
OMAP5912 Multimedia Processor
Interrupts

Reference Guide

Literature Number: SPRU757B
October 2004

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale
in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the
extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks associated
with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published by
TI regarding third-party products or services does not constitute a license from TI to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from
a third party under the patents or other intellectual property of the third party, or a license from TI under
the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by
TI for that product or service voids all express and any implied warranties for the associated TI product
or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such
statements.

Following are URLs where you can obtain information on other Texas Instruments products and
application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

3OMAP5912SPRU757B

Preface

Read This First

About This Manual

This document describes the interrupts of the OMAP5912 multimedia
processor.

Notational Conventions

This document uses the following conventions.

� Hexadecimal numbers are shown with the suffix h. For example, the fol-
lowing number is 40 hexadecimal (decimal 64): 40h.

Related Documentation From Texas Instruments

Documentation that describes the OMAP5912 device, related peripherals,
and other technical collateral, is available in the OMAP5912 Product Folder
on TI’s website: www.ti.com/omap5912.

Trademarks

OMAP and the OMAP symbol are trademarks of Texas Instruments.

Contents

4

Contents

1 Interrupt Overview 9.
1.1 DSP Interrupt Mapping 11.
1.1.1 DSP Level 2 Interrupt Handler 12.
1.1.2 DSP Level 2 Interrupt Mapping 12.
1.1.3 MPU Interrupt Mapping 14.
1.1.4 ARM926EJS Level 2 Interrupt Mapping 16.

2 Interrupt Controllers (MPU Level 2 and DSP Level 2.1) 19.
2.1 Functional Description 20.
2.1.1 Interrupt Processing Sequence 22.
2.1.2 Edge-Triggered Interrupts 22.
2.1.3 Level-Sensitive Interrupts 22.
2.1.4 Interrupt Latency 23.
2.1.5 Interrupt Handler Sleep Mode 23.
2.1.6 Going to Sleep 24.

Smart Idle Mode 24.
Force Wake-up Mode 24.
Waking Up 24.

2.1.7 External Interrupt Asynchronous Path 24.
2.1.8 Interrupt Global Masking 25.
2.1.9 Interrupt Spying 26.
2.1.10 Interrupt Controller Registers 26.
2.1.11 Implementation 29.

3 Level 1 MPU Interrupt Handler 35.
3.1 Description 35.
3.1.1 Interrupt Control and Configuration 35.
3.1.2 Software Interrupt 36.
3.1.3 Interrupt Sequence 38.
3.1.4 Interrupt Handler Software 38.
3.1.5 Edge-Triggered Interrupts 38.
3.1.6 Level-Sensitive Interrupts 39.
3.1.7 Registers 40.

Contents

5OMAP5912SPRU757B

4 DSP Level 1 and Level 2.0 Interrupt Handler and Interface 43.
4.1 Description 43.
4.1.1 Interrupt Control and Configuration 43.
4.1.2 Software Interrupt 44.
4.1.3 Latency 44.
4.1.4 Interrupt Interface 45.
4.1.5 Interrupt Sequence 45.
4.1.6 Interrupt Handler Software 46.
4.1.7 Edge-Triggered Interrupts 46.
4.1.8 Level-Sensitive Interrupts 47.
4.1.9 Registers 48.
4.1.10 DSP Interrupt Interface 48.
4.1.11 DSP Interrupt Handler 49.

Figures

6 OMAP5912 SPRU757B

Figures

1 Interrupt Interconnect 10.
2 Interrupt Controller 21.
3 Global Mask Bit Effect 26.
4 MPU Interrupt Handler 37.
5 An Example of DSP Interrupt Handling 45.

Tables

7OMAP5912SPRU757B

Tables

1 DSP Level 1 Interrupt Mapping 11.
2 DSP Level 2 Interrupt Mapping 13.
3 DSP Level 2.1 Interrupt Mapping 13.
4 MPU Level 1 Interrupt Mapping 14.
5 MPU Level 2 Interrupt Mapping 16.
6 Interrupt Controller Registers 27.
7 Interrupt Input Register (ITR) 29.
8 Mask Interrupt Register (MIR) 30.
9 Source IRQ Register (SIR_IRQ) 30.
10 Source FIQ Register (SIR_FIQ) 31.
11 Control Register 31.
12 Control Register Bit Descriptions 32.
13 Interrupt Level Register (ILR) 32.
14 Interrupt Level Register Bit Descriptions 33.
15 Software Interrupt Set Register (SISR) 33.
16 Status Register 33.
17 Status Register Bit Description 34.
18 OCP_CFG Register 34.
19 OCP_CFG Register Bit Descriptions 34.
20 Interrupt Revision Register (INTH_REV) 35.
21 MPU Interrupt Sequence 38.
22 Interrupt Registers 40.
23 Interrupt Register (ITR) 41.
24 Mask Interrupt Register (MIR) 41.
25 Interrupt Encoded Source Register for IRQ (SIR_IRQ) 41.
26 Interrupt Encoded Source Register for FIQ (SIR_FIQ) 41.
27 Interrupt Control Register (CONTROL_REG) 42.
28 Interrupt Level Register for Interrupt Number x (0 to 31) (ILRx) 42.
29 Software Interrupt Set Register (SIR) 42.
30 Global Mask Interrupt Register (GMR) 43.
31 DSP Interrupt Sequence 46.
32 DSP Interrupt Interface Registers 48.
33 Incoming Interrupt High Register (EDGE_EN_HI) 49.
34 Incoming Interrupt Low Register (EDGE_EN_LO) 49.
35 DSP Interrupt Registers 50.
36 Interrupt Register (DSP_ITR) 50.

Tables

8 OMAP5912 SPRU757B

37 Mask Interrupt Register (DSP_MIR) 50.
38 Interrupt Encoded Source Register for IRQ (DSP_SIR_IRQ) 50.
39 Interrupt Encoded Source Register for FIQ (DSP_SIR_FIQ) 51.
40 Interrupt Control Register (DSP_CONTROL_REG) 51.
41 Software Interrupt Set Register (DSP_SISR) 51.
42 Interrupt Level Register for Interrupt Number x [0−15] (DSP_ILRx) 52.

9InterruptsSPRU757B

Interrupts

This document describes the interrupts of the OMAP5912 multimedia
processor.

1 Interrupt Overview

Three level 2 interrupt controllers are used in OMAP5912:

� One MPU level 2 interrupt handler (also referred to as MPU interrupt level
2) is implemented outside of OMAP3.2 and can handle 128 interrupts.

� One DSP level 2 interrupt handler (also referred to as DSP interrupt level
2.1) is instantiated outside of OMAP3.2 and can handle 64 interrupts.

� One OMAP3.2 DSP level 2 interrupt handler (referenced as DSP interrupt
level 2.0) can handle 16 interrupts.

There are two level 1 interrupt controllers in OMAP3.2 and the DSP:

� One MPU level 1 interrupt handler that can handle 31 interrupts (OMAP3.2).

� One DSP level 1 interrupt handler that can handle 16 interrupts (DSP).

Figure 1 shows which peripheral module can trigger an interrupt in each
processor. Some peripherals can generate interrupts to both processors.
There are 160 interrupts on the MPU and 98 interrupts on the DSP side.

Interrupt Overview

Interrupts10 SPRU757B

Figure 1. Interrupt Interconnect

DSP

peripherals :

2 mailboxes
3 DSP timers

DSP watchdog

McBSP1
McBSP3
UART1
UART2

GPIO3
GPIO4

I2C
MCSI1
MCSI2

MPU

peripherals:

2 mailboxes
3 MPU timers

MPU watchdog

DSP interrupt
handler level 2.1

MPU interrupt
handler level 2

DSP interrupt
handler level 2.0

MPU interrupt
handler level 1

MPU

DSP interrupt
interface

C55x

DSP ARM926EJ

OMAP3.2

FIQ

IRQ
and
FIQ

8XGPTIMER
STI

McBSP2
MMC/SDIO2

SPI

System DMA

DSPDMA

DSP
interrupt
handler
level 1

GPIO1

UART3

USB
MPUIO

GPIOs wake up
OS TIMER

1−Wire
MMC/SDIO 1

ULPD
RTC
FAC

µWire
Keyboard

CompactFlash

IRQ
and
FIQ

IRQ
and
FIQ

GPIO2

Two DSP level 2 interrupt handlers connect directly to the DSP interrupt
interface and then to the DSP level 1 interrupt handler. One MPU level 2
interrupt handler connects in parallel to the MPU level 1 interrupt handler. For
more detail on the architecture and programming model of the level 2 interrupt
handler, see Section 2, Interrupt Controller.

There are four groups of shared peripherals. Most of the shared peripherals
connect to DSP/MPU level 2 interrupt handlers. Two exceptions are the GPIO1
and UART3, which connect to the MPU level 1 handler and the DSP level 1
handler.

Table 1 through Table 5 include the default priority and the required sensitivity
to be programmed by software per interrupt line for each interrupt handler (L1
and L2). When the sensitivity is not precise, it must be considered as edge. The
sensitivity depends on the peripheral type.

Interrupt Overview

11InterruptsSPRU757B

1.1 DSP Interrupt Mapping

On the DSP side are 98 interrupt input lines, 18 on the first level, and 80 on
the second level.

Table 1. DSP Level 1 Interrupt Mapping

Priority
DSP Soft
Interrupt

DSP Hard
Interrupt

Location Vectors
(Hex/Byte) Function

1 SINT0 INT0 0 Reset

2 SINT1 INT1 8 Nonmaskable interrupt

3 SINT2 INT2 10 Emulator/test interrupt

5 SINT3 INT3 18 Level 2.0 interrupt handler

6 SINT4 INT4 20 TC_ABORT interrupt

7 SINT5 INT5 28 MAILBOX 1

9 SINT6 INT6 30 Level 2.1 interrupt handler FIQ

10 SINT7 INT7 38 IRQ2_GPIO1

11 SINT8 INT8 40 DSP timer 3 interrupt

13 SINT9 INT9 48 DMA_channel_1 interrupt

14 SINT10 INT10 50 MPUI interrupt

15 SINT11 INT11 58 Reserved

17 SINT12 INT12 60 UART3

18 SINT13 INT13 68 DSP watchdog interrupt

21 SINT14 INT14 70 DMA_channel_4 interrupt

22 SINT15 INT15 78 DMA_channel_5 interrupt

4 SINT16 INT16 80 STIO interrupt

8 SINT17 INT17 88 Level 2.1 interrupt handler IRQ

12 SINT18 INT18 90 DMA_channel_0 interrupt

16 SINT19 INT19 98 MAILBOX 2

19 SINT20 INT20 A0 DMA_channel_2 interrupt

20 SINT21 INT21 A8 DMA_channel_3 interrupt

23 SINT22 INT22 B0 DSP timer 2 interrupt

Interrupt Overview

Interrupts12 SPRU757B

Table 1. DSP Level 1 Interrupt Mapping (Continued)

Priority Function
Location Vectors
(Hex/Byte)

DSP Hard
Interrupt

DSP Soft
Interrupt

24 SINT23 INT23 B8 DSP timer 1 interrupt

25 SINT24 INT24 C0 Bus error interrupt # 25 BERR

26 SINT25 INT25 C8 Emulator interrupt # 26 DLOG

27 SINT26 INT26 D0 Emulator interrupt # 27 RTOS

28 SINT27 INT27 D8 Software interrupt #28

29 SINT28 INT28 E0 Software interrupt #29

30 SINT29 INT29 E8 Software interrupt #30

31 SINT30 INT30 F0 Software interrupt #31

32 SINT31 INT31 F8 Software interrupt #32

1.1.1 DSP Level 2 Interrupt Handler

The system has two DSP level 2 interrupt handlers. One is in the OMAP3.2
gigacell (the DSP level 2.0 interrupt handler), and the other is outside the
OMAP3.2 gigacell (the DSP level 2.1 interrupt handler):

� The DSP level 2.0 interrupt handler handles 16 interrupt lines.

� The DSP level 2.1 interrupt handler handles 64 interrupt lines.

For more detail on the architecture and programming model of the level 2
interrupt handler, see Section 2, Interrupt Controller.

1.1.2 DSP Level 2 Interrupt Mapping

The default interrupt priority for the DSP interrupt handler level 1 can be
remapped by MPU software only when DSP is held in reset. All level 2 interrupt
lines have the same priority by default, which DSP software can modify
through the configuration register in the level 2 interrupt controller.

Interrupt Overview

13InterruptsSPRU757B

Table 2. DSP Level 2 Interrupt Mapping

Level 2.0 Interrupt Line Mapping
Default Sensitivity
Configuration

IRQ_0 McBSP3 TX Level

IRQ_1 McBSP3 RX Level

IRQ_2 McBSP1 TX Level

IRQ_3 McBSP1 RX Level

IRQ_4 UART2 Level

IRQ_5 UART1 Level

IRQ_6 MCSI1 TX Level

IRQ_7 MCSI1 RX Level

IRQ_8 MCSI2 TX Level

IRQ_9 MCSI2 RX Level

IRQ_10 MCSI1 frame error Level

IRQ_11 MCSI2 frame error Level

IRQ_12 IRQ2_GPIO2 level

IRQ_13 IRQ2_GPIO3 level

IRQ_14 IRQ2_GPIO4 level

IRQ_15 I2C Level

Table 3. DSP Level 2.1 Interrupt Mapping

Level 2.1 Interrupt
Line Mapping

Default Sensitivity
Configuration

IRQ_0 NAND flash interrupt Level

IRQ_1 GPTIMER1 Level

IRQ_2 GPTIMER2 Level

IRQ_3 GPTIMER3 Level

IRQ_4 GPTIMER4 Level

IRQ_5 GPTIMER5 Level

IRQ_6 GPTIMER6 Level

Interrupt Overview

Interrupts14 SPRU757B

Table 3. DSP Level 2.1 Interrupt Mapping (Continued)
Level 2.1 Interrupt
Line

Default Sensitivity
ConfigurationMapping

IRQ_7 GPTIMER7 Level

IRQ_8 GPTIMER8 Level

IRQ_9 Reserved −−−−−

IRQ_10 McBSP2 TX Level

IRQ_11 McBSP2 RX Level

IRQ_12 MCSI1_RST_INT Level

IRQ_13 MCSI2_RST_INT Level

IRQ_14 MMC/SDIO2 Level

IRQ_15 SPI Level

IRQ_16−
IRQ_47

Reserved −−−−−

IRQ_48 … IRQ_63 Free −−−−−

For each interrupt, the user must configure the SENS_nEDGE bit in the
corresponding interrupt level register (ILR) according to whether the interrupt
is edge- or level-sensitive. See Table 13 for more details.

1.1.3 MPU Interrupt Mapping

The interrupt priority is not hard-coded on the MPU side. Thus, the software
must define all interrupt priorities for both level interrupt handlers. (See
Table 4.)

Table 4. MPU Level 1 Interrupt Mapping

Level 1 Interrupt Line OMAP 5912 Mapping Sensitivity

IRQ_0 Level 2 interrupt handler IRQ Level

IRQ_1 Camera IF Level

IRQ_2 Level 2 interrupt handler FIQ Level

IRQ_3 External FIQ User-defined

† These IRQs are available only when the DMA is in OMAP3.2 mode (i.e. not in OMAP3.1 compatibility mode). See the Multime-
dia Processor Direct Memory Access (DMA) Support Reference Guide (literature number SPRU755) for more information.

‡ These IRQs are available only when the DMA is in OMAP3.1 compatibility mode. See the Multimedia Processor Direct
Memory Access (DMA) Support Reference Guide (literature number SPRU755) for more information.

Interrupt Overview

15InterruptsSPRU757B

Table 4. MPU Level 1 Interrupt Mapping (Continued)

Level 1 Interrupt Line SensitivityOMAP 5912 Mapping

IRQ_4 McBSP2 TX Edge

IRQ_5 McBSP2 RX Edge

IRQ_6 IRQ_RTDX (emulation event) Edge

IRQ_7 IRQ_DSP_MMU_ABORT Level

IRQ_8 IRQ_HOST_INT Edge

IRQ_9 IRQ_ABORT Level

IRQ_10 IRQ_DSP_MAILBOX1 Level

IRQ_11 IRQ_DSP_MAILBOX2 Level

IRQ_12 IRQ_LCD_LINE Level

IRQ_13 Reserved −−−−−

IRQ_14 IRQ1_GPIO1 Level

IRQ_15 UART3 Level

IRQ_16 IRQ_TIMER3 Edge

IRQ_17 GPTIMER1 Level

IRQ_18 GPTIMER2 Level

IRQ_19 IRQ_DMA_CH0†/IRQ_DMA_CH0_CH6‡ Level

IRQ_20 IRQ_DMA_CH1†/IRQ_DMA_CH1_CH7‡ Level

IRQ_21 IRQ_DMA_CH2†/IRQ_DMA_CH2_CH8‡ Level

IRQ_22 IRQ_DMA_CH3 Level

IRQ_23 IRQ_DMA_CH4 Level

IRQ_24 IRQ_DMA_CH5 Level

IRQ_25 IRQ_DMA_CH_LCD Level

IRQ_26 IRQ_TIMER1 Edge

IRQ_27 IRQ_WD_TIMER Edge

† These IRQs are available only when the DMA is in OMAP3.2 mode (i.e. not in OMAP3.1 compatibility mode). See the Multime-
dia Processor Direct Memory Access (DMA) Support Reference Guide (literature number SPRU755) for more information.

‡ These IRQs are available only when the DMA is in OMAP3.1 compatibility mode. See the Multimedia Processor Direct
Memory Access (DMA) Support Reference Guide (literature number SPRU755) for more information.

Interrupt Overview

Interrupts16 SPRU757B

Table 4. MPU Level 1 Interrupt Mapping (Continued)

Level 1 Interrupt Line SensitivityOMAP 5912 Mapping

IRQ_28 Public TIPB abort Level

IRQ_29 Reserved −−−−−

IRQ_30 IRQ_TIMER2 Edge

IRQ_31 IRQ_LCD_CTRL Level

† These IRQs are available only when the DMA is in OMAP3.2 mode (i.e. not in OMAP3.1 compatibility mode). See the Multime-
dia Processor Direct Memory Access (DMA) Support Reference Guide (literature number SPRU755) for more information.

‡ These IRQs are available only when the DMA is in OMAP3.1 compatibility mode. See the Multimedia Processor Direct
Memory Access (DMA) Support Reference Guide (literature number SPRU755) for more information.

1.1.4 ARM926EJS Level 2 Interrupt Mapping

DSP and MPU share most of the peripherals. Therefore, almost all of the DSP
level 2 interrupts also go to the MPU level 2 interrupt handlers. The MPU level
2 interrupt handlers are enabled to process 128 more interrupt lines outside
the OMAP gigacell, for a total of 160 interrupt lines. (See Table 5.)

Table 5. MPU Level 2 Interrupt Mapping

Level 2 Interrupt Line Mapping Sensitivity

IRQ_0 FAC Level

IRQ_1 Keyboard Edge

IRQ_2 µWIRE TX Level

IRQ_3 µWIRE RX Level

IRQ_4 I2C Level

IRQ_5 MPUIO Level

IRQ_6 USB HHC 1 Level

IRQ_7 USB HHC 2 Level

IRQ_8 USB_OTG Level

IRQ_9 Reserved −−−−−

IRQ_10 McBSP3 TX Edge

IRQ_11 McBSP3 RX Edge

† These IRQs are available only when the DMA is in OMAP3.2 mode (i.e. not in OMAP3.1 compatibility mode). See the Multime-
dia Processor Direct Memory Access (DMA) Support Reference Guide (literature number SPRU755) for more information.

Interrupt Overview

17InterruptsSPRU757B

Table 5. MPU Level 2 Interrupt Mapping (Continued)

Level 2 Interrupt Line SensitivityMapping

IRQ_12 McBSP1 TX Edge

IRQ_13 McBSP1 RX Edge

IRQ_14 UART1 Level

IRQ_15 UART2 Level

IRQ_16 MCSI1 combined TX/RX/Frame error/RST Level

IRQ_17 MCSI2 combined TX/RX/Frame error/RST Level

IRQ_18 Free −−−−−

IRQ_19 Reserved −−−−−

IRQ_20 USB W2FC Geni it Level

IRQ_21 1-Wire Level

IRQ_22 OS timer Edge

IRQ_23 MMC/SDIO1 Level

IRQ_24 32-kHz gauging IRQ/USB client wakeup IRQ Level/Edge

IRQ_25 RTC periodical timer Edge

IRQ_26 RTC alarm Level

IRQ_27 Reserved −−−−−

IRQ_28 DSP_MMU_IRQ Level

IRQ_29 USB W2FC IRQ_ISO_ON Level

IRQ_30 USB W2FC IRQ_NON_ISO_ON Level

IRQ_31 McBSP2 RX OVERFLOW Level

IRQ_32−
IRQ_33

Reserved −−−−−

IRQ_34 GPTIMER3 Level

IRQ_35 GPTIMER4 Level

IRQ_36 GPTIMER5 Level

† These IRQs are available only when the DMA is in OMAP3.2 mode (i.e. not in OMAP3.1 compatibility mode). See the Multime-
dia Processor Direct Memory Access (DMA) Support Reference Guide (literature number SPRU755) for more information.

Interrupt Overview

Interrupts18 SPRU757B

Table 5. MPU Level 2 Interrupt Mapping (Continued)

Level 2 Interrupt Line SensitivityMapping

IRQ_37 GPTIMER6 Level

IRQ_38 GPTIMER7 Level

IRQ_39 GPTIMER8 Level

IRQ_40 IRQ1_GPIO2 Level

IRQ_41 IRQ1_GPIO3 Level

IRQ_42 MMC/SDIO2 Level

IRQ_43 CompactFlash Edge

IRQ_44 COMMRX (emulation event) Level

IRQ_45 COMMTX (emulation event) Level

IRQ_46 Peripheral wake up Level

IRQ_47 Free Level

IRQ_48 IRQ1_GPIO4 Level

IRQ_49 SPI Level

IRQ_50−
IRQ_52

Reserved −−−−−

IRQ_53 IRQ_DMA_CH6† Level

IRQ_54 IRQ_DMA_CH7† Level

IRQ_55 IRQ_DMA_CH8† Level

IRQ_56 IRQ_DMA_CH9† Level

IRQ_57 IRQ_DMA_CH10† Level

IRQ_58 IRQ_DMA_CH11† Level

IRQ_59 IRQ_DMA_CH12† Level

IRQ_60 IRQ_DMA_CH13† Level

IRQ_61 IRQ_DMA_CH14† Level

IRQ_62 IRQ_DMA_CH15† Level

† These IRQs are available only when the DMA is in OMAP3.2 mode (i.e. not in OMAP3.1 compatibility mode). See the Multime-
dia Processor Direct Memory Access (DMA) Support Reference Guide (literature number SPRU755) for more information.

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

19InterruptsSPRU757B

Table 5. MPU Level 2 Interrupt Mapping (Continued)

Level 2 Interrupt Line SensitivityMapping

IRQ_63 Reserved −−−−−

IRQ_64 Reserved (USB HHC2 suspend) −−−−−

IRQ_65 Reserved −−−−−

IRQ_66 Free −−−−

IRQ_67−
IRQ_90

Reserved −−−−−

IRQ_91 SHA-1/MD5 Level

IRQ_92 RNG Level

IRQ_93 RNGIDLE Level

IRQ_94−
IRQ_102

Reserved −−−−−

IRQ_103 … IRQ_127 Free −−−−−

† These IRQs are available only when the DMA is in OMAP3.2 mode (i.e. not in OMAP3.1 compatibility mode). See the Multime-
dia Processor Direct Memory Access (DMA) Support Reference Guide (literature number SPRU755) for more information.

For each interrupt, the user must configure the SENS_nEDGE bit in the
corresponding interrupt level register (ILR) according to whether the interrupt
is edge or level sensitive. See Table 13 for more details.

2 Interrupt Controllers (MPU Level 2 and DSP Level 2.1)
The MPU level 2 and DSP level 2.1 interrupt controllers have the same
programming model. The only difference between the two is the number of
interrupts each can handle (128 for MPU level 2 and 64 for DSP level 2.1).
Throughout this section, both interrupt controllers are referred to collectively
as the interrupt controller.

The MPU level 2 interrupt controller functional clock source is ARM_CK or
ARM_CK/2, according to the ARM_CKCTL.ARM_INTHCK_SEL bit.

The DSP level 2.1 interrupt controller functional clock source is the
DSPPER_CK.

The interrupt controller is able to handle interrupts coming from different
functional blocks, prioritize them, and route them to a host. It generates one
IRQ and one FIQ signal to the host. Both signals are active low-level interrupts,
synchronous with the interrupt controller functional clock.

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

Interrupts20 SPRU757B

The interrupt controller can be programmed to assign different priorities and
mask each interrupt independently. Each interrupt line can be programmed to
be either level sensitive or edge triggered. The interrupt handler also provides
an asynchronous signal to the host in order to have a way to wake up the
system, in case an interrupt occurs when the clocks are turned off (system in
idle state). See Figure 2 for the interrupt controller block diagram.

2.1 Functional Description

The interrupt controller provides prioritized and maskable interrupts to the
host.

One interrupt level register (ILR) is associated with each incoming interrupt.
It assigns a priority to the corresponding interrupt, determines whether it is to
be level or edge sensitive, and selects which interrupt (FIQ or IRQ) it is to
generate. If several interrupts have the same priority level, they are serviced
in a predefined order (see Table 13).

For test purposes, the interrupt controller provides a set of software interrupt
set registers (SISR). Each bit of these registers corresponds to an incoming
interrupt line. By writing a1 to the targeted bit, an interrupt is generated if the
corresponding ILR is set to edge sensitive. External interrupt requests and
internal software requests are merged before being sent to the interrupt
controller state machine.

Each incoming interrupt is routed either to the FIQ or the IRQ interrupt. The
IRQ or FIQ outputs from the interrupt controller are reset by writing a 1 to the
corresponding bit of the control register. Both the IRQ and FIQ are
synchronous to the interrupt controller functional clock.

The interrupt handler can wake up the host asynchronously even if the
functional clocks are turned off (host in idle state).

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

21InterruptsSPRU757B

Figure 2. Interrupt Controller

Interrupt level register 0 (ILR0)

Mask interrupt register (MIR)

Interrupt input register (ITR)

Interrupt set register (SISR)

Process next pending IRQ

Process next pending FIQ

Generate IRQ

Generate FIQ

IRQ FIQ

To host

TIPB bus

External interrupts

SIR_IRQ
Source IRQ register

Level or edge detected

Edge detection

Control register

Merge

Interrupt level register 1 (ILR1)

Interrupt level register n (ILRn)

SIR_FIQ
Source FIQ register

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

Interrupts22 SPRU757B

2.1.1 Interrupt Processing Sequence

Although only the IRQ is discussed here, the sequence is the same for FIQ.
The sequence depends, however, on the interrupt sensitivity (level or edge).

2.1.2 Edge-Triggered Interrupts

1) The interrupt controller module receives incoming interrupts and registers
them in the ITR register.

2) The interrupt controller asserts the IRQ signal and begins priority
calculation. When the highest priority interrupt is known, the source IRQ
register (SIR_IRQ) is updated with the current interrupt number.

The only way to deassert the IRQ that has been sent to the host is to set the
NEW_IRQ_AGR bit in the control register.

3) The host, when it recognizes the interrupt, jumps to the interrupt routine.

4) Within the interrupt routine, the host reads the SIR_IRQ register to
determine which interrupt line caused the interrupt. Reading the SIR_IRQ
resets the interrupt bit in the ITR register. The IRQ/FIQ line, however, stays
asserted. Based on the content of SIR_IRQ, the host executes specific
code.

5) Before jumping out of the interrupt routine, the host must set the
NEW_IRQ_AGR bit of the control register. Setting this bit deasserts the
IRQ line and enables the interrupt controller to process any other pending
interrupts.

2.1.3 Level-Sensitive Interrupts

1) The interrupt controller receives incoming interrupts. Level-sensitive
interrupts are not registered. The interrupt controller assumes that a
peripheral asserting a level-sensitive interrupt does not deassert it until the
software directs it to do so.

2) The interrupt controller asserts the IRQ signal and begins priority
calculation. When the highest priority interrupt is known, the SIR_IRQ
register is updated to the current interrupt number.

The only way to deassert the IRQ that has been sent to the host is to set the
NEW_IRQ_AGR bit in the control register.

3) The host, when it recognizes the interrupt, jumps to the interrupt routine.

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

23InterruptsSPRU757B

4) Within the interrupt routine, the host reads the SIR_IRQ register in the
interrupt controller to determine which interrupt line caused the interrupt.
Reading the SIR_IRQ has no effect on the ITR register for the
level-sensitive interrupt, because the interrupt is still asserted at this point.
Based on the content of SIR_IRQ, the host executes specific code.

5) Before jumping out of the interrupt routine, the software must:

� Ensure that the peripheral that asserted the interrupt deasserts it.

� Set the NEW_IRQ_AGR bit of the control register. Setting this bit
deasserts the IRQ/FIQ line and enables the interrupt controller to
process any pending interrupts.

2.1.4 Interrupt Latency

To minimize interrupt latency, an IRQ (or FIQ) is generated whenever an
incoming interrupt is detected. Owing to internal resynchronization, the
IRQ/FIQ generation requires three interrupt controller functional clock cycles
to be generated.

The interrupt source calculation (priority handling and SIR register updating)
is made in the background. The interrupt handler stalls any access to the SIR
register until the interrupt source calculation is done.

To avoid unnecessary stalling, the interrupt source calculation does not
depend on the number of incoming interrupts active at the same time. It
depends instead on the total number of incoming interrupts. For the MPU
interrupt handler, the interrupt source calculation requires 10 cycles,
regardless of the number of active incoming interrupts. For the DSP side, the
interrupt source calculation requires 6 cycles.

2.1.5 Interrupt Handler Sleep Mode

The MPU can shut off the system clock to save power. The system is
awakened by an asynchronous event, which can be an interrupt. For proper
system operation, the interrupt controller must ensure that no interrupt is
generated when the system is going to power-saving (big or deep sleep)
mode.

Before going to idle, the host sends an idle request (IDLE_REQ) to the
interrupt controller. When the interrupt controller is ready to go to sleep, it
sends back an idle acknowledge (IDLE_ACK) to signal that its functional clock
can be safely shut down. IDLE_REQ/IDLE_ACK handshake is used to prevent
IRQ/FIQ from occurring when the system goes into idle mode. Two different
protocols manage the handshake: FORCE_WAKEUP and SMART_IDLE.
The protocol used is defined by the value of the IDLE_MODE field in the
OCP_CFG register (see Table 18).

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

Interrupts24 SPRU757B

2.1.6 Going to Sleep

The procedure used for going to sleep depends on the IDLE_MODE value.

Smart Idle Mode

In SMART_IDLE mode, when the IDLE_REQ signal is asserted (high level),
the interrupt handler goes into an idle state on the next functional clock cycle,
if no IRQ/FIQ is currently pending. If incoming interrupts are pending, they are
processed before going into idle state. As long as the interrupt controller is in
idle state, all incoming interrupts are ignored but still stored into the ITR
register.

As soon as it is ensured that no IRQ/FIQ will be generated, the interrupt
controller asserts the IDLE_ACK signal.

Upon receiving the IDLE_ACK signal, the power management is aware that
no more interrupts are currently being processed and that clocks can safely
be turned off.

Force Wake-up Mode

In force wake-up mode, when the IDLE_REQ signal is asserted, the interrupt
controller asserts IDLE_ACK on the next OCP clock cycle regardless of the
state of the current incoming interrupt and of any interrupt possibly being
processed. It immediately masks all incoming interrupts and deasserts the
IRQ/FIQ signal.

Waking Up

When the system wakes up, power management turns the clocks on again,
and then deasserts the IDLE_REQ signal. At that moment, the interrupt
controller becomes aware that its clocks are turned on. It deasserts IDLE_ACK
and comes out of idle state. From this point on, IRQ/FIQ generation becomes
possible again.

2.1.7 External Interrupt Asynchronous Path

When the system is asleep, the interrupt controller functional clock is shut off,
the interrupt controller is in idle state, and IRQ/FIQ generation is no longer
possible. However, in this case, a dedicated asynchronous path is activated
in the interrupt controller to propagate interrupts to the clock manager.

Whenever the interrupt controller is idle, and an unmasked interrupt occurs,
the interrupt controller asynchronously asserts a wakeup signal. Basically, this
signal is an OR of all unmasked ITR bits. This signal notifies the clock manager
that an external wake-up event has occurred.

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

25InterruptsSPRU757B

When the interrupt controller functional clock is eventually turned on, the
interrupt controller goes out of idle state and generation of IRQ/FIQ is enabled
again. The interrupt waking up the system is not lost (although reading the SIR
register does not necessarily give the waking interrupt number, if another
higher priority interrupt was pending when the system was awakened).

2.1.8 Interrupt Global Masking

To avoid interrupting the software during the execution of critical routines, a
global masking mechanism is implemented, controlled by the control register
GLOBAL_MASK bit (see Figure 3) and the interrupt controller output signal
IRQ_SECURE_MASK_N.

As long as the GLOBAL_MASK bit is set, all incoming interrupts are registered
into ITR, but not processed. If IRQ or FIQ is asserted, the interrupt controller
waits for the current IRQ/FIQ routine to complete.

When both IRQ and FIQ are deasserted, the interrupt controller asserts (sets
to 0) the IRQ_SECURE_MASK_N signal. As long as this signal is asserted the
interrupt controller must not assert IRQ or FIQ. Incoming interrupts must still
be stored in the ITR register.

Upon deassertion of the GLOBAL_MASK bit, the interrupt controller first
deasserts the IRQ_SECURE_MASK_N signal, then releases global masking
(masking goes back under the control of the MIR registers), and returns to
normal operation mode.

The IRQ_SECURE_MASK_N signal is synchronous of the interrupt controller
functional clock.

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

Interrupts26 SPRU757B

Figure 3. Global Mask Bit Effect

Unmask all
incoming interrupts

(masking is
controlled by MIR)

Process any IRQ/FIQ
currently active

ASSERT_IRQ_SECURE_MASK_N
signal

Wait for GLOBAL_MASK
deassertion

GLOBAL_MASK bit deasserted

Deassert
IRQ_SECURE_MASK_N signal

Mask all incoming
interrupts

Standard
functionality

GLOBAL_MASK bit asserted

2.1.9 Interrupt Spying

The immediate value of the ITR register, whose number is binary coded on the
SPY_ITR_SEL input port asynchronously, is put on the SPY_ITR_OUT output
port, regardless of the interrupt controller state.

2.1.10 Interrupt Controller Registers

All addresses in this section are byte addresses.

Regardless of register width, all addresses are aligned on 32-bit boundaries.
This means that the address mapping does not depend on register width and
that there are holes in the mapping for widths smaller than 32.

The mapping below describes only the basic set of registers. This mapping is
duplicated according to the host width and number of incoming interrupts.

To ease software development and hardware implementation, duplication
occurs at offset 0x100. This means that 64 locations stay unused at the end
of each register section. Given that there are 11 address bits, this allows for
a maximum of 8 sections, or 256 interrupts, if the data path is 32 bits wide.

The registers SIR_IRQ, SIR_FIQ, CONTROL, STATUS, OCP_CFG and
INTH_REV are not duplicated, and are only available at offset 0x10, 0x14,
0x18, 0xA0, 0xA4, and 0xA8 (in the first section). These register addresses are
reserved in the other sections. Writing at these locations has no effect, and
reading them returns 0.

All register accesses are little endian.

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

27InterruptsSPRU757B

All unused register bits are read as 0.

The OMAP programming model ensures that no posted write occurs in any
writeable register.

Table 6 lists the interrupt controller registers. Table 7 through Table 20
describe the register bits.

Table 6. Interrupt Controller Registers

Register Description R/W Offset

ITR Interrupt register R/W 0x00

MIR Interrupt mask register R/W 0x04

RESERVED Reserved R 0x08

RESERVED Reserved R 0x0C

SIR_IRQ Interrupt encoded source register (IRQ) R 0x10

SIR_FIQ Interrupt encoded source register (FIQ) R 0x14

CONTROL Interrupt control register R/W 0x18

ILR Registers

ILR0 Interrupt priority level register bit 0 R/W 0x1C

ILR1 Interrupt priority level register bit 1 R/W 0x20

ILR2 Interrupt priority level register bit 2 R/W 0x24

ILR3 Interrupt priority level register bit 3 R/W 0x28

ILR4 Interrupt priority level register bit 4 R/W 0x2C

ILR5 Interrupt priority level register bit 5 R/W 0x30

ILR6 Interrupt priority level register bit 6 R/W 0x34

ILR7 Interrupt priority level register bit 7 R/W 0x38

ILR8 Interrupt priority level register bit 8 R/W 0x3C

ILR9 Interrupt priority level register bit 9 R/W 0x40

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

Interrupts28 SPRU757B

Table 6. Interrupt Controller Registers (Continued)

Register OffsetR/WDescription

ILR Registers (Continued)

ILR10 Interrupt priority level register bit 10 R/W 0x44

ILR11 Interrupt priority level register bit 11 R/W 0x48

ILR12 Interrupt priority level register bit 12 R/W 0x4C

ILR13 Interrupt priority level register bit 13 R/W 0x50

ILR14 Interrupt priority level register bit 14 R/W 0x54

ILR15 Interrupt priority level register bit 15 R/W 0x58

ILR16 Interrupt priority level register bit 16 R/W 0x5C

ILR17 Interrupt priority level register bit 17 R/W 0x60

ILR18 Interrupt priority level register bit 18 R/W 0x64

ILR19 Interrupt priority level register bit 19 R/W 0x68

ILR20 Interrupt priority level register bit 20 R/W 0x6C

ILR21 Interrupt priority level register bit 21 R/W 0x70

ILR22 Interrupt priority level register bit 22 R/W 0x74

ILR23 Interrupt priority level register bit 23 R/W 0x78

ILR24 Interrupt priority level register bit 24 R/W 0x7C

ILR25 Interrupt priority level register bit 25 R/W 0x80

ILR26 Interrupt priority level register bit 26 R/W 0x84

ILR27 Interrupt priority level register bit 27 R/W 0x88

ILR28 Interrupt priority level register bit 28 R/W 0x8C

ILR29 Interrupt priority level register bit 29 R/W 0x90

ILR30 Interrupt priority level register bit 30 R/W 0x94

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

29InterruptsSPRU757B

Table 6. Interrupt Controller Registers (Continued)

Register OffsetR/WDescription

ILR Registers (Continued)

ILR31 Interrupt priority level register bit 31 R/W 0x98

Status and ID Register

SISR Software interrupt set register W 0x9C

STATUS Status register R 0xA0

OCP_CFG OCP configuration register R/W 0xA4

INTH_REV Interrupt controller revision ID R 0xA8

2.1.11 Implementation

The MPU level 2 interrupt controller can handle 128 interrupts and has 32 bits
wide registers. The DSP level 2.1 interrupt controller can handle 64 interrupts,
and has 16 bits registers.

Both interrupt controllers have four full sets of registers.

In each set, the MPU interrupt controller has 32 ILR, mapped in the ranges
0x1C−0x98, 0x11C−0x198, 0x21C−0x298, and 0x31C–0x398. Each of these
registers has nine relevant bits (read on the 9 LSB). In ILR, register 0 (@0x1C)
controls interrupt 0, and register 127 (@0x398) controls interrupt 127.

In each set, the DSP interrupt controller has 16 ILR, mapped in the ranges
0x1C−0x58, 011C−0x158, 0x21C−0x258, and 0x31C−0x358. Each of these
registers has eight relevant bits (read on the 8 LSB).

Table 7. Interrupt Input Register (ITR)

DW-1† DW-2 DW-3 DW-4 DW-5 …. 2 1 0

@0x00 IRQ-
DW-1

IRQ2 IRQ1 IRQ0

Access RW RW RW RW RW RWs RW RW RW

Default 0 0 0 0 0 0s 0 0 0
† DW = 32 for the MPU interrupt handler; DW =16 for the DSP interrupt handler.

If the incoming interrupt line number n is detected, the corresponding bit is set
to 1. If the number of incoming interrupts is lower than DW, the MSB of this
register is set to 0.

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

Interrupts30 SPRU757B

In case of an edge-sensitive interrupt, when the host accesses the SIR_IRQ
or SIR_FIQ register, the bit corresponding to the currently active interrupt is
reset. For level-sensitive interrupts, this bit is simply the interrupt line current
state (after resynchronization).

The host can also clear each bit individually. To do this, it must write a 0 to the
corresponding bit. Write access to this register is stalled as long as the actual
register bit (on the functional clock domain) is not 0. Writing a 1 to any ITR bit
has no effect.

This register is a status register that gives the state of every incoming interrupt
regardless of which interrupt is currently being processed. Coherency
between this register and the SIR_IRQ/SIR_FIQ registers is not ensured.

Table 8. Mask Interrupt Register (MIR)

DW-1† DW-2 DW-3 DW-4 DW-5 …. 2 1 0

@0x04 MIR-
DW-1

MIR2 MIR1 MIR0

Access RW RW RW RW RW RWs RW RW RW

Default 1 1 1 1 1 1s 1 1 1

† DW = 32 for the MPU interrupt handler; DW = 16 for the DSP interrupt handler.

This register masks each incoming interrupt by setting the corresponding bit
to 1.

MIR operates after ITR. This means that occurrences of incoming interrupts
are always stored in ITR.

Masking a particular interrupt does not deassert either IRQ or FIQ if it is active
owing to this interrupt (providing that no other interrupts are active at the same
time), regardless of whether the interrupt is level- or edge-sensitive. It only
prevents subsequent incoming interrupts from being taken into account.

The write into this register must be done while there are no pending interrupts.

Table 9. Source IRQ Register (SIR_IRQ)

CODE_NB_IT−1 … 0†

@0x10 Active IRQ number (hexadecimal)

Access R

Default 0

† CODE_NB_IT = 7 for the MPU interrupt handler; CODE_NB_IT = 6 for the DSP interrupt handler.

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

31InterruptsSPRU757B

This register stores the currently active IRQ interrupt number (in
hexadecimal). Reading this register clears the corresponding bit in the ITR
register if the interrupt is set as edge sensitive. Unused bits are read as 0.

In case a priority calculation is ongoing for IRQ, read to this register is stalled
until priority calculation completion.

Table 10. Source FIQ Register (SIR_FIQ)

CODE_NB_IT−1 … 0

@0x14 Active FIQ number (hexadecimal)

Access R

Default 0

This register stores the currently active FIQ interrupt number (in hexadecimal).
Reading this register clears the corresponding bit in the ITR register if the
interrupt is set as edge sensitive. Unused bits are read as 0.

In case a priority calculation is ongoing for FIQ, read to this register is stalled
until priority calculation completion.

Table 11. Control Register

DW-1…3 2 1 0

@0x18 Reserved GLOBAL_MASK NEW_FIQ_AGR NEW_IRQ_AGR

Access R RW W W

Default 0 0 0 0

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

Interrupts32 SPRU757B

Table 12. Control Register Bit Descriptions

Name Function

GLOBAL_MASK Setting this bit to 1 has the following effect (in this order):

All incoming or software generated (through SISR) interrupts are still stored in
ITR, but neither FIQ nor IRQ are.
When this bit is set and IRQ and FIQ are inactive and no IRQ/FIQ are to occur, the
IRQ_SECURE_MASK_N signal is asserted.

Resetting this bit has the following effect (in this order):

IRQ_SECURE_MASK_N signal is deasserted.

FIQ and IRQ generation become possible again (and all pending interrupts are
processed normally).

This behavior is shown in Figure 3.

NEW_FIQ_AGR New FIQ agreement

Writing a 1 resets FIQ output and enables a new FIQ generation.

The FIQ output is reset if the corresponding bit of the ITR of the treated interrupt has
been cleared or masked.

Write access to this register bit is stalled until FIQ output is cleared. This bit is write only.
Reading it always returns 0.

NEW_IRQ_AGR New IRQ agreement

Writing a 1 resets IRQ output and enables a new IRQ generation.

The IRQ output is reset if the corresponding bit of ITR of the treated interrupt has been
cleared or masked.

Write access to this register bit is stalled until IRQ output is cleared. This bit is write
only. Reading it always returns 0.

To allow for future evolution, when the software writes into this register all
reserved bits must be written as 0.

Table 13. Interrupt Level Register (ILR)

CODE_NB_IT+1 … 2† 1 0

@0x1C−
0x98

PRIORITY SENS_
nEDGE

FIQ_nIRQ

Access RW RW RW

Default 0 0 0

† CODE_NB_IT = 7 for the MPU interrupt handler; CODE_NB_IT = 6 for the DSP interrupt handler.

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

33InterruptsSPRU757B

Table 14 describes the interrupt level register bits.

Table 14. Interrupt Level Register Bit Descriptions

Name Function

PRIORITY Defines the priority level when the corresponding interrupt is routed to IRQ or FIQ. 0 is
the highest priority level. All bits set to 1 is the lowest priority level.

SENS_nEDGE 0: The corresponding interrupt is falling-edge sensitive.

1: The corresponding interrupt is low-level sensitive.

FIQ_nIRQ 0: The corresponding interrupt is routed to IRQ.

1: The corresponding interrupt is routed to FIQ.

There is one ILR per incoming interrupt.

Assuming that all interrupts have the same priority level and are active at the
same time, the default order is IRQ_N, IRQ_N−1 , IRQ_N−2, … , IRQ_0.

Writes into this register must be done while there are no pending interrupts.

Table 15. Software Interrupt Set Register (SISR)

DW-1† DW-2 DW-3 DW-4 DW-5 …. 2 1 0

@0x9C SISRDW-1 SISR2 SISR1 SISR0

Access W W W W W Ws W W W

Default 0 0 0 0 0 0s 0 0 0

† DW = 32 for the MPU interrupt handler; DW = 16 for the DSP interrupt handler.

Writing a 1 to any bit generates an interrupt to the host if the corresponding ILR
register is set as edge trigger. Otherwise, no interrupt is generated.

A zero is always returned from a read to this register. External interrupts are
merged (ORed) with the software interrupts before masking occurs.

Table 16. Status Register

DW-1… 2† 0

@0xA0 Reserved RESET_DONE

Access R R

Default 0 1

† DW = 32 for the MPU interrupt handler; DW = 16 for the DSP interrupt handler.

Interrupt Controllers (MPU Level 2 and DSP Level 2.1)

Interrupts34 SPRU757B

Table 17. Status Register Bit Description

Name Function

RESET_DONE 0: Reset has not occurred (functional logic is currently being reset).

1: Reset has occurred.

This bit concerns only the functional and OCP clock domains. When OCP clock domain
is being reset, OCP accesses are stalled and this bit cannot be read.

Table 18. OCP_CFG Register

DW-1… 5† 4 3 2 1 0

@0xA4 RESERVED IdleMode RE-
SERVED

SOFT
RESET

AUTOIDLE

Access RW R W R/W

Default 0 0 0 0 0 0

† DW = 32 for the MPU interrupt handler; DW = 16 for the DSP interrupt handler.

Table 19. OCP_CFG Register Bit Descriptions

Name Function

IDLEMODE Power management REQ/ACK control (see Section 2.1.5)

00: Force wake-up. An idle request is acknowledged unconditionally.

01: Reserved. Do not use.

10: Smart idle. Acknowledgement of the idle request occurs only if no incoming
interrupts are pending.

11: Reserved. Do not use.

SOFTRESET Writing 1 to this bit generates a software reset of the module. Both OCP and functional
clock domain are reset.

This bit is write only. Reading it always returns 0. To check reset completion, use the
RESET_DONE bit in the status register.

AUTOIDLE Internal OCP clock gating strategy.

0: OCP clock is free-running.

1: Automatic OCP clock gating is applied based on OCP interface activity.

To allow for future evolution, when the software writes into this register all
reserved bits must be written as 0. These bits are currently read-only and are
always read as 0, no matter what the value written. Future evolution, however,
may have one or more of them as read/write.

Level 1 MPU Interrupt Handler

35InterruptsSPRU757B

Table 20. Interrupt Revision Register (INTH_REV)

DW-1… 8† 7 6 5 4 3 2 1 0

@0xA8 Reserved MAJOR_REV MINOR_REV

Access R R R

Default 0 Revision dependent Revision dependent

† DW = 32 for the MPU interrupt handler; DW = 16 for the DSP interrupt handler.

This register provides the revision number of the interrupt controller block.

3 Level 1 MPU Interrupt Handler

3.1 Description

The MPU interrupt handler allows up to 32 hosts that generate interrupts to
connect to the MPU, which can accept only two interrupts: fast interrupt
request (FIQ) and low-priority interrupt request (IRQ). You can also program
the interrupt handler to assign different priorities and mask each interrupt, and
you can program each interrupt line to be either edge-triggered or
level-sensitive.

For power management, the clock manager can turn off the interrupt handler
functional clock. A handshaking protocol is defined for the clock and reset
module to idle or wake up the interrupt handler.

A key difference between the level 1 and level 2 MPU interrupt handler is that
there is only one set of registers, some of which differ from the level 2 handlers.

3.1.1 Interrupt Control and Configuration

If an interrupt occurs, the ITR register stores the incoming interrupt in the
corresponding bit. When there are several incoming interrupts, the MPU
interrupt handler compares the priority level of the interrupts before sending
an IRQ or FIQ to the MPU core. The selected interrupt’s number is stored in
SIR_IRQ or SIR_FIQ for the MPU to determine which interrupt service routine
to execute. Reading either of these registers by the MPU resets the
corresponding bit in ITR. The MPU can also clear each bit individually in ITR
by writing a 0 to the corresponding bits. Writing a 1 keeps its previous value.

Each incoming interrupt can be masked individually by setting the
corresponding bit in MIR to 1.

Level 1 MPU Interrupt Handler

Interrupts36 SPRU757B

One interrupt level register (ILR) is associated with each incoming interrupt.
ILR determines whether the interrupt is to be edge-triggered or level-sensitive
and assigns it a priority level: 0 (the highest priority), 1, ... 30, 31 (the lowest
priority). If several interrupts have the same priority level assigned, they are
serviced in a predefined order: IRQ_31, IRQ_30, ..., IRQ_1, IRQ_0. ILR also
allows routing each of the 32 interrupts to either FIQ or IRQ.

The IRQ or FIQ outputs can be reset by writing a 1 to the corresponding bit of
the CONTROL_REG to enable new IRQ or FIQ generation. The writing also
clears the SIR_IRQ or SIR_FIQ register. The corresponding bit in the ITR must
be cleared before writing to the CONTROL_REG.

3.1.2 Software Interrupt

The interrupt handler also provides a 32-bit software interrupt register (SIR),
which corresponds to the same 32-bit external interrupt lines. Writing a 0
followed by a 1 to the targeted bit generates an interrupt if the corresponding
ILR is set to edge-sensitive; otherwise, no interrupt is generated.

An external interrupt request and an internal software request are merged
before being sent to the interrupt handler to be serviced. The software interrupt
register is always read as 0. You can use this software interrupt mechanism
to simulate an external interrupt and test the corresponding interrupt driver as
long as the interrupt line is programmed as edge-sensitive.

All internal interrupts are brought to the OMAP 3.2 subchip level to provide
maximum flexibility for system integration. You can reorganize, regroup, add,
or delete the interrupt inputs for your applications.

Figure 4 shows the MPU interrupt handler.

Level 1 MPU Interrupt Handler

37InterruptsSPRU757B

Figure 4. MPU Interrupt Handler

IRQ

OR

Interrupt set register (SIR)

Mask interrupt register (MIR)

Interrupt input register (ITR)

Level or edge detected

Edge detection FLIP_FLOPS

Interrupt level register 0 (ILR0)

SIR_FIQ
Interrupt encoded source register

SIR_IRQ
Interrupt encoded source register

Interrupt level register 31 (ILR31)

Interrupt level register 1 (ILR1)

Control register (CONTROL_REG)

32 external interrupts

Process next pending IRQ

Process next pending FIQ

Generate IRQ

Generate FIQ

itmr

FIQ

To MPU

TIPB itmr: ITR gated with MIR, to generate active interrupts

Level 1 MPU Interrupt Handler

Interrupts38 SPRU757B

3.1.3 Interrupt Sequence

Table 21 shows the MPU interrupt sequence for an IRQ interrupt only. The FIQ
interrupt sequence is identical.

Table 21. MPU Interrupt Sequence

Step Interrupt Handler Action MPU Action

One or several
interrupts occur that set
the corresponding bits in
ITR

If one active interrupt occurs and the
IRQ is not already active, the interrupt
handler sends an IRQ.

If several active interrupts occur, the
interrupt handler must locate the
interrupt with the highest priority. If an
IRQ is not already active, the interrupt
handler sends an IRQ.

Processing the interrupt When the IRQ is sent, SIR_IRQ is
updated and the priority resolver is
reset.

The MPU must read SIR_IRQ to
determine the interrupt line being
serviced. Then the MPU runs the
corresponding subroutine.

Finish the interrupt 1. The MPU must first clear the interrupt
bit in ITR (by writing a 0 in the
corresponding bit or by reading
SIR_IRQ.

2. For a level-sensitive interrupt, the
level must be removed from the source
that keeps the interrupt request low
(active) for the next interrupt to occur.

3. Sets
CONTROL_REG.NEW_IRQ_AGR to
reset IRQ output and SIR_IRQ, thus
allowing a new IRQ generation.

3.1.4 Interrupt Handler Software

To process edge-triggered and level-sensitive interrupts correctly, the
following sequences must occur in the system. Only the IRQ treatment is
described here. The FIQ treatment is exactly identical.

3.1.5 Edge-Triggered Interrupts

1) The interrupt handler module receives incoming one or more interrupts
from outside OMAP and registers it in the interrupt register (ITR).

2) If there are several active incoming interrupts, the interrupt handler
determines the highest priority interrupt and puts it in the N_IRQ register,
which is invisible to the software programmer.

Level 1 MPU Interrupt Handler

39InterruptsSPRU757B

3) If the IRQ (interrupt from interrupt handler to the MPU) is not active, the
interrupt handler sends the interrupt in N_IRQ register to the MPU as an
IRQ signal. Then the source IRQ register (SIR_IRQ) is updated with
contents of the N_IRQ register (the SIR_IRQ contains encoded
information that conveys the interrupt line number of the IRQ).

4) The MPU recognizes the interrupt and jumps to the interrupt service
routine (ISR) code.

5) Within the ISR code, the MPU reads the SIR_IRQ in the interrupt handler
to determine which interrupt line caused the interrupt. The MPU executes
specific code appropriately.

6) When MPU reads the SIR_IRQ, the corresponding bit is reset in ITR of
interrupt handler module. The IRQ is still active.

7) The MPU, when it is about to exit the ISR routine, writes a 1 to
CONTROL_REG.NEW_IRQ_AGR to deassert the IRQ going to MPU and
to enable a new IRQ generation.

8) The MPU exits the ISR and continues its normal code execution.

9) When CONTROL_REG.NEW_IRQ_AGR is written, the process jumps to
Step 2.

3.1.6 Level-Sensitive Interrupts

1) The interrupt handler module receives one or more incoming interrupts
from outside OMAP. Level-sensitive interrupts are not registered, but are
used in the logic as is. The interrupt handler assumes that the peripheral
will not deassert the level-sensitive incoming interrupts until it is told to do
so by the MPU.

2) The interrupt handler determines the highest priority interrupt and puts it
in the N_IRQ register.

3) If the IRQ (interrupt from interrupt handler to the MPU) is not active, the
interrupt handler sends the highest priority interrupt (interrupt in N_IRQ
register) to the MPU as IRQ signal. Then the SIR_IRQ is updated with
contents of N_IRQ register (the SIR_IRQ register contains encoded
information that conveys the interrupt line number of IRQ). If the IRQ is
active, which means CONTROL_REG.NEW_IRQ_AGR has not been set
by MPU, the incoming IRQ has to wait until IRQ is not active.

4) The MPU recognizes the interrupt and jumps to the ISR code.

5) Within the ISR code, the MPU reads the SIR_IRQ in the interrupt handler
to determine which interrupt line caused the interrupt.

Level 1 MPU Interrupt Handler

Interrupts40 SPRU757B

6) The ISR code must be capable of doing one of the following things:

� Letting the peripheral know that the interrupt generated by it has been
serviced so the peripheral can deassert the interrupt request

� Writing to interrupt handler mask interrupt register (MIR) to mask the
level-sensitive interrupt

Here the peripheral has to deassert the interrupt before the mask to
the interrupt can be removed, so that the next interrupt can be recog-
nized.

If the peripheral deasserts the interrupt before the code in ISR tells it
to, then the behavior is unpredictable and the interrupt may be lost.

7) The MPU must write a 1 to CONTROL_REG.NEW_IRQ_AGR when it is
about to exit the ISR routine to deassert the IRQ going to MPU and to
enable a new IRQ generation.

8) The MPU exits the ISR and continues its normal code execution.

9) When CONTROL_REG.NEW_IRQ_AGR is written into by MPU, the
process jumps to Step 2.

3.1.7 Registers

Table 22 lists the registers available to handle interrupts. Table 23 through
Table 30 provide register bit descriptions. All these registers are 32 bits wide
and are controlled directly by the private TIBP bus. To determine the base
address of these registers, see the Applications Processor Data Manual
(SPRS231).

Table 22. Interrupt Registers

Name Description R/W Offset

ITR Interrupt register R/W 0x00

MIR Interrupt mask register R/W 0x04

SIR_IRQ Interrupt encoded source register for IRQ R 0x10

SIR_FIQ Interrupt encoded source register for FIQ R 0x14

CONTROL_REG Interrupt control register R/W 0x18

ILRx Interrupt level register R/W 0x1C + 0x4 *
x

SIR Software interrupt set register R/W 0x9C

GMR Global mask interrupt register R/W 0xA0

Level 1 MPU Interrupt Handler

41InterruptsSPRU757B

Table 23. Interrupt Register (ITR)

Offset: 0x00

Bit Name Function R/W Reset

31:0 ACT_IRQ Sets corresponding bit in ITR for edge-sensitive and
level-sensitive interrupts.

R/W 0x0000 0000

When the MPU accesses SIR_IRQ or SIR_FIQ, the ITR bit corresponding to
the interrupt that has requested MPU action is reset. The MPU can also clear
each bit individually by writing a 0 to the corresponding bits at the ITR address.
Writing a 1 to a bit keeps its previous value. You can use the individual clearing
just before the MPU unmasks some interrupts and thus ignore some interrupt
occurrences.

Table 24. Mask Interrupt Register (MIR)

Offset: 0x04

Bit Name Function R/W Reset

31:0 IRQ_MSK Masks each incoming interrupt individually R/W 0xFFFF FFFF

You can mask each incoming interrupt individually with this register by setting
the corresponding bit to 1. This register operates after the interrupt register,
which means that occurrences of incoming interrupts are always stored in the
interrupt register.

Table 25. Interrupt Encoded Source Register for IRQ (SIR_IRQ)

Offset: 0x10

Bit Name Function R/W Reset

31:5 Reserved

4:0 IRQ_NUM Indicates encoded interrupt number that has an
IRQ request. Reading this register clears the
corresponding bit in the ITR register if the
interrupt is set as edge-sensitive.

R 00000

Table 26. Interrupt Encoded Source Register for FIQ (SIR_FIQ)

Offset: 0x14

Bit Name Function R/W Reset

31:5 Reserved

4:0 FIQ_NUM Indicates the encoded interrupt number that has
an FIQ request. Reading this register clears the
corresponding bit in the ITR register if the
interrupt is set as edge-sensitive.

R 00000

Level 1 MPU Interrupt Handler

Interrupts42 SPRU757B

Table 27. Interrupt Control Register (CONTROL_REG)

Offset: 0x18

Bit Name Function R/W Reset

31:2 Reserved

1 NEW_FIQ_AGR New FIQ agreement. Writing a 1 resets the FIQ
output, clears the SIR_FIQ, and enables a new
FIQ generation. The corresponding bit of the
ITR must be cleared first. Writing 0 has no
effect.

R/W 0

0 NEW_IRQ_AGR New IRQ agreement. Writing a 1 resets the IRQ
output, clears the SIR_IRQ, and enables a new
IRQ generation. The corresponding bit of the
ITR must be cleared first. Writing 0 has no
effect.

R/W 0

Table 28. Interrupt Level Register for Interrupt Number x (0 to 31) (ILRx)

Offset: 0x1C + 0x4 * Interrupt number

Bit Name Function R/W Reset

31:7 Reserved

6:2 PRIORITY Defines the priority level when the corresponding
interrupt is routed to IRQ or FIQ.

0 is the highest priority level.

31 is the lowest priority level.

R/W 00000

1 SENS_LEVEL 0: The corresponding interrupt is falling-edge sensitive.

1: The corresponding interrupt is low-level sensitive.

R/W 0

0 FIQ 0: The corresponding interrupt is routed to IRQ.

1: The corresponding interrupt is routed to FIQ.

R/W 0

Table 29. Software Interrupt Set Register (SIR)

Offset: 0x9C

Bit Name Function R/W Reset

31:0 SIR See below. R/W 0x0000 0000

DSP Level 1 and Level 2.0 Interrupt Handler and Interface

43InterruptsSPRU757B

The user can program the SIR register to emulate the interrupt generation. The
corresponding ILR must be programmed as edge-sensitive while using SIR
register. The procedure to generate an edge-sensitive interrupt is: SIR(bit i) =
0 − SIR(bit i) = 1 (rising edge generated). SIR will not be cleared automatically
(user must program it). A zero is always returned from a read to this register.
External interrupts are merged with the software interrupts before they are
sent to the MIR mask register for interrupt masking.

Table 30. Global Mask Interrupt Register (GMR)

Offset: 0xA0

Bit Name Function R/W Reset

31:1 Reserved

0 GLOBAL_MASK When 1, the interrupt handler module and the output
signal INT_DIS are set to 1. (INT_DIS is the output
signal that indicates the interrupt handler has been
disabled.)

For power management, CLK&RST can turn off the
interrupt handler functional clock. A handshaking
protocol is defined for the CLK&RST module to idle or
wake up the interrupt handler.

R/W 0

4 DSP Level 1 and Level 2.0 Interrupt Handler and Interface

4.1 Description

DSP interrupts are handled through two cascaded interrupt controllers:

� The DSP interrupt interface (level 1 handler) handles 24 interrupts.

� The DSP interrupt handler (level 2.0 handler) handles 16 level 2 interrupts
that are routed to the DSP interrupt interface through low-priority interrupt
request (IRQ) and fast-priority interrupt request (FIQ).

4.1.1 Interrupt Control and Configuration

If an interrupt occurs, the DSP_ITR register stores the incoming interrupt in the
corresponding bit. When there are several incoming interrupts, the DSP
interrupt handler compares the priority level of the interrupts before sending
an IRQ or FIQ to the DSP core. The selected interrupt number is stored in
DSP_SIR_IRQ or DSP_SIR_FIQ for the DSP to determine which interrupt
service routine to execute. Reading either of these registers by the DSP resets
the corresponding bit in DSP_ITR. The DSP can also individually clear each
bit in DSP_ITR by writing a 0 to the corresponding bits. Writing a 1 keeps its
previous value.

Description

Interrupts44 SPRU757B

Each incoming interrupt can be masked individually by setting the
corresponding bit in DSP_MIR to 1.

One interrupt level register (DSP_ILR) is associated with each incoming
interrupt. The DSP_ILR sets whether the interrupt is to be edge-triggered or
level-sensitive and assigns it a priority level: 0 (the highest priority level), 1, ...
14, 15 (the lowest priority level). If several interrupts have the same priority
level assigned, they are serviced in a predefined order: IRQ_15, IRQ_14, ...,
IRQ_1, IRQ_0. The DSP_ITR also allows routing of each of the 16 interrupts
to either of the two DSP core input interrupts: FIQ or IRQ.

The IRQ or FIQ outputs can be reset by writing a 1 to the corresponding bit of
DSP_CONTROL_REG to enable new IRQ or FIQ generation. The writing also
clears DSP_SIR_IRQ or DSP_SIR_FIQ. The corresponding bit in DSP_ITR
must be cleared before writing to the DSP_CONTROL_REG.

4.1.2 Software Interrupt

The interrupt handler also provides a 16-bit software interrupt register
(DSP_SISR), which corresponds to the same 16-bit external interrupt lines.
Writing a 0 followed by a 1 to the targeted bit generates an interrupt if the
corresponding DSP_ILR is set to edge-sensitive; otherwise, no interrupt is
generated.

An external interrupt request and an internal software request are merged
before being sent to the interrupt handler to be serviced. The software interrupt
register is always read back with a 0. You can use this software interrupt
mechanism to simulate an external interrupt and test the corresponding
interrupt driver as long as the interrupt line is programmed as edge-sensitive.

4.1.3 Latency

The DSP interrupt handler resides on the 16-bit DSP private TI peripheral bus
(TIPB) and runs at half the frequency of the DSP clock. The latency from an
incoming interrupt to FIQ/IRQ generation depends on the number of interrupts
arriving at the same time. If there is only one, the latency is 5 clock cycles. If
more than one interrupt become active at the same time and are routed to the
same FIQ/IRQ, the latency can reach 3 + N*2 cycles, where N is the number
of incoming interrupts.

All interrupts for the DSP subsystem and OMAP subsystem are brought to the
OMAP subchip boundary to provide maximum flexibility for system integration.

Interrupt Sequence

45InterruptsSPRU757B

4.1.4 Interrupt Interface

The DSP interrupt interface augments DSP interrupt handler capability by
enabling you to define edge-triggered or level-sensitive implementations for
each of external interrupt lines. The DSP interrupt interface allows you to
program the edge- or level-sensitivity of the two level 1 interrupts where IRQ
and FIQ are routed.

Figure 14−1 shows an example of interrupt handling.

Figure 5. An Example of DSP Interrupt Handling

DSP core

INT0

FIQ

IRQ_0

IRQ_15

...

IRQ_3

IRQ_2

IRQ_14

IRQ_1

DSP
interrupt
interface

(level1)

DSP
interrupt
handler

(level-2)

...
IRQ

INT1

INT2

INT22

INT23

4.1.5 Interrupt Sequence

Table 31 shows the DSP interrupt sequence for an IRQ interrupt only. The FIQ
interrupt sequence is identical.

Interrupt Handler Software

Interrupts46 SPRU757B

Table 31. DSP Interrupt Sequence

Step Interrupt Handler Action DSP Action

One or several interrupts occur
that set the corresponding bits in
DSP_ITR register

If one active interrupt occurs and
the IRQ is not already active, the
interrupt handler sends an IRQ.

If several active interrupts occur,
the interrupt handler must locate
the interrupt with the highest
priority. If an IRQ is not already
active, the interrupt handler sends
an IRQ.

Processing interrupt When the IRQ is sent, the
DSP_SIR_IRQ is updated and the
priority resolver is reset.

The DSP must read the
DSP_SIR_IRQ to determine the
interrupt line being serviced. Then
the DSP runs the corresponding
subroutine.

Finish the interrupt The DSP must first clear the
interrupt bit in the DSP_ITR (by
writing a 0 in the corresponding bit
or by reading the DSP_SIR_IRQ).

For a level-sensitive interrupt, the
level must be removed for the next
interrupt to occur.

Sets the NEW_IRQ_AGR of the
DSP_CONTROL_REG to reset
IRQ output and the
DSP_SIR_IRQ, thus allowing a
new IRQ generation.

4.1.6 Interrupt Handler Software

To process edge-triggered and level-sensitive interrupts correctly, the
following sequences must occur in the system. Here the sequence is
described only for the IRQ interrupt; the FIQ sequence is exactly identical.

4.1.7 Edge-Triggered Interrupts

1) The DSP interrupt handler module receives one or more incoming
interrupts from outside OMAP and registers it in the DSP interrupt register
(DSP_ITR).

2) The DSP interrupt handler determines the highest priority interrupt and
puts it in the N_IRQ register, which is not seen by software.

Interrupt Handler Software

47InterruptsSPRU757B

3) If the IRQ (interrupt from DSP interrupt handler to the DSP) is not active,
the DSP interrupt handler sends the highest priority interrupt (interrupt in
N_IRQ register) to the DSP as an IRQ signal. Then the DSP_SIR_IRQ
register is updated with contents of the N_IRQ register (the
DSP_SIR_IRQ contains encoded information that conveys the interrupt
line number of the IRQ).

4) The DSP recognizes the interrupt and jumps to the interrupt service
routine (ISR) code.

5) Within the ISR code, the DSP reads the DSP_SIR_IRQ in the DSP
interrupt handler to determine which interrupt line caused the interrupt.
The DSP executes specific code appropriately.

6) When the DSP reads the DSP_SIR_IRQ, the corresponding bit is reset in
the DSP_ITR of the DSP interrupt handler module. The IRQ is still active.

7) The DSP writes a 1 to new IRQ agreement bit (NEW_IRQ_AGR) in the
DSP_CONTROL_REG when it is about to exit the ISR routine to deassert
the IRQ going to the DSP and to enable a new IRQ generation.

8) The DSP exits the ISR and continues its normal code execution.

9) When the NEW_IRQ_AGR bit is written, the process jumps to Step 2.

4.1.8 Level-Sensitive Interrupts

1) The DSP interrupt handler module receives one or more incoming
interrupts from outside OMAP. Level-sensitive interrupts are not
registered, but are used in the logic as is. The DSP interrupt handler
assumes that the peripheral will not deassert the level-sensitive incoming
interrupts until it is told to do so by the DSP.

2) The DSP interrupt handler determines the highest priority interrupt and
puts it in the N_IRQ register.

3) If the IRQ (interrupt from DSP interrupt handler to the DSP) is not active,
the DSP interrupt handler sends the highest priority interrupt (interrupt in
N_IRQ register) to the DSP as IRQ signal. Then the DSP_SIR_IRQ is
updated with contents of N_IRQ register (the DSP_SIR_IRQ register
contains encoded information that conveys the interrupt line number of
IRQ).

4) The DSP recognizes the interrupt and jumps to the ISR code.

5) Within the ISR code, the DSP reads the DSP_SIR_IRQ in the DSP
interrupt handler to determine which interrupt line caused the interrupt.

Registers

Interrupts48 SPRU757B

6) The ISR code must be capable of doing one of the following things:

� Letting the peripheral know that the interrupt generated by it has been
serviced so the peripheral can deassert the interrupt request

� Writing to the DSP mask interrupt register (DSP_MIR) to mask the
level-sensitive interrupt

Here the peripheral must deassert the interrupt before the mask to the
interrupt can be removed, so that the next interrupt can be recognized.

If the peripheral deasserts the interrupt before the code in ISR tells it
to do so, then the behavior is unpredictable and the Interrupt may be
lost.

7) The DSP, when it is about to exit the ISR routine, must write a 1 to the
NEW_IRQ_AGR in the DSP_CONTROL_REG to deassert the IRQ going
to DSP and to enable a new IRQ generation.

8) The DSP exits the ISR and continues its normal code execution.

9) When the NEW_IRQ_AGR in the DSP_CONTROL_REG is written into by
DSP, the process jumps to Step 2.

4.1.9 Registers

This section describes the DSP interrupt interface and DSP interrupt handler
registers for the OMAP 3.2 hardware engine. DSP software configures these
registers through the DSP private TIPB. To determine the base addresses for
these registers, see the Multimedia Processor Interrupts Reference Guide
(literature number SPRU757).

4.1.10 DSP Interrupt Interface

Table 32 lists the DSP interface registers. Table 33 and Table 34 provide
register bit descriptions. All these registers are 16 bits wide and are controlled
directly by the DSP private TIPB.

Table 32. DSP Interrupt Interface Registers

Name Description R/W Offset

EDGE_EN_HI Incoming interrupt high register R/W 0x00

EDGE_EN_LO Incoming interrupt low register R/W 0x02

Registers

49InterruptsSPRU757B

Table 33. Incoming Interrupt High Register (EDGE_EN_HI)

Offset: 0x00

Bit Name Function R/W Reset

15:8 Reserved

7 HOST_INTERRUPT Defines whether the host interrupt from DSP to MPU is
edge-triggered or level-sensitive:

0: HOST_INTERRUPT is level-sensitive.

1: HOST_INTERRUPT is edge-sensitive.

R/W 0

6 NMI Defines whether the nonmaskable interrupt is edge or
level sensitive:

0: NMI is level-sensitive.

1: NMI is edge-sensitive.

R/W 0

5:0 CHx Defines channel CHx as edge-triggered or
level-sensitive, where CHx corresponds to interrupt
channels:

0: CHx is level-sensitive.

1: CHx is edge-sensitive.

R/W 000000

Table 34. Incoming Interrupt Low Register (EDGE_EN_LO)

Offset: 0x02

Bit Name Function R/W Reset

15:0 CHx This bit defines channel CHx as edge-triggered or
level-sensitive, where CHx corresponds to interrupt
channels:

0: CHx is level-sensitive.

1: CHx is edge-sensitive.

R/W 0x0000

4.1.11 DSP Interrupt Handler

Table 22 lists the DSP registers available to handle interrupts. Table 36
through Table 42 describe the register bits. All these registers are 16 bits wide
and are controlled directly by the DSP private TIPB.

Registers

Interrupts50 SPRU757B

Table 35. DSP Interrupt Registers

Name Description R/W Offset

DSP_ITR DSP interrupt R/W 0x00

DSP_MIR DSP mask interrupt R/W 0x02

DSP_SIR_IRQ Interrupt encoded source for IRQ R 0x04

DSP_SIR_FIQ Interrupt encoded source for FIQ R 0x06

DSP_CONTROL_REG DSP interrupt control R/W 0x08

DSP_SISR DSP software interrupt set R/W 0x0A

DSP_ILRx DSP interrupt level for interrupt number x R/W 0x0C + 0x2 * x

Table 36. Interrupt Register (DSP_ITR)

Offset: 0x00

Bit Name Function R/W Reset

15:0 ACT_IRQ If edge-sensitive interrupt occurs, it stores the active
line. The DSP can individually clear each bit by writing
a 0 to the corresponding bit. Writing a 1 keeps its
previous value.

R/W 0x0000

Table 37. Mask Interrupt Register (DSP_MIR)

Offset: 0x02

Bit Name Function R/W Reset

15:0 IRQ_MSK Writing a 1 masks the corresponding interrupt. Each bit
corresponds to one interrupt.

R/W 0xFFFF

Table 38. Interrupt Encoded Source Register for IRQ (DSP_SIR_IRQ)

Offset: 0x04

Bit Name Function R/W Reset

15:4 Reserved

3:0 IRQ_NUM Indicates the encoded interrupt number that has an
IRQ request. Reading this register clears the
corresponding bit in the DSP_ITR if the interrupt is set
as edge-sensitive.

R 0000

Registers

51InterruptsSPRU757B

Table 39. Interrupt Encoded Source Register for FIQ (DSP_SIR_FIQ)

Offset: 0x06

Bit Name Function R/W Reset

15:4 Reserved

3:0 FIQ_NUM Indicates the encoded interrupt number that has an
FIQ request. Reading this register clears the
corresponding bit in the DSP_ITR if the interrupt is set
as edge-sensitive.

R 0000

Table 40. Interrupt Control Register (DSP_CONTROL_REG)

Offset: 0x08

Bit Name Function R/W Reset

15:2 Reserved

1 NEW_FIQ_AGR Writing a 1 resets the FIQ output, clears the source
FIQ register, and enables a new FIQ generation, reset
by internal logic. The corresponding bit of DSP_ITR
must be cleared first.

R/W 0

0 NEW_IRQ_AGR Writing a 1 resets an IRQ output, clears the source
IRQ register, and enables a new IRQ generation, reset
by internal logic. The corresponding bit of DSP_ITR
must be cleared first.

R/W 0

Table 41. Software Interrupt Set Register (DSP_SISR)

Offset: 0x0A

Bit Name Function R/W Reset

15:0 DSP_SISR Writing a 0 followed by a 1 to any bit generates an
interrupt to the DSP if the corresponding DSP_ILR
register is set as edge-triggered; otherwise, no
interrupt is generated.

R/W 0x0000

Registers

Interrupts52 SPRU757B

Table 42. Interrupt Level Register for Interrupt Number x [0−15] (DSP_ILRx)

Offset: 0x0C

Bit Name Function R/W Reset

15:6 Reserved

5:2 PRIORITY Defines the priority level when the corresponding
interrupt is routed to IRQ or FIQ.

0 is the highest priority level.

15 is the lowest priority level.

R/W 0000

1 SENS_LEVEL 0: The corresponding interrupt is rising-edge sensitive.
1: The corresponding interrupt is high-level sensitive.

R/W 0

0 FIQ 0: The corresponding interrupt is routed to IRQ.
1: The corresponding interrupt is routed to FIQ.

R/W 0

Index

53IndexSPRU757B

Index

D
DSP interrupt mapping 11

E
External interrupt asynchronous path 24

F
Functional description, interrupt controller 20

I
Interrupt controller 19

description 20
external interrupt asynchronous path 24
global masking 25
interrupt latency 23
interrupt processing sequence 22
registers 26

Interrupt controller registers 26

Interrupt global masking 25

Interrupt latency 23
Interrupt processing sequence 22

M
MPU interrupt mapping 14

N
notational conventions 3

O
OMAP5912 interrupt overview 9

DSP interrupt mapping 11
MPU interrupt mapping 14

R
related documentation from Texas Instruments 3

T
trademarks 3

	Title Page - SPRU757B
	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Interrupts
	1 Interrupt Overview
	1.1 DSP Interrupt Mapping
	1.1.1 DSP Level 2 Interrupt Handler
	1.1.2 DSP Level 2 Interrupt Mapping
	1.1.3 MPU Interrupt Mapping
	1.1.4 ARM926EJS Level 2 Interrupt Mapping

	2 Interrupt Controllers (MPU Level 2 and DSP Level 2.1)
	2.1 Functional Description
	2.1.1 Interrupt Processing Sequence
	2.1.2 Edge-Triggered Interrupts
	2.1.3 Level-Sensitive Interrupts
	2.1.4 Interrupt Latency
	2.1.5 Interrupt Handler Sleep Mode
	2.1.6 Going to Sleep
	2.1.7 External Interrupt Asynchronous Path
	2.1.8 Interrupt Global Masking
	2.1.9 Interrupt Spying
	2.1.10 Interrupt Controller Registers
	2.1.11 Implementation

	3 Level 1 MPU Interrupt Handler
	3.1 Description
	3.1.1 Interrupt Control and Configuration
	3.1.2 Software Interrupt
	3.1.3 Interrupt Sequence
	3.1.4 Interrupt Handler Software
	3.1.5 Edge-Triggered Interrupts
	3.1.6 Level-Sensitive Interrupts
	3.1.7 Registers

	4 DSP Level 1 and Level 2.0 Interrupt Handler and Interface
	4.1 Description
	4.1.1 Interrupt Control and Configuration
	4.1.2 Software Interrupt
	4.1.3 Latency
	4.1.4 Interrupt Interface
	4.1.5 Interrupt Sequence
	4.1.6 Interrupt Handler Software
	4.1.7 Edge-Triggered Interrupts
	4.1.8 Level-Sensitive Interrupts
	4.1.9 Registers
	4.1.10 DSP Interrupt Interface
	4.1.11 DSP Interrupt Handler

	Index
	D
	E
	F
	I
	M
	N
	O
	R
	T

