponding bit in RXUNICASTCLEAR is set. Reading
the RXUNICASTCLEAR address returns the actual value of the unicast
enable register. Reading the RXUNICASTSET address returns the value of
the unicast enable register after gating with the MAC address logic.

Figure 5−11.Receive Unicast Set Register (RXUNICASTSET)

31 8

Reserved

R-0

7 6 5 4 3 2 1 0

RXCH7SET RXCH6SET RXCH5SET RXCH4SET RXCH3SET RXCH2SET RXCH1SET RXCH0SET

R/WS-0 R/WS-0 R/WS-0 R/WS-0 R/WS-0 R/WS-0 R/WS-0 R/WS-0

Legend: R = Read only; WS = Write 1 to set, write of 0 has no effect; -n = value after reset

Table 5−13. Receive Unicast Set Register (RXUNICASTSET)
Field Descriptions

Bit field� sym_val� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A value
written to this field has no effect.

7 RXCH7SET Receive channel 7 unicast enable set bit. Write 1 to set the en-
able, a write of 0 has no effect.

0 No effect.

1 Sets receive channel 7 unicast enable.

6 RXCH6SET Receive channel 6 unicast enable set bit. Write 1 to set the en-
able, a write of 0 has no effect.

0 No effect.

1 Sets receive channel 6 unicast enable.

� For CSL implementation, use the notation EMAC_RXUNICASTSET_field_symval

EMAC Module Registers

5-21RegistersSPRU628A

Table 5−13. Receive Unicast Set Register (RXUNICASTSET)
Field Descriptions (Continued)

Bit DescriptionValuesym_val�field�

5 RXCH5SET Receive channel 5 unicast enable set bit. Write 1 to set the en-
able, a write of 0 has no effect.

0 No effect.

1 Sets receive channel 5 unicast enable.

4 RXCH4SET Receive channel 4 unicast enable set bit. Write 1 to set the en-
able, a write of 0 has no effect.

0 No effect.

1 Sets receive channel 4 unicast enable.

3 RXCH3SET Receive channel 3 unicast enable set bit. Write 1 to set the en-
able, a write of 0 has no effect.

0 No effect.

1 Sets receive channel 3 unicast enable.

2 RXCH2SET Receive channel 2 unicast enable set bit. Write 1 to set the en-
able, a write of 0 has no effect.

0 No effect.

1 Sets receive channel 2 unicast enable.

1 RXCH1SET Receive channel 1 unicast enable set bit. Write 1 to set the en-
able, a write of 0 has no effect.

0 No effect.

1 Sets receive channel 1 unicast enable.

0 RXCH0SET Receive channel 0 unicast enable set bit. Write 1 to set the en-
able, a write of 0 has no effect.

0 No effect.

1 Sets receive channel 0 unicast enable.

� For CSL implementation, use the notation EMAC_RXUNICASTSET_field_symval

EMAC Module Registers

Registers5-22 SPRU628A

5.2.9 Receive Unicast Clear Register (RXUNICASTCLEAR)

The receive unicast clear register (RXUNICASTCLEAR) is shown in
Figure 5−12 and described in Table 5−14.

Each unicast channel is disabled by a write to the corresponding
MACADDRLn, regardless of the setting of the corresponding bit in
RXUNICASTCLEAR. Each unicast channel is enabled by a write to the
MACADDRH, if the corresponding bit in RXUNICASTCLEAR is set. Reading
the RXUNICASTCLEAR address returns the actual value of the unicast
enable register. Reading the RXUNICASTSET address returns the value of
the unicast enable register after gating with the MAC address logic.

Figure 5−12. Receive Unicast Clear Register (RXUNICASTCLEAR)

31 8

Reserved

R-0

7 6 5 4 3 2 1 0

RXCH7CLR RXCH6CLR RXCH5CLR RXCH4CLR RXCH3CLR RXCH2CLR RXCH1CLR RXCH0CLR

R/WC-0 R/WC-0 R/WC-0 R/WC-0 R/WC-0 R/WC-0 R/WC-0 R/WC-0

Legend: R = Read only; WC = Write 1 to clear, write of 0 has no effect; -n = value after reset

Table 5−14. Receive Unicast Clear Register (RXUNICASTCLEAR)
Field Descriptions

Bit field� sym_val� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A value
written to this field has no effect.

7 RXCH7CLR Receive channel 7 unicast enable clear bit. Write 1 to clear the
enable, a write of 0 has no effect.

0 No effect.

1 Clears receive channel 7 unicast enable.

6 RXCH6CLR Receive channel 6 unicast enable clear bit. Write 1 to clear the
enable, a write of 0 has no effect.

0 No effect.

1 Clears receive channel 6 unicast enable.

� For CSL implementation, use the notation EMAC_RXUNICASTCLEAR_field_symval

EMAC Module Registers

5-23RegistersSPRU628A

Table 5−14. Receive Unicast Clear Register (RXUNICASTCLEAR)
Field Descriptions (Continued)

Bit DescriptionValuesym_val�field�

5 RXCH5CLR Receive channel 5 unicast enable clear bit. Write 1 to clear the
enable, a write of 0 has no effect.

0 No effect.

1 Clears receive channel 5 unicast enable.

4 RXCH4CLR Receive channel 4 unicast enable clear bit. Write 1 to clear the
enable, a write of 0 has no effect.

0 No effect.

1 Clears receive channel 4 unicast enable.

3 RXCH3CLR Receive channel 3 unicast enable clear bit. Write 1 to clear the
enable, a write of 0 has no effect.

0 No effect.

1 Clears receive channel 3 unicast enable.

2 RXCH2CLR Receive channel 2 unicast enable clear bit. Write 1 to clear the
enable, a write of 0 has no effect.

0 No effect.

1 Clears receive channel 2 unicast enable.

1 RXCH1CLR Receive channel 1 unicast enable clear bit. Write 1 to clear the
enable, a write of 0 has no effect.

0 No effect.

1 Clears receive channel 1 unicast enable.

0 RXCH0CLR Receive channel 0 unicast enable clear bit. Write 1 to clear the
enable, a write of 0 has no effect.

0 No effect.

1 Clears receive channel 0 unicast enable.

� For CSL implementation, use the notation EMAC_RXUNICASTCLEAR_field_symval

EMAC Module Registers

Registers5-24 SPRU628A

5.2.10 Receive Maximum Length Register (RXMAXLEN)

The receive maximum length register (RXMAXLEN) is shown in Figure 5−13
and described in Table 5−15.

Figure 5−13. Receive Maximum Length Register (RXMAXLEN)

31 16 15 0

Reserved RXMAXLEN

R-0 R/W-5EEh

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−15. Receive Maximum Length Register (RXMAXLEN) Field Descriptions

Bit Field sym_val� Value Description

31−16 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

15−0 RXMAXLEN 0−FFFFh Received maximum frame length bits determine the maxi-
mum length of a received frame. The reset value is 5EEh
(1518). Frames with byte counts greater than RXMAXLEN
are long frames. Long frames with no errors are oversized
frames. Long frames with CRC, code, or alignment error are
jabber frames.

� For CSL implementation, use the notation EMAC_RXMAXLEN_RXMAXLEN_symval

EMAC Module Registers

5-25RegistersSPRU628A

5.2.11 Receive Buffer Offset Register (RXBUFFEROFFSET)

The receive buffer offset register (RXBUFFEROFFSET) is shown in
Figure 5−14 and described in Table 5−16.

Figure 5−14. Receive Buffer Offset Register (RXBUFFEROFFSET)

31 16 15 0

Reserved BUFFEROFFSET

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−16. Receive Buffer Offset Register (RXBUFFEROFFSET) Field Descriptions

Bit Field sym_val� Value Description

31−16 Reserved − 0 Reserved. The reserved bit location is always read as
0. A value written to this field has no effect.

15−0 BUFFEROFFSET 0−FFFFh Receive buffer offset bits are written by the EMAC into
each frame SOP buffer descriptor Buffer Offset field.
The frame data begins after the BUFFEROFFSET
value of bytes. A value of 0 indicates that there are no
unused bytes at the beginning of the data and that
valid data begins on the first byte of the buffer. A value
of Fh indicates that the first 15 bytes of the buffer are
to be ignored by the EMAC and that valid buffer data
starts on byte 16 of the buffer. This value is used for all
channels.

� For CSL implementation, use the notation EMAC_RXBUFFEROFFSET_BUFFEROFFSET_symval

EMAC Module Registers

Registers5-26 SPRU628A

5.2.12 Receive Filter Low Priority Packets Threshold Register (RXFILTERLOWTHRESH)

The receive filter low priority packets threshold register (RXFILTERLOW-
THRESH) is shown in Figure 5−15 and described in Table 5−17.

Figure 5−15. Receive Filter Low Priority Packets Threshold Register
(RXFILTERLOWTHRESH)

31 16

Reserved

R-0

15 8 7 0

Reserved FILTERTHRESH

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−17. Receive Filter Low Priority Packets Threshold Register
(RXFILTERLOWTHRESH) Field Descriptions

Bit Field sym_val� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

7−0 FILTERTHRESH 0−FFh Receive filter low threshold bits contain the free buffer
count threshold value for filtering low priority incoming
frames. This field should remain zero, if no filtering is
desired.

� For CSL implementation, use the notation EMAC_RXFILTERLOWTHRESH_FILTERTHRESH_symval

EMAC Module Registers

5-27RegistersSPRU628A

5.2.13 Receive Channel 0−7 Flow Control Threshold Registers (RXnFLOWTHRESH)

The receive channel n flow control threshold registers (RXnFLOWTHRESH)
is shown in Figure 5−16 and described in Table 5−18.

Figure 5−16. Receive Channel n Flow Control Threshold Registers (RXnFLOWTHRESH)

31 16

Reserved

R-0

15 8 7 0

Reserved FLOWTHRESH

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−18. Receive Channel n Flow Control Threshold Registers (RXnFLOWTHRESH)
Field Descriptions

Bit Field sym_val� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

7−0 FLOWTHRESH 0−FFh Receive flow threshold bits contain the threshold value for
issuing flow control on incoming frames (when enabled).

� For CSL implementation, use the notation EMAC_RXnFLOWTHRESH_FLOWTHRESH_symval

EMAC Module Registers

Registers5-28 SPRU628A

5.2.14 Receive Channel 0−7 Free Buffer Count Registers (RXnFREEBUFFER)

The receive channel n free buffer count registers (RXnFREEBUFFER) is
shown in Figure 5−17 and described in Table 5−19.

Figure 5−17. Receive Channel n Free Buffer Count Registers (RXnFREEBUFFER)

31 16 15 0

Reserved FREEBUF

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−19. Receive Channel n Free Buffer Count Registers (RXnFREEBUFFER)
Field Descriptions

Bit Field sym_val� Value Description

31−16 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

15−0 FREEBUF 0−FFFFh Receive free buffer count bits contain the count of free buffers
available. The RXFILTERLOWTHRESH value is compared with
this field to determine if low priority frames should be filtered. The
RXnFLOWTHRESH value is compared with this field to
determine if receive flow control should be issued against
incoming packets (if enabled). This is a write-to-increment field.
This field rolls over to zero on overflow.

If hardware flow control or QOS is used, the host must initialize
this field to the number of available buffers (one register per
channel). The EMAC decrements (by the number of buffers in
the received frame) the associated channel register for each
received frame. This is a write-to-increment field. The host must
write this field with the number of buffers that have been freed
due to host processing.

� For CSL implementation, use the notation EMAC_RXnFREEBUFFER_FREEBUF_symval

EMAC Module Registers

5-29RegistersSPRU628A

5.2.15 MAC Control Register (MACCONTROL)

The MAC control register (MACCONTROL) is shown in Figure 5−18 and
described in Table 5−20.

Figure 5−18. MAC Control Register (MACCONTROL)

31 16

Reserved

R-0

15 10 9 8

Reserved TXPTYPE Reserved

R-0 R/W-0 R-0

7 6 5 4 3 2 1 0

Reserved TXPACE MIIEN TXFLOWEN RXFLOWEN MTEST LOOPBACK FULLDUPLEX

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−20. MAC Control Register (MACCONTROL) Field Descriptions

Bit field� sym_val� Value Description

31−10 Reserved − 0 Reserved. The reserved bit location is always read as
0. A value written to this field has no effect.

9 TXPTYPE Transmit queue priority type bit.

RROBIN 0 The queue uses a round-robin scheme to select the next
channel for transmission.

CHANNELPRI 1 The queue uses a fixed-priority (channel 7 highest
priority) scheme to select the next channel for
transmission.

8−7 Reserved − 0 Reserved. The reserved bit location is always read as
0. A value written to this field has no effect.

6 TXPACE Transmit pacing enable bit.

DISABLE 0 Transmit pacing is disabled.

ENABLE 1 Transmit pacing is enabled.

� For CSL implementation, use the notation EMAC_MACCONTROL_field_symval

EMAC Module Registers

Registers5-30 SPRU628A

Table 5−20. MAC Control Register (MACCONTROL) Field Descriptions (Continued)

Bit DescriptionValuesym_val�field�

5 MIIEN MII enable bit.

DISABLE 0 MII receive and transmit are disabled (state machine
reset).

ENABLE 1 MII receive and transmit are enabled.

4 TXFLOWEN Transmit flow control enable bit determines if incoming
pause frames are acted upon in full-duplex mode.
Incoming pause frames are not acted upon in half-duplex
mode, regardless of this bit setting. The RXMBPENABLE
bits determine whether or not received pause frames are
transferred to memory.

DISABLE 0 Transmit flow control is disabled. Full-duplex mode:
incoming pause frames are not acted upon.

ENABLE 1 Transmit flow control is enabled. Full-duplex mode:
incoming pause frames are acted upon.

3 RXFLOWEN Receive flow control enable bit.

DISABLE 0 Receive flow control is disabled. Half-duplex mode: no
flow control generated collisions are sent. Full-duplex
mode: no outgoing pause frames are sent.

ENABLE 1 Receive flow control is enabled. Half-duplex mode:
collisions are initiated when receive flow control is
triggered. Full-duplex mode: outgoing pause frames are
sent when receive flow control is triggered.

2 MTEST Manufacturing test mode bit.

DISABLE 0 Writes to the BOFFTEST, RXPAUSE, and TXPAUSE
registers are disabled.

ENABLE 1 Writes to the BOFFTEST, RXPAUSE, and TXPAUSE
registers are enabled.

1 LOOPBACK Loopback mode enable bit. Loopback mode forces
internal full-duplex mode regardless of the FULLDUPLEX
bit. The loopback bit should be changed only when MIIEN
bit is deasserted.

DISABLE 0 Loopback mode is disabled.

ENABLE 1 Loopback mode is enabled.

� For CSL implementation, use the notation EMAC_MACCONTROL_field_symval

EMAC Module Registers

5-31RegistersSPRU628A

Table 5−20. MAC Control Register (MACCONTROL) Field Descriptions (Continued)

Bit DescriptionValuesym_val�field�

0 FULLDUPLEX Full-duplex mode enable bit.

DISABLE 0 Half-duplex mode is enabled.

ENABLE 1 Full-duplex mode is enabled.

� For CSL implementation, use the notation EMAC_MACCONTROL_field_symval

5.2.16 MAC Status Register (MACSTATUS)

The MAC status register (MACSTATUS) is shown in Figure 5−19 and
described in Table 5−21.

Figure 5−19. MAC Status Register (MACSTATUS)

31 24

Reserved

R-0

23 20 19 18 16

TXERRCODE Reserved TXERRCH

R-0 R-0 R-0

15 12 11 10 8

RXERRCODE Reserved RXERRCH

R-0 R-0 R-0

7 3 2 1 0

Reserved RXQOSACT RXFLOWACT TXFLOWACT

R-0 R-0 R-0 R-0

Legend: R = Read only; -n = value after reset

EMAC Module Registers

Registers5-32 SPRU628A

Table 5−21. MAC Status Register (MACSTATUS) Field Descriptions

Bit field� sym_val� Value Description

31−24 Reserved − 0 Reserved. The reserved bit location is always read as 0.
A value written to this field has no effect.

23−20 TXERRCODE 0−Fh Transmit host error code bits indicate EMAC detected
transmit DMA related host errors. The host should read
this field after a host error interrupt (HOSTERRINT) to
determine the error. Host error interrupts require hard-
ware reset in order to recover.

NOERROR 0 No error

SOPERROR 1h SOP error

OWNERSHIP 2h Ownership bit is not set in SOP buffer

NOEOP 3h Zero next buffer descriptor pointer is without EOP

NULLPTR 4h Zero buffer pointer

NULLEN 5h Zero buffer length

LENRRROR 6h Packet length error

7h−Fh Reserved

19 Reserved − 0 Reserved. The reserved bit location is always read as 0.
A value written to this field has no effect.

18−16 TXERRCH 0−7h Transmit host error channel bits indicate which transmit
channel the host error occurred on. This field is cleared
to 0 on a host read.

0 The host error occurred on transmit channel 0.

1h The host error occurred on transmit channel 1.

2h The host error occurred on transmit channel 2.

3h The host error occurred on transmit channel 3.

4h The host error occurred on transmit channel 4.

5h The host error occurred on transmit channel 5.

6h The host error occurred on transmit channel 6.

7h The host error occurred on transmit channel 7.

� For CSL implementation, use the notation EMAC_MACSTATUS_field_symval

EMAC Module Registers

5-33RegistersSPRU628A

Table 5−21. MAC Status Register (MACSTATUS) Field Descriptions (Continued)

Bit DescriptionValuesym_val�field�

15−12 RXERRCODE 0−Fh Receive host error code bits indicate EMAC detected
receive DMA related host errors. The host should read
this field after a host error interrupt (HOSTERRINT) to
determine the error. Host error interrupts require hard-
ware reset in order to recover.

NOERROR 0 No error

SOPERROR 1h SOP error

OWNERSHIP 2h Ownership bit is not set in input buffer

NOEOP 3h Zero next buffer descriptor pointer is without eop

NULLPTR 4h Zero buffer pointer

NULLEN 5h Zero buffer length

LENRRROR 6h Packet length error

7h−Fh Reserved

11 Reserved − 0 Reserved. The reserved bit location is always read as 0.
A value written to this field has no effect.

10−8 RXERRCH 0−7h Receive host error channel bits indicate which receive
channel the host error occurred on. This field is cleared
to 0 on a host read.

0 The host error occurred on receive channel 0.

1h The host error occurred on receive channel 1.

2h The host error occurred on receive channel 2.

3h The host error occurred on receive channel 3.

4h The host error occurred on receive channel 4.

5h The host error occurred on receive channel 5.

6h The host error occurred on receive channel 6.

7h The host error occurred on receive channel 7.

7−3 Reserved − 0 Reserved. The reserved bit location is always read as 0.
A value written to this field has no effect.

� For CSL implementation, use the notation EMAC_MACSTATUS_field_symval

EMAC Module Registers

Registers5-34 SPRU628A

Table 5−21. MAC Status Register (MACSTATUS) Field Descriptions (Continued)

Bit DescriptionValuesym_val�field�

2 RXQOSACT Receive quality of service (QOS) active bit.

0 Receive quality of service is disabled.

1 Receive quality of service is enabled and that at least
one channel freebuffer count (RXnFREEBUFFER) value
is less than or equal to the RXFILTERLOWTHRESH value.

1 RXFLOWACT Receive flow control active bit.

0

1 At least one channel freebuffer count (RXnFREEBUFFER)
value is less than or equal to the channel�s correspond-
ing RXnFLOWTHRESH value.

0 TXFLOWACT Transmit flow control active bit.

0

1 The pause time period is being observed for a received
pause frame. No new transmissions begin while this bit
is asserted except for the transmission of pause frames.
Any transmission in progress when this bit is asserted
will complete.

� For CSL implementation, use the notation EMAC_MACSTATUS_field_symval

EMAC Module Registers

5-35RegistersSPRU628A

5.2.17 Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW)

The transmit interrupt status (unmasked) register (TXINTSTATRAW) is shown
in Figure 5−20 and described in Table 5−22.

Figure 5−20. Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW)

31 8

Reserved

R-0

7 6 5 4 3 2 1 0

TX7PEND TX6PEND TX5PEND TX4PEND TX3PEND TX2PEND TX1PEND TX0PEND

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Legend: R = Read only; -n = value after reset

Table 5−22. Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW)
Field Descriptions

Bit field� sym_val� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

7 TX7PEND TX7PEND raw interrupt read (before mask)

6 TX6PEND TX6PEND raw interrupt read (before mask)

5 TX5PEND TX5PEND raw interrupt read (before mask)

4 TX4PEND TX4PEND raw interrupt read (before mask)

3 TX3PEND TX3PEND raw interrupt read (before mask)

2 TX2PEND TX2PEND raw interrupt read (before mask)

1 TX1PEND TX1PEND raw interrupt read (before mask)

0 TX0PEND TX0PEND raw interrupt read (before mask)

� For CSL implementation, use the notation EMAC_TXINTSTATRAW_field_symval

EMAC Module Registers

Registers5-36 SPRU628A

5.2.18 Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED)

The transmit interrupt status (masked) register (TXINTSTATMASKED) is
shown in Figure 5−21 and described in Table 5−23.

Figure 5−21. Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED)

31 8

Reserved

R-0

7 6 5 4 3 2 1 0

TX7PEND TX6PEND TX5PEND TX4PEND TX3PEND TX2PEND TX1PEND TX0PEND

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Legend: R = Read only; -n = value after reset

Table 5−23. Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED)
Field Descriptions

Bit field� sym_val� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

7 TX7PEND TX7PEND masked interrupt read

6 TX6PEND TX6PEND masked interrupt read

5 TX5PEND TX5PEND masked interrupt read

4 TX4PEND TX4PEND masked interrupt read

3 TX3PEND TX3PEND masked interrupt read

2 TX2PEND TX2PEND masked interrupt read

1 TX1PEND TX1PEND masked interrupt read

0 TX0PEND TX0PEND masked interrupt read

� For CSL implementation, use the notation EMAC_TXINTSTATMASKED_field_symval

EMAC Module Registers

5-37RegistersSPRU628A

5.2.19 Transmit Interrupt Mask Set Register (TXINTMASKSET)

The transmit interrupt mask set register (TXINTMASKSET) is shown in
Figure 5−22 and described in Table 5−24.

Figure 5−22. Transmit Interrupt Mask Set Register (TXINTMASKSET)

31 8

Reserved

R-0

7 6 5 4 3 2 1 0

TX7MASK TX6MASK TX5MASK TX4MASK TX3MASK TX2MASK TX1MASK TX0MASK

R/WS-0 R/WS-0 R/WS-0 R/WS-0 R/WS-0 R/WS-0 R/WS-0 R/WS-0

Legend: R = Read only; WS = Write 1 to set, write of 0 has no effect; -n = value after reset

Table 5−24. Transmit Interrupt Mask Set Register (TXINTMASKSET)
Field Descriptions

Bit field� sym_val� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

7 TX7MASK Transmit channel 7 interrupt mask set bit. Write 1 to enable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 7 interrupt is enabled.

6 TX6MASK Transmit channel 6 interrupt mask set bit. Write 1 to enable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 6 interrupt is enabled.

5 TX5MASK Transmit channel 5 interrupt mask set bit. Write 1 to enable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 5 interrupt is enabled.

� For CSL implementation, use the notation EMAC_TXINTMASKSET_field_symval

EMAC Module Registers

Registers5-38 SPRU628A

Table 5−24. Transmit Interrupt Mask Set Register (TXINTMASKSET)
Field Descriptions (Continued)

Bit DescriptionValuesym_val�field�

4 TX4MASK Transmit channel 4 interrupt mask set bit. Write 1 to enable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 4 interrupt is enabled.

3 TX3MASK Transmit channel 3 interrupt mask set bit. Write 1 to enable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 3 interrupt is enabled.

2 TX2MASK Transmit channel 2 interrupt mask set bit. Write 1 to enable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 2 interrupt is enabled.

1 TX1MASK Transmit channel 1 interrupt mask set bit. Write 1 to enable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 1 interrupt is enabled.

0 TX0MASK Transmit channel 0 interrupt mask set bit. Write 1 to enable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 0 interrupt is enabled.

� For CSL implementation, use the notation EMAC_TXINTMASKSET_field_symval

EMAC Module Registers

5-39RegistersSPRU628A

5.2.20 Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR)

The transmit interrupt mask clear register (TXINTMASKCLEAR) is shown in
Figure 5−23 and described in Table 5−25.

Figure 5−23. Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR)

31 8

Reserved

R-0

7 6 5 4 3 2 1 0

TX7MASK TX6MASK TX5MASK TX4MASK TX3MASK TX2MASK TX1MASK TX0MASK

R/WC-0 R/WC-0 R/WC-0 R/WC-0 R/WC-0 R/WC-0 R/WC-0 R/WC-0

Legend: R = Read only; WC = Write 1 to clear, write of 0 has no effect; -n = value after reset

Table 5−25. Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR)
Field Descriptions

Bit field� sym_val� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

7 TX7MASK Transmit channel 7 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 7 interrupt is disabled.

6 TX6MASK Transmit channel 6 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 6 interrupt is disabled.

5 TX5MASK Transmit channel 5 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 5 interrupt is disabled.

� For CSL implementation, use the notation EMAC_TXINTMASKCLEAR_field_symval

EMAC Module Registers

Registers5-40 SPRU628A

Table 5−25. Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR)
Field Descriptions (Continued)

Bit DescriptionValuesym_val�field�

4 TX4MASK Transmit channel 4 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 4 interrupt is disabled.

3 TX3MASK Transmit channel 3 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 3 interrupt is disabled.

2 TX2MASK Transmit channel 2 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 2 interrupt is disabled.

1 TX1MASK Transmit channel 1 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 1 interrupt is disabled.

0 TX0MASK Transmit channel 0 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Transmit channel 0 interrupt is disabled.

� For CSL implementation, use the notation EMAC_TXINTMASKCLEAR_field_symval

EMAC Module Registers

5-41RegistersSPRU628A

5.2.21 MAC Input Vector Register (MACINVECTOR)

The MAC input vector register (MACINVECTOR) is shown in Figure 5−24 and
described in Table 5−26. MACINVECTOR contains the current interrupt status of
all individual EMAC and MDIO module interrupts. With a single MACINVECTOR
read, you can monitor the status of all device interrupts.

Figure 5−24. MAC Input Vector Register (MACINVECTOR)

31 30 29 18 17 16

USERINT LINKINT Reserved HOSTPEND STATPEND

R-0 R-0 R-0 R-0 R-0

15 8 7 0

RXPEND TXPEND

R-0 R-0

Legend: R = Read only; -n = value after reset

Table 5−26. MAC Input Vector Register (MACINVECTOR) Field Descriptions

Bit field� sym_val� Value Description

31 USERINT MDIO module user interrupt (USERINT) pending status bit.

30 LINKINT MDIO module link change interrupt (LINKINT) pending status
bit.

29−18 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

17 HOSTPEND EMAC module host error interrupt pending (HOSTPEND)
status bit.

16 STATPEND EMAC module statistics interrupt pending (STATPEND) status
bit.

15−8 RXPEND 0−FFh Receive channel 0−7 interrupt pending (RXPEND) status bit.
Bit 8 is receive channel 0.

7−0 TXPEND 0−FFh Transmit channel 0−7 interrupt pending (TXPEND) status bit.
Bit 0 is transmit channel 0.

� For CSL implementation, use the notation EMAC_MACINVECTOR_field_symval

EMAC Module Registers

Registers5-42 SPRU628A

5.2.22 Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW)

The receive interrupt status (unmasked) register (RXINTSTATRAW) is shown
in Figure 5−25 and described in Table 5−27.

Figure 5−25. Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW)

31 8

Reserved

R-0

7 6 5 4 3 2 1 0

RX7PEND RX6PEND RX5PEND RX4PEND RX3PEND RX2PEND RX1PEND RX0PEND

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Legend: R = Read only; -n = value after reset

Table 5−27. Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW)
Field Descriptions

Bit field� sym_val� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

7 RX7PEND RX7PEND raw interrupt read (before mask)

6 RX6PEND RX6PEND raw interrupt read (before mask)

5 RX5PEND RX5PEND raw interrupt read (before mask)

4 RX4PEND RX4PEND raw interrupt read (before mask)

3 RX3PEND RX3PEND raw interrupt read (before mask)

2 RX2PEND RX2PEND raw interrupt read (before mask)

1 RX1PEND RX1PEND raw interrupt read (before mask)

0 RX0PEND RX0PEND raw interrupt read (before mask)

� For CSL implementation, use the notation EMAC_RXINTSTATRAW_field_symval

EMAC Module Registers

5-43RegistersSPRU628A

5.2.23 Receive Interrupt Status (Masked) Register (RXINTSTATMASKED)

The receive interrupt status (masked) register (RXINTSTATMASKED) is
shown in Figure 5−26 and described in Table 5−28.

Figure 5−26. Receive Interrupt Status (Masked) Register (RXINTSTATMASKED)

31 8

Reserved

R-0

7 6 5 4 3 2 1 0

RX7PEND RX6PEND RX5PEND RX4PEND RX3PEND RX2PEND RX1PEND RX0PEND

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Legend: R = Read only; -n = value after reset

Table 5−28. Receive Interrupt Status (Masked) Register (RXINTSTATMASKED)
Field Descriptions

Bit field� sym_val� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

7 RX7PEND RX7PEND masked interrupt read

6 RX6PEND RX6PEND masked interrupt read

5 RX5PEND RX5PEND masked interrupt read

4 RX4PEND RX4PEND masked interrupt read

3 RX3PEND RX3PEND masked interrupt read

2 RX2PEND RX2PEND masked interrupt read

1 RX1PEND RX1PEND masked interrupt read

0 RX0PEND RX0PEND masked interrupt read

� For CSL implementation, use the notation EMAC_RXINTSTATMASKED_field_symval

EMAC Module Registers

Registers5-44 SPRU628A

5.2.24 Receive Interrupt Mask Set Register (RXINTMASKSET)

The receive interrupt mask set register (RXINTMASKSET) is shown in
Figure 5−27 and described in Table 5−29.

Figure 5−27. Receive Interrupt Mask Set Register (RXINTMASKSET)

31 8

Reserved

R-0

7 6 5 4 3 2 1 0

RX7MASK RX6MASK RX5MASK RX4MASK RX3MASK RX2MASK RX1MASK RX0MASK

R/WS-0 R/WS-0 R/WS-0 R/WS-0 R/WS-0 R/WS-0 R/WS-0 R/WS-0

Legend: R = Read only; WS = Write 1 to set, write of 0 has no effect; -n = value after reset

Table 5−29. Receive Interrupt Mask Set Register (RXINTMASKSET)
Field Descriptions

Bit field� sym_val� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

7 RX7MASK Receive channel 7 interrupt mask set bit. Write 1 to enable in-
terrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 7 interrupt is enabled.

6 RX6MASK Receive channel 6 interrupt mask set bit. Write 1 to enable in-
terrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 6 interrupt is enabled.

5 RX5MASK Receive channel 5 interrupt mask set bit. Write 1 to enable in-
terrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 5 interrupt is enabled.

� For CSL implementation, use the notation EMAC_RXINTMASKSET_field_symval

EMAC Module Registers

5-45RegistersSPRU628A

Table 5−29. Receive Interrupt Mask Set Register (RXINTMASKSET)
Field Descriptions (Continued)

Bit DescriptionValuesym_val�field�

4 RX4MASK Receive channel 4 interrupt mask set bit. Write 1 to enable in-
terrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 4 interrupt is enabled.

3 RX3MASK Receive channel 3 interrupt mask set bit. Write 1 to enable in-
terrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 3 interrupt is enabled.

2 RX2MASK Receive channel 2 interrupt mask set bit. Write 1 to enable in-
terrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 2 interrupt is enabled.

1 RX1MASK Receive channel 1 interrupt mask set bit. Write 1 to enable in-
terrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 1 interrupt is enabled.

0 RX0MASK Receive channel 0 interrupt mask set bit. Write 1 to enable in-
terrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 0 interrupt is enabled.

� For CSL implementation, use the notation EMAC_RXINTMASKSET_field_symval

EMAC Module Registers

Registers5-46 SPRU628A

5.2.25 Receive Interrupt Mask Clear Register (RXINTMASKCLEAR)

The receive interrupt mask clear register (RXINTMASKCLEAR) is shown in
Figure 5−28 and described in Table 5−30.

Figure 5−28. Receive Interrupt Mask Clear Register (RXINTMASKCLEAR)

31 8

Reserved

R-0

7 6 5 4 3 2 1 0

RX7MASK RX6MASK RX5MASK RX4MASK RX3MASK RX2MASK RX1MASK RX0MASK

R/WC-0 R/WC-0 R/WC-0 R/WC-0 R/WC-0 R/WC-0 R/WC-0 R/WC-0

Legend: R = Read only; WC = Write 1 to clear, write of 0 has no effect; -n = value after reset

Table 5−30. Receive Interrupt Mask Clear Register (RXINTMASKCLEAR)
Field Descriptions

Bit field� sym_val� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

7 RX7MASK Receive channel 7 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 7 interrupt is disabled.

6 RX6MASK Receive channel 6 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 6 interrupt is disabled.

5 RX5MASK Receive channel 5 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 5 interrupt is disabled.

� For CSL implementation, use the notation EMAC_RXINTMASKCLEAR_field_symval

EMAC Module Registers

5-47RegistersSPRU628A

Table 5−30. Receive Interrupt Mask Clear Register (RXINTMASKCLEAR)
Field Descriptions (Continued)

Bit DescriptionValuesym_val�field�

4 RX4MASK Receive channel 4 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 4 interrupt is disabled.

3 RX3MASK Receive channel 3 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 3 interrupt is disabled.

2 RX2MASK Receive channel 2 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 2 interrupt is disabled.

1 RX1MASK Receive channel 1 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 1 interrupt is disabled.

0 RX0MASK Receive channel 0 interrupt mask clear bit. Write 1 to disable
interrupt, a write of 0 has no effect.

0 No effect.

1 Receive channel 0 interrupt is disabled.

� For CSL implementation, use the notation EMAC_RXINTMASKCLEAR_field_symval

EMAC Module Registers

Registers5-48 SPRU628A

5.2.26 MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW)

The MAC interrupt status (unmasked) register (MACINTSTATRAW) is shown
in Figure 5−29 and described in Table 5−31.

Figure 5−29. MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW)

31 16

Reserved

R-0

15 2 1 0

Reserved HOSTERRINT STATINT

R-0 R-0 R-0

Legend: R = Read only; -n = value after reset

Table 5−31. MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW)
Field Descriptions

Bit field� sym_val� Value Description

31−2 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

1 HOSTERRINT Host error interrupt bit. Raw interrupt read (before mask).

0 STATINT Statistics interrupt bit. Raw interrupt read (before mask).

� For CSL implementation, use the notation EMAC_MACINTSTATRAW_field_symval

EMAC Module Registers

5-49RegistersSPRU628A

5.2.27 MAC Interrupt Status (Masked) Register (MACINTSTATMASKED)

The MAC interrupt status (masked) register (MACINTSTATMASKED) is
shown in Figure 5−30 and described in Table 5−32.

Figure 5−30. MAC Interrupt Status (Masked) Register (MACINTSTATMASKED)

31 16

Reserved

R-0

15 2 1 0

Reserved HOSTERRINT STATINT

R-0 R-0 R-0

Legend: R = Read only; -n = value after reset

Table 5−32. MAC Interrupt Status (Masked) Register (MACINTSTATMASKED)
Field Descriptions

Bit field� sym_val� Value Description

31−2 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

1 HOSTERRINT Host error interrupt bit. Masked interrupt read.

0 STATINT Statistics interrupt bit. Masked interrupt read.

� For CSL implementation, use the notation EMAC_MACINTSTATMASKED_field_symval

EMAC Module Registers

Registers5-50 SPRU628A

5.2.28 MAC Interrupt Mask Set Register (MACINTMASKSET)

The MAC interrupt mask set register (MACINTMASKSET) is shown in
Figure 5−31 and described in Table 5−33.

Figure 5−31. MAC Interrupt Mask Set Register (MACINTMASKSET)

31 16

Reserved

R-0

15 2 1 0

Reserved HOSTERRINT STATINT

R-0 R/WS-0 R/WS-0

Legend: R = Read only; WS = Write 1 to set, write of 0 has no effect; -n = value after reset

Table 5−33. MAC Interrupt Mask Set Register (MACINTMASKSET) Field Descriptions

Bit field� sym_val� Value Description

31−2 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

1 HOSTERRINT Host error interrupt mask set bit. Write 1 to enable interrupt, a
write of 0 has no effect.

0 No effect.

1 Host error interrupt is enabled.

0 STATINT Statistics interrupt mask set bit. Write 1 to enable interrupt, a
write of 0 has no effect.

0 No effect.

1 Statistics interrupt is enabled.

� For CSL implementation, use the notation EMAC_MACINTMASKSET_field_symval

EMAC Module Registers

5-51RegistersSPRU628A

5.2.29 MAC Interrupt Mask Clear Register (MACINTMASKCLEAR)

The MAC interrupt mask clear register (MACINTMASKCLEAR) is shown in
Figure 5−32 and described in Table 5−34.

Figure 5−32. MAC Interrupt Mask Clear Register (MACINTMASKCLEAR)

31 16

Reserved

R-0

15 2 1 0

Reserved HOSTERRINT STATINT

R-0 R/WC-0 R/WC-0

Legend: R = Read only; WC = Write 1 to clear, write of 0 has no effect; -n = value after reset

Table 5−34. MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) Field Descriptions

Bit field� sym_val� Value Description

31−2 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

1 HOSTERRINT Host error interrupt mask clear bit. Write 1 to disable interrupt,
a write of 0 has no effect.

0 No effect.

1 Host error interrupt is disabled.

0 STATINT Statistics interrupt mask clear bit. Write 1 to disable interrupt,
a write of 0 has no effect.

0 No effect.

1 Statistics interrupt is disabled.

� For CSL implementation, use the notation EMAC_MACINTMASKCLEAR_field_symval

EMAC Module Registers

Registers5-52 SPRU628A

5.2.30 MAC Address Channel 0−7 Lower Byte Registers (MACADDRLn)

The MAC address channel n lower byte register (MACADDRLn) is shown in
Figure 5−33 and described in Table 5−35.

In order to facilitate changing the MACADDR values while the device is opera-
ting, a channel is disabled when MACADDRLn is written and enabled when
MACADDRH is written (provided that the unicast, broadcast, or multicast
enable is set). MACADDRH should be written last.

Figure 5−33. MAC Address Channel n Lower Byte Register (MACADDRLn)

31 8 7 0

Reserved MACADDR8 [7−0]

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−35. MAC Address Channel n Lower Byte Register (MACADDRLn)
Field Descriptions

Bit Field sym_val� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

7−0 MACADDR8 0−FFh Sixth byte (bits 0−7) of MAC specific address.

� For CSL implementation, use the notation EMAC_MACADDRLn_MACADDR8_symval

5.2.31 MAC Address Middle Byte Register (MACADDRM)

The MAC address middle byte register (MACADDRM) is shown in
Figure 5−34 and described in Table 5−36.

Figure 5−34. MAC Address Middle Byte Register (MACADDRM)

31 8 7 0

Reserved MACADDR8 [15−8]

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−36. MAC Address Middle Byte Register (MACADDRM) Field Descriptions

Bit Field sym_val� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

7−0 MACADDR8 0−FFh Fifth byte (bits 8−15) of MAC specific address.

� For CSL implementation, use the notation EMAC_MACADDRM_MACADDR8_symval

EMAC Module Registers

5-53RegistersSPRU628A

5.2.32 MAC Address High Bytes Register (MACADDRH)

The MAC address high bytes register (MACADDRH) is shown in Figure 5−35
and described in Table 5−37.

Figure 5−35. MAC Address High Bytes Register (MACADDRH)

31 0

MACADDR32 ([23−16], [31−24], [39−32], [47−40]) 0

R/W-0

Legend: R/W = Read/Write; -n = value after reset

Table 5−37. MAC Address High Bytes Register (MACADDRH) Field Descriptions

Bit Field sym_val� Value Description

31−0 MACADDR32 0−FFFF FFFEh First 32 bits (bits 16−47) of MAC specific address.

Bit 0 is considered the group/specific bit and is hard-
wired to 0, writes have no effect. Bit 0 corresponds to
the group/specific address bit. Specific addresses
always have this bit cleared to 0.

� For CSL implementation, use the notation EMAC_MACADDRH_MACADDR32_symval

EMAC Module Registers

Registers5-54 SPRU628A

5.2.33 MAC Address Hash 1 Register (MACHASH1)

The MAC hash registers allow group addressed frames to be accepted on the
basis of a hash function of the address. The hash function creates a 6-bit data
value (Hash_fun) from the 48-bit destination address (DA) as follows:

Hash_fun(0)=DA(0) XOR DA(6) XOR DA(12) XOR DA(18) XOR DA(24) XOR DA(30) XOR DA(36) XOR DA(42);
Hash_fun(1)=DA(1) XOR DA(7) XOR DA(13) XOR DA(19) XOR DA(25) XOR DA(31) XOR DA(37) XOR DA(43);
Hash_fun(2)=DA(2) XOR DA(8) XOR DA(14) XOR DA(20) XOR DA(26) XOR DA(32) XOR DA(38) XOR DA(44);
Hash_fun(3)=DA(3) XOR DA(9) XOR DA(15) XOR DA(21) XOR DA(27) XOR DA(33) XOR DA(39) XOR DA(45);
Hash_fun(4)=DA(4) XOR DA(10) XOR DA(16) XOR DA(22) XOR DA(28) XOR DA(34) XOR DA(40) XOR DA(46);
Hash_fun(5)=DA(5) XOR DA(11) XOR DA(17) XOR DA(23) XOR DA(29) XOR DA(35) XOR DA(41) XOR DA(47);

This function is used as an offset into a 64-bit hash table stored in MACHASH1
and MACHASH2 that indicates whether a particular address should be
accepted or not.

The MAC address hash 1 register (MACHASH1) is shown in Figure 5−36 and
described in Table 5−38.

Figure 5−36. MAC Address Hash 1 Register (MACHASH1)

31 0

HASHBITS

R/W-0

Legend: R/W = Read/Write; -n = value after reset

Table 5−38. MAC Address Hash 1 Register (MACHASH1) Field Descriptions

Bit Field sym_val� Value Description

31−0 HASHBITS 0−FFFF FFFFh Least-significant 32 bits of the hash table corresponding
to hash values 0 to 31. If a hash table bit is set, then a
group address that hashes to that bit index is accepted.

� For CSL implementation, use the notation EMAC_MACHASH1_HASHBITS_symval

EMAC Module Registers

5-55RegistersSPRU628A

5.2.34 MAC Address Hash 2 Register (MACHASH2)

The MAC address hash 2 register (MACHASH2) is shown in Figure 5−37 and
described in Table 5−39.

Figure 5−37. MAC Address Hash 2 Register (MACHASH2)

31 0

HASHBITS

R/W-0

Legend: R/W = Read/Write; -n = value after reset

Table 5−39. MAC Address Hash 2 Register (MACHASH2) Field Descriptions

Bit Field sym_val� Value Description

31−0 HASHBITS 0−FFFF FFFFh Most-significant 32 bits of the hash table corresponding
to hash values 32 to 63. If a hash table bit is set, then a
group address that hashes to that bit index is accepted.

� For CSL implementation, use the notation EMAC_MACHASH2_HASHBITS_symval

EMAC Module Registers

Registers5-56 SPRU628A

5.2.35 Backoff Test Register (BOFFTEST)

The backoff test register (BOFFTEST) is shown in Figure 5−38 and described
in Table 5−40.

Figure 5−38. Backoff Test Register (BOFFTEST)

31 30 27 26 16

BOFFHALT ATTEMPT BOFFRNG

R/W-0 R/W-0 R/W-0

15 12 11 10 9 0

RETRYCOUNT Reserved BOFFCOUNT

R/W-0 R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−40. Backoff Test Register (BOFFTEST) Field Descriptions

Field field� sym_val� Value Function

31 BOFFHALT

30−27 ATTEMPT 0−Fh Initial collision attempt count bits is the number of
collisions the current frame has experienced.

26−16 BOFFRNG 0−7FFh Backoff random number generator bits allow the backoff
random number generator to be read (or written in test
mode only). This field can be written only when the
MTEST bit in MACCONTROL has previously been set.
Reading this field returns the generator�s current value.
The value is reset to 0 and begins counting on the clock
after the deassertion of reset.

15−12 RETRYCOUNT 0−Fh

11−10 Reserved − 0 Reserved. The reserved bit location is always read as 0.
A value written to this field has no effect.

9−0 BOFFCOUNT 0−3FFh Backoff current count bits allow the current value of the
backoff counter to be observed for test purposes. This
field is loaded automatically according to the backoff
algorithm and is decremented by 1 for each slot time
after the collision.

� For CSL implementation, use the notation EMAC_BOFFTEST_field_symval

EMAC Module Registers

5-57RegistersSPRU628A

5.2.36 Transmit Pacing Test Register (TPACETEST)

The transmit pacing test register (TPACETEST) is shown in Figure 5−39 and
described in Table 5−41.

Figure 5−39. Transmit Pacing Test Register (TPACETEST)

31 5 4 0

Reserved PACEVAL

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−41. Transmit Pacing Test Register (TPACETEST) Field Descriptions

Bit Field sym_val� Value Description

31−5 Reserved − 0 Reserved. The reserved bit location is always read as 0. A value
written to this field has no effect.

4−0 PACEVAL 0−1Fh Pacing register current value. A nonzero value in this field
indicates that transmit pacing is active. A transmit frame collision
or deferral causes PACEVAL to be loaded with 1Fh (31), good
frame transmissions (with no collisions or deferrals) cause
PACEVAL to be decremented down to 0. When PACEVAL is
nonzero, the transmitter delays four IPGs between new frame
transmissions after each successfully transmitted frame that had
no deferrals or collisions. If a transmit frame is deferred or suffers
a collision, the IPG time is not stretched to four times the normal
value. Transmit pacing helps reduce capture effects, which
improves overall network bandwidth.

� For CSL implementation, use the notation EMAC_TPACETEST_PACEVAL_symval

EMAC Module Registers

Registers5-58 SPRU628A

5.2.37 Receive Pause Timer Register (RXPAUSE)

The receive pause timer register (RXPAUSE) is shown in Figure 5−40 and de-
scribed in Table 5−42.

Figure 5−40. Receive Pause Timer Register (RXPAUSE)

31 16 15 0

Reserved PAUSETIMER

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−42. Receive Pause Timer Register (RXPAUSE) Field Descriptions

Bit Field sym_val� Value Description

31−16 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

15−0 PAUSETIMER 0−FFFFh Pause timer value bits. This field allows the contents of the
receive pause timer to be observed (and written in test
mode). The receive pause timer is loaded with FF00h
when the EMAC sends an outgoing pause frame (with
pause time of FFFFh). The receive pause timer is
decremented at slot time intervals. If the receive pause
timer decrements to 0, then another outgoing pause frame
is sent and the load/decrement process is repeated.

� For CSL implementation, use the notation EMAC_RXPAUSE_PAUSETIMER_symval

EMAC Module Registers

5-59RegistersSPRU628A

5.2.38 Transmit Pause Timer Register (TXPAUSE)

The transmit pause timer register (TXPAUSE) is shown in Figure 5−41 and de-
scribed in Table 5−43.

Figure 5−41. Transmit Pause Timer Register (TXPAUSE)

31 16 15 0

Reserved PAUSETIMER

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−43. Transmit Pause Timer Register (TXPAUSE) Field Descriptions

Bit Field sym_val� Value Description

31−16 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

15−0 PAUSETIMER 0−FFFFh Pause timer value bits � This field allows the contents of
the transmit pause timer to be observed (and written in
test mode). The transmit pause timer is loaded by a
received (incoming) pause frame, and then decremented
at slot time intervals down to 0 at which time EMAC
transmit frames are again enabled.

� For CSL implementation, use the notation EMAC_TXPAUSE_PAUSETIMER_symval

EMAC Module Registers

Registers5-60 SPRU628A

5.2.39 Transmit Channel 0−7 DMA Head Descriptor Pointer Registers (TXnHDP)

The transmit channel n DMA head descriptor pointer register (TXnHDP) is
shown in Figure 5−42 and described in Table 5−44.

Figure 5−42. Transmit Channel n DMA Head Descriptor Pointer Register (TXnHDP)

31 0

DESCPTR

R/W-0

Legend: R/W = Read/Write; -n = value after reset

Table 5−44. Transmit Channel n DMA Head Descriptor Pointer Register (TXnHDP)
Field Descriptions

Bit Field sym_val� Value Description

31−0 DESCPTR 0−FFFF FFFFh Descriptor pointer bits. Writing a transmit DMA buffer
descriptor address to a head pointer location initiates
transmit DMA operations in the queue for the selected
channel. Writing to these locations when they are
nonzero is an error (except at reset). Host software
must initialize these locations to zero on reset.

� For CSL implementation, use the notation EMAC_TXnHDP_DESCPTR_symval

5.2.40 Receive Channel 0−7 DMA Head Descriptor Pointer Registers (RXnHDP)

The receive channel n DMA head descriptor pointer register (RXnHDP) is
shown in Figure 5−43 and described in Table 5−45.

Figure 5−43. Receive Channel n DMA Head Descriptor Pointer Register (RXnHDP)

31 0

DESCPTR

R/W-0

Legend: R/W = Read/Write; -n = value after reset

Table 5−45. Receive Channel n DMA Head Descriptor Pointer Register (RXnHDP)
Field Descriptions

Bit Field sym_val� Value Description

31−0 DESCPTR 0−FFFF FFFFh Descriptor pointer bits. Writing a receive DMA buffer
descriptor address to this location allows receive DMA
operations in the selected channel when a channel
frame is received. Writing to these locations when they
are nonzero is an error (except at reset). Host software
must initialize these locations to zero on reset.

� For CSL implementation, use the notation EMAC_RXnHDP_DESCPTR_symval

EMAC Module Registers

5-61RegistersSPRU628A

5.2.41 Transmit Channel 0−7 Interrupt Acknowledge Registers (TXnINTACK)

The transmit channel n interrupt acknowledge register (TXnINTACK) is shown
in Figure 5−44 and described in Table 5−46.

Figure 5−44. Transmit Channel n Interrupt Acknowledge Register (TXnINTACK)

31 0

DESCPTR

R/W-0

Legend: R/W = Read/Write; -n = value after reset

Table 5−46. Transmit Channel n Interrupt Acknowledge Register (TXnINTACK)
Field Descriptions

Bit Field sym_val� Value Description

31−0 DESCPTR 0−FFFF FFFFh Transmit host interrupt acknowledge register bits. This
register is written by the host with the buffer descriptor
address for the last buffer processed by the host during
interrupt processing. The EMAC uses the value written
to determine if the interrupt should be deasserted.

� For CSL implementation, use the notation EMAC_TXnINTACK_DESCPTR_symval

EMAC Module Registers

Registers5-62 SPRU628A

5.2.42 Receive Channel 0−7 Interrupt Acknowledge Registers (RXnINTACK)

The receive channel n interrupt acknowledge registers (RXnINTACK) is
shown in Figure 5−45 and described in Table 5−47.

The value read is the interrupt acknowledge value that was written by the
EMAC DMA controller. The value written to RXnINTACK by the host is
compared with the value that the EMAC wrote to determine if the interrupt
should remain asserted. The value written is not actually stored in this location.
The interrupt is deasserted, if the two values are equal.

Figure 5−45. Receive Channel n Interrupt Acknowledge Register (RXnINTACK)

31 0

DESCPTR

R/W-0

Legend: R/W = Read/Write; -n = value after reset

Table 5−47. Receive Channel n Interrupt Acknowledge Register (RXnINTACK)
Field Descriptions

Bit Field sym_val� Value Description

31−0 DESCPTR 0−FFFF FFFFh Receive host interrupt acknowledge register bits. This
register is written by the host with the buffer descriptor
address for the last buffer processed by the host during
interrupt processing. The EMAC uses the value written
to determine if the interrupt should be deasserted.

� For CSL implementation, use the notation EMAC_RXnINTACK_DESCPTR_symval

5.2.43 Network Statistics Registers

The EMAC has a set of statistics that record events associated with frame traffic.
The statistics values are cleared to zero, 38 clocks after the rising edge of
reset. When the MIIEN bit in the MACCONTROL register is set, all statistics
registers are write-to-decrement. The value written is subtracted from the
register value with the result stored in the register. If a value greater than the
statistics value is written, then zero is written to the register (writing
FFFF FFFFh clears a statistics location). When the MIIEN bit is cleared, all
statistics registers are read/write (normal write direct, so writing 0000 0000h
clears a statistics location). All write accesses must be 32-bit accesses.

EMAC Module Registers

5-63RegistersSPRU628A

The statistics interrupt (STATPEND) is issued, if enabled, when any statistics
value is greater than or equal to 8000 0000h. The statistics interrupt is
removed by writing to decrement any statistics value greater than 8000 0000h.
The statistics are mapped into internal memory space and are 32-bits wide.
All statistics rollover from FFFF FFFFh to 0000 0000h.

The statistics registers are 32-bit registers as shown in Figure 5−46.

For CSL implementation, use: EMAC_register name_COUNT_symval

Figure 5−46. Statistics Register

31 0

COUNT

R/W-0

Legend: R/W = Read/Write; -n = value after reset

5.2.43.1 Good Receive Frames Register (RXGOODFRAMES)

The total number of good frames received on the EMAC. A good frame is
defined as having all of the following:

� Any data or MAC control frame that matched a unicast, broadcast, or
multicast address, or matched due to promiscuous mode

� Was of length 64 to RXMAXLEN bytes inclusive

� Had no CRC error, alignment error, or code error

See section 2.3.5 for definitions of alignment, code, and CRC errors. Overruns
have no effect on this statistic.

5.2.43.2 Broadcast Receive Frames Register (RXBCASTFRAMES)

The total number of good broadcast frames received on the EMAC. A good
broadcast frame is defined as having all of the following:

� Any data or MAC control frame that was destined for address FF−FF−FF−
FF−FF−FFh only

� Was of length 64 to RXMAXLEN bytes inclusive

� Had no CRC error, alignment error, or code error

See section 2.3.5 for definitions of alignment, code, and CRC errors. Overruns
have no effect on this statistic.

EMAC Module Registers

Registers5-64 SPRU628A

5.2.43.3 Multicast Receive Frames Register (RXMCASTFRAMES)

The total number of good multicast frames received on the EMAC. A good mul-
ticast frame is defined as having all of the following:

� Any data or MAC control frame that was destined for any multicast
address other than FF−FF−FF−FF−FF−FFh

� Was of length 64 to RXMAXLEN bytes inclusive

� Had no CRC error, alignment error, or code error

See section 2.3.5 for definitions of alignment, code, and CRC errors. Overruns
have no effect on this statistic.

5.2.43.4 Pause Receive Frames Register (RXPAUSEFRAMES)

The total number of IEEE 802.3X pause frames received by the EMAC (wheth-
er acted upon or not). A pause frame is defined as having all of the following:

� Contained any unicast, broadcast, or multicast address

� Contained the length/type field value 88.08h and the opcode 0001h

� Was of length 64 to RXMAXLEN bytes inclusive

� Had no CRC error, alignment error, or code error

� Pause-frames had been enabled on the EMAC (TXFLOWEN bit is set in
MACCONTROL).

The EMAC could have been in either half-duplex or full-duplex mode.

See section 2.3.5 for definitions of alignment, code, and CRC errors. Overruns
have no effect on this statistic.

5.2.43.5 Receive CRC Errors Register (RXCRCERRORS)

The total number of frames received on the EMAC that experienced a CRC
error. A frame is defined as having all of the following:

� Was any data or MAC control frame that matched a unicast, broadcast, or
multicast address, or matched due to promiscuous mode

� Was of length 64 to RXMAXLEN bytes inclusive

� Had no alignment or code error

� Had a CRC error. A CRC error is defined as having all of the following:

� A frame containing an even number of nibbles
� Fails the frame check sequence test

See section 2.3.5 for definitions of alignment and code errors. Overruns have
no effect on this statistic.

EMAC Module Registers

5-65RegistersSPRU628A

5.2.43.6 Receive Alignment/Code Errors Register (RXALIGNCODEERRORS)

The total number of frames received on the EMAC that experienced an align-
ment error or code error. Such a frame is defined as having all of the following:

� Was any data or MAC control frame that matched a unicast, broadcast, or
multicast address, or matched due to promiscuous mode

� Was of length 64 to RXMAXLEN bytes inclusive

� Had either an alignment error or a code error

� An alignment error is defined as having all of the following:

� A frame containing an odd number of nibbles
� Fails the frame check sequence test, if the final nibble is ignored

� A code error is defined as:

� A frame that has been discarded because the EMACs MRXER pin
is driven with a one for at least one bit-time�s duration at any point
during the frame�s reception.

Overruns have no effect on this statistic.

RFC 1757 etherStatsCRCAlignErrors Ref. 1.5 can be calculated by summing
receive alignment errors, receive code errors, and receive CRC errors.

5.2.43.7 Receive Oversized Frames Register (RXOVERSIZED)

The total number of oversized frames received on the EMAC. An oversized
frame is defined as having all of the following:

� Was any data or MAC control frame that matched a unicast, broadcast, or
multicast address, or matched due to promiscuous mode

� Was greater than RXMAXLEN in bytes

� Had no CRC error, alignment error, or code error

See section 2.3.5 for definitions of alignment, code, and CRC errors. Overruns
have no effect on this statistic.

5.2.43.8 Receive Jabber Frames Register (RXJABBER)

The total number of jabber frames received on the EMAC. A jabber frame is
defined as having all of the following:

� Was any data or MAC control frame that matched a unicast, broadcast, or
multicast address, or matched due to promiscuous mode

� Was greater than RXMAXLEN bytes long

� Had a CRC error, alignment error, or code error

See section 2.3.5 for definitions of alignment, code, and CRC errors. Overruns
have no effect on this statistic.

EMAC Module Registers

Registers5-66 SPRU628A

5.2.43.9 Receive Undersized Frames Register (RXUNDERSIZED)

The total number of undersized frames received on the EMAC. An undersized
frame is defined as having all of the following:

� Was any data frame that matched a unicast, broadcast, or multicast
address, or matched due to promiscuous mode

� Was less than 64 bytes long

� Had no CRC error, alignment error, or code error

See section 2.3.5 for definitions of alignment, code, and CRC errors. Overruns
have no effect on this statistic.

5.2.43.10 Receive Frame Fragments Register (RXFRAGMENTS)

The total number of frame fragments received on the EMAC. A frame fragment
is defined as having all of the following:

� Any data frame (address matching does not matter)

� Was less than 64 bytes long

� Had a CRC error, alignment error, or code error

� Was not the result of a collision caused by half duplex, collision based flow
control

See section 2.3.5 for definitions of alignment, code, and CRC errors. Overruns
have no effect on this statistic.

5.2.43.11 Filtered Receive Frames Register (RXFILTERED)

The total number of frames received on the EMAC that the EMAC address
matching process indicated should be discarded. Such a frame is defined as
having all of the following:

� Was any data frame (not MAC control frame) destined for any unicast,
broadcast, or multicast address

� Did not experience any CRC error, alignment error, code error

� The address matching process decided that the frame should be
discarded (filtered) because it did not match the unicast, broadcast, or
multicast address, and it did not match due to promiscuous mode.

EMAC Module Registers

5-67RegistersSPRU628A

To determine the number of receive frames discarded by the EMAC for any
reason, sum the following statistics (promiscuous mode disabled):

� Receive fragments
� Receive undersized frames
� Receive CRC errors
� Receive alignment/code errors
� Receive jabbers
� Receive overruns
� Receive filtered frames

This may not be an exact count because the receive overruns statistic is inde-
pendent of the other statistics, so if an overrun occurs at the same time as one
of the other discard reasons, then the above sum double-counts that frame.

5.2.43.12 Receive QOS Filtered Frames Register (RXQOSFILTERED)

The total number of frames received on the EMAC that were filtered due to
receive quality of service (QOS) filtering. Such a frame is defined as having
all of the following:

� Any data or MAC control frame that matched a unicast, broadcast, or
multicast address, or matched due to promiscuous mode

� The frame destination channel flow control threshold register
(RXnFLOWTHRESH) value was greater than or equal to the channel�s
corresponding free buffer register (RXnFREEBUFFER) value

� Was of length 64 to RXMAXLEN

� RXQOSEN bit is set in RXMBPENABLE

� Had no CRC error, alignment error, or code error

See section 2.3.5 for definitions of alignment, code, and CRC errors. Overruns
have no effect on this statistic.

5.2.43.13 Receive Octet Frames Register (RXOCTETS)

The total number of bytes in all good frames received on the EMAC. A good
frame is defined as having all of the following:

� Any data or MAC control frame that matched a unicast, broadcast, or
multicast address, or matched due to promiscuous mode

� Was of length 64 to RXMAXLEN bytes inclusive

� Had no CRC error, alignment error, or code error

See section 2.3.5 for definitions of alignment, code, and CRC errors. Overruns
have no effect on this statistic.

EMAC Module Registers

Registers5-68 SPRU628A

5.2.43.14 Receive Start of Frame Overruns Register (RXSOFOVERRUNS)

The total number of frames received on the EMAC that had either a FIFO or
DMA start of frame (SOF) overrun. A SOF overrun frame is defined as having
all of the following:

� Was any data or MAC control frame that matched a unicast, broadcast, or
multicast address, or matched due to promiscuous mode

� Was any length (including <64 bytes and > RXMAXLEN bytes)

� The EMAC was unable to receive it because it did not have the resources
to receive it (cell FIFO full or no DMA buffer available at the start of the
frame).

CRC errors, alignment errors, and code errors have no effect on this statistic.

5.2.43.15 Receive Middle of Frame Overruns Register (RXMOFOVERRUNS)

The total number of frames received on the EMAC that had either a FIFO or
DMA middle of frame (MOF) overrun. A MOF overrun frame is defined as hav-
ing all of the following:

� Was any data or MAC control frame that matched a unicast, broadcast, or
multicast address, or matched due to promiscuous mode

� Was any length (including <64 bytes and > RXMAXLEN bytes)

� The EMAC was unable to receive it because it did not have the resources
to receive it (cell FIFO full or no DMA buffer available after the frame was
successfully started � no SOF overrun).

CRC errors, alignment errors, and code errors have no effect on this statistic.

5.2.43.16 Receive DMA Overruns Register (RXDMAOVERRUNS)

The total number of frames received on the EMAC that had either a DMA start
of frame (SOF) overrun or a DMA middle of frame (MOF) overrun. A receive
DMA overrun frame is defined as having all of the following:

� Was any data or MAC control frame that matched a unicast, broadcast, or
multicast address, or matched due to promiscuous mode

� Was any length (including <64 bytes and > RXMAXLEN bytes)

� The EMAC was unable to receive it because it did not have the DMA buffer
resources to receive it (zero head descriptor pointer at the start or during
the middle of the frame reception).

CRC errors, alignment errors, and code errors have no effect on this statistic.

EMAC Module Registers

5-69RegistersSPRU628A

5.2.43.17 Good Transmit Frames Register (TXGOODFRAMES)

The total number of good frames transmitted on the EMAC. A good frame is
defined as having all of the following:

� Any data or MAC control frame that was destined for any unicast, broad-
cast, or multicast address

� Was any length

� Had no late or excessive collisions, no carrier loss, and no underrun

5.2.43.18 Broadcast Transmit Frames Register (TXBCASTFRAMES)

The total number of good broadcast frames transmitted on the EMAC. A good
broadcast frame is defined as having all of the following:

� Any data or MAC control frame destined for address FF−FF−FF−FF−FF−FFh
only

� Was of any length

� Had no late or excessive collisions, no carrier loss, and no underrun

5.2.43.19 Multicast Transmit Frames Register (TXMCASTFRAMES)

The total number of good multicast frames transmitted on the EMAC. A good
multicast frame is defined as having all of the following:

� Any data or MAC control frame destined for any multicast address other
than FF−FF−FF−FF−FF−FFh

� Was of any length

� Had no late or excessive collisions, no carrier loss, and no underrun

5.2.43.20 Pause Transmit Frames Register (TXPAUSEFRAMES)

The total number of IEEE 802.3X pause frames transmitted by the EMAC.
Pause frames cannot underrun or contain a CRC error because they are
created in the transmitting MAC, so these error conditions have no effect on
this statistic. Pause frames sent by software are not included in this count.
Since pause frames are only transmitted in full-duplex mode, carrier loss and
collisions have no effect on this statistic.

Transmitted pause frames are always 64-byte multicast frames so appear in
the multicast transmit frames register and 64 octect frames register statistics.

EMAC Module Registers

Registers5-70 SPRU628A

5.2.43.21 Deferred Transmit Frames Register (TXDEFERRED)

The total number of frames transmitted on the EMAC that first experienced
deferment. Such a frame is defined as having all of the following:

� Was any data or MAC control frame destined for any unicast, broadcast,
or multicast address

� Was any size

� Had no carrier loss and no underrun

� Experienced no collisions before being successfully transmitted

� Found the medium busy when transmission was first attempted, so had
to wait.

CRC errors have no effect on this statistic.

See RFC1623 Ref. 2.6 dot3StatsDefferredTransmissions.

5.2.43.22 Collision Register (TXCOLLISION)

The total number of times that the EMAC experienced a collision. Collisions
occur under two circumstances:

� When a transmit data or MAC control frame has all of the following:

� Was destined for any unicast, broadcast, or multicast address

� Was any size

� Had no carrier loss and no underrun

� Experienced a collision. A jam sequence is sent for every nonlate
collision, so this statistic increments on each occasion if a frame
experiences multiple collisions (and increments on late collisions).

CRC errors have no effect on this statistic.

� When the EMAC is in half-duplex mode, flow control is active, and a frame
reception begins.

EMAC Module Registers

5-71RegistersSPRU628A

5.2.43.23 Single Collision Transmit Frames Register (TXSINGLECOLL)

The total number of frames transmitted on the EMAC that experienced exactly
one collision. Such a frame is defined as having all of the following:

� Was any data or MAC control frame destined for any unicast, broadcast,
or multicast address

� Was any size

� Had no carrier loss and no underrun

� Experienced one collision before successful transmission. The collision
was not late.

CRC errors have no effect on this statistic.

5.2.43.24 Multiple Collision Transmit Frames Register (TXMULTICOLL)

The total number of frames transmitted on the EMAC that experienced multi-
ple collisions. Such a frame is defined as having all of the following:

� Was any data or MAC control frame destined for any unicast, broadcast,
or multicast address

� Was any size

� Had no carrier loss and no underrun

� Experienced 2 to 15 collisions before being successfully transmitted.
None of the collisions were late.

CRC errors have no effect on this statistic.

5.2.43.25 Excessive Collisions Register (TXEXCESSIVECOLL)

The total number of frames when transmission was abandoned due to exces-
sive collisions. Such a frame is defined as having all of the following:

� Was any data or MAC control frame destined for any unicast, broadcast,
or multicast address

� Was any size

� Had no carrier loss and no underrun

� Experienced 16 collisions before abandoning all attempts at transmitting
the frame. None of the collisions were late.

CRC errors have no effect on this statistic.

EMAC Module Registers

Registers5-72 SPRU628A

5.2.43.26 Late Collisions Register (TXLATECOLL)

The total number of frames when transmission was abandoned due to a late
collision. Such a frame is defined as having all of the following:

� Was any data or MAC control frame destined for any unicast, broadcast,
or multicast address

� Was any size

� Had no carrier loss and no underrun

� Experienced a collision later than 512 bit-times into the transmission.
There may have been up to 15 previous (non-late) collisions that had
previously required the transmission to be reattempted. The late collisions
statistic dominates over the single, multiple, and excessive collisions
statistics. If a late collision occurs, the frame is not counted in any of these
other three statistics.

CRC errors, carrier loss, and underrun have no effect on this statistic.

5.2.43.27 Transmit Underrun Register (TXUNDERRUN)

The number of frames sent by the EMAC that experienced FIFO underrun.
Late collisions, CRC errors, carrier loss, and underrun have no effect on this
statistic.

5.2.43.28 Transmit Carrier Sense Errors Register (TXCARRIERSLOSS)

The total number of frames on the EMAC that experienced carrier loss. Such
a frame is defined as having all of the following:

� Was any data or MAC control frame destined for any unicast, broadcast,
or multicast address

� Was any size

� The carrier sense condition was lost or never asserted when transmitting
the frame (the frame is not retransmitted)

CRC errors and underrun have no effect on this statistic.

5.2.43.29 Transmit Octet Frames Register (TXOCTETS)

The total number of bytes in all good frames transmitted on the EMAC. A good
frame is defined as having all of the following:

� Any data or MAC control frame that was destined for any unicast, broad-
cast, or multicast address

� Was any length

� Had no late or excessive collisions, no carrier loss, and no underrun

EMAC Module Registers

5-73RegistersSPRU628A

5.2.43.30 Transmit and Receive 64 Octet Frames Register (FRAME64)

The total number of 64-byte frames received and transmitted on the EMAC.
Such a frame is defined as having all of the following:

� Any data or MAC control frame that was destined for any unicast, broad-
cast, or multicast address

� Did not experience late collisions, excessive collisions, underrun, or carrier
sense error

� Was exactly 64-bytes long. (If the frame was being transmitted and experi-
enced carrier loss that resulted in a frame of this size being transmitted,
then the frame is recorded in this statistic).

CRC errors, alignment/code errors, and overruns do not affect the recording
of frames in this statistic.

5.2.43.31 Transmit and Receive 65 to 127 Octet Frames Register (FRAME65T127)

The total number of 65- to 127-byte frames received and transmitted on the
EMAC. Such a frame is defined as having all of the following:

� Any data or MAC control frame that was destined for any unicast, broad-
cast, or multicast address

� Did not experience late collisions, excessive collisions, underrun, or carrier
sense error

� Was 65- to 127-bytes long

CRC errors, alignment/code errors, underruns, and overruns do not affect the
recording of frames in this statistic.

5.2.43.32 Transmit and Receive 128 to 255 Octet Frames Register (FRAME128T255)

The total number of 128- to 255-byte frames received and transmitted on the
EMAC. Such a frame is defined as having all of the following:

� Any data or MAC control frame that was destined for any unicast, broad-
cast, or multicast address

� Did not experience late collisions, excessive collisions, underrun, or carrier
sense error

� Was 128- to 255-bytes long

CRC errors, alignment/code errors, underruns, and overruns do not affect the
recording of frames in this statistic.

For receive reference only, see RFC1757 Ref. 1.13
etherStatsPkts128to255Octets.

EMAC Module Registers

Registers5-74 SPRU628A

5.2.43.33 Transmit and Receive 256 to 511 Octet Frames Register (FRAME256T511)

The total number of 256- to 511-byte frames received and transmitted on the
EMAC. Such a frame is defined as having all of the following:

� Any data or MAC control frame that was destined for any unicast, broad-
cast, or multicast address

� Did not experience late collisions, excessive collisions, underrun, or carrier
sense error

� Was 256- to 511-bytes long

CRC errors, alignment/code errors, underruns, and overruns do not affect the
recording of frames in this statistic.

5.2.43.34 Transmit and Receive 512 to 1023 Octet Frames Register (FRAME512T1023)

The total number of 512- to 1023-byte frames received and transmitted on the
EMAC. Such a frame is defined as having all of the following:

� Any data or MAC control frame that was destined for any unicast, broad-
cast, or multicast address

� Did not experience late collisions, excessive collisions, underrun, or carrier
sense error

� Was 512- to 1023-bytes long

CRC errors, alignment/code errors, and overruns do not affect the recording
of frames in this statistic.

5.2.43.35 Transmit and Receive 1024 or Above Octet Frames Register (FRAME1024TUP)

The total number of 1024- to RXMAXLEN-byte frames for receive or 1024-byte
frames and above for transmit on the EMAC. Such a frame is defined as having
all of the following:

� Any data or MAC control frame that was destined for any unicast, broad-
cast, or multicast address

� Did not experience late collisions, excessive collisions, underrun, or carrier
sense error

� Was 1024- to RXMAXLEN-bytes long for receive, or any size for transmit

CRC errors, alignment/code errors, underruns, and overruns do not affect the
recording of frames in this statistic.

EMAC Module Registers

5-75RegistersSPRU628A

5.2.43.36 Network Octet Frames Register (NETOCTETS)

The total number of bytes of frame data received and transmitted on the
EMAC. Each frame counted has all of the following:

� Was any data or MAC control frame destined for any unicast, broadcast,
or multicast address (address match does not matter)

� Was of any size (including <64 byte and > RXMAXLEN byte frames)

Also counted in this statistic is:

� Every byte transmitted before a carrier-loss was experienced

� Every byte transmitted before each collision was experienced, (multiple
retries are counted each time)

� Every byte received if the EMAC is in half-duplex mode until a jam
sequence was transmitted to initiate flow control. (The jam sequence is not
counted to prevent double-counting).

Error conditions such as alignment errors, CRC errors, code errors, overruns,
and underruns do not affect the recording of bytes in this statistic. The objec-
tive of this statistic is to give a reasonable indication of Ethernet utilization.

MDIO Module Registers

Registers5-76 SPRU628A

5.3 MDIO Module Registers

Control registers for the MDIO module are summarized in Table 5−48. See the
device-specific datasheet for the memory address of these registers. Please
see the device-specific datasheet for a listing of supported registers.

Table 5−48. MDIO Module Registers

Acronym Register Name Section

VERSION MDIO Version Register 5.3.1

CONTROL MDIO Control Register 5.3.2

ALIVE MDIO PHY Alive Indication Register 5.3.3

LINK MDIO PHY Link Status Register 5.3.4

LINKINTRAW MDIO Link Status Change Interrupt Register 5.3.5

LINKINTMASKED MDIO Link Status Change Interrupt (Masked) Register 5.3.6

USERINTRAW MDIO User Command Complete Interrupt Register 5.3.7

USERINTMASKED MDIO User Command Complete Interrupt (Masked) Register 5.3.8

USERINTMASKSET MDIO User Command Complete Interrupt Mask Set Register 5.3.9

USERINTMASKCLEAR MDIO User Command Complete Interrupt Mask Clear Register 5.3.10

USERACCESS0 MDIO User Access Register 0 5.3.11

USERACCESS1 MDIO User Access Register 1 5.3.12

USERPHYSEL0 MDIO User PHY Select Register 0 5.3.13

USERPHYSEL1 MDIO User PHY Select Register 1 5.3.14

MDIO Module Registers

5-77RegistersSPRU628A

5.3.1 MDIO Version Register (VERSION)

The MDIO version register (VERSION) is shown in Figure 5−47 and described
in Table 5−49.

Figure 5−47. MDIO Version Register (VERSION)

31 16

MODID

R-0007h

15 8 7 0

REVMAJ REVMIN

R-x� R-x�

Legend: R = Read only; -n = value after reset
� See the device-specific datasheet for the default value of this field.

Table 5−49. MDIO Version Register (VERSION) Field Descriptions

Bit field� symval� Value Description

31−16 MODID Identifies type of peripheral.

7h MDIO

15−8 REVMAJ Identifies major revision of peripheral.

x See the device-specific datasheet for the value.

7−0 REVMIN Identifies minor revision of peripheral.

x See the device-specific datasheet for the value.

� For CSL implementation, use the notation MDIO_VERSION_field_symval

MDIO Module Registers

Registers5-78 SPRU628A

5.3.2 MDIO Control Register (CONTROL)

The MDIO control register (CONTROL) is shown in Figure 5−48 and
described in Table 5−50.

Figure 5−48. MDIO Control Register (CONTROL)

31 30 29 24

IDLE ENABLE Reserved

R-1 R/W-0 R-0

23 21 20 19 18 17 16

Reserved PREAMBLE FAULT FAULTENB INTTESTENB Reserved

R-0 R/W-0 R/WC-0 R/W-0 R/W-0 R-0

15 13 12 8 7 0

Reserved Highest_User_Channel CLKDIV

R-0 R-00001 R/W-1111 1111

Legend: R = Read only; WC = Write to clear; R/W = Read/Write; -n = value after reset

Table 5−50. MDIO Control Register (CONTROL) Field Descriptions

Bit field� symval� Value Description

31 IDLE MDIO state machine IDLE status bit.

NO 0 State machine is not in the idle state.

YES 1 State machine is in the idle state.

30 ENABLE MDIO state machine enable control bit. If the MDIO state
machine is active at the time it is disabled, it completes the
current operation before halting and setting the IDLE bit. If
using byte access, the ENABLE bit has to be the last bit
written in this register.

NO 0 Disables the MDIO state machine.

YES 1 Enables the MDIO state machine.

29−21 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

� For CSL implementation, use the notation MDIO_CONTROL_field_symval

MDIO Module Registers

5-79RegistersSPRU628A

Table 5−50. MDIO Control Register (CONTROL) Field Descriptions (Continued)

Bit DescriptionValuesymval�field�

20 PREAMBLE MDIO frame preamble disable bit.

ENABLED 0 Standard MDIO preamble is used.

DISABLED 1 Disables this device from sending MDIO frame preambles.

19 FAULT Fault indicator bit. Writing a 1 to this bit clears this bit.

NO 0 No failure.

YES 1 The MDIO pins fail to read back what the device is driving
onto them indicating a physical layer fault. The MDIO state
machine is reset.

18 FAULTENB Fault detect enable bit.

NO 0 Disables the physical layer fault detection.

YES 1 Enables the physical layer fault detection.

17 INTTESTENB Interrupt test enable bit.

NO 0 Interrupt test bits are not set.

YES 1 Enables the host to set the USERINTRAW,
USERINTMASKED, LINKINTRAW, and LINKINTMASKED
register bits for test purposes.

16−13 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

12−8 Highest_User
_Channel

0−1Fh Highest user-access channel bits specify the highest
user-access channel that is available in the MDIO and is
currently set to 1.

7−0 CLKDIV 0−FFh Clock divider bits. Specifies the division ratio between
peripheral clock and the frequency of MDCLK. MDCLK is
disabled when CLKDIV is cleared to 0.
MDCLK frequency = peripheral clock/(CLKDIV + 1).

0 MDCLK is disabled.

� For CSL implementation, use the notation MDIO_CONTROL_field_symval

MDIO Module Registers

Registers5-80 SPRU628A

5.3.3 MDIO PHY Alive Indication Register (ALIVE)

The MDIO PHY alive indication register (ALIVE) is shown in Figure 5−49 and
described in Table 5−51.

Figure 5−49. MDIO PHY Alive Indication Register (ALIVE)

31 0

ALIVE

R/WC-0

Legend: R = Read only; WC = Write 1 to clear, write of 0 has no effect; -n = value after reset

Table 5−51. MDIO PHY Alive Indication Register (ALIVE) Field Descriptions

Bit Field symval� Value Description

31−0 ALIVE MDIO ALIVE bits. Both user and polling accesses to a PHY cause
the corresponding ALIVE bit to be updated. The ALIVE bits are only
meant to give an indication of the presence or not of a PHY with the
corresponding address. Writing a 1 to any bit clears that bit, writing a
0 has no effect.

0 The PHY fails to acknowledge the access.

1 The most recent access to the PHY with an address corresponding
to the register bit number was acknowledged by the PHY.

� For CSL implementation, use the notation MDIO_ALIVE_ALIVE_symval

MDIO Module Registers

5-81RegistersSPRU628A

5.3.4 MDIO PHY Link Status Register (LINK)

The MDIO PHY link status register (LINK) is shown in Figure 5−50 and
described in Table 5−52.

Figure 5−50. MDIO PHY Link Status Register (LINK)

31 0

LINK

R-0

Legend: R = Read only; -n = value after reset

Table 5−52. MDIO PHY Link Status Register (LINK) Field Descriptions

Bit Field symval� Value Description

31−0 LINK MDIO link state bits. These bits are updated after a read of the PHY
generic status register. Writes to these bits have no effect.

0 The PHY indicates it does not have a link or fails to acknowledge
the read transaction.

1 The PHY with the corresponding address has a link and the PHY
acknowledges the read transaction.

� For CSL implementation, use the notation MDIO_LINK_LINK_symval

MDIO Module Registers

Registers5-82 SPRU628A

5.3.5 MDIO Link Status Change Interrupt Register (LINKINTRAW)

The MDIO PHY link status change interrupt register (LINKINTRAW) is shown
in Figure 5−51 and described in Table 5−53.

Figure 5−51. MDIO Link Status Change Interrupt Register (LINKINTRAW)

31 2 1 0

Reserved MAC1 MAC0

R-0 R/WC-0 R/WC-0

Legend: R = Read only; WC = Write 1 to clear, write of 0 has no effect; -n = value after reset

Table 5−53. MDIO Link Status Change Interrupt Register (LINKINTRAW) Field Descriptions

Bit field� symval� Value Description

31−2 Reserved − 0 Reserved. The reserved bit location is always read as 0. A value
written to this field has no effect.

1 MAC1 MDIO link change event bit. Writing a 1 clears the event and writ-
ing a 0 has no effect. If the INTTESTENB bit in the MDIO control
register is set to 1, the host may set the MAC1 bit to 1 for test pur-
poses.

NO 0 No MDIO link change event.

YES 1 An MDIO link change event (change in the MDIO PHY link status
register) corresponding to the PHY address in MDIO user PHY
select register 1 (USERPHYSEL1).

0 MAC0 MDIO link change event bit. Writing a 1 clears the event and writ-
ing a 0 has no effect. If the INTTESTENB bit in the MDIO control
register is set to 1, the host may set the MAC0 bit to 1 for test pur-
poses.

NO 0 No MDIO link change event.

YES 1 An MDIO link change event (change in the MDIO PHY link status
register) corresponding to the PHY address in MDIO user PHY
select register 0 (USERPHYSEL0).

� For CSL implementation, use the notation MDIO_LINKINTRAW_field_symval

MDIO Module Registers

5-83RegistersSPRU628A

5.3.6 MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED)

The MDIO PHY link status change interrupt (masked) register (LINKINTMASKED)
is shown in Figure 5−52 and described in Table 5−54.

Figure 5−52. MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED)

31 2 1 0

Reserved MAC1 MAC0

R-0 R/WC-0 R/WC-0

Legend: R = Read only; WC = Write 1 to clear, write of 0 has no effect; -n = value after reset

Table 5−54. MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED)
Field Descriptions

Bit field� symval� Value Description

31−2 Reserved − 0 Reserved. The reserved bit location is always read as 0. A value
written to this field has no effect.

1 MAC1 MDIO link change interrupt bit. Writing a 1 clears the interrupt and
writing a 0 has no effect. If the INTTESTENB bit in the MDIO
control register is set to 1, the host may set the MAC1 bit to 1 for
test purposes.

NO 0 No MDIO link change event.

YES 1 An MDIO link change event (change in the MDIO PHY link status
register) corresponding to the PHY address in MDIO user PHY
select register 1 (USERPHYSEL1) and the LINKINTENB bit in
USERPHYSEL1 is set to 1.

0 MAC0 MDIO link change interrupt bit. Writing a 1 clears the interrupt and
writing a 0 has no effect. If the INTTESTENB bit in the MDIO
control register is set to 1, the host may set the MAC0 bit to 1 for
test purposes.

NO 0 No MDIO link change event.

YES 1 An MDIO link change event (change in the MDIO PHY link status
register) corresponding to the PHY address in MDIO user PHY
select register 0 (USERPHYSEL0) and the LINKINTENB bit in
USERPHYSEL0 is set to 1.

� For CSL implementation, use the notation MDIO_LINKINTMASKED_field_symval

MDIO Module Registers

Registers5-84 SPRU628A

5.3.7 MDIO User Command Complete Interrupt Register (USERINTRAW)

The MDIO user command complete interrupt register (USERINTRAW) is
shown in Figure 5−53 and described in Table 5−55.

Figure 5−53. MDIO User Command Complete Interrupt Register (USERINTRAW)

31 2 1 0

Reserved MAC1 MAC0

R-0 R/WC-0 R/WC-0

Legend: R = Read only; WC = Write 1 to clear, write of 0 has no effect; -n = value after reset

Table 5−55. MDIO User Command Complete Interrupt Register (USERINTRAW)
Field Descriptions

Bit field� symval� Value Description

31−2 Reserved − 0 Reserved. The reserved bit location is always read as 0. A value
written to this field has no effect.

1 MAC1 MDIO user command complete event bit. Writing a 1 clears the
event and writing a 0 has no effect. If the INTTESTENB bit in the
MDIO control register is set to 1, the host may set the MAC1 bit to
1 for test purposes.

NO 0 No MDIO user command complete event.

YES 1 The previously scheduled PHY read or write command using
MDIO user access register 1 (USERACCESS1) has completed.

0 MAC0 MDIO user command complete event bit. Writing a 1 clears the
event and writing a 0 has no effect. If the INTTESTENB bit in the
MDIO control register is set to 1, the host may set the MAC0 bit to
1 for test purposes.

NO 0 No MDIO user command complete event.

YES 1 The previously scheduled PHY read or write command using
MDIO user access register 0 (USERACCESS0) has completed.

� For CSL implementation, use the notation MDIO_USERINTRAW_field_symval

MDIO Module Registers

5-85RegistersSPRU628A

5.3.8 MDIO User Command Complete Interrupt (Masked) Register
(USERINTMASKED)

The MDIO user command complete interrupt (masked) register (USERINT-
MASKED) is shown in Figure 5−54 and described in Table 5−56.

Figure 5−54. MDIO User Command Complete Interrupt (Masked) Register
(USERINTMASKED)

31 2 1 0

Reserved MAC1 MAC0

R-0 R/WC-0 R/WC-0

Legend: R = Read only; WC = Write 1 to clear, write of 0 has no effect; -n = value after reset

Table 5−56. MDIO User Command Complete Interrupt (Masked) Register
(USERINTMASKED) Field Descriptions

Bit field� symval� Value Description

31−2 Reserved − 0 Reserved. The reserved bit location is always read as 0. A value
written to this field has no effect.

1 MAC1 MDIO user command complete interrupt bit. Writing a 1 clears the
interrupt and writing a 0 has no effect. If the INTTESTENB bit in
the MDIO control register is set to 1, the host may set the MAC1 bit
to 1 for test purposes.

NO 0 No MDIO user command complete event.

YES 1 The previously scheduled PHY read or write command using
MDIO user access register 1 (USERACCESS1) has completed
and the MAC1 bit in USERINTMASKSET is set to 1.

0 MAC0 MDIO user command complete interrupt bit. Writing a 1 clears the
interrupt and writing a 0 has no effect. If the INTTESTENB bit in
the MDIO control register is set to 1, the host may set the MAC0 bit
to 1 for test purposes.

NO 0 No MDIO user command complete event.

YES 1 The previously scheduled PHY read or write command using
MDIO user access register 0 (USERACCESS0) has completed
and the MAC0 bit in USERINTMASKSET is set to 1.

� For CSL implementation, use the notation MDIO_USERINTMASKED_field_symval

MDIO Module Registers

Registers5-86 SPRU628A

5.3.9 MDIO User Command Complete Interrupt Mask Set Register
(USERINTMASKSET)

The MDIO user command complete interrupt mask set register (USERINT-
MASKSET) is shown in Figure 5−55 and described in Table 5−57.

Figure 5−55. MDIO User Command Complete Interrupt Mask Set Register
(USERINTMASKSET)

31 2 1 0

Reserved MAC1 MAC0

R-0 R/WS-0 R/WS-0

Legend: R = Read only; WS = Write 1 to set, write of 0 has no effect; -n = value after reset

Table 5−57. MDIO User Command Complete Interrupt Mask Set Register
(USERINTMASKSET) Field Descriptions

Bit field� symval� Value Description

31−2 Reserved − 0 Reserved. The reserved bit location is always read as 0. A value
written to this field has no effect.

1 MAC1 MDIO user command complete interrupt mask set bit for MAC1 in
USERINTMASKED. Writing a 1 sets the bit and writing a 0 has no
effect.

NO 0 MDIO user command complete interrupts for the MDIO user
access register 1 (USERACCESS1) are disabled.

YES 1 MDIO user command complete interrupts for the MDIO user
access register 1 (USERACCESS1) are enabled.

0 MAC0 MDIO user command complete interrupt mask set bit for MAC0 in
USERINTMASKED. Writing a 1 sets the bit and writing a 0 has no
effect.

NO 0 MDIO user command complete interrupts for the MDIO user
access register 0 (USERACCESS0) are disabled.

YES 1 MDIO user command complete interrupts for the MDIO user
access register 0 (USERACCESS0) are enabled.

� For CSL implementation, use the notation MDIO_USERINTMASKSET_field_symval

MDIO Module Registers

5-87RegistersSPRU628A

5.3.10 MDIO User Command Complete Interrupt Mask Clear Register
(USERINTMASKCLEAR)

The MDIO user command complete interrupt mask clear register (USERINT-
MASKCLEAR) is shown in Figure 5−56 and described in Table 5−58.

Figure 5−56. MDIO User Command Complete Interrupt Mask Clear Register
(USERINTMASKCLEAR)

31 2 1 0

Reserved MAC1 MAC0

R-0 R/WC-0 R/WC-0

Legend: R = Read only; WC = Write 1 to clear, write of 0 has no effect; -n = value after reset

Table 5−58. MDIO User Command Complete Interrupt Mask Clear Register
(USERINTMASKCLEAR) Field Descriptions

Bit field� symval� Value Description

31−2 Reserved − 0 Reserved. The reserved bit location is always read as 0. A value
written to this field has no effect.

1 MAC1 MDIO user command complete interrupt mask clear bit for MAC1
in USERINTMASKED. Writing a 1 clears the bit and writing a 0 has
no effect.

NO 0 MDIO user command complete interrupts for the MDIO user
access register 1 (USERACCESS1) are enabled.

YES 1 MDIO user command complete interrupts for the MDIO user
access register 1 (USERACCESS1) are disabled.

0 MAC0 MDIO user command complete interrupt mask clear bit for MAC0
in USERINTMASKED. Writing a 1 clears the bit and writing a 0 has
no effect.

NO 0 MDIO user command complete interrupts for the MDIO user
access register 0 (USERACCESS0) are enabled.

YES 1 MDIO user command complete interrupts for the MDIO user
access register 0 (USERACCESS0) are disabled.

� For CSL implementation, use the notation MDIO_USERINTMASKCLEAR_field_symval

MDIO Module Registers

Registers5-88 SPRU628A

5.3.11 MDIO User Access Register 0 (USERACCESS0)

The MDIO user access register 0 (USERACCESS0) is shown in Figure 5−57
and described in Table 5−59.

Figure 5−57. MDIO User Access Register 0 (USERACCESS0)

31 30 29 28 26 25 21 20 16

GO WRITE ACK Reserved REGADR PHYADR

R/WS-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0

15 0

DATA

R/W-0

Legend: R = Read only; R/W = Read/Write; WS = Write 1 to set, write of 0 has no effect; -n = value after reset

Table 5−59. MDIO User Access Register 0 (USERACCESS0)
Field Descriptions

Bit field� symval� Value Description

31 GO GO bit is writable only if the MDIO state machine is enabled
(ENABLE bit in MDIO control register is set to 1). If byte access
is being used, the GO bit should be written last. Writing a 1 sets
the bit and writing a 0 has no effect.

0 No effect. The GO bit clears when the requested access has
been completed.

1 The MDIO state machine performs an MDIO access when it is
convenient, this is not an instantaneous process. Any writes to
USERACCESS0 are blocked.

30 WRITE Write enable bit determines the MDIO transaction type.

0 MDIO transaction is a register read.

1 MDIO transaction is a register write.

29 ACK Acknowledge bit determines if the PHY acknowledges the read
transaction.

0 No acknowledge.

1 PHY acknowledges the read transaction.

28−26 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

� For CSL implementation, use the notation MDIO_USERACCESS0_field_symval

MDIO Module Registers

5-89RegistersSPRU628A

Table 5−59. MDIO User Access Register 0 (USERACCESS0)
Field Descriptions (Continued)

Bit DescriptionValuesymval�field�

25−21 REGADR 0−1Fh Register address bits specify the PHY register to be accessed
for this transaction.

20−16 PHYADR 0−1Fh PHY address bits specify the PHY to be accessed for this
transaction.

15−0 DATA 0−FFFFh User data bits specify the data value read from or to be written
to the specified PHY register.

� For CSL implementation, use the notation MDIO_USERACCESS0_field_symval

MDIO Module Registers

Registers5-90 SPRU628A

5.3.12 MDIO User Access Register 1 (USERACCESS1)

The MDIO user access register 1 (USERACCESS1) is shown in Figure 5−58
and described in Table 5−60.

Figure 5−58. MDIO User Access Register 1 (USERACCESS1)

31 30 29 28 26 25 21 20 16

GO WRITE ACK Reserved REGADR PHYADR

R/WS-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0

15 0

DATA

R/W-0

Legend: R = Read only; R/W = Read/Write; WS = Write 1 to set, write of 0 has no effect; -n = value after reset

Table 5−60. MDIO User Access Register 1 (USERACCESS1)
Field Descriptions

Bit field� symval� Value Description

31 GO GO bit is writable only if the MDIO state machine is enabled
(ENABLE bit in MDIO control register is set to 1). If byte access
is being used, the GO bit should be written last. Writing a 1 sets
the bit and writing a 0 has no effect.

0 No effect. The GO bit clears when the requested access has
been completed.

1 The MDIO state machine performs an MDIO access when it is
convenient, this is not an instantaneous process. Any writes to
USERACCESS1 are blocked.

30 WRITE Write enable bit determines the MDIO transaction type.

0 MDIO transaction is a register read.

1 MDIO transaction is a register write.

29 ACK Acknowledge bit determines if the PHY acknowledges the read
transaction.

0 No acknowledge.

1 PHY acknowledges the read transaction.

28−26 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

� For CSL implementation, use the notation MDIO_USERACCESS1_field_symval

MDIO Module Registers

5-91RegistersSPRU628A

Table 5−60. MDIO User Access Register 1 (USERACCESS1)
Field Descriptions (Continued)

Bit DescriptionValuesymval�field�

25−21 REGADR 0−1Fh Register address bits specify the PHY register to be accessed
for this transaction.

20−16 PHYADR 0−1Fh PHY address bits specify the PHY to be accessed for this
transaction.

15−0 DATA 0−FFFFh User data bits specify the data value read from or to be written
to the specified PHY register.

� For CSL implementation, use the notation MDIO_USERACCESS1_field_symval

MDIO Module Registers

Registers5-92 SPRU628A

5.3.13 MDIO User PHY Select Register 0 (USERPHYSEL0)

The MDIO user PHY select register 0 (USERPHYSEL0) is shown in
Figure 5−59 and described in Table 5−61.

Figure 5−59. MDIO User PHY Select Register 0 (USERPHYSEL0)

31 16

Reserved

R-0

15 8 7 6 5 4 0

Reserved LINKSEL LINKINTENB � PHYADDR

R-0 R/W-0 R/W-0 R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−61. MDIO User PHY Select Register 0 (USERPHYSEL0) Field Descriptions

Bit field� symval� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

7 LINKSEL Link status determination select bit.

MDIO 0 Link status is determined by the MDIO state machine.

1 Value must be set to MDIO.

6 LINKINTENB Link change interrupt enable bit.

DISABLE 0 Link change interrupts are disabled.

ENABLE 1 Link change status interrupts for PHY address specified in
PHYADDR bits are enabled.

5 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

4−0 PHYADDR 0−1Fh PHY address bits specify the PHY address to be monitored.

� For CSL implementation, use the notation MDIO_USERPHYSEL0_field_symval

MDIO Module Registers

5-93RegistersSPRU628A

5.3.14 MDIO User PHY Select Register 1 (USERPHYSEL1)

The MDIO user PHY select register 1 (USERPHYSEL1) is shown in
Figure 5−60 and described in Table 5−62.

Figure 5−60. MDIO User PHY Select Register 1 (USERPHYSEL1)

31 16

Reserved

R-0

15 8 7 6 5 4 0

Reserved LINKSEL LINKINTENB � PHYADDR

R-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 5−62. MDIO User PHY Select Register 1 (USERPHYSEL1) Field Descriptions

Bit field� symval� Value Description

31−8 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

7 LINKSEL Link status determination select bit.

MDIO 0 Link status is determined by the MDIO state machine.

1 Value must be set to MDIO.

6 LINKINTENB Link change interrupt enable bit.

DISABLE 0 Link change interrupts are disabled.

ENABLE 1 Link change status interrupts for PHY address specified in
PHYADDR bits are enabled.

5 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

4−0 PHYADDR 0−1Fh PHY address bits specify the PHY address to be monitored.

� For CSL implementation, use the notation MDIO_USERPHYSEL1_field_symval

A-1

Appendix A

Revision History

Table A−1 lists the changes made since the previous version of this document.

Table A−1. Document Revision History

Page Additions/Modifications/Deletions

Global Changed all occurrences of C6x device to C6000 device.

iii Added sentence to first paragraph: Although the entire feature set of the EMAC and MDIO
module is described here, the feature set supported on each C6000 device may vary. Please see
the device-specific datasheet for a listing of supported EMAC and MDIO features.

1-1 Added sentence to first paragraph: Although the entire feature set of the EMAC and MDIO
module is described here, the feature set supported on each C6000 device may vary. Please see
the device-specific datasheet for a listing of supported EMAC and MDIO features.

1-3 Added note to section 1.2: The feature set of the EMAC module may vary between C6000
devices. Please see the device-specific datasheet for a listing of supported features.

2-1 Added sentence to first paragraph: Although the entire feature set of the EMAC module is
described here, the feature set supported on each C6000 device may vary. Please see the
device-specific datasheet for a listing of supported EMAC features.

3-1 Added sentence to first paragraph: Although the entire feature set of the MDIO module is
described here, the feature set supported on each C6000 device may vary. Please see the
device-specific datasheet for a listing of supported MDIO features.

5-1 Added sentence to first paragraph: As the supported feature set may vary between C6000
devices, all of the registers and fields described in this chapter are not supported on each C6000
device. Please see the device-specific datasheet for a listing of supported features.

5-6 Added last sentence to paragraph of section 5.2: Please see the device-specific datasheet for a
listing of supported registers.

5-76 Added last sentence to paragraph of section 5.3: Please see the device-specific datasheet for a
listing of supported registers.

Appendix A

Index

Index-1SPRU628A

Index

A
ACK bit

in USERACCESS0 5-88
in USERACCESS1 5-90

ALIGNERROR flag 2-23
alignment error (ALIGNERROR) flag 2-23
ALIVE 5-80
ALIVE bits 5-80
ALLOC bits 5-2
architecture overview 1-6
ATTEMPT bits 5-56

B
backoff test register (BOFFTEST) 5-56
block diagram

EMAC and MDIO module 1-6
EMAC control module 1-2, 2-4
EMAC module 2-2
MDIO module 3-2
typical ethernet configuration 1-4

BOFFCOUNT bits 5-56
BOFFHALT bit 5-56
BOFFRNG bits 5-56
BOFFTEST 5-56
broadcast receive frames register

(RXBCASTFRAMES) 5-63
broadcast transmit frames register

(TXBCASTFRAMES) 5-69
BROADCH bits 5-15
BROADEN bit 5-15
BUFFEROFFSET bits 5-25

C

CLKDIV bits 5-78

code error (CODEERROR) flag 2-23

CODEERROR flag 2-23

collision register (TXCOLLISION) 5-70

CONTROL 5-78

control flag 2-23

COUNT bits
in receive statistics registers 5-63
in shared receive and transmit statistics

registers 5-63
in transmit statistics registers 5-63

CRC error (CRCERROR) flag 2-23

CRCERROR flag 2-23

D

DATA bits
in USERACCESS0 5-88
in USERACCESS1 5-90

deferred transmit frames register
(TXDEFERRED) 5-70

DESCPTR bits
in RXnHDP 5-60
in RXnINTACK 5-62
in TXnHDP 5-60
in TXnINTACK 5-61

Index

Index-2 SPRU628A

E
EMAC control module 2-4

block diagram 2-4
bus arbiter 2-5
internal memory 2-4
interrupt control 2-6
overview 1-2
registers 5-2
reset control 2-5
transfer node priority 2-5

EMAC control module interrupt control register
(EWCTL) 5-4

EMAC control module interrupt timer count register
(EWINTTCNT) 5-5

EMAC control module registers 5-2

EMAC control module transfer control register
(EWTRCTRL) 5-2

EMAC module
block diagram 2-2
components 2-2
control registers and logic 2-3
host error interrupt (HOSTPEND) 2-42
interface signals 1-5
interrupt processing 2-42
interrupts 2-41
MAC receiver 2-3
MAC transmitter 2-3
operational overview 2-7

packet buffer descriptors 2-8
receive buffer descriptor format 2-18
transmit and receive descriptor queues 2-10
transmit and receive EMAC interrupts 2-12
transmit buffer descriptor format 2-13

overview 1-3
packet receive operation 2-31

hardware receive QOS support 2-32
host free buffer tracking 2-33
promiscuous receive mode 2-35
receive channel addressing 2-32
receive channel enabling 2-31
receive channel teardown 2-33
receive DMA host configuration 2-31
receive frame classification 2-34
receive overrun 2-37

packet transmit operation 2-39
transmit channel teardown 2-39
transmit DMA host configuration 2-39

receive DMA engine 2-2

receive FIFO 2-2
receive interrupts 2-41
receive latency 2-42
registers 5-6
statistics logic and RAM 2-3
transmit DMA engine 2-3
transmit FIFO 2-3
transmit interrupts 2-41
transmit latency 2-42

EMAC module registers 5-6

EMACRST bit 5-4

ENABLE bit 5-78

end of packet (EOP) flag 2-16, 2-21

end of queue (EOQ) flag 2-17, 2-22

EOP flag 2-16, 2-21

EOQ flag 2-17, 2-22

EWCTL 5-4

EWINTTCNT 5-5

EWINTTCNT bits 5-5

EWTRCTRL 5-2

excessive collisions register
(TXEXCESSIVECOLL) 5-71

F
FAULT bit 5-78

FAULTENB bit 5-78

filtered receive frames register
(RXFILTERED) 5-66

FILTERTHRESH bits 5-26

FLOWTHRESH bits 5-27

fragment flag 2-23

FRAME1024TUP 5-74

FRAME128T255 5-73

FRAME256T511 5-74

FRAME512T1023 5-74

FRAME64 5-73

FRAME65T127 5-73

FREEBUF bits 5-28

FULLDUPLEX bit 5-29

Index

Index-3SPRU628A

G
GO bit

in USERACCESS0 5-88
in USERACCESS1 5-90

good receive frames register
(RXGOODFRAMES) 5-63

good transmit frames register
(TXGOODFRAMES) 5-69

H
HASHBITS bits

in MACHASH1 5-54
in MACHASH2 5-55

host error interrupt (HOSTPEND) 2-42
HOSTERRINT bit

in MACINTMASKCLEAR 5-51
in MACINTMASKSET 5-50
in MACINTSTATMASKED 5-49
in MACINTSTATRAW 5-48

HOSTPEND bit 5-41

I
IDLE bit 5-78
INTEN bit 5-4
interrupt processing 2-42, 3-8
INTTESTENB bit 5-78

J
jabber flag 2-22

L
late collisions register (TXLATECOLL) 5-72
LINK 5-81
LINK bits 5-81
link change interrupt (LINKINT) 3-7
LINKINT bit 5-41
LINKINTENB bit

in USERPHYSEL0 5-92
in USERPHYSEL1 5-93

LINKINTMASKED 5-83
LINKINTRAW 5-82

LINKSEL bit
in USERPHYSEL0 5-92
in USERPHYSEL1 5-93

LOOPBACK bit 5-29

M
MAC address channel 0−7 lower byte registers

(MACADDRLn) 5-52
MAC address hash 1 register (MACHASH1) 5-54
MAC address hash 2 register (MACHASH2) 5-55
MAC address high bytes register

(MACADDRH) 5-53
MAC address middle byte register

(MACADDRM) 5-52
MAC control register (MACCONTROL) 5-29
MAC input vector register (MACINVECTOR) 5-41
MAC interrupt mask clear register

(MACINTMASKCLEAR) 5-51
MAC interrupt mask set register

(MACINTMASKSET) 5-50
MAC interrupt status (masked) register

(MACINTSTATMASKED) 5-49
MAC interrupt status (unmasked) register

(MACINTSTATRAW) 5-48
MAC status register (MACSTATUS) 5-31
MAC0 bit

in LINKINTMASKED 5-83
in LINKINTRAW 5-82
in USERINTMASKCLEAR 5-87
in USERINTMASKED 5-85
in USERINTMASKSET 5-86
in USERINTRAW 5-84

MAC1 bit
in LINKINTMASKED 5-83
in LINKINTRAW 5-82
in USERINTMASKCLEAR 5-87
in USERINTMASKED 5-85
in USERINTMASKSET 5-86
in USERINTRAW 5-84

MACADDR32 bits 5-53
MACADDR8[15−8] bits 5-52
MACADDR8[7−0] bits 5-52
MACADDRH 5-53
MACADDRLn 5-52
MACADDRM 5-52
MACCONTROL 5-29

Index

Index-4 SPRU628A

MACHASH1 5-54

MACHASH2 5-55

MACINTMASKCLEAR 5-51

MACINTMASKSET 5-50

MACINTSTATMASKED 5-49

MACINTSTATRAW 5-48

MACINVECTOR 5-41

MACSTATUS 5-31

MDIO control register (CONTROL) 5-78

MDIO link status change interrupt (masked) register
(LINKINTMASKED) 5-83

MDIO link status change interrupt register
(LINKINTRAW) 5-82

MDIO module
active PHY monitoring 3-3
block diagram 3-2
components 3-2
global PHY detection 3-3
initializing 3-5
interrupt processing 3-8
interrupts 3-7
introduction 3-2
link change interrupt (LINKINT) 3-7
link state monitoring 3-3
MDIO clock generator 3-3
operational overview 3-4
overview 1-4
PHY register user access 3-3
reading data from a PHY register 3-6
registers 5-76
user access completion interrupt 3-7
writing data to a PHY register 3-6

MDIO PHY alive indication register (ALIVE) 5-80

MDIO PHY link status register (LINK) 5-81

MDIO registers 5-76

MDIO user access register 0
(USERACCESS0) 5-88

MDIO user access register 1
(USERACCESS1) 5-90

MDIO user command complete interrupt (masked)
register (USERINTMASKED) 5-85

MDIO user command complete interrupt mask clear
register (USERINTMASKCLEAR) 5-87

MDIO user command complete interrupt mask set
register (USERINTMASKSET) 5-86

MDIO user command complete interrupt register
(USERINTRAW) 5-84

MDIO user PHY select register 0
(USERPHYSEL0) 5-92

MDIO user PHY select register 1
(USERPHYSEL1) 5-93

MDIO version register (VERSION) 5-77
MDIORST bit 5-4
Media Independent Interface (MII) 2-25

data reception 2-25
data transmission 2-27

MIIEN bit 5-29
MODID bits 5-77
MTEST bit 5-29
MULTCH bits 5-15
MULTEN bit 5-15
multicast receive frames register

(RXMCASTFRAMES) 5-64
multicast transmit frames register

(TXMCASTFRAMES) 5-69
multiple collision transmit frames register

(TXMULTICOLL) 5-71

N
NETOCTETS 5-75
network octet frames register (NETOCTETS) 5-75
network statistics registers 5-62
no match (NOMATCH) flag 2-24
NOMATCH flag 2-24
notational conventions iii

O
overrun flag 2-23
oversize flag 2-23
OWNER flag 2-16, 2-22
ownership (OWNER) flag 2-16, 2-22

P
PACEVAL bits 5-57
packet buffer descriptors 2-8
packet receive operation 2-31
packet transmit operation 2-39
pass CRC (PASSCRC) flag 2-17, 2-22
PASSCRC flag 2-17, 2-22
pause receive frames register

(RXPAUSEFRAMES) 5-64

Index

Index-5SPRU628A

pause transmit frames register
(TXPAUSEFRAMES) 5-69

PAUSETIMER bits
in RXPAUSE 5-58
in TXPAUSE 5-59

PHYADDR bits
in USERPHYSEL0 5-92
in USERPHYSEL1 5-93

PHYADR bits
in USERACCESS0 5-88
in USERACCESS1 5-90

PREAMBLE bit 5-78

PRIORITY bits 5-2

PROMCH bits 5-15

R
receive alignment/code errors register

(RXALIGNCODEERRORS) 5-65

receive buffer descriptor format 2-18
alignment error (ALIGNERROR) flag 2-23
buffer length 2-21
buffer offset 2-20
buffer pointer 2-20
code error (CODEERROR) flag 2-23
control flag 2-23
CRC error (CRCERROR) flag 2-23
end of packet (EOP) flag 2-21
end of queue (EOQ) flag 2-22
fragment flag 2-23
jabber flag 2-22
next descriptor pointer 2-20
no match (NOMATCH) flag 2-24
overrun flag 2-23
oversize flag 2-23
ownership (OWNER) flag 2-22
packet length 2-21
pass CRC (PASSCRC) flag 2-22
start of packet (SOP) flag 2-21
teardown complete (TDOWNCMPLT) flag 2-22
undersized flag 2-23

receive buffer offset register
(RXBUFFEROFFSET) 5-25

receive channel 0−7 DMA head descriptor pointer
registers (RXnHDP) 5-60

receive channel 0−7 flow control threshold registers
(RXnFLOWTHRESH) 5-27

receive channel 0−7 free buffer count registers
(RXnFREEBUFFER) 5-28

receive channel 0−7 interrupt acknowledge registers
(RXnINTACK) 5-62

receive control register (RXCONTROL) 5-13
receive CRC errors register

(RXCRCERRORS) 5-64
receive DMA overruns register

(RXDMAOVERRUNS) 5-68
receive EMAC interrupts 2-12
receive filter low priority packets threshold register

(RXFILTERLOWTHRESH) 5-26
receive frame fragments register

(RXFRAGMENTS) 5-66
receive identification and version register

(RXIDVER) 5-12
receive interrupt mask clear register

(RXINTMASKCLEAR) 5-46
receive interrupt mask set register

(RXINTMASKSET) 5-44
receive interrupt status (masked) register

(RXINTSTATMASKED) 5-43
receive interrupt status (unmasked) register

(RXINTSTATRAW) 5-42
receive interrupts 2-41
receive jabber frames register (RXJABBER) 5-65
receive latency 2-42
receive maximum length register

(RXMAXLEN) 5-24
receive middle of frame overruns register

(RXMOFOVERRUNS) 5-68
receive multicast/broadcast/promiscuous channel

enable register (RXMBPENABLE) 5-15
receive octet frames register (RXOCTETS) 5-67
receive oversized frames register

(RXOVERSIZED) 5-65
receive pause timer register (RXPAUSE) 5-58
receive pending interrupt (RXPEND) 2-41
receive QOS filtered frames register

(RXQOSFILTERED) 5-67
receive start of frame overruns register

(RXSOFOVERRUNS) 5-68
receive statistics registers 5-62
receive teardown register (RXTEARDOWN) 5-14
receive undersized frames register

(RXUNDERSIZED) 5-66

Index

Index-6 SPRU628A

receive unicast clear register
(RXUNICASTCLEAR) 5-22

receive unicast set register
(RXUNICASTSET) 5-20

REGADR bits
in USERACCESS0 5-88
in USERACCESS1 5-90

registers
backoff test register (BOFFTEST) 5-56
broadcast receive frames register

(RXBCASTFRAMES) 5-63
broadcast transmit frames register

(TXBCASTFRAMES) 5-69
collision register (TXCOLLISION) 5-70
deferred transmit frames register

(TXDEFERRED) 5-70
EMAC control module 5-2
EMAC control module interrupt control register

(EWCTL) 5-4
EMAC control module interrupt timer count

register (EWINTTCNT) 5-5
EMAC control module transfer control register

(EWTRCTRL) 5-2
EMAC module 5-6
excessive collisions register

(TXEXCESSIVECOLL) 5-71
filtered receive frames register

(RXFILTERED) 5-66
good receive frames register

(RXGOODFRAMES) 5-63
good transmit frames register

(TXGOODFRAMES) 5-69
late collisions register (TXLATECOLL) 5-72
MAC address channel 0−7 lower byte registers

(MACADDRLn) 5-52
MAC address hash 1 register

(MACHASH1) 5-54
MAC address hash 2 register

(MACHASH2) 5-55
MAC address high bytes register

(MACADDRH) 5-53
MAC address middle byte register

(MACADDRM) 5-52
MAC control register (MACCONTROL) 5-29
MAC input vector register

(MACINVECTOR) 5-41
MAC interrupt mask clear register

(MACINTMASKCLEAR) 5-51

MAC interrupt mask set register
(MACINTMASKSET) 5-50

MAC interrupt status (masked) register
(MACINTSTATMASKED) 5-49

MAC interrupt status (unmasked) register
(MACINTSTATRAW) 5-48

MAC status register (MACSTATUS) 5-31
MDIO module 5-76
MDIO control register (CONTROL) 5-78
MDIO link status change interrupt (masked)

register (LINKINTMASKED) 5-83
MDIO link status change interrupt register

(LINKINTRAW) 5-82
MDIO PHY alive indication register

(ALIVE) 5-80
MDIO PHY link status register (LINK) 5-81
MDIO user access register 0

(USERACCESS0) 5-88
MDIO user access register 1

(USERACCESS1) 5-90
MDIO user command complete interrupt

(masked) register (USERINTMASKED) 5-85
MDIO user command complete interrupt mask

clear register (USERINTMASKCLEAR) 5-87
MDIO user command complete interrupt mask

set register (USERINTMASKSET) 5-86
MDIO user command complete interrupt register

(USERINTRAW) 5-84
MDIO user PHY select register 0

(USERPHYSEL0) 5-92
MDIO user PHY select register 1

(USERPHYSEL1) 5-93
MDIO version register (VERSION) 5-77
multicast receive frames register

(RXMCASTFRAMES) 5-64
multicast transmit frames register

(TXMCASTFRAMES) 5-69
multiple collision transmit frames register

(TXMULTICOLL) 5-71
network octet frames register

(NETOCTETS) 5-75
network statistics 5-62
pause receive frames register

(RXPAUSEFRAMES) 5-64
pause transmit frames register

(TXPAUSEFRAMES) 5-69
receive alignment/code errors register

(RXALIGNCODEERRORS) 5-65

Index

Index-7SPRU628A

registers (continued)
receive buffer offset register

(RXBUFFEROFFSET) 5-25
receive channel 0−7 DMA head descriptor

pointer registers (RXnHDP) 5-60
receive channel 0−7 flow control threshold

registers (RXnFLOWTHRESH) 5-27
receive channel 0−7 free buffer count registers

(RXnFREEBUFFER) 5-28
receive channel 0−7 interrupt acknowledge

registers (RXnINTACK) 5-62
receive control register (RXCONTROL) 5-13
receive CRC errors register

(RXCRCERRORS) 5-64
receive DMA overruns register

(RXDMAOVERRUNS) 5-68
receive filter low priority packets threshold

register (RXFILTERLOWTHRESH) 5-26
receive frame fragments register

(RXFRAGMENTS) 5-66
receive identification and version register

(RXIDVER) 5-12
receive interrupt mask clear register

(RXINTMASKCLEAR) 5-46
receive interrupt mask set register

(RXINTMASKSET) 5-44
receive interrupt status (masked) register

(RXINTSTATMASKED) 5-43
receive interrupt status (unmasked) register

(RXINTSTATRAW) 5-42
receive jabber frames register

(RXJABBER) 5-65
receive maximum length register

(RXMAXLEN) 5-24
receive middle of frame overruns register

(RXMOFOVERRUNS) 5-68
receive multicast/broadcast/promiscuous channel

enable register (RXMBPENABLE) 5-15
receive octet frames register

(RXOCTETS) 5-67
receive oversized frames register

(RXOVERSIZED) 5-65
receive pause timer register (RXPAUSE) 5-58
receive QOS filtered frames register

(RXQOSFILTERED) 5-67
receive start of frame overruns register

(RXSOFOVERRUNS) 5-68
receive statistics registers 5-62
receive teardown register

(RXTEARDOWN) 5-14

receive undersized frames register
(RXUNDERSIZED) 5-66

receive unicast clear register
(RXUNICASTCLEAR) 5-22

receive unicast set register
(RXUNICASTSET) 5-20

shared receive and transmit statistics
registers 5-62

single collision transmit frames register
(TXSINGLECOLL) 5-71

transmit and receive 1024 or above octet frames
register (FRAME1024TUP) 5-74

transmit and receive 128 to 255 octet frames
register (FRAME128T255) 5-73

transmit and receive 256 to 511 octet frames
register (FRAME256T511) 5-74

transmit and receive 512 to 1023 octet frames
register (FRAME512T1023) 5-74

transmit and receive 64 octet frames register
(FRAME64) 5-73

transmit and receive 65 to 127 octet frames
register (FRAME65T127) 5-73

transmit carrier sense errors register
(TXCARRIERSLOSS) 5-72

transmit channel 0−7 DMA head descriptor
pointer registers (TXnHDP) 5-60

transmit channel 0−7 interrupt acknowledge
registers (TXnINTACK) 5-61

transmit control register (TXCONTROL) 5-10
transmit identification and version register

(TXIDVER) 5-9
transmit interrupt mask clear register

(TXINTMASKCLEAR) 5-39
transmit interrupt mask set register

(TXINTMASKSET) 5-37
transmit interrupt status (masked) register

(TXINTSTATMASKED) 5-36
transmit interrupt status (unmasked) register

(TXINTSTATRAW) 5-35
transmit octet frames register

(TXOCTETS) 5-72
transmit pacing test register

(TPACETEST) 5-57
transmit pause timer register (TXPAUSE) 5-59
transmit statistics registers 5-62
transmit teardown register

(TXTEARDOWN) 5-11
transmit underrun register

(TXUNDERRUN) 5-72

Index

Index-8 SPRU628A

related documentation from Texas Instruments iii

RETRYCOUNT bits 5-56
revision history A-1
REVMAJ bits 5-77

REVMIN bits 5-77
RXALIGNCODEERRORS 5-65
RXBCASTFRAMES 5-63

RXBUFFEROFFSET 5-25
RXCAFEN bit 5-15
RXCEFEN bit 5-15

RXCHnCLR bits 5-22
RXCHnSET bits 5-20
RXCMFEN bit 5-15

RXCONTROL 5-13
RXCRCERRORS 5-64
RXCSFEN bit 5-15

RXDMAOVERRUNS 5-68
RXEN bit 5-13
RXERRCH bits 5-31

RXERRCODE bits 5-31
RXFILTERED 5-66
RXFILTERLOWTHRESH 5-26

RXFLOWACT bit 5-31
RXFLOWEN bit 5-29
RXFRAGMENTS 5-66

RXGOODFRAMES 5-63
RXIDENT bits 5-12
RXIDVER 5-12

RXINTMASKCLEAR 5-46
RXINTMASKSET 5-44
RXINTSTATMASKED 5-43

RXINTSTATRAW 5-42
RXJABBER 5-65
RXMAJORVER bits 5-12

RXMAXLEN 5-24
RXMAXLEN bits 5-24
RXMBPENABLE 5-15

RXMCASTFRAMES 5-64
RXMINORVER bits 5-12

RXMOFOVERRUNS 5-68
RXnFLOWTHRESH 5-27
RXnFREEBUFFER 5-28

RXnHDP 5-60

RXnINTACK 5-62
RXnMASK bits

in RXINTMASKCLEAR 5-46
in RXINTMASKSET 5-44

RXNOCHAIN bit 5-15
RXnPEND bits

in RXINTSTATMASKED 5-43
in RXINTSTATRAW 5-42

RXOCTETS 5-67
RXOVERSIZED 5-65
RXPASSCRC bit 5-15
RXPAUSE 5-58
RXPAUSEFRAMES 5-64
RXPEND bits 5-41
RXQOSACT bit 5-31
RXQOSEN bit 5-15
RXQOSFILTERED 5-67
RXSOFOVERRUNS 5-68
RXTDNCH bits 5-14
RXTEARDOWN 5-14
RXUNDERSIZED 5-66
RXUNICASTCLEAR 5-22
RXUNICASTSET 5-20

S
shared receive and transmit statistics

registers 5-62
single collision transmit frames register

(TXSINGLECOLL) 5-71
SOP flag 2-16, 2-21
start of packet (SOP) flag 2-16, 2-21
STATINT bit

in MACINTMASKCLEAR 5-51
in MACINTMASKSET 5-50
in MACINTSTATMASKED 5-49
in MACINTSTATRAW 5-48

statistics interrupt (STATPEND) 2-41
STATPEND bit 5-41

T
TDOWNCMPLT flag 2-17, 2-22
teardown complete (TDOWNCMPLT) flag 2-17,

2-22
terms and definitions 1-7

Index

Index-9SPRU628A

TPACETEST 5-57
trademarks iv
transmit and receive 1024 or above octet frames

register (FRAME1024TUP) 5-74
transmit and receive 128 to 255 octet frames

register (FRAME128T255) 5-73
transmit and receive 256 to 511 octet frames

register (FRAME256T511) 5-74
transmit and receive 512 to 1023 octet frames

register (FRAME512T1023) 5-74
transmit and receive 64 octet frames register

(FRAME64) 5-73
transmit and receive 65 to 127 octet frames register

(FRAME65T127) 5-73
transmit buffer descriptor format 2-13

buffer length 2-16
buffer offset 2-15
buffer pointer 2-15
end of packet (EOP) flag 2-16
end of queue (EOQ) flag 2-17
next descriptor pointer 2-15
ownership (OWNER) flag 2-16
packet length 2-16
pass CRC (PASSCRC) flag 2-17
start of packet (SOP) flag 2-16
teardown complete (TDOWNCMPLT) flag 2-17

transmit carrier sense errors register
(TXCARRIERSLOSS) 5-72

transmit channel 0−7 DMA head descriptor pointer
registers (TXnHDP) 5-60

transmit channel 0−7 interrupt acknowledge
registers (TXnINTACK) 5-61

transmit control register (TXCONTROL) 5-10
transmit EMAC interrupts 2-12
transmit identification and version register

(TXIDVER) 5-9
transmit interrupt mask clear register

(TXINTMASKCLEAR) 5-39
transmit interrupt mask set register

(TXINTMASKSET) 5-37
transmit interrupt status (masked) register

(TXINTSTATMASKED) 5-36
transmit interrupt status (unmasked) register

(TXINTSTATRAW) 5-35
transmit interrupts 2-41
transmit latency 2-42
transmit octet frames register (TXOCTETS) 5-72

transmit pacing test register (TPACETEST) 5-57
transmit pause timer register (TXPAUSE) 5-59
transmit pending interrupt (TXPEND) 2-41
transmit statistics registers 5-62
transmit teardown register (TXTEARDOWN) 5-11
transmit underrun register (TXUNDERRUN) 5-72
TXBCASTFRAMES 5-69
TXCARRIERSLOSS 5-72
TXCOLLISION 5-70
TXCONTROL 5-10
TXDEFERRED 5-70
TXEN bit 5-10
TXERRCH bits 5-31
TXERRCODE bits 5-31
TXEXCESSIVECOLL 5-71
TXFLOWACT bit 5-31
TXFLOWEN bit 5-29
TXGOODFRAMES 5-69
TXIDENT bits 5-9
TXIDVER 5-9
TXINTMASKCLEAR 5-39
TXINTMASKSET 5-37
TXINTSTATMASKED 5-36
TXINTSTATRAW 5-35
TXLATECOLL 5-72
TXMAJORVER bits 5-9
TXMCASTFRAMES 5-69
TXMINORVER bits 5-9
TXMULTICOLL 5-71
TXnHDP 5-60
TXnINTACK 5-61
TXnMASK bits

in TXINTMASKCLEAR 5-39
in TXINTMASKSET 5-37

TXnPEND bits
in TXINTSTATMASKED 5-36
in TXINTSTATRAW 5-35

TXOCTETS 5-72
TXPACE bit 5-29
TXPAUSE 5-59
TXPAUSEFRAMES 5-69
TXPEND bits 5-41
TXPTYPE bit 5-29
TXSINGLECOLL 5-71
TXTDNCH bits 5-11

Index

Index-10 SPRU628A

TXTEARDOWN 5-11
TXUNDERRUN 5-72

U
undersized flag 2-23
user access completion interrupt 3-7
USERACCESS0 5-88
USERACCESS1 5-90
USERINT bit 5-41
USERINTMASKCLEAR 5-87
USERINTMASKED 5-85
USERINTMASKSET 5-86

USERINTRAW 5-84
USERPHYSEL0 5-92
USERPHYSEL1 5-93

V
VERSION 5-77

W
WRITE bit

in USERACCESS0 5-88
in USERACCESS1 5-90

	Title Page - SPRUS628A
	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Chapter 1: Overview
	1.1 EMAC Control Module
	1.2 Ethernet Media Access Controller (EMAC) Module
	1.3 Management Data Input/Output (MDIO) Module
	1.4 System Level Connections
	1.5 Architecture Overview
	1.6 Definition of Terms

	Chapter 2: EMAC Module
	2.1 EMAC Module Components
	2.1.1 Receive DMA Engine
	2.1.2 Receive FIFO
	2.1.3 MAC Receiver
	2.1.4 Transmit DMA Engine
	2.1.5 Transmit FIFO
	2.1.6 MAC Transmitter
	2.1.7 Statistics Logic and RAM
	2.1.8 Control Registers and Logic

	2.2 EMAC Control Module
	2.2.1 Internal Memory
	2.2.2 Bus Arbiter
	2.2.3 Transfer Node Priority
	2.2.4 Reset Control
	2.2.5 Interrupt Control

	2.3 EMAC Module Operational Overview
	2.3.1 Packet Buffer Descriptors
	Next Descriptor Pointer
	Buffer Pointer
	Buffer Offset
	Buffer Length
	Flags
	Packet Length
	Example

	2.3.2 Transmit and Receive Descriptor Queues
	2.3.3 Transmit and Receive EMAC Interrupts
	2.3.4 Transmit Buffer Descriptor Format
	Next Descriptor Pointer
	Buffer Pointer
	Buffer Offset
	Buffer Length
	Packet Length
	Start of Packet (SOP) Flag
	End of Packet (EOP) Flag
	Ownership (OWNER) Flag
	End of Queue (EOQ) Flag
	Teardown Complete (TDOWNCMPLT) Flag
	Pass CRC (PASSCRC) Flag

	2.3.5 Receive Buffer Descriptor Format
	Next Descriptor Pointer
	Buffer Pointer
	Buffer Offset
	Buffer Length
	Packet Length
	Start of Packet (SOP) Flag
	End of Packet (EOP) Flag
	Ownership (OWNER) Flag
	End of Queue (EOQ) Flag
	Teardown Complete (TDOWNCMPLT) Flag
	Pass CRC (PASSCRC) Flag
	Jabber Flag
	Oversize Flag
	Fragment Flag
	Undersized Flag
	Control Flag
	Overrun Flag
	Code Error (CODEERROR) Flag
	Alignment Error (ALIGNERROR) Flag
	CRC Error (CRCERROR) Flag
	No Match (NOMATCH) Flag

	2.4 Media Independent Interface (MII)
	2.4.1 Data Reception
	2.4.1.1 Receive Control
	2.4.1.2 Receive Inter-Frame Interval
	2.4.1.3 Receive Flow Control
	2.4.1.4 Collision-Based Receive Flow Control
	2.4.1.5 IEEE 802.3X Based Receive Flow Control

	2.4.2 Data Transmission
	2.4.2.1 Transmit Control
	2.4.2.2 CRC Insertion
	2.4.2.3 MTXER
	2.4.2.4 Adaptive Performance Optimization (APO)
	2.4.2.5 Interpacket-Gap (IPG) Enforcement
	2.4.2.6 Back Off
	2.4.2.7 Transmit Flow Control
	2.4.2.8 Speed, Duplex, and Pause Frame Support

	2.5 Packet Receive Operation
	2.5.1 Receive DMA Host Configuration
	2.5.2 Receive Channel Enabling
	2.5.3 Receive Channel Addressing
	2.5.4 Hardware Receive QOS Support
	2.5.5 Host Free Buffer Tracking
	2.5.6 Receive Channel Teardown
	2.5.7 Receive Frame Classification
	2.5.8 Promiscuous Receive Mode
	2.5.9 Receive Overrun

	2.6 Packet Transmit Operation
	2.6.1 Transmit DMA Host Configuration
	2.6.2 Transmit Channel Teardown

	2.7 EMAC Module Interrupts
	2.7.1 Transmit and Receive Interrupts
	2.7.2 Statistics Interrupt
	2.7.3 Host Error Interrupt
	2.7.4 Proper Interrupt Processing

	2.8 Receive and Transmit Latency

	Chapter 3: MDIO Module
	3.1 MDIO Introduction
	3.2 MDIO Module Components
	3.2.1 MDIO Clock Generator
	3.2.2 Global PHY Detection and Link State Monitoring
	3.2.3 Active PHY Monitoring
	3.2.4 PHY Register User Access

	3.3 MDIO Module Operational Overview
	3.3.1 Initializing the MDIO Module
	3.3.2 Writing Data to a PHY Register
	3.3.3 Reading Data From a PHY Register

	3.4 MDIO Module Interrupts
	3.4.1 Link Change Interrupt
	3.4.2 User Access Completion Interrupt
	3.4.3 Proper Interrupt Processing

	Chapter 4: Software Operation
	4.1 Module Function Overview
	4.1.1 EMAC Control Module
	4.1.2 EMAC Module
	4.1.3 MDIO Module

	4.2 Target Environment
	4.3 EMAC Control Module Operation
	4.3.1 Initialization
	4.3.2 Monitoring

	4.4 MDIO Module Operation
	4.4.1 Initialization
	4.4.2 Selecting and Configuring a PHY
	4.4.2.1 PHY Search
	4.4.2.2 Initial PHY Configuration

	4.4.3 Negotiation Results and Link Indication
	4.4.4 Monitoring (Event Processing)
	4.4.5 MDIO Register Access

	4.5 EMAC Module Operation
	4.5.1 Initialization
	4.5.2 Configuration
	4.5.2.1 Setting the Receive Filter
	4.5.2.2 Setting the Multicast List

	4.5.3 Receive
	4.5.3.1 Enqueue Receive Descriptor Function
	4.5.3.2 Dequeue Receive Descriptor Function

	4.5.4 Transmit
	4.5.4.1 Send Function
	4.5.4.2 Enqueue Transmit Descriptor Function
	4.5.4.3 Dequeue Transmit Descriptor Function

	4.5.5 Interrupt Processing
	4.5.5.1 Interrupt Deferral
	4.5.5.2 Interrupt Handling

	4.5.6 Shutdown and Restarts

	Chapter 5: Registers
	5.1 EMAC Control Module Registers
	5.1.1 EMAC Control Module Transfer Control Register (EWTRCTRL)
	5.1.2 EMAC Control Module Interrupt Control Register (EWCTL)
	5.1.3 EMAC Control Module Interrupt Timer Count Register (EWINTTCNT)

	5.2 EMAC Module Registers
	5.2.1 Transmit Identification and Version Register (TXIDVER)
	5.2.2 Transmit Control Register (TXCONTROL)
	5.2.3 Transmit Teardown Register (TXTEARDOWN)
	5.2.4 Receive Identification and Version Register (RXIDVER)
	5.2.5 Receive Control Register (RXCONTROL)
	5.2.6 Receive Teardown Register (RXTEARDOWN)
	5.2.7 Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE)
	5.2.8 Receive Unicast Set Register (RXUNICASTSET)
	5.2.9 Receive Unicast Clear Register (RXUNICASTCLEAR)
	5.2.10 Receive Maximum Length Register (RXMAXLEN)
	5.2.1 1 Receive Buffer Offset Register (RXBUFFEROFFSET)
	5.2.12 Receive Filter Low Priority Packets Threshold Register (RXFILTERLOWTHRESH)
	5.2.13 Receive Channel 0-7 Flow Control Threshold Registers (RXnFLOWTHRESH)
	5.2.14 Receive Channel 0-7 Free Buffer Count Registers (RXnFREEBUFFER)
	5.2.15 MAC Control Register (MACCONTROL)
	5.2.16 MAC Status Register (MACSTATUS)
	5.2.17 Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW)
	5.2.18 Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED)
	5.2.19 Transmit Interrupt Mask Set Register (TXINTMASKSET)
	5.2.20 Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR)
	5.2.21 MAC Input Vector Register (MACINVECTOR)
	5.2.22 Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW)
	5.2.23 Receive Interrupt Status (Masked) Register (RXINTSTATMASKED)
	5.2.24 Receive Interrupt Mask Set Register (RXINTMASKSET)
	5.2.25 Receive Interrupt Mask Clear Register (RXINTMASKCLEAR)
	5.2.26 MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW)
	5.2.27 MAC Interrupt Status (Masked) Register (MACINTSTATMASKED)
	5.2.28 MAC Interrupt Mask Set Register (MACINTMASKSET)
	5.2.29 MAC Interrupt Mask Clear Register (MACINTMASKCLEAR)
	5.2.30 MAC Address Channel 0-7 Lower Byte Registers (MACADDRLn)
	5.2.31 MAC Address Middle Byte Register (MACADDRM)
	5.2.32 MAC Address High Bytes Register (MACADDRH)
	5.2.33 MAC Address Hash 1 Register (MACHASH1)
	5.2.34 MAC Address Hash 2 Register (MACHASH2)
	5.2.35 Backoff T est Register (BOFFTEST)
	5.2.36 Transmit Pacing Test Register (TPACETEST)
	5.2.37 Receive Pause Timer Register (RXPAUSE)
	5.2.38 Transmit Pause Timer Register (TXPAUSE)
	5.2.39 Transmit Channel 0-7 DMA Head Descriptor Pointer Registers (TXnHDP)
	5.2.40 Receive Channel 0-7 DMA Head Descriptor Pointer Registers (RXnHDP)
	5.2.41 Transmit Channel 0-7 Interrupt Acknowledge Registers (TXnINTACK)
	5.2.42 Receive Channel 0-7 Interrupt Acknowledge Registers (RXnINTACK)
	5.2.43 Network Statistics Registers
	5.2.43.1 Good Receive Frames Register (RXGOODFRAMES)
	5.2.43.2 Broadcast Receive Frames Register (RXBCASTFRAMES)
	5.2.43.3 Multicast Receive Frames Register (RXMCASTFRAMES)
	5.2.43.4 Pause Receive Frames Register (RXPAUSEFRAMES)
	5.2.43.5 Receive CRC Errors Register (RXCRCERRORS)
	5.2.43.6 Receive Alignment/Code Errors Register (RXALIGNCODEERRORS)
	5.2.43.7 Receive Oversized Frames Register (RXOVERSIZED)
	5.2.43.8 Receive Jabber Frames Register (RXJABBER)
	5.2.43.9 Receive Undersized Frames Register (RXUNDERSIZED)
	5.2.43.10 Receive Frame Fragments Register (RXFRAGMENTS)
	5.2.43.11 Filtered Receive Frames Register (RXFILTERED)
	5.2.43.12 Receive QOS Filtered Frames Register (RXQOSFILTERED)
	5.2.43.13 Receive Octet Frames Register (RXOCTETS)
	5.2.43.14 Receive Start of Frame Overruns Register (RXSOFOVERRUNS)
	5.2.43.15 Receive Middle of Frame Overruns Register (RXMOFOVERRUNS)
	5.2.43.16 Receive DMA Overruns Register (RXDMAOVERRUNS)
	5.2.43.17 Good Transmit Frames Register (TXGOODFRAMES)
	5.2.43.18 Broadcast Transmit Frames Register (TXBCASTFRAMES)
	5.2.43.19 Multicast Transmit Frames Register (TXMCASTFRAMES)
	5.2.43.20 Pause Transmit Frames Register (TXPAUSEFRAMES)
	5.2.43.21 Deferred Transmit Frames Register (TXDEFERRED)
	5.2.43.22 Collision Register (TXCOLLISION)
	5.2.43.23 Single Collision Transmit Frames Register (TXSINGLECOLL)
	5.2.43.24 Multiple Collision Transmit Frames Register (TXMULTICOLL)
	5.2.43.25 Excessive Collisions Register (TXEXCESSIVECOLL)
	5.2.43.26 Late Collisions Register (TXLATECOLL)
	5.2.43.27 Transmit Underrun Register (TXUNDERRUN)
	5.2.43.28 Transmit Carrier Sense Errors Register (TXCARRIERSLOSS)
	5.2.43.29 Transmit Octet Frames Register (TXOCTETS)
	5.2.43.30 Transmit and Receive 64 Octet Frames Register (FRAME64)
	5.2.43.31 Transmit and Receive 65 to 127 Octet Frames Register (FRAME65T127)
	5.2.43.32 Transmit and Receive 128 to 255 Octet Frames Register (FRAME128T255)
	5.2.43.33 Transmit and Receive 256 to 511 Octet Frames Register (FRAME256T511)
	5.2.43.34 Transmit and Receive 512 to 1023 Octet Frames Register (FRAME512T1023)
	5.2.43.35 Transmit and Receive 1024 or Above Octet Frames Register (FRAME1024TUP)
	5.2.43.36 Network Octet Frames Register (NETOCTETS)

	5.3 MDIO Module Registers
	5.3.1 MDIO Version Register (VERSION)
	5.3.2 MDIO Control Register (CONTROL)
	5.3.3 MDIO PHY Alive Indication Register (ALIVE)
	5.3.4 MDIO PHY Link Status Register (LINK)
	5.3.5 MDIO Link Status Change Interrupt Register (LINKINTRAW)
	5.3.6 MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED)
	5.3.7 MDIO User Command Complete Interrupt Register (USERINTRAW)
	5.3.8 MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED)
	5.3.9 MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET)
	5.3.10 MDIO User Command Complete Interrupt Mask Clear Register (USERINTMASKCLEAR)
	5.3.11 MDIO User Access Register 0 (USERACCESS0)
	5.3.12 MDIO User Access Register 1 (USERACCESS1)
	5.3.13 MDIO User PHY Select Register 0 (USERPHYSEL0)
	5.3.14 MDIO User PHY Select Register 1 (USERPHYSEL1)

	Appendix A: Revision History
	Index

