
TMS320DM644x DMSoC
Universal Serial Bus (USB) Controller

User's Guide

Literature Number: SPRUE35G

June 2010

2 SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

Preface .. 12
1 Introduction .. 14

1.1 Purpose of the Peripheral ... 14

1.2 Features ... 14

1.3 Features Not Supported .. 15

1.4 Functional Block Diagram ... 15

1.5 Supported Use Case Examples .. 16

1.6 Industry Standard(s) Compliance Statement ... 22

2 Peripheral Architecture .. 23
2.1 Clock Control ... 23

2.2 Signal Descriptions .. 23

2.3 Indexed and Non-Indexed Registers .. 23

2.4 USB PHY Initialization ... 24

2.5 Dynamic FIFO Sizing .. 24

3 USB Controller Host and Peripheral Modes Operation ... 25
3.1 USB Controller Peripheral Mode Operation .. 27

3.2 USB Controller Host Mode Operation ... 45

3.3 DMA Operation ... 61

3.4 Interrupt Handling .. 73

3.5 Test Modes ... 75

3.6 Reset Considerations .. 77

3.7 Interrupt Support ... 77

3.8 EDMA Event Support .. 77

3.9 Power Management ... 77

4 Registers .. 78
4.1 Control Register (CTRLR) .. 85

4.2 Status Register (STATR) ... 86

4.3 RNDIS Register (RNDISR) ... 86

4.4 Auto Request Register (AUTOREQ) .. 87

4.5 USB Interrupt Source Register (INTSRCR) .. 88

4.6 USB Interrupt Source Set Register (INTSETR) .. 89

4.7 USB Interrupt Source Clear Register (INTCLRR) ... 90

4.8 USB Interrupt Mask Register (INTMSKR) .. 91

4.9 USB Interrupt Mask Set Register (INTMSKSETR) .. 92

4.10 USB Interrupt Mask Clear Register (INTMSKCLRR) ... 93

4.11 USB Interrupt Source Masked Register (INTMASKEDR) .. 94

4.12 USB End of Interrupt Register (EOIR) .. 95

4.13 Transmit CPPI Control Register (TCPPICR) ... 96

4.14 Transmit CPPI Teardown Register (TCPPITDR) .. 96

4.15 CPPI DMA End of Interrupt Register (CPPIEOIR) .. 97

4.16 Transmit CPPI Masked Status Register (TCPPIMSKSR) .. 98

4.17 Transmit CPPI Raw Status Register (TCPPIRAWSR) .. 98

3SPRUE35G–June 2010 Table of Contents

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

4.18 Transmit CPPI Interrupt Enable Set Register (TCPPIIENSETR) .. 99

4.19 Transmit CPPI Interrupt Enable Clear Register (TCPPIIENCLRR) ... 99

4.20 Receive CPPI Control Register (RCPPICR) .. 100

4.21 Receive CPPI Masked Status Register (RCPPIMSKSR) ... 100

4.22 Receive CPPI Raw Status Register (RCPPIRAWSR) ... 101

4.23 Receive CPPI Interrupt Enable Set Register (RCPPIENSETR) ... 101

4.24 Receive CPPI Interrupt Enable Clear Register (RCPPIIENCLRR) .. 102

4.25 Receive Buffer Count 0 Register (RBUFCNT0) .. 102

4.26 Receive Buffer Count 1 Register (RBUFCNT1) .. 103

4.27 Receive Buffer Count 2 Register (RBUFCNT2) .. 103

4.28 Receive Buffer Count 3 Register (RBUFCNT3) .. 104

4.29 Transmit CPPI DMA State Word 0 (TCPPIDMASTATEW0) ... 104

4.30 Transmit CPPI DMA State Word 1 (TCPPIDMASTATEW1) ... 105

4.31 Transmit CPPI DMA State Word 2 (TCPPIDMASTATEW2) ... 105

4.32 Transmit CPPI DMA State Word 3 (TCPPIDMASTATEW3) ... 106

4.33 Transmit CPPI DMA State Word 4 (TCPPIDMASTATEW4) ... 106

4.34 Transmit CPPI DMA State Word 5 (TCPPIDMASTATEW5) ... 107

4.35 Transmit CPPI Completion Pointer (TCPPICOMPPTR) .. 107

4.36 Receive CPPI DMA State Word 0 (RCPPIDMASTATEW0) .. 108

4.37 Receive CPPI DMA State Word 1 (RCPPIDMASTATEW1) .. 108

4.38 Receive CPPI DMA State Word 2 (RCPPIDMASTATEW2) .. 109

4.39 Receive CPPI DMA State Word 3 (RCPPIDMASTATEW3) .. 109

4.40 Receive CPPI DMA State Word 4 (RCPPIDMASTATEW4) .. 110

4.41 Receive CPPI DMA State Word 5 (RCPPIDMASTATEW5) .. 110

4.42 Receive CPPI DMA State Word 6 (RCPPIDMASTATEW6) .. 111

4.43 Receive CPPI Completion Pointer (RCPPICOMPPTR) ... 112

4.44 Function Address Register (FADDR) .. 112

4.45 Power Management Register (POWER) .. 113

4.46 Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX) 114

4.47 Interrupt Register for Receive Endpoints 1 to 4 (INTRRX) ... 115

4.48 Interrupt Enable Register for INTRTX (INTRTXE) ... 116

4.49 Interrupt Enable Register for INTRRX (INTRRXE) .. 116

4.50 Interrupt Register for Common USB Interrupts (INTRUSB) .. 117

4.51 Interrupt Enable Register for INTRUSB (INTRUSBE) ... 118

4.52 Frame Number Register (FRAME) ... 119

4.53 Index Register for Selecting the Endpoint Status and Control Registers (INDEX) 119

4.54 Register to Enable the USB 2.0 Test Modes (TESTMODE) .. 120

4.55 Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP) 121

4.56 Control Status Register for Endpoint 0 in Peripheral Mode (PERI_CSR0) 122

4.57 Control Status Register for Endpoint 0 in Host Mode (HOST_CSR0) ... 123

4.58 Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR) 124

4.59 Control Status Register for Host Transmit Endpoint (HOST_TXCSR) .. 125

4.60 Maximum Packet Size for Peripheral Host Receive Endpoint (RXMAXP) 126

4.61 Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR) 127

4.62 Control Status Register for Host Receive Endpoint (HOST_RXCSR) .. 128

4.63 Count 0 Register (COUNT0) .. 129

4.64 Receive Count Register (RXCOUNT) ... 129

4.65 Type Register (Host mode only) (HOST_TYPE0) ... 130

4.66 Transmit Type Register (Host mode only) (HOST_TXTYPE) .. 130

4 Contents SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

4.67 NAKLimit0 Register (Host mode only) (HOST_NAKLIMIT0) ... 131

4.68 Transmit Interval Register (Host mode only) (HOST_TXINTERVAL) ... 131

4.69 Receive Type Register (Host mode only) (HOST_RXTYPE) ... 132

4.70 Receive Interval Register (Host mode only) (HOST_RXINTERVAL) .. 133

4.71 Configuration Data Register (CONFIGDATA) .. 134

4.72 Transmit and Receive FIFO Register for Endpoint 0 (FIFO0) .. 135

4.73 Transmit and Receive FIFO Register for Endpoint 1 (FIFO1) .. 136

4.74 Transmit and Receive FIFO Register for Endpoint 2 (FIFO2) .. 136

4.75 Transmit and Receive FIFO Register for Endpoint 3 (FIFO3) .. 137

4.76 Transmit and Receive FIFO Register for Endpoint 4 (FIFO4) .. 137

4.77 OTG Device Control Register (DEVCTL) ... 138

4.78 Transmit Endpoint FIFO Size (TXFIFOSZ) ... 139

4.79 Receive Endpoint FIFO Size (RXFIFOSZ) .. 139

4.80 Transmit Endpoint FIFO Address (TXFIFOADDR) .. 140

4.81 Receive Endpoint FIFO Address (RXFIFOADDR) ... 140

4.82 Transmit Function Address (TXFUNCADDR) .. 141

4.83 Transmit Hub Address (TXHUBADDR) .. 141

4.84 Transmit Hub Port (TXHUBPORT) ... 141

4.85 Receive Function Address (RXFUNCADDR) ... 142

4.86 Receive Hub Address (RXHUBADDR) .. 142

4.87 Receive Hub Port (RXHUBPORT) ... 142

Appendix A Revision History ... 143

5SPRUE35G–June 2010 Contents

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

List of Figures

1 Functional Block Diagram .. 15

2 Interrupt Service Routine Flow Chart ... 26

3 CPU Actions at Transfer Phases .. 30

4 Sequence of Transfer ... 31

5 Service Endpoint 0 Flow Chart .. 33

6 IDLE Mode Flow Chart ... 34

7 TX Mode Flow Chart .. 35

8 RX Mode Flow Chart.. 36

9 Setup Phase of a Control Transaction Flow Chart.. 47

10 IN Data Phase Flow Chart ... 49

11 OUT Data Phase Flow Chart .. 51

12 Completion of SETUP or OUT Data Phase Flow Chart .. 53

13 Completion of IN Data Phase Flow Chart .. 55

14 Tx Queue Flow Chart ... 64

15 Rx Queue Flow Chart ... 69

16 Control Register (CTRLR).. 85

17 Status Register (STATR) ... 86

18 RNDIS Register (RNDISR)... 86

19 Auto Request Register (AUTOREQ).. 87

20 USB Interrupt Source Register (INTSRCR).. 88

21 USB Interrupt Source Set Register (INTSETR) ... 89

22 USB Interrupt Source Clear Register (INTCLRR)... 90

23 USB Interrupt Mask Register (INTMSKR).. 91

24 USB Interrupt Mask Set Register (INTMSKSETR).. 92

25 USB Interrupt Mask Clear Register (INTMSKCLRR) ... 93

26 USB Interrupt Source Masked Register (INTMASKEDR).. 94

27 USB End of Interrupt Register (EOIR) .. 95

28 Transmit CPPI Control Register (TCPPICR)... 96

29 Transmit CPPI Teardown Register (TCPPITDR).. 96

30 CPPI DMA End of Interrupt Register (CPPIEOIR) .. 97

31 Transmit CPPI Masked Status Register (TCPPIMSKSR).. 98

32 Transmit CPPI Raw Status Register (TCPPIRAWSR) ... 98

33 Transmit CPPI Interrupt Enable Set Register (TCPPIIENSETR) ... 99

34 Transmit CPPI Interrupt Enable Clear Register (TCPPIIENCLRR)... 99

35 Receive CPPI Control Register (RCPPICR).. 100

36 Receive CPPI Masked Status Register (RCPPIMSKSR)... 100

37 Receive CPPI Raw Status Register (RCPPIRAWSR) .. 101

38 Receive CPPI Interrupt Enable Set Register (RCPPIENSETR) ... 101

39 Receive CPPI Interrupt Enable Clear Register (RCPPIIENCLRR).. 102

40 Receive Buffer Count 0 Register (RBUFCNT0).. 102

41 Receive Buffer Count 1 Register (RBUFCNT1).. 103

42 Receive Buffer Count 2 Register (RBUFCNT2).. 103

43 Receive Buffer Count 3 Register (RBUFCNT3).. 104

44 Transmit CPPI DMA State Word 0 (TCPPIDMASTATEW0) ... 104

45 Transmit CPPI DMA State Word 1 (TCPPIDMASTATEW1) ... 105

46 Transmit CPPI DMA State Word 2 (TCPPIDMASTATEW2) ... 105

47 Transmit CPPI DMA State Word 3 (TCPPIDMASTATEW3) ... 106

6 List of Figures SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

48 Transmit CPPI DMA State Word 4 (TCPPIDMASTATEW4) ... 106

49 Transmit CPPI DMA State Word 5 (TCPPIDMASTATEW5) ... 107

50 Transmit CPPI Completion Pointer (TCPPICOMPPTR) .. 107

51 Receive CPPI DMA State Word 0 (RCPPIDMASTATEW0).. 108

52 Receive CPPI DMA State Word 1 (RCPPIDMASTATEW1).. 108

53 Receive CPPI DMA State Word 2 (RCPPIDMASTATEW2).. 109

54 Receive CPPI DMA State Word 3 (RCPPIDMASTATEW3).. 109

55 Receive CPPI DMA State Word 4 (RCPPIDMASTATEW4).. 110

56 Receive CPPI DMA State Word 5 (RCPPIDMASTATEW5).. 110

57 Receive CPPI DMA State Word 6 (RCPPIDMASTATEW6).. 111

58 Receive CPPI Completion Pointer (RCPPICOMPPTR) .. 112

59 Function Address Register (FADDR).. 112

60 Power Management Register (POWER).. 113

61 Interrupt Register for Endpoint 0 Plus Tx Endpoints 1 to 4 (INTRTX) .. 114

62 Interrupt Register for Receive Endpoints 1 to 4 (INTRRX) ... 115

63 Interrupt Enable Register for INTRTX (INTRTXE)... 116

64 Interrupt Enable Register for INTRRX (INTRRXE) .. 116

65 Interrupt Register for Common USB Interrupts (INTRUSB) .. 117

66 Interrupt Enable Register for INTRUSB (INTRUSBE) .. 118

67 Frame Number Register (FRAME) .. 119

68 Index Register for Selecting the Endpoint Status and Control Registers (INDEX).............................. 119

69 Register to Enable the USB 2.0 Test Modes (TESTMODE) ... 120

70 Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP) 121

71 Control Status Register for Endpoint 0 in Peripheral Mode (PERI_CSR0)....................................... 122

72 Control Status Register for Endpoint 0 in Host Mode (HOST_CSR0) .. 123

73 Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR) 124

74 Control Status Register for Host Transmit Endpoint (HOST_TXCSR).. 125

75 Maximum Packet Size for Peripheral Host Receive Endpoint (RXMAXP) 126

76 Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR)....................................... 127

77 Control Status Register for Host Receive Endpoint (HOST_RXCSR) .. 128

78 Count 0 Register (COUNT0) ... 129

79 Receive Count Register (RXCOUNT) ... 129

80 Type Register (Host mode only) (HOST_TYPE0) ... 130

81 Transmit Type Register (Host mode only) (HOST_TXTYPE).. 130

82 NAKLimit0 Register (Host mode only) (HOST_NAKLIMIT0) ... 131

83 Transmit Interval Register (Host mode only) (HOST_TXINTERVAL)... 131

84 Receive Type Register (Host mode only) (HOST_RXTYPE) .. 132

85 Receive Interval Register (Host mode only) (HOST_RXINTERVAL) ... 133

86 Configuration Data Register (CONFIGDATA).. 134

87 Transmit and Receive FIFO Register for Endpoint 0 (FIFO0) ... 135

88 Transmit and Receive FIFO Register for Endpoint 1 (FIFO1) ... 136

89 Transmit and Receive FIFO Register for Endpoint 2 (FIFO2) ... 136

90 Transmit and Receive FIFO Register for Endpoint 3 (FIFO3) ... 137

91 Transmit and Receive FIFO Register for Endpoint 4 (FIFO4) ... 137

92 OTG Device Control Register (DEVCTL) ... 138

93 Transmit Endpoint FIFO Size (TXFIFOSZ) ... 139

94 Receive Endpoint FIFO Size (RXFIFOSZ) ... 139

95 Transmit Endpoint FIFO Address (TXFIFOADDR) .. 140

96 Receive Endpoint FIFO Address (RXFIFOADDR) .. 140

7SPRUE35G–June 2010 List of Figures

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

97 Transmit Function Address (TXFUNCADDR) .. 141

98 Transmit Hub Address (TXHUBADDR) ... 141

99 Transmit Hub Port (TXHUBPORT) .. 141

100 Receive Function Address (RXFUNCADDR) .. 142

101 Receive Hub Address (RXHUBADDR).. 142

102 Receive Hub Port (RXHUBPORT)... 142

8 List of Figures SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

List of Tables

1 USB Pins ... 23

2 PERI_TXCSR Register Bit Configuration for Bulk IN Transactions... 38

3 PERI_RXCSR Register Bit Configuration for Bulk OUT Transactions ... 40

4 PERI_TXCSR Register Bit Configuration for Isochronous IN Transactions 42

5 PERI_RXCSR Register Bit Configuration for Isochronous OUT Transactions 44

6 Transmit Buffer Descriptor Word 0.. 62

7 Transmit Buffer Descriptor Word 1.. 62

8 Transmit Buffer Descriptor Word 2.. 62

9 Transmit Buffer Descriptor Word 3.. 62

10 Receive Buffer Descriptor Word 0... 67

11 Receive Buffer Descriptor Word 1... 67

12 Receive Buffer Descriptor Word 2... 67

13 Receive Buffer Descriptor Word 3... 68

14 Interrupts Generated by the USB Controller ... 73

15 USB Interrupt Conditions ... 73

16 Universal Serial Bus (USB) Registers .. 78

17 Control Register (CTRLR) Field Descriptions.. 85

18 Status Register (STATR) Field Descriptions... 86

19 RNDIS Register (RNDISR) Field Descriptions .. 86

20 Auto Request Register (AUTOREQ) Field Descriptions ... 87

21 USB Interrupt Source Register (INTSRCR) Field Descriptions ... 88

22 USB Interrupt Source Set Register (INTSETR) Field Descriptions ... 89

23 USB Interrupt Source Clear Register (INTCLRR) Field Descriptions .. 90

24 USB Interrupt Mask Register (INTMSKR) Field Descriptions ... 91

25 USB Interrupt Mask Set Register (INTMSKSETR) Field Descriptions ... 92

26 USB Interrupt Mask Clear Register (INTMSKCLRR) Field Descriptions... 93

27 USB Interrupt Source Masked Register (INTMASKEDR) Field Descriptions 94

28 USB End of Interrupt Register (EOIR) Field Descriptions.. 95

29 Transmit CPPI Control Register (TCPPICR) Field Descriptions .. 96

30 Transmit CPPI Teardown Register (TCPPITDR) Field Descriptions ... 96

31 CPPI DMA End of Interrupt Register (CPPIEOIR) Field Descriptions.. 97

32 Transmit CPPI Masked Status Register (TCPPIMSKSR) Field Descriptions 98

33 Transmit CPPI Raw Status Register (TCPPIRAWSR) Field Descriptions ... 98

34 Transmit CPPI Interrupt Enable Set Register (TCPPIIENSETR) Field Descriptions 99

35 Transmit CPPI Interrupt Enable Clear Register (TCPPIIENCLRR) Field Descriptions 99

36 Receive CPPI Control Register (RCPPICR) Field Descriptions ... 100

37 Receive CPPI Masked Status Register (RCPPIMSKSR) Field Descriptions 100

38 Receive CPPI Raw Status Register (RCPPIRAWSR) Field Descriptions .. 101

39 Receive CPPI Interrupt Enable Set Register (RCPPIENSETR) Field Descriptions............................. 101

40 Receive CPPI Interrupt Enable Clear Register (RCPPIIENCLRR) Field Descriptions 102

41 Receive Buffer Count 0 Register (RBUFCNT0) Field Descriptions ... 102

42 Receive Buffer Count 1 Register (RBUFCNT1) Field Descriptions ... 103

43 Receive Buffer Count 2 Register (RBUFCNT2) Field Descriptions ... 103

44 Receive Buffer Count 3 Register (RBUFCNT3) Field Descriptions ... 104

45 Transmit CPPI DMA State Word 0 (TCPPIDMASTATEW0) Field Descriptions................................. 104

46 Transmit CPPI DMA State Word 1 (TCPPIDMASTATEW1) Field Descriptions................................. 105

47 Transmit CPPI DMA State Word 2 (TCPPIDMASTATEW2) Field Descriptions................................. 105

9SPRUE35G–June 2010 List of Tables

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

48 Transmit CPPI DMA State Word 3 (TCPPIDMASTATEW3) Field Descriptions................................. 106

49 Transmit CPPI DMA State Word 4 (TCPPIDMASTATEW4) Field Descriptions................................. 106

50 Transmit CPPI DMA State Word 5 (TCPPIDMASTATEW5) Field Descriptions................................. 107

51 Transmit CPPI Completion Pointer (TCPPICOMPPTR) Field Descriptions...................................... 107

52 Receive CPPI DMA State Word 0 (RCPPIDMASTATEW0) Field Descriptions 108

53 Receive CPPI DMA State Word 1 (RCPPIDMASTATEW1) Field Descriptions 108

54 Receive CPPI DMA State Word 2 (RCPPIDMASTATEW2) Field Descriptions 109

55 Receive CPPI DMA State Word 3 (RCPPIDMASTATEW3) Field Descriptions 109

56 Receive CPPI DMA State Word 4 (RCPPIDMASTATEW4) Field Descriptions 110

57 Receive CPPI DMA State Word 5 (RCPPIDMASTATEW5) Field Descriptions 110

58 Receive CPPI DMA State Word 6 (RCPPIDMASTATEW6) Field Descriptions 111

59 Receive CPPI Completion Pointer (RCPPICOMPPTR) Field Descriptions 112

60 Function Address Register (FADDR) Field Descriptions ... 112

61 Power Management Register (POWER) Field Descriptions ... 113

62 Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX)Field Descriptions 114

63 Interrupt Register for Receive Endpoints 1 to 4 (INTRRX) Field Descriptions................................... 115

64 Interrupt Enable Register for INTRTX (INTRTXE) Field Descriptions .. 116

65 Interrupt Enable Register for INTRRX (INTRRXE) Field Descriptions.. 116

66 Interrupt Register for Common USB Interrupts (INTRUSB) Field Descriptions.................................. 117

67 Interrupt Enable Register for INTRUSB (INTRUSBE) Field Descriptions .. 118

68 Frame Number Register (FRAME) Field Descriptions .. 119

69 Index Register for Selecting the Endpoint Status and Control Registers (INDEX)Field Descriptions 119

70 Register to Enable the USB 2.0 Test Modes (TESTMODE) Field Descriptions 120

71 Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP) Field Descriptions................. 121

72 Control Status Register for Endpoint 0 in Peripheral Mode (PERI_CSR0) Field Descriptions 122

73 Control Status Register for Endpoint 0 in Host Mode (HOST_CSR0) Field Descriptions 123

74 Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR) Field Descriptions................ 124

75 Control Status Register for Host Transmit Endpoint (HOST_TXCSR) Field Descriptions 125

76 Maximum Packet Size for Peripheral Host Receive Endpoint (RXMAXP) Field Descriptions 126

77 Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR) Field Descriptions 127

78 Control Status Register for Host Receive Endpoint (HOST_RXCSR) Field Descriptions...................... 128

79 Count 0 Register (COUNT0) Field Descriptions ... 129

80 Receive Count Register (RXCOUNT) Field Descriptions... 129

81 Type Register (Host mode only) (HOST_TYPE0) Field Descriptions... 130

82 Transmit Type Register (Host mode only) (HOST_TXTYPE) Field Descriptions 130

83 NAKLimit0 Register (Host mode only) (HOST_NAKLIMIT0) Field Descriptions................................. 131

84 Transmit Interval Register (Host mode only) (HOST_TXINTERVAL) Field Descriptions 131

85 Receive Type Register (Host mode only) (HOST_RXTYPE) Field Descriptions 132

86 Receive Interval Register (Host mode only) (HOST_RXINTERVAL) Field Descriptions 133

87 Configuration Data Register (CONFIGDATA) Field Descriptions ... 134

88 Transmit and Receive FIFO Register for Endpoint 0 (FIFO0) Field Descriptions 135

89 Transmit and Receive FIFO Register for Endpoint 1 (FIFO1) Field Descriptions 136

90 Transmit and Receive FIFO Register for Endpoint 2 (FIFO2) Field Descriptions 136

91 Transmit and Receive FIFO Register for Endpoint 3 (FIFO3) Field Descriptions 137

92 Transmit and Receive FIFO Register for Endpoint 4 (FIFO4) Field Descriptions 137

93 OTG Device Control Register (DEVCTL) Field Descriptions... 138

94 Transmit Endpoint FIFO Size (TXFIFOSZ) Field Descriptions... 139

95 Receive Endpoint FIFO Size (RXFIFOSZ) Field Descriptions ... 139

96 Transmit Endpoint FIFO Address (TXFIFOADDR) Field Descriptions.. 140

10 List of Tables SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

97 Receive Endpoint FIFO Address (RXFIFOADDR) Field Descriptions .. 140

98 Transmit Function Address (TXFUNCADDR) Field Descriptions.. 141

99 Transmit Hub Address (TXHUBADDR) Field Descriptions ... 141

100 Transmit Hub Port (TXHUBPORT) Field Descriptions .. 141

101 Receive Function Address (RXFUNCADDR) Field Descriptions .. 142

102 Receive Hub Address (RXHUBADDR) Field Descriptions ... 142

103 Receive Hub Port (RXHUBPORT) Field Descriptions .. 142

104 Document Revision History ... 143

11SPRUE35G–June 2010 List of Tables

Copyright © 2010, Texas Instruments Incorporated

Preface
SPRUE35G–June 2010

Read This First

About This Manual

This document describes the universal serial bus (USB) controller in the TMS320DM644x Digital Media
System-on-Chip (DMSoC).

NOTE: References to On-The-Go (OTG) capability in this document are not supported on the
DM644x devices. For specific issues or limitations on device behavior, see the silicon errata
documentation.

Notational Conventions

This document uses the following conventions.

• Hexadecimal numbers are shown with the suffix h. For example, the following number is 40
hexadecimal (decimal 64): 40h.

• Registers in this document are shown in figures and described in tables.

– Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

– Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments

The following documents describe the TMS320DM644x Digital Media System-on-Chip (DMSoC). Copies
of these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the
search box provided at www.ti.com.

The current documentation that describes the DM644x DMSoC, related peripherals, and other technical
collateral, is available in the C6000 DSP product folder at: www.ti.com/c6000.

SPRUE14 — TMS320DM644x DMSoC ARM Subsystem Reference Guide. Describes the ARM
subsystem in the TMS320DM644x Digital Media System-on-Chip (DMSoC). The ARM subsystem is
designed to give the ARM926EJ-S (ARM9) master control of the device. In general, the ARM is
responsible for configuration and control of the device; including the DSP subsystem, the video
processing subsystem, and a majority of the peripherals and external memories.

SPRUE15 — TMS320DM644x DMSoC DSP Subsystem Reference Guide. Describes the digital signal
processor (DSP) subsystem in the TMS320DM644x Digital Media System-on-Chip (DMSoC).

SPRUE19 — TMS320DM644x DMSoC Peripherals Overview Reference Guide. Provides an overview
and briefly describes the peripherals available on the TMS320DM644x Digital Media
System-on-Chip (DMSoC).

SPRAA84 — TMS320C64x to TMS320C64x+ CPU Migration Guide. Describes migrating from the
Texas Instruments TMS320C64x digital signal processor (DSP) to the TMS320C64x+ DSP. The
objective of this document is to indicate differences between the two cores. Functionality in the
devices that is identical is not included.

12 Preface SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprue14
http://www.ti.com/lit/pdf/sprue15
http://www.ti.com/lit/pdf/sprue19
http://www.ti.com/lit/pdf/spraa84

www.ti.com Notational Conventions

SPRU732 — TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C64x and TMS320C64x+ digital
signal processors (DSPs) of the TMS320C6000 DSP family. The C64x/C64x+ DSP generation
comprises fixed-point devices in the C6000 DSP platform. The C64x+ DSP is an enhancement of
the C64x DSP with added functionality and an expanded instruction set.

SPRU871 — TMS320C64x+ DSP Megamodule Reference Guide. Describes the TMS320C64x+ digital
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access
(IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth
management, and the memory and cache.

SPRAAA6 — EDMA v3.0 (EDMA3) Migration Guide for TMS320DM644x DMSoC. Describes migrating
from the Texas Instruments TMS320C64x digital signal processor (DSP) enhanced direct memory
access (EDMA2) to the TMS320DM644x Digital Media System-on-Chip (DMSoC) EDMA3. This
document summarizes the key differences between the EDMA3 and the EDMA2 and provides
guidance for migrating from EDMA2 to EDMA3.

13SPRUE35G–June 2010 Read This First

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru732
http://www.ti.com/lit/pdf/spru871
http://www.ti.com/lit/pdf/spraaa6

User's Guide
SPRUE35G–June 2010

Universal Serial Bus (USB) Controller

1 Introduction

This document describes the universal serial bus (USB) controller in the TMS320DM644x Digital Media
System-on-Chip (DMSoC). The controller supports high-speed USB peripheral mode and high-speed
limited host-mode operations. The USB controller can be operated by ARM through the memory-mapped
registers.

NOTE: References to On-The-Go (OTG) capability in this document are not supported on the
DM644x devices. For specific issues or limitations on device behavior, see the silicon errata
documentation.

The High-Speed USB OTG Controller is an instantiation of the MUSBMHDRC from Mentor
Graphics Corporation.

This document contains materials that are ©2003-2007 Mentor Graphics Corporation.

Mentor Graphics is a registered trademark of Mentor Graphics Corporation or its affiliated
companies in the United States and other countries.

1.1 Purpose of the Peripheral

The USB controller supports data throughput rates up to 480 Mbps. It provides a mechanism for data
transfer between USB devices and also supports host negotiation.

1.2 Features

The USB has the following features:

• Supports USB 2.0 peripheral at High Speed (480 Mbps) and Full Speed (12 Mbps)
• Supports USB 2.0 host at High Speed (480 Mbps), Full Speed (12 Mbps), and Low Speed (1.5 Mbps)
• Supports four simultaneous RX and TX endpoints, more can be supported by dynamically switching
• Each endpoint can support all transfer types (control, bulk, interrupt, and isochronous)
• Supports USB extensions for Session Request (SRP) and Host Negotiation (HNP)
• Includes a 4K endpoint FIFO RAM, and supports programmable FIFO sizes
• External 5V power supply for VBUS can be controlled through I2C
• Includes a DMA controller that supports four TX and four RX DMA channels
• Includes RNDIS mode of DMA for accelerating RNDIS type protocols using short packet termination

over USB

14 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

Internal
bus

CPPI
DMA

engine
FIFO encode/

decode

Packet USB

PHY
2.0 USB

24 MHz

oscillator
crystal

Registers, interrupts, endpoint control,
and packet scheduling

www.ti.com Introduction

1.3 Features Not Supported

The following features are not supported:

• High Bandwidth Isochronous Transfer.
• High Bandwidth Interrupt Transfer.
• Automatic Amalgamation of Bulk Packets (CPPI DMA will indirectly handle this feature and is not

supported at the core level).
• Automatic Splitting of Bulk Packets (CPPI DMA will indirectly handle this feature and is not supported

at the core level).

1.4 Functional Block Diagram

The USB functional block diagram is shown in Figure 1.

Figure 1. Functional Block Diagram

15SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Introduction www.ti.com

1.5 Supported Use Case Examples

The USB supports the following user cases.

Detailed information about the architecture and operation of the USB controller follows in Section 2.
Programming examples are also provided for each of the operational modes of the controller.

User Case 1: Example 1 shows an example of how to initialize the USB controller.

Example 1. Initializing the USB Controller

// Routine to initialize USB controller
void usb_init()
{

// local loop variable
int I;

// VBUS must be controlled externally. The following routine
// should perform whatever actions are required (if any) to
// turn off VBUS in the system.
vbus_off();

// Reset the USB controller
usbRegs->CTRLR = 0x00000001;

// Power on PHY and oscillator by clearing bits 2, 1, and 0 of USBPHY_CTL
sysRegs->USB_PHY_CTRL = 0x000000D0;

//Clear all pending interrupts
usbRegs->INTCLRR = usbRegs->INTSRCR;

// Initialize CPPI DMA
usbRegs->RCPPICR = 0; //Disable the RX DMA
usbRegs->TCPPICR = 0; //Disable the TX DMA

// Initialize CPPI DMA state
for(I = 0; i<4; I++) {

usbRegs->CHANNEL[i].TCPPIDMASTATEW0 = 0;
usbRegs->CHANNEL[i].TCPPIDMASTATEW1 = 0;
usbRegs->CHANNEL[i].TCPPIDMASTATEW2 = 0;
usbRegs->CHANNEL[i].TCPPIDMASTATEW3 = 0;
usbRegs->CHANNEL[i].TCPPIDMASTATEW4 = 0;
usbRegs->CHANNEL[i].TCPPIDMASTATEW5 = 0;
usbRegs->CHANNEL[i].RCPPIDMASTATEW0 = 0;
usbRegs->CHANNEL[i].RCPPIDMASTATEW1 = 0;
usbRegs->CHANNEL[i].RCPPIDMASTATEW2 = 0;
usbRegs->CHANNEL[i].RCPPIDMASTATEW3 = 0;
usbRegs->CHANNEL[i].RCPPIDMASTATEW4 = 0;
usbRegs->CHANNEL[i].RCPPIDMASTATEW5 = 0;
usbRegs->CHANNEL[i].RCPPIDMASTATEW6 = 0;

}
}

16 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Introduction

User Case 2: Example 2 shows an example of how to program the USB Endpoints in peripheral mode.

Example 2. Programming the USB Endpoints in Peripheral Mode

// DMA channel number. Valid values are 0, 1, 2, or 3.
int CHAN_NUM = 0;

// Fifo sizes: uncomment the desired size.
// This example uses 64-byte fifo.
// int fifosize = 0; // 8 bytes
// int fifosize = 1; // 16 bytes
// int fifosize = 2; // 32 bytes

int fifosize = 3; // 64 bytes
// int fifosize = 4; // 128 bytes
// int fifosize = 5; // 256 bytes
// int fifosize = 6; // 512 bytes
// int fifosize = 7; // 1024 bytes
// int fifosize = 8; // 2048 bytes
// int fifosize = 9; // 4096 bytes

// FIFO address. Leave 64-bytes for endpoint 0.
int fifo_start_address = 8;

// Uncomment the desired buffering. If double-buffer is selected, actual
// FIFO space will be twice the value listed above for fifosize.
// This example uses single buffer.

int double_buffer = 0; // Single-buffer
// int double_buffer = 1; // Double-buffer

// For maximum packet size this formula will usually work, but it can also be
// set to another value if needed. If non power of 2 value is needed (such as
// 1023) set it explicitly.
#define FIFO_MAXP 8*(1<<fifosize);

// Set the following variable to the device address.
int device_address = 0;

// The following code should be run after receiving a USB reset from the host.

// Initialize the endpoint FIFO. RX and TX will be allocated the same sizes.
usbRegs->INDEX = CHAN_NUM+1;
usbRegs->RXFIFOSZ = fifosize | ((double_buffer & 1)<<4);
usbRegs->RXFIFOADDR = fifo_start_address;
usbRegs->TXFIFOSZ = fifosize | ((double_buffer & 1)<<4);
usbRegs->TXFIFOADDR = fifo_start_address + (1<<(fifosize+double_buffer));
usbRegs->RXMAXP = FIFO_MAXP;
usbRegs->TXMAXP = FIFO_MAXP;

// Force Data Toggle is optional for interrupt traffic. Uncomment if needed.
// CSL_FINS(usbRegs->PERI_TXCSR,USB_PERI_TXCSR_FRCDATATOG,1);

// Uncomment below to configure the endpoint for ISO and not respond with a
// handshake packet.
// CSL_FINS(usbRegs->PERI_RXCSR,USB_PERI_RXCSR_ISO,1);
// CSL_FINS(usbRegs->PERI_TXCSR,USB_PERI_TXCSR_ISO,1);

// After receiving a successful set-address command, set the following register
// to the specified address immediately following the status stage.
usbRegs->FADDR = device_address;

17SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Introduction www.ti.com

User Case 3: Example 3 shows an example of how to program the USB endpoints in host mode.

Example 3. Programming the USB Endpoints in Host Mode

// DMA channel number. Valid values are 0, 1, 2, or 3.
int CHAN_NUM = 0;

// Fifo sizes: uncomment the desired size.
// This example uses 64-byte fifo.
// int fifosize = 0; // 8 bytes
// int fifosize = 1; // 16 bytes
// int fifosize = 2; // 32 bytes

int fifosize = 3; // 64 bytes
// int fifosize = 4; // 128 bytes
// int fifosize = 5; // 256 bytes
// int fifosize = 6; // 512 bytes
// int fifosize = 7; // 1024 bytes
// int fifosize = 8; // 2048 bytes
// int fifosize = 9; // 4096 bytes

// FIFO address. Leave 64-bytes for endpoint 0.
int fifo_start_address = 8;

// Uncomment the desired buffering. If double-buffer is selected, actual
// FIFO space will be twice the value listed above for fifosize.
// This example uses single buffer.

int double_buffer = 0; // Single-buffer
// int double_buffer = 1; // Double-buffer

// Set the following variable to the device endpoint type: CONTROL ISO BULK or IN
int device_protocol = BULK;

//int device_protocol = ISO;
//int device_protocol = INT;

// USB speeds
#define LOW_SPEED 0
#define FULL_SPEED 1
#define HIGH_SPEED 2

// TXTYPE protocol
#define CONTROL 0
#define ISO 1
#define BULK 2
#define INT 3

// For maximum packet size this formula will usually work, but it can also be
// set to another value if needed. If non power of 2 value is needed (such as
// 1023) set it explicitly.
#define FIFO_MAXP 8*(1<<fifosize);

// Set the following variable to the device address.
int device_address = 1;

// Set the following variable to the device endpoint number.
int device_ep = 1;

// Variable used for endpoint configuration
Uint8 type = 0;

// Variable to keep track of errors
int error = 0;

// The following code should be run after resetting the attached device

// Initialize the endpoint FIFO. RX and TX will be allocated the same sizes.
usbRegs->INDEX = CHAN_NUM+1;
usbRegs->RXFIFOSZ = fifosize | ((double_buffer & 1)<<4);
usbRegs->RXFIFOADDR = fifo_start_address;
usbRegs->TXFIFOSZ = fifosize | ((double_buffer & 1)<<4);

18 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Introduction

Example 3. Programming the USB Endpoints in Host Mode (continued)
usbRegs->TXFIFOADDR = fifo_start_address + (1<<(fifosize+double_buffer));
usbRegs->RXMAXP = FIFO_MAXP;
usbRegs->TXMAXP = FIFO_MAXP;

//Configure the endpoint
switch (device_speed) {

case LOW_SPEED : type = (3<<6) | ((device_protocol & 3) << 4) | (device_ep & 0xf); break;
case FULL_SPEED: type = (2<<6) | ((device_protocol & 3) << 4) | (device_ep & 0xf); break;
case HIGH_SPEED: type = (1<<6) | ((device_protocol & 3) << 4) | (device_ep & 0xf); break;
default:error++;

}
usbRegs->EPCSR[CHAN_NUM+1].HOST_TYPE0 = type; // TXTYPE
usbRegs->EPCSR[CHAN_NUM+1].HOST_RXTYPE = type;

// Set NAK limit / Polling interval (Interrupt & Iso protocols)
if ((device_protocol == INT) || (device_protocol == ISO)) {

usbRegs->EPCSR[CHAN_NUM+1].HOST_NAKLIMIT0 = TXINTERVAL; // TX Polling interval
usbRegs->EPCSR[CHAN_NUM+1].HOST_RXINTERVAL = RXINTERVAL; // RX Polling interval

} else {
usbRegs->EPCSR[CHAN_NUM+1].HOST_NAKLIMIT0 = 2; // Frames to timeout from NAKs
usbRegs->EPCSR[CHAN_NUM+1].HOST_RXINTERVAL = 2; // Frames to timeout from NAKs

}

//Set the address for transactions after SET ADDRESS successfully completed
usbRegs->EPTRG[CHAN_NUM+1].TXFUNCADDR = device_address;
usbRegs->EPTRG[CHAN_NUM+1].RXFUNCADDR = device_address;

User Case 4: An example of how to do host negotiation to support USB.

If the HOSTREQ bit in the DEVCTL register is set, host negotiation is performed by the hardware when
the device enters suspend mode. The bit is cleared when host negotiation is complete.

19SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Introduction www.ti.com

User Case 5: Example 4 shows an example of how to program the USB DMA controller.

Example 4. Programming the USB DMA Controller

// Number of DMA channels
#define NUM_CHANNEL 4

// Number of DMA buffers to allocate
#define RX_BUFFERS 32
#define TX_BUFFERS 32

// Memory region to place DMA buffers and descriptors
#define MEMORY_TARGET ".DDREMIF_0_BUF"

// DMA defines
#define SOP (Uint32) (1<<31)
#define EOP (Uint32) (1<<30)
#define OWNER (Uint32) (1<<29)
#define EOQ (Uint32) (1<<28)
#define ZERO_BYTE (Uint32) (1<<23)
#define RX_ABORT (Uint32) (1<<19)

// DMA channel configuration
#define CH0 0
#define CH1 1
#define CH2 2
#define CH3 3

// Loop variable
int I;

// Variable to keep track of errors
int error = 0;

// Variable to keep track of the number of descriptors built
int tx_desc[NUM_CHANNEL]; // Current TX Buffer descriptor[channel number]
int rx_desc[NUM_CHANNEL]; // Current RX Buffer descriptor[channel number]

// Separate data section for bufferDesc. NOTE: CPPI buffers MUST be aligned to 16-byte
boundaries.
#pragma DATA_SECTION(rx_bufferDesc, MEMORY_TARGET)
Uint32 rx_bufferDesc[NUM_CHANNEL][RX_BUFFERS];

#pragma DATA_SECTION(tx_bufferDesc, MEMORY_TARGET)
Uint32 tx_bufferDesc[NUM_CHANNEL][TX_BUFFERS];

// Initialize CPPI DMA. This code is also included in the controller initialization.
usbRegs->RCPPICR = 0; //Disable the RX DMA
usbRegs->TCPPICR = 0; //Disable the TX DMA
for(I = 0; i<NUM_CHANNEL;i++) { // Initialize CPPI DMA state

usbRegs->CHANNEL[i].TCPPIDMASTATEW0 = 0;
usbRegs->CHANNEL[i].TCPPIDMASTATEW1 = 0;
usbRegs->CHANNEL[i].TCPPIDMASTATEW2 = 0;
usbRegs->CHANNEL[i].TCPPIDMASTATEW3 = 0;
usbRegs->CHANNEL[i].TCPPIDMASTATEW4 = 0;
usbRegs->CHANNEL[i].TCPPIDMASTATEW5 = 0;

usbRegs->CHANNEL[i].RCPPIDMASTATEW0 = 0;
usbRegs->CHANNEL[i].RCPPIDMASTATEW1 = 0;
usbRegs->CHANNEL[i].RCPPIDMASTATEW2 = 0;
usbRegs->CHANNEL[i].RCPPIDMASTATEW3 = 0;
usbRegs->CHANNEL[i].RCPPIDMASTATEW4 = 0;
usbRegs->CHANNEL[i].RCPPIDMASTATEW5 = 0;
usbRegs->CHANNEL[i].RCPPIDMASTATEW6 = 0;
tx_desc[i] = 0;
rx_desc[i] = 0;

}

20 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Introduction

Example 4. Programming the USB DMA Controller (continued)

// Routine to flush TX fifo.
// Must call this routine twice for double-buffered FIFO
void flush_tx_fifo(int ep) {
int index_save;
int status;

index_save = usbRegs->INDEX; // Save the index to restore later
usbRegs->INDEX = ep; // Set the index to the desired endpoint

status = usbRegs->PERI_TXCSR & 3; // Isolate the TxPktRdy and FIFONotEmpty bits
if (!(status)) { // Nothing showing in FIFO

usbRegs->PERI_TXCSR |= 1; // Set TxPktRdy in case there is a partial
packet already in FIFO

}

usbRegs->PERI_TXCSR = ((usbRegs->PERI_TXCSR & 0xFFFC) | 8); // Write TXCSR with flush bit
set, FIFONotEmpty=0, and TxPktRdy=0.

while (usbRegs->PERI_TXCSR & 8); // Keep looping until the flush bit clears

usbRegs->INDEX = index_save; // Restore the index to previous value
}

// Routine to start the TX DMA for a given channel
void start_tx_dma(int ch) {

// Must have at least one descriptor before turning on TX DMA
if (rx_desc[ch] < 1) {error++;} else {

//Flush FIFO (2 times in case it is double-buffered)
flush_tx_fifo(ch+1);
flush_tx_fifo(ch+1);

// Start the DMA
usbRegs->TCPPICR = 1; //Enable Tx CPPI DMA
usbRegs->CHANNEL[ch].TCPPIDMASTATEW0 = (Uint32)(&tx_bufferDesc[ch][0]);
CSL_FINS(usbRegs->PERI_TXCSR,USB_PERI_TXCSR_DMAEN,1); // TXCSR, bit DMAReqEnab

}
}

// Routine to add a TX descriptor
void add_tx_descriptor(int ch, unsigned char * inBuf, int bytes) {

if ((bytes < 0) || (bytes >65535)) {bytes = 64; error++;}

// Link previous buffer to this one if this is not the first descriptor of the channel
if (tx_desc[ch] > 0) tx_bufferDesc[ch][4*(tx_desc[ch]-1)] =

(Uint32)(&tx_bufferDesc[ch][4*tx_desc[ch]]);

// Set up DMA buffer descriptors
tx_bufferDesc[ch][4*tx_desc[ch]+0] = (Uint32)(0x00000000); // Next Descriptor pointer
tx_bufferDesc[ch][4*tx_desc[ch]+1] = (Uint32)inBuf; // Buffer pointer
tx_bufferDesc[ch][4*tx_desc[ch]+2] = (0x0000 << 16) | bytes; // [31:16] Buffer offset

[15:0] Buffer length
if (bytes == 0) bytes = ZERO_BYTE | 1; // Set the ZERO_BYTE bit and size 1 byte
tx_bufferDesc[ch][4*tx_desc[ch]+3] = SOP | EOP | OWNER | bytes; // [31]=SOP, [30]=EOP,

[29]=owner, [28]=EOQ, [23]=zero-byte, [19] = rxabort, [15:0]=packet length

// If DMA already enabled and has stopped, write this to the TX Queue head pointer
if ((usbRegs->TCPPICR == 1) && (usbRegs->CHANNEL[ch].TCPPIDMASTATEW0 == 0))

usbRegs->CHANNEL[ch].TCPPIDMASTATEW0 = (Uint32)(&tx_bufferDesc[ch][4*tx_desc[ch]+0]);

// Increment descriptor counter
tx_desc[ch]++;

}

21SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Introduction www.ti.com

Example 4. Programming the USB DMA Controller (continued)

// Routine to start the RX DMA for a given channel
void start_rx_dma(int ch) {
int index_save;
index_save = usbRegs->INDEX; // Save the index to restore later

// Must have at least 3 descriptors to receive anything
if (rx_desc[ch] < 2) {error++;} else {

usbRegs->INDEX = ch+1;
usbRegs->RCPPICR = 1; //Enable Rx CPPI DMA
usbRegs->CHANNEL[ch].RCPPIDMASTATEW1 = (Uint32)(&rx_bufferDesc[ch][0]);
CSL_FINS(usbRegs->PERI_RXCSR,USB_PERI_RXCSR_DMAEN,1);

// Update the buffer count register. This ADDS to the existing value, does not overwrite.
switch (ch) {

case 0: usbRegs->RBUFCNT0 = rx_desc[ch]; break;
case 1: usbRegs->RBUFCNT1 = rx_desc[ch]; break;
case 2: usbRegs->RBUFCNT2 = rx_desc[ch]; break;
case 3: usbRegs->RBUFCNT3 = rx_desc[ch]; break;

}
}
usbRegs->INDEX = index_save; // Restore the index to previous value

}

//Function to build Rx DMA descriptors
void add_rx_descriptor(int ch, unsigned char * outBuf, int bytes) {
int index_save;
index_save = usbRegs->INDEX; // Save the index to restore later

if (bytes < 1) {bytes = 64; error++;}
usbRegs->INDEX = ch+1;

// Link previous buffer to this one if this is not the first descriptor of the channel
if (rx_desc[ch] > 0) rx_bufferDesc[ch][4*(rx_desc[ch]-1)] =

(Uint32)(&rx_bufferDesc[ch][4*rx_desc[ch]]);

rx_bufferDesc[ch][4*rx_desc[ch]+0] = (Uint32)(0x00000000); // Next descriptor
rx_bufferDesc[ch][4*rx_desc[ch]+1] = (Uint32)outBuf; // Buffer address
rx_bufferDesc[ch][4*rx_desc[ch]+2] = (0x0000 << 16) | bytes; // Rx buffer size in bytes
rx_bufferDesc[ch][4*rx_desc[ch]+3] = OWNER | 0; // OWNER
rx_desc[ch]++;

usbRegs->INDEX = index_save; // Restore the index to previous value
}

1.6 Industry Standard(s) Compliance Statement

This device conforms to USB 2.0 Specification and On-The-Go Supplement to the USB 2.0 Specification
Rev 1.0a.

22 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Peripheral Architecture

2 Peripheral Architecture

2.1 Clock Control

Information related to clock generation and control for the USB peripheral will be added in a future revision
of this document. Clocks for USB are generated based on a crystal oscillator on the M24XI and M24XO
pins. The oscillator is enabled by bit OSCPDWN of the USBPHY_CTL register in the system module.

2.2 Signal Descriptions

The USB controller provides the following I/O signals. Table 1 shows the USB port pins used in each
mode.

Table 1. USB Pins

Pin Type (1) Function

M24XI I Crystal input for M24 oscillator (24 MHZ for USB)

M24X0 O Crystal output for M24 oscillator

M24VDD S 1.8V power supply for M24 oscillator

M24VSS Ground for M24 oscillator

PLLVDD18 GND 1.8 Volt power supply for PLLs (system and USB)

USB_VBUS I/O 5V input that signifies that VBUS is connected. The OTG section of the PHY can also pull up or
down on this signal for HNP and SRP.

USB_ID I/O USB_ID is an input that is open or pulled to ground depending on OTG connector configuration.
The state determines if controller starts in HOST or PERIPHERAL mode.

USB_DP I/O USB bi-directional Data Differential signal pair [positive/negative]. Input/output DP signal of the
differential signal pair.

USB_DM I/O USB bi-directional Data Differential signal pair [positive/negative]. Input/output DM signal of the
differential signal pair.

USB_R1 I/O Reference current output. This must be connected via a 10 kΩ± 1% resistor to USB_VSSREF.

USB_VSSREF GND Ground for reference current

USB_VDDA3P3 S Analog 3.3 V power supply for USB phy

USB_VSSA3P3 GND Analog ground for USB phy

USB_VDD1P83 S 1.8 V I/O power supply for USB phy

USB_VSS1P8 GND I/O Ground for USB phy

USB_VDDA1P2LDO S Core Power supply LDO output for USB phy. This must be connected via 1 mF capacitor to
USB_VSSA1P2LDO. Do not connect this to other supply pins.

USB_VSSA1P2LDO GND Core Ground for USB phy. This must be connected via 1 mF capacitor to USB_VDDA1P2LDO.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal

2.3 Indexed and Non-Indexed Registers

USB controller provides two mechanism of accessing the endpoint control and status registers:
• Indexed Endpoint Control/Status Registers – These registers are memory-mapped at offset 410h to

41Fh. The endpoint is selected by programming the INDEX register of the controller.
• Non-indexed Endpoint Control/Status Registers – These registers are memory-mapped at offset 500h

to 54Fh. Registers at offset 500h-50Fh map to Endpoint 0; offset 510h-51Fh map to Endpoint 1, and
so on.

For detailed information about the USB controller registers, see Section 4.

23SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Peripheral Architecture www.ti.com

2.4 USB PHY Initialization

The USB PHY and its interface to the USB controller, UTMI Interface, and interface to the bus require a
low jitter clock, sourced external to the device, for PHY operation.

The input clock frequency can either be 12 MHz or 24 MHz. The PLL within the PHY is used to generate
the clock required for the UTMI interface and for the bit clock. The clock frequency supplied is selected
using the System Module USBPHY_CTL.CLK01SEL bit (0 = 24 MHz; 1 = 12 MHz). This clock source can
either be an oscillator or a crystal. If using an oscillator, you are advised to disable the internal oscillator. If
using a crystal, you are required to enable the internal oscillator. The oscillator control is handled using the
USBPHY_CTL.OSCPDWN bit (0 = internal oscillator is powered; 1 = internal oscillator is disabled). The
PLL state is controlled using the USBPHY_CTL.PHYPLLON bit (0 = PLL is enabled; 1 = PLL is disabled).

The PHY control is handled using the USBPHY_CTL.PHYPDWN bit (0 = powered on; 1 = powered off).
Once the PHY is supplied with the desired input clock source and is powered up
(USBPHY_CTL.PHYPDWN = 0), the firmware should wait until the PLL locks prior to usage. The PLL lock
status is communicated to you using the USBPHY_CTL.PHYCLKGD status bit (0 = PLL is not locked;
1 = PLL is locked).

In addition to providing the input clock, you are also responsible for enabling the voltage comparators
within the PHY. The OTG controller expects to observe different levels of voltages depending upon the
role it assumes and its operation state. Voltage comparators within the PHY exist to identify the voltage
level on the VBUS line and communicate the level to the USB controller. The voltage comparators status
is communicated using the USBPHY_CTL.VBDTCTEN and USBPHY_CTL_SESNDEN bits
(0 = comparator is disabled; 1 = comparator is enabled).

For information on the USBPHY_CTL register, refer to the device-specific data manual.

2.5 Dynamic FIFO Sizing

The USB controller supports a total of 4K RAM to dynamically allocate FIFO to all endpoints. The
allocation of FIFO space to the different endpoints requires the specification for each Tx and Rx endpoint
of:

• The start address of the FIFO within the RAM block
• The maximum size of packet to be supported
• Whether double-buffering is required.

These details are specified through four registers, which are added to the indexed area of the memory
map. That is, the registers for the desired endpoint are accessed after programming the INDEX register
with the desired endpoint value. Section 4.78, Section 4.79, Section 4.80, and Section 4.81 provide details
of these registers.

NOTE: The option of setting FIFO sizes dynamically only applies to Endpoints 1 … 4. Endpoint 0
FIFO has a fixed size (64 bytes) and a fixed location (start address 0).

It is the responsibility of the firmware to ensure that all the Tx and Rx endpoints that are
active in the current USB configuration have a block of RAM assigned exclusively to that
endpoint that is at least as large as the maximum packet size set for that endpoint.

24 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

3 USB Controller Host and Peripheral Modes Operation

The USB controller can be used in a range of different environments. It can be used as either a
high-speed or a full-speed USB peripheral device attached to a conventional USB host (such as a PC). It
can be used as either host or peripheral device in point-to-point data transfers with another peripheral
device - or, if the other device also contains a Dual-Role Controller, the two devices can switch roles as
required. (This second device may be either a high-speed, full-speed or low-speed USB function.) Or the
controller can be used as the host to a range of such peripheral devices in a multi-point setup.

Whether the controller expects to behave as a host or as a peripheral device depends on the way the
devices are cabled together. Each USB cable has an A end and a B end. If the A end of the cable is
plugged into the controller, it will take the role of the Host device and go into host mode. If the B end of
the cable is plugged in, the controller will go instead into peripheral mode.

The USB controller interrupts the ARM on completion of the data transfer on any of the endpoints or on
detecting reset, resume, suspend, connect, disconnect, or SOF on the bus.

When the ARM is interrupted with a USB interrupt, it needs to read the interrupt status register to
determine the endpoints that have caused the interrupt and jump to the appropriate routine. If multiple
endpoints have caused the interrupt, endpoint 0 should be serviced first, followed by the other endpoints.
The suspend interrupt should be serviced last.

The flowchart in Figure 2 describes the interrupt service routine for the USB module.

The following sections describe the programming of USB controller in Peripheral mode and Host mode.
DMA Operations and Interrupt Handler mechanisms are common to both peripheral and host mode
operations and are discussed after the programming in Peripheral and Host Mode.

25SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Read interrupt
status register

Resume
interrupt

?
Resume routine

Yes

No

A
device or
B device

?

SESSREQ
interrupt

?

No

Vbus
error interrupt

?

Yes

Yes

A device B device

Session req
routine

routine
Vbus error

?

Host
or peripheral

PeripheralHost

?

Connect
interrupt

Connect
routine

Yes

routine
Babble

?

Yes Babble
interrupt

EP0YesHost EP0
routine interrupt

?

No

No

No

No

Host Rx
routine

Yes
interrupt

?

Receive

Host Tx
routine

?

No

Yes Transmit
interrupt

interrupt
?

EP0 Yes Peripheral
EP0 routine

No

interrupt
?

Receive

No

Rx routine
PeripheralYes

Transmit
interrupt

?
Tx routine
PeripheralYes

interrupt
?

SOF
routine

ResumeYes

interrupt
?

Disconn DisconnectYes
routine

Suspend
interrupt

?

Suspend Yes
routine

USB Controller Host and Peripheral Modes Operation www.ti.com

Figure 2. Interrupt Service Routine Flow Chart

26 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

3.1 USB Controller Peripheral Mode Operation
• Soft connect - After a reset, the SOFTCONN bit of POWER register (bit 6) is cleared to 0. The

controller will therefore appear disconnected until the software has set the SOFTCONN bit to 1. The
application software can then choose when to set the PHY into its normal mode. Systems with a
lengthy initialization procedure may use this to ensure that initialization is complete and the system is
ready to perform enumeration before connecting to the USB.
Once the SOFTCONN bit has been set, the software can also simulate a disconnect by clearing this bit
to 0.

• Entry into suspend mode
When operating as a peripheral device, the controller monitors activity on the bus and when no activity
has occurred for 3 ms, it goes into Suspend mode. If the Suspend interrupt has been enabled, an
interrupt will be generated at this time.
At this point, the controller can then be left active (and hence able to detect when Resume signaling
occurs on the USB), or the application may arrange to disable the controller by stopping its clock.
However, the controller will not then be able to detect Resume signaling on the USB. As a result, some
external hardware will be needed to detect Resume signaling (by monitoring the DM and DP signals),
so that the clock to the controller can be restarted.

• Resume Signaling - When resume signaling occurs on the bus, first the clock to the controller must be
restarted if necessary. Then the controller will automatically exit Suspend mode. If the Resume
interrupt is enabled, an interrupt will be generated.

• Initiating a remote wakeup - If the software wants to initiate a remote wakeup while the controller is in
Suspend mode, it should write to the Power register to set the RESUME bit to 1. The software should
leave then this bit set for approximately 10 ms (minimum of 2 ms, a maximum of 15 ms) before
resetting it to 0.

NOTE: No resume interrupt will be generated when the software initiates a remote wakeup.

• Reset Signaling - When reset signaling occurs on the bus, the controller will perform the following
actions:

– Sets FADDR register to 0
– Sets INDEX register to 0
– Flushes all endpoint FIFOs
– Clears all control/status registers
– Generates a reset interrupt.
If the HSENA bit in the POWER register (bit 5) was set, the controller also tries to negotiate for
high-speed operation.
Whether high-speed operation is selected is indicated by HSMODE bit of POWER register (bit 4).
When the application software receives a reset interrupt, it should close any open pipes and wait for
bus enumeration to begin.

3.1.1 Peripheral Mode: Control Transactions

Endpoint 0 is the main control endpoint of the core. The software is required to handle all the standard
device requests that may be sent or received via endpoint 0. These are described in Universal Serial Bus
Specification, Revision 2.0, Chapter 9. The protocol for these device requests involves different numbers
and types of transactions per transfer. To accommodate this, the software needs to take a state machine
approach to command decoding and handling.

The Standard Device Requests received by a USB peripheral device can be divided into three categories:
Zero Data Requests (in which all the information is included in the command), Write Requests (in which
the command will be followed by additional data), and Read Requests (in which the device is required to
send data back to the host).

This section looks at the sequence of actions that the software must perform to process these different
types of device request.

27SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

NOTE: The Setup packet associated with any standard device request should include an 8-byte
command. Any setup packet containing a command field of anything other than 8 bytes will
be automatically rejected by the controller.

3.1.1.1 Zero Data Requests

Zero data requests have all their information included in the 8-byte command and require no additional
data to be transferred. Examples of Zero Data standard device requests are:
• SET_FEATURE
• CLEAR_FEATURE
• SET_ADDRESS
• SET_CONFIGURATION
• SET_INTERFACE

The sequence of events will begin, as with all requests, when the software receives an endpoint 0
interrupt. The RXPKTRDY bit of PERI_CSR0 (bit 0) will also have been set. The 8-byte command should
then be read from the endpoint 0 FIFO, decoded and the appropriate action taken.

For example, if the command is SET_ADDRESS, the 7-bit address value contained in the command
should be written to the FADDR register. The PERI_CSR0 register should then be written to set the
SERV_RXPKTRDY bit (bit 6) (indicating that the command has been read from the FIFO) and to set the
DATAEND bit (bit 3) (indicating that no further data is expected for this request). The interval between
setting SERV_RXPKTRDY bit and DATAEND bit should be very small to avoid getting a SetupEnd error
condition.

When the host moves to the status stage of the request, a second endpoint 0 interrupt will be generated to
indicate that the request has completed. No further action is required from the software. The second
interrupt is just a confirmation that the request completed successfully. For SET_ADDRESS command,
the address should be set in FADDR register only after the status stage interrupt is received.

If the command is an unrecognized command, or for some other reason cannot be executed, then when it
has been decoded, the PERI_CSR0 register should be written to set the SERV_RXPKTRDY bit (bit 6) and
to set the SENDSTALL bit (bit 5). When the host moves to the status stage of the request, the controller
will send a STALL to tell the host that the request was not executed. A second endpoint 0 interrupt will be
generated and the SENTSTALL bit (bit 2 of PERI_CSR0) will be set.

If the host sends more data after the DATAEND bit has been set, then the controller will send a STALL.
An endpoint 0 interrupt will be generated and the SENTSTALL bit (bit 2 of PERI_CSR0) will be set.

NOTE: DMA is not supported for endpoint 0, so the command should be read by accessing the
endpoint 0 FIFO register.

3.1.1.2 Write Requests

Write requests involve an additional packet (or packets) of data being sent from the host after the 8-byte
command. An example of a Write standard device request is: SET_DESCRIPTOR.

The sequence of events will begin, as with all requests, when the software receives an endpoint 0
interrupt. The RXPKTRDY bit of PERI_CSR0 will also have been set. The 8-byte command should then
be read from the Endpoint 0 FIFO and decoded.

As with a zero data request, the PERI_CSR0 register should then be written to set the SERV_RXPKTRDY
bit (bit 6) (indicating that the command has been read from the FIFO) but in this case the DATAEND bit
(bit 3) should not be set (indicating that more data is expected).

When a second endpoint 0 interrupt is received, the PERI_CSR0 register should be read to check the
endpoint status. The RXPKTRDY bit of PERI_CSR0 should be set to indicate that a data packet has been
received. The COUNT0 register should then be read to determine the size of this data packet. The data
packet can then be read from the endpoint 0 FIFO.

28 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

If the length of the data associated with the request (indicated by the wLength field in the command) is
greater than the maximum packet size for endpoint 0, further data packets will be sent. In this case,
PERI_CSR0 should be written to set the SERV_RXPKTRDY bit, but the DATAEND bit should not be set.

When all the expected data packets have been received, the PERI_CSR0 register should be written to set
the SERV_RXPKTRDY bit and to set the DATAEND bit (indicating that no more data is expected).

When the host moves to the status stage of the request, another endpoint 0 interrupt will be generated to
indicate that the request has completed. No further action is required from the software, the interrupt is
just a confirmation that the request completed successfully.

If the command is an unrecognized command, or for some other reason cannot be executed, then when it
has been decoded, the PERI_CSR0 register should be written to set the SERV_RXPKTRDY bit (bit 6) and
to set the SENDSTALL bit (bit 5). When the host sends more data, the controller will send a STALL to tell
the host that the request was not executed. An endpoint 0 interrupt will be generated and the SENTSTALL
bit of PERI_CSR0 (bit 2) will be set.

If the host sends more data after the DATAEND has been set, then the controller will send a STALL. An
endpoint 0 interrupt will be generated and the SENTSTALL bit of PERI_CSR0 (bit 2) will be set.

3.1.1.3 Read Requests

Read requests have a packet (or packets) of data sent from the function to the host after the 8-byte
command. Examples of Read Standard Device Requests are:
• GET_CONFIGURATION
• GET_INTERFACE
• GET_DESCRIPTOR
• GET_STATUS
• SYNCH_FRAME

The sequence of events will begin, as with all requests, when the software receives an endpoint 0
interrupt. The RXPKTRDY bit of PERI_CSR0 (bit 0) will also have been set. The 8-byte command should
then be read from the endpoint 0 FIFO and decoded. The PERI_CSR0 register should then be written to
set the SERV_RXPKTRDY bit (bit 6) (indicating that the command has read from the FIFO).

The data to be sent to the host should then be written to the endpoint 0 FIFO. If the data to be sent is
greater than the maximum packet size for endpoint 0, only the maximum packet size should be written to
the FIFO. The PERI_CSR0 register should then be written to set the TXPKTRDY bit (bit 1) (indicating that
there is a packet in the FIFO to be sent). When the packet has been sent to the host, another endpoint 0
interrupt will be generated and the next data packet can be written to the FIFO.

When the last data packet has been written to the FIFO, the PERI_CSR0 register should be written to set
the TXPKTRDY bit and to set the DATAEND bit (bit 3) (indicating that there is no more data after this
packet).

When the host moves to the status stage of the request, another endpoint 0 interrupt will be generated to
indicate that the request has completed. No further action is required from the software: the interrupt is
just a confirmation that the request completed successfully.

If the command is an unrecognized command, or for some other reason cannot be executed, then when it
has been decoded, the PERI_CSR0 register should be written to set the SERV_RXPKTRDY bit (bit 6) and
to set the SENDSTALL bit (bit 5). When the host requests data, the controller will send a STALL to tell the
host that the request was not executed. An endpoint 0 interrupt will be generated and the SENTSTALL bit
of PERI_CSR0 (bit 2) will be set.

If the host requests more data after DATAEND (bit 3) has been set, then the controller will send a STALL.
An endpoint 0 interrupt will be generated and the SENTSTALL bit of PERI_CSR0 (bit 2) will be set.

29SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Idle

Tx state Rx state

Sequence #1 Sequence #2

Sequence #3

USB Controller Host and Peripheral Modes Operation www.ti.com

3.1.1.4 Endpoint 0 States

When the USB controller is operating as a peripheral device, the endpoint 0 control needs three modes –
IDLE, TX and RX – corresponding to the different phases of the control transfer and the states endpoint 0
enters for the different phases of the transfer (described in later sections).

The default mode on power-up or reset should be IDLE. RXPKTRDY bit of PERI_CSR0 (bit 0) becoming
set when endpoint 0 is in IDLE state indicates a new device request. Once the device request is unloaded
from the FIFO, the controller decodes the descriptor to find whether there is a data phase and, if so, the
direction of the data phase of the control transfer (in order to set the FIFO direction).See Figure 3.

Depending on the direction of the data phase, endpoint 0 goes into either TX state or RX state. If there is
no Data phase, endpoint 0 remains in IDLE state to accept the next device request.

The actions that the CPU needs to take at the different phases of the possible transfers (e.g., loading the
FIFO, setting TXPKTRDY) are indicated in Figure 4 .

NOTE: The controller changes the FIFO direction, depending on the direction of the data phase
independently of the CPU.

Figure 3. CPU Actions at Transfer Phases

30 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

IntSetup IN data
phase

Int IN data
phase

Int IN data
phase

Int Status phase
(OUT)

IntSequence #1

Idle TX state Idle

set TxPktRdy
Load FIFO and

and set DataEnd

Load FIFO
and set
TxPktRdy

Unload device
req. and clear

RxPktRdy

Load FIFO
and set
TxPktRdy

CPU actions

Status phaseSetup

CPU actions

Sequence #2

RxPktRdy
and clear
Unload FIFO

OUT data

Idle

Unload FIFO
and clear
RxPktRdy

phase
OUT dataInt Int

phase

clear RxPktRdy
Unload FIFO and

and set DataEnd

Int OUT data
phase

Int
(IN)

Int

RX state Idle

Unload
device req.
and clear
RxPktRdy

Setup IntSequence #3 Status phase
(IN)

Int

No data phase

DataEnd
clear RxPktRdy and set
Unload device req and

Idle

CPU actions

www.ti.com USB Controller Host and Peripheral Modes Operation

Figure 4. Sequence of Transfer

31SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

3.1.1.5 Endpoint 0 Service Routine

An Endpoint 0 interrupt is generated when:
• The controller sets the RXPKTRDY bit of PERI_CSR0 (bit 0) after a valid token has been received and

data has been written to the FIFO.
• The controller clears the TXPKTRDY bit of PERI_CSR0 (bit 1) after the packet of data in the FIFO has

been successfully transmitted to the host.
• The controller sets the SENTSTALL bit of PERI_CSR0 (bit 2) after a control transaction is ended due

to a protocol violation.
• The controller sets the SETUPEND bit of PERI_CSR0 (bit 4) because a control transfer has ended

before DATAEND (bit 3 of PERI_CSR0) is set.

Whenever the endpoint 0 service routine is entered, the software must first check to see if the current
control transfer has been ended due to either a STALL condition or a premature end of control transfer. If
the control transfer ends due to a STALL condition, the SENTSTALL bit would be set. If the control
transfer ends due to a premature end of control transfer, the SETUPEND bit would be set. In either case,
the software should abort processing the current control transfer and set the state to IDLE.

Once the software has determined that the interrupt was not generated by an illegal bus state, the next
action taken depends on the endpoint state. Figure 5 shows the flow of this process.

If endpoint 0 is in IDLE state, the only valid reason an interrupt can be generated is as a result of the
controller receiving data from the bus. The service routine must check for this by testing the RXPKTRDY
bit of PERI_CSR0 (bit 0). If this bit is set, then the controller has received a SETUP packet. This must be
unloaded from the FIFO and decoded to determine the action the controller must take. Depending on the
command contained within the SETUP packet, endpoint 0 will enter one of three states:
• If the command is a single packet transaction (SET_ADDRESS, SET_INTERFACE etc.) without any

data phase, the endpoint will remain in IDLE state.
• If the command has an OUT data phase (SET_DESCRIPTOR etc.), the endpoint will enter RX state.
• If the command has an IN data phase (GET_DESCRIPTOR etc.), the endpoint will enter TX state.

If the endpoint 0 is in TX state, the interrupt indicates that the core has received an IN token and data
from the FIFO has been sent. The software must respond to this either by placing more data in the FIFO if
the host is still expecting more data or by setting the DATAEND bit to indicate that the data phase is
complete. Once the data phase of the transaction has been completed, endpoint 0 should be returned to
IDLE state to await the next control transaction.

NOTE: All command transactions include a field that indicates the amount of data the host expects
to receive or is going to send.

If the endpoint is in RX state, the interrupt indicates that a data packet has been received. The software
must respond by unloading the received data from the FIFO. The software must then determine whether it
has received all of the expected data. If it has, the software should set the DATAEND bit and return
endpoint 0 to IDLE state. If more data is expected, the firmware should set the SERV_RXPKTRDY bit of
PERI_CSR0 (bit 6) to indicate that it has read the data in the FIFO and leave the endpoint in RX state.

32 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

Service
endpoint 0

Read endpoint 0 CSR

Sent
stall

?

Yes Clear SentStall bit
state −> IDLE

No

No

Set ServicedSetupEnd
state −> IDLE

Setup
end
?

Yes

State Yes

No

= IDLE
?

IDLE mode

TX mode

No

= TX
?

State Yes

RX mode= RX*
?

State Yes

* By default

www.ti.com USB Controller Host and Peripheral Modes Operation

Figure 5. Service Endpoint 0 Flow Chart

33SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

IDLE mode

RxPktRdy
set?

Return
No

Yes

Set
ServiceRxPktRdy

Unload FIFO

Decode command

Yes

Command
has data

phase
?

No
Process command

Set DataEnd
Set ServicedRxPktRdy

Return

Data

No

phase = IN
?

State −> TX
Yes

Return

State −> RX

Return

USB Controller Host and Peripheral Modes Operation www.ti.com

3.1.1.5.1 IDLE Mode

IDLE mode is the mode the endpoint 0 control must select at power-on or reset and is the mode to which
the endpoint 0 control should return when the RX and TX modes are terminated. It is also the mode in
which the SETUP phase of control transfer is handled (as outlined in Figure 6).

Figure 6. IDLE Mode Flow Chart

34 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

TX mode

Write
� MaxP bytes

to FIFO

Last
packet

?

No

Yes

Set TxPktRdy
and set DataEnd

state −> IDLE

Return

TxPktRdy
Set

www.ti.com USB Controller Host and Peripheral Modes Operation

3.1.1.5.2 TX Mode

When the endpoint is in TX state all arriving IN tokens need to be treated as part of a data phase until the
required amount of data has been sent to the host. If either a SETUP or an OUT token is received while
the endpoint is in the TX state, this will cause a SetupEnd condition to occur as the core expects only IN
tokens. See Figure 7.

Three events can cause TX mode to be terminated before the expected amount of data has been sent:

1. The host sends an invalid token causing a SETUPEND condition (bit 4 of PERI_CSR0 set).
2. The software sends a packet containing less than the maximum packet size for endpoint 0.
3. The software sends an empty data packet.

Until the transaction is terminated, the software simply needs to load the FIFO when it receives an
interrupt that indicates a packet has been sent from the FIFO. (An interrupt is generated when
TXPKTRDY is cleared.)

When the software forces the termination of a transfer (by sending a short or empty data packet), it should
set the DATAEND bit of PERI_CSR0 (bit 3) to indicate to the core that the data phase is complete and
that the core should next receive an acknowledge packet.

Figure 7. TX Mode Flow Chart

35SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

RX mode

RxPktRdy
set
?

Return
No

Yes

Read Count0
register (n)

Unload n bytes
from FIFO

Last
packet

?

No

Yes

Set
ServicedRxPktRdy

Set
ServicedRxPktRdy

and DataEnd
state->IDLE

Return

USB Controller Host and Peripheral Modes Operation www.ti.com

3.1.1.5.3 RX Mode

In RX mode, all arriving data should be treated as part of a data phase until the expected amount of data
has been received. If either a SETUP or an IN token is received while the endpoint is in RX state, a
SetupEnd condition will occur as the controller expects only OUT tokens.

Three events can cause RX mode to be terminated before the expected amount of data has been
received as shown in Figure 8:

1. The host sends an invalid token causing a SETUPEND condition (setting bit 4 of PERI_CSR0).
2. The host sends a packet which contains less than the maximum packet size for endpoint 0.
3. The host sends an empty data packet.

Until the transaction is terminated, the software unloads the FIFO when it receives an interrupt that
indicates new data has arrived (setting RXPKTRDY bit of PERI_CSR0) and to clear RXPKTRDY by
setting the SERV_RXPKTRDY bit of PERI_CSR0 (bit 6).

When the software detects the termination of a transfer (by receiving either the expected amount of data
or an empty data packet), it should set the DATAEND bit (bit 3 of PERI_CSR0) to indicate to the controller
that the data phase is complete and that the core should receive an acknowledge packet next.

Figure 8. RX Mode Flow Chart

36 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

3.1.1.5.4 Error Handling

A control transfer may be aborted due to a protocol error on the USB, the host prematurely ending the
transfer, or if the software wishes to abort the transfer (e.g., because it cannot process the command).

The controller automatically detects protocol errors and sends a STALL packet to the host under the
following conditions:
• The host sends more data during the OUT Data phase of a write request than was specified in the

command. This condition is detected when the host sends an OUT token after the DATAEND bit (bit 3
of PERI_CSR0) has been set.

• The host requests more data during the IN Data phase of a read request than was specified in the
command. This condition is detected when the host sends an IN token after the DATAEND bit in the
PERI_CSR0 register has been set.

• The host sends more than Max Packet Size data bytes in an OUT data packet.
• The host sends a non-zero length DATA1 packet during the STATUS phase of a read request.

When the controller has sent the STALL packet, it sets the SENTSTALL bit (bit 2 of PERI_CSR0) and
generates an interrupt. When the software receives an endpoint 0 interrupt with the SENTSTALL bit set, it
should abort the current transfer, clear the SENTSTALL bit, and return to the IDLE state.

If the host prematurely ends a transfer by entering the STATUS phase before all the data for the request
has been transferred, or by sending a new SETUP packet before completing the current transfer, then the
SETUPEND bit (bit 4 of PERI_CSR0) will be set and an endpoint 0 interrupt generated. When the
software receives an endpoint 0 interrupt with the SETUPEND bit set, it should abort the current transfer,
set the SERV_SETUPEND bit (bit 7 of PERI_CSR0), and return to the IDLE state. If the RXPKTRDY bit
(bit 0 of PERI_CSR0) is set this indicates that the host has sent another SETUP packet and the software
should then process this command.

If the software wants to abort the current transfer, because it cannot process the command or has some
other internal error, then it should set the SENDSTALL bit (bit 5 of PERI_CSR0). The controller will then
send a STALL packet to the host, set the SENTSTALL bit (bit 2 of PERI_CSR0) and generate an endpoint
0 interrupt.

3.1.1.5.5 Additional Conditions

When working as a peripheral device, the controller automatically responds to certain conditions on the
USB bus or actions by the host. The details are given below:
• Stall Issued to Control Transfers

– The host sends more data during an OUT Data phase of a Control transfer than was specified in
the device request during the SETUP phase. This condition is detected by the controller when the
host sends an OUT token (instead of an IN token) after the software has unloaded the last OUT
packet and set DataEnd.

– The host requests more data during an IN data phase of a Control transfer than was specified in
the device request during the SETUP phase. This condition is detected by the controller when the
host sends an IN token (instead of an OUT token) after the software has cleared TXPKTRDY and
set DataEnd in response to the ACK issued by the host to what should have been the last packet.

– The host sends more than MaxPktSize data with an OUT data token.
– The host sends the wrong PID for the OUT Status phase of a Control transfer.
– The host sends more than a zero length data packet for the OUT Status phase.

• Zero Length Out Data Packets In Control Transfer

– A zero length OUT data packet is used to indicate the end of a Control transfer. In normal
operation, such packets should only be received after the entire length of the device request has
been transferred (i.e., after the software has set DataEnd). If, however, the host sends a zero
length OUT data packet before the entire length of device request has been transferred, this signals
the premature end of the transfer. In this case, the controller will automatically flush any IN token
loaded by software ready for the Data phase from the FIFO and set SETUPEND bit (bit 4 of
PERI_CSR0).

37SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

3.1.2 Bulk Transactions

3.1.2.1 Peripheral Mode: Bulk In Transactions

A Bulk IN transaction is used to transfer non-periodic data from the USB peripheral device to the host.

The following optional features are available for use with a Tx endpoint used in peripheral mode for Bulk
IN transactions:
• Double packet buffering: When enabled, up to two packets can be stored in the FIFO awaiting

transmission to the host. Double packet buffering is enabled by setting the DPB bit of TXFIFOSZ
register (bit 4).

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint is
able to accept another packet in its FIFO. This feature allows the DMA controller to load packets into
the FIFO without processor intervention.
When DMA is enabled and DMAMODE bit of PERI_TXCSR is set, an endpoint interrupt is not
generated for completion of the packet transfer. An endpoint interrupt is generated only in the error
conditions.

3.1.2.1.1 Setup

In configuring a TX endpoint for bulk transactions, the TXMAXP register must be written with the
maximum packet size (in bytes) for the endpoint. This value should be the same as the wMaxPacketSize
field of the Standard Endpoint Descriptor for the endpoint and the PERI_TXCSR register should be set as
shown in Table 2:

Table 2. PERI_TXCSR Register Bit Configuration for Bulk IN Transactions

Bit Position Bit Field Name Configuration

Bit 14 ISO Cleared to 0 for bulk mode operation

Bit 13 MODE Set to 1 to make sure the FIFO is enabled (only necessary if the FIFO is shared with an RX
endpoint)

Bit 12 DMAEN Set to 1 if DMA requests must be enabled

Bit 11 FRCDATATOG Cleared to 0 to allow normal data toggle operations

Bit 10 DMAMODE Set to 1 when DMA is enabled and EP interrupt is not needed for each packet transmission

When the endpoint is first configured (following a SET_CONFIGURATION or SET_INTERFACE command
on Endpoint 0), the lower byte of PERI_TXCSR should be written to set the CLRDATATOG bit (bit 6). This
will ensure that the data toggle (which is handled automatically by the controller) starts in the correct state.

Also if there are any data packets in the FIFO (indicated by the FIFONOTEMPTY bit (bit 1 of
PERI_TXCSR) being set), they should be flushed by setting the FLUSHFIFO bit (bit 3 of PERI_TXCSR).

NOTE: It may be necessary to set this bit twice in succession if double buffering is enabled.

38 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

3.1.2.1.2 Operation

When data is to be transferred over a Bulk IN pipe, a data packet needs to be loaded into the FIFO and
the PERI_TXCSR register written to set the TXPKTRDY bit (bit 0). When the packet has been sent, the
TXPKTRDY bit will be cleared by the USB controller and an interrupt generated so that the next packet
can be loaded into the FIFO. If double packet buffering is enabled, then after the first packet has been
loaded and the TXPKTRDY bit set, the TXPKTRDY bit will immediately be cleared by the USB controller
and an interrupt generated so that a second packet can be loaded into the FIFO. The software should
operate in the same way, loading a packet when it receives an interrupt, regardless of whether double
packet buffering is enabled or not.

In the general case, the packet size must not exceed the size specified by the lower 11 bits of the
TXMAXP register. This part of the register defines the payload (packet size) for transfers over the USB
and is required by the USB Specification to be either 8, 16, 32, 64 (Full-Speed or High-Speed) or 512
bytes (High-Speed only).

The host may determine that all the data for a transfer has been sent by knowing the total amount of data
that is expected. Alternatively it may infer that all the data has been sent when it receives a packet which
is smaller than the stated payload (TXMAXP [bit 10 : bit 0]). In the latter case, if the total size of the data
block is a multiple of this payload, it will be necessary for the function to send a null packet after all the
data has been sent. This is done by setting TXPKTRDY when the next interrupt is received, without
loading any data into the FIFO.

If large blocks of data are being transferred, then the overhead of calling an interrupt service routine to
load each packet can be avoided by using DMA.

3.1.2.1.3 Error Handling

If the software wants to shut down the Bulk IN pipe, it should set the SENDSTALL bit (bit 4 of
PERI_TXCSR). When the controller receives the next IN token, it will send a STALL to the host, set the
SENTSTALL bit (bit 5 of PERI_TXCSR) and generate an interrupt.

When the software receives an interrupt with the SENTSTALL bit (bit 5 of PERI_TXCSR) set, it should
clear the SENTSTALL bit. It should however leave the SENDSTALL bit set until it is ready to re-enable the
Bulk IN pipe.

NOTE: If the host failed to receive the STALL packet for some reason, it will send another IN
token, so it is advisable to leave the SENDSTALL bit set until the software is ready to
re-enable the Bulk IN pipe. When a pipe is re-enabled, the data toggle sequence should be
restarted by setting the CLRDATATOG bit in the PERI_TXCSR register (bit 6).

3.1.2.2 Peripheral Mode: Bulk OUT Transactions

A Bulk OUT transaction is used to transfer non-periodic data from the host to the function controller.

The following optional features are available for use with an Rx endpoint used in peripheral mode for Bulk
OUT transactions:
• Double packet buffering: When enabled, up to two packets can be stored in the FIFO on reception

from the host. Double packet buffering is enabled by setting the DPB bit of the RXFIFOSZ register (bit
4).

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint has
a packet in its FIFO. This feature can be used to allow the DMA controller to unload packets from the
FIFO without processor intervention.
When DMA is enabled, endpoint interrupt will not be generated for completion of packet reception.
Endpoint interrupt will be generated only in the error conditions.

39SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

3.1.2.2.1 Setup

In configuring an Rx endpoint for Bulk OUT transactions, the RXMAXP register must be written with the
maximum packet size (in bytes) for the endpoint. This value should be the same as the wMaxPacketSize
field of the Standard Endpoint Descriptor for the endpoint. In addition, the relevant interrupt enable bit in
the INTRRXE register should be set (if an interrupt is required for this endpoint) and the PERI_RXCSR
register should be set as shown in Table 3.

Table 3. PERI_RXCSR Register Bit Configuration for Bulk OUT Transactions

Bit Position Bit Field Name Configuration

Bit 14 ISO Cleared to 0 to enable Bulk protocol

Bit 13 DMAEN Set to 1 if a DMA request is required for this endpoint

Bit 12 DISNYET Cleared to 0 to allow normal PING flow control. This will affect only high speed transactions.

Bit 11 DMAMODE Always set this bit to 0

When the endpoint is first configured (following a SET_CONFIGURATION or SET_INTERFACE command
on Endpoint 0), the lower byte of PERI_RXCSR should be written to set the CLRDATATOG bit (bit 7).
This will ensure that the data toggle (which is handled automatically by the USB controller) starts in the
correct state.

Also if there are any data packets in the FIFO (indicated by the RXPKTRDY bit (bit 0 of PERI_RXCSR)
being set), they should be flushed by setting the FLUSHFIFO bit (bit 4 of PERI_RXCSR).

NOTE: It may be necessary to set this bit twice in succession if double buffering is enabled.

3.1.2.2.2 Operation

When a data packet is received by a Bulk Rx endpoint, the RXPKTRDY bit (bit 0 of PERI_RXCSR) is set
and an interrupt is generated. The software should read the RXCOUNT register for the endpoint to
determine the size of the data packet. The data packet should be read from the FIFO, then the
RXPKTRDY bit should be cleared.

The packets received should not exceed the size specified in the RXMAXP register (as this should be the
value set in the wMaxPacketSize field of the endpoint descriptor sent to the host). When a block of data
larger than wMaxPacketSize needs to be sent to the function, it will be sent as multiple packets. All the
packets will be wMaxPacketSize in size, except the last packet which will contain the residue. The
software may use an application specific method of determining the total size of the block and hence when
the last packet has been received. Alternatively it may infer that the entire block has been received when it
receives a packet which is less than wMaxPacketSize in size. (If the total size of the data block is a
multiple of wMaxPacketSize, a null data packet will be sent after the data to signify that the transfer is
complete.)

In the general case, the application software will need to read each packet from the FIFO individually. If
large blocks of data are being transferred, the overhead of calling an interrupt service routine to unload
each packet can be avoided by using DMA.

40 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

3.1.2.2.3 Error Handling

If the software wants to shut down the Bulk OUT pipe, it should set the SENDSTALL bit (bit 5 of
PERI_RXCSR). When the controller receives the next packet it will send a STALL to the host, set the
SENTSTALL bit (bit 6 of PERI_RXCSR) and generate an interrupt.

When the software receives an interrupt with the SENTSTALL bit (bit 6 of PERI_RXCSR) set, it should
clear this bit. It should however leave the SENDSTALL bit set until it is ready to re-enable the Bulk OUT
pipe.

NOTE: If the host failed to receive the STALL packet for some reason, it will send another packet,
so it is advisable to leave the SENDSTALL bit set until the software is ready to re-enable the
Bulk OUT pipe. When a Bulk OUT pipe is re-enabled, the data toggle sequence should be
restarted by setting the CLRDATATOG bit (bit 7) in the PERI_RXCSR register.

3.1.3 Interrupt Transactions

An Interrupt IN transaction uses the same protocol as a Bulk IN transaction and can be used the same
way. Similarly, an Interrupt OUT transaction uses almost the same protocol as a Bulk OUT transaction
and can be used the same way.

Tx endpoints in the USB controller have one feature for Interrupt IN transactions that they do not support
in Bulk IN transactions. In Interrupt IN transactions, the endpoints support continuous toggle of the data
toggle bit.

This feature is enabled by setting the FRCDATATOG bit in the PERI_TXCSR register (bit 11). When this
bit is set, the controller will consider the packet as having been successfully sent and toggle the data bit
for the endpoint, regardless of whether an ACK was received from the host.

Another difference is that interrupt endpoints do not support PING flow control. This means that the
controller should never respond with a NYET handshake, only ACK/NAK/STALL. To ensure this, the
DISNYET bit in the PERI_RXCSR register (bit 12) should be set to disable the transmission of NYET
handshakes in high-speed mode.

Though DMA can be used with an interrupt OUT endpoint, it generally offers little benefit as interrupt
endpoints are usually expected to transfer all their data in a single packet.

41SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

3.1.4 Isochronous Transactions

3.1.4.1 Isochronous IN Transactions

An Isochronous IN transaction is used to transfer periodic data from the function controller to the host.

The following optional features are available for use with a Tx endpoint used in Peripheral mode for
Isochronous IN transactions:
• Double packet buffering: When enabled, up to two packets can be stored in the FIFO awaiting

transmission to the host. Double packet buffering is enabled by setting the DPB bit of TXFIFOSZ
register (bit 4).

NOTE: Double packet buffering is generally advisable for Isochronous transactions in order to
avoid Underrun errors as described in later section.

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint is
able to accept another packet in its FIFO. This feature allows the DMA controller to load packets into
the FIFO without processor intervention.
However, this feature is not particularly useful with Isochronous endpoints because the packets
transferred are often not maximum packet size and the PERI_TXCSR register needs to be accessed
following every packet to check for Underrun errors.
When DMA is enabled and DMAMODE bit of PERI_TXCSR is set, endpoint interrupt will not be
generated for completion of packet transfer. Endpoint interrupt will be generated only in the error
conditions.

3.1.4.1.1 Setup

In configuring a Tx endpoint for Isochronous IN transactions, the TXMAXP register must be written with
the maximum packet size (in bytes) for the endpoint. This value should be the same as the
wMaxPacketSize field of the Standard Endpoint Descriptor for the endpoint. In addition, the relevant
interrupt enable bit in the INTRTXE register should be set (if an interrupt is required for this endpoint) and
the PERI_TXCSR register should be set as shown in Table 4.

Table 4. PERI_TXCSR Register Bit Configuration for Isochronous IN Transactions

Bit Position Bit Field Name Configuration

Bit 14 ISO Set to 1 to enable Isochronous transfer protocol

Bit 13 MODE Set to 1 to ensure the FIFO is enabled (only necessary if the FIFO is shared with an Rx
endpoint).

Bit 12 DMAEN Set to 1 if DMA Requests have to be enabled

Bit 11 FRCDATATOG Ignored in Isochronous mode

Bit 10 DMAMODE Set it to 1, when DMA is enabled and EP interrupt is not needed for each packet transmission

3.1.4.1.2 Operation

An Isochronous endpoint does not support data retries, so if data underrun is to be avoided, the data to be
sent to the host must be loaded into the FIFO before the IN token is received. The host will send one IN
token per frame (or microframe in High-speed mode), however the timing within the frame (or microframe)
can vary. If an IN token is received near the end of one frame and then at the start of the next frame,
there will be little time to reload the FIFO. For this reason, double buffering of the endpoint is usually
necessary.

42 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

An interrupt is generated whenever a packet is sent to the host and the software may use this interrupt to
load the next packet into the FIFO and set the TXPKTRDY bit in the PERI_TXCSR register (bit 0) in the
same way as for a Bulk Tx endpoint. As the interrupt could occur almost any time within a
frame(/microframe), depending on when the host has scheduled the transaction, this may result in
irregular timing of FIFO load requests. If the data source for the endpoint is coming from some external
hardware, it may be more convenient to wait until the end of each frame(/microframe) before loading the
FIFO as this will minimize the requirement for additional buffering. This can be done by using either the
SOF interrupt or the external SOF_PULSE signal from the controller to trigger the loading of the next data
packet. The SOF_PULSE is generated once per frame(/microframe) when a SOF packet is received. (The
controller also maintains an external frame(/microframe) counter so it can still generate a SOF_PULSE
when the SOF packet has been lost.) The interrupts may still be used to set the TXPKTRDY bit in
PERI_TXCSR (bit 0) and to check for data overruns/underruns.

Starting up a double-buffered Isochronous IN pipe can be a source of problems. Double buffering requires
that a data packet is not transmitted until the frame(/microframe) after it is loaded. There is no problem if
the function loads the first data packet at least a frame(/microframe) before the host sets up the pipe (and
therefore starts sending IN tokens). But if the host has already started sending IN tokens by the time the
first packet is loaded, the packet may be transmitted in the same frame(/microframe) as it is loaded,
depending on whether it is loaded before, or after, the IN token is received. This potential problem can be
avoided by setting the ISOUPDATE bit in the POWER register (bit 7). When this bit is set, any data packet
loaded into an Isochronous Tx endpoint FIFO will not be transmitted until after the next SOF packet has
been received, thereby ensuring that the data packet is not sent too early.

3.1.4.1.3 Error Handling

If the endpoint has no data in its FIFO when an IN token is received, it will send a null data packet to the
host and set the UNDERRUN bit in the PERI_TXCSR register (bit 2). This is an indication that the
software is not supplying data fast enough for the host. It is up to the application to determine how this
error condition is handled.

If the software is loading one packet per frame(/microframe) and it finds that the TXPKTRDY bit in the
PERI_TXCSR register (bit 0) is set when it wants to load the next packet, this indicates that a data packet
has not been sent (perhaps because an IN token from the host was corrupted). It is up to the application
how it handles this condition: it may choose to flush the unsent packet by setting the FLUSHFIFO bit in
the PERI_TXCSR register (bit 3), or it may choose to skip the current packet.

3.1.4.2 Isochronous OUT Transactions

An Isochronous OUT transaction is used to transfer periodic data from the host to the function controller.

Following optional features are available for use with an Rx endpoint used in Peripheral mode for
Isochronous OUT transactions:
• Double packet buffering: When enabled, up to two packets can be stored in the FIFO on reception

from the host. Double packet buffering is enabled by setting the DPB bit of RXFIFOSZ register (bit 4).

NOTE: Double packet buffering is generally advisable for Isochronous transactions in order to
avoid Overrun errors.

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint has
a packet in its FIFO. This feature can be used to allow the DMA controller to unload packets from the
FIFO without processor intervention.
However, this feature is not particularly useful with Isochronous endpoints because the packets
transferred are often not maximum packet size and the PERI_RXCSR register needs to be accessed
following every packet to check for Overrun or CRC errors.
When DMA is enabled, endpoint interrupt will not be generated for completion of packet reception.
Endpoint interrupt will be generated only in the error conditions.

43SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

3.1.4.2.1 Setup

In configuring an Rx endpoint for Isochronous OUT transactions, the RXMAXP register must be written
with the maximum packet size (in bytes) for the endpoint. This value should be the same as the
wMaxPacketSize field of the Standard Endpoint Descriptor for the endpoint. In addition, the relevant
interrupt enable bit in the INTRRXE register should be set (if an interrupt is required for this endpoint) and
the PERI_RXCSR register should be set as shown in Table 5.

Table 5. PERI_RXCSR Register Bit Configuration for Isochronous OUT Transactions

Bit Position Bit Field Name Configuration

Bit 14 ISO Set to 1 to enable isochronous protocol

Bit 13 DMAEN Set to 1 if a DMA request is required for this endpoint

Bit 12 DISNYET Ignored in isochronous transfers

Bit 11 DMAMODE Always set this bit to 0

3.1.4.2.2 Operation

An Isochronous endpoint does not support data retries so, if a data overrun is to be avoided, there must
be space in the FIFO to accept a packet when it is received. The host will send one packet per frame (or
microframe in High-speed mode); however, the time within the frame can vary. If a packet is received near
the end of one frame(/microframe) and another arrives at the start of the next frame, there will be little time
to unload the FIFO. For this reason, double buffering of the endpoint is usually necessary.

An interrupt is generated whenever a packet is received from the host and the software may use this
interrupt to unload the packet from the FIFO and clear the RXPKTRDY bit in the PERI_RXCSR register
(bit 0) in the same way as for a Bulk Rx endpoint. As the interrupt could occur almost any time within a
frame(/microframe), depending on when the host has scheduled the transaction, the timing of FIFO unload
requests will probably be irregular. If the data sink for the endpoint is going to some external hardware, it
may be better to minimize the requirement for additional buffering by waiting until the end of each
frame(/microframe) before unloading the FIFO. This can be done by using either the SOF interrupt or the
external SOF_PULSE signal from the controller to trigger the unloading of the data packet. The
SOF_PULSE is generated once per frame(/microframe) when a SOF packet is received. (The controller
also maintains an external frame(/microframe) counter so it can still generate a SOF_PULSE when the
SOF packet has been lost.) The interrupts may still be used to clear the RXPKTRDY bit in PERI_RXCSR
and to check for data overruns/underruns.

3.1.4.2.3 Error Handling

If there is no space in the FIFO to store a packet when it is received from the host, the OVERRUN bit in
the PERI_RXCSR register (bit 2) will be set. This is an indication that the software is not unloading data
fast enough for the host. It is up to the application to determine how this error condition is handled.

If the controller finds that a received packet has a CRC error, it will still store the packet in the FIFO and
set the RXPKTRDY bit (bit 0 of PERI_RXCSR) and the DATAERROR bit (bit 3 of PERI_RXCSR). It is left
up to the application how this error condition is handled.

44 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

3.2 USB Controller Host Mode Operation
• Entry into Suspend mode. When operating as a host, the controller can be prompted to enter Suspend

mode by setting the SUSPENDM bit in the POWER register. When this bit is set, the controller will
complete the current transaction then stop the transaction scheduler and frame counter. No further
transactions will be started and no SOF packets will be generated. If the ENSUSPM bit (bit 0 of
POWER register) is set, PHY will go into low-power mode when the controller enters Suspend mode.

• Sending Resume Signaling. When the application requires the controller to leave Suspend mode, it
must clear the SUSPENDM bit in the POWER register (bit 1), set the RESUME bit (bit 2) and leave it
set for 20ms. While the RESUME bit is high, the controller will generate Resume signaling on the bus.
After 20 ms, the application should clear the Resume bit, at which point the frame counter and
transaction scheduler will be started.

• Responding to Remote Wake-up. If Resume signaling is detected from the target while the controller is
in Suspend mode, the PHY will be brought out of low-power mode. The controller will then exit
Suspend mode and automatically set the RESUME bit in the POWER register (bit 2) to take over
generating the Resume signaling from the target. If the Resume interrupt is enabled, an interrupt will
be generated.

• Reset Signaling. If the RESET bit in the POWER register (bit 3) is set while the controller is in Host
mode, it will generate Reset signaling on the bus. If the HSENAB bit in the POWER register (bit 5) was
set, it will also try to negotiate for high-speed operation. The software should keep the RESET bit set
for at least 20 ms to ensure correct resetting of the target device. After the software has cleared the bit,
the controller will start its frame counter and transaction scheduler. Whether high-speed operation is
selected will be indicated by HSMODE bit of POWER register (bit 4).

3.2.1 Host Mode: Control Transactions

Host Control Transactions are conducted through Endpoint 0 and the software is required to handle all the
Standard Device Requests that may be sent or received via Endpoint 0 (as described in Universal Serial
Bus Specification, Revision 2.0, Chapter 9).

As for a USB peripheral device, there are three categories of Standard Device Requests to be handled:
Zero Data Requests (in which all the information is included in the command), Write Requests (in which
the command will be followed by additional data), and Read Requests (in which the device is required to
send data back to the host).

1. Zero Data Requests consist of a SETUP command followed by an IN Status Phase
2. Write Requests consist of a SETUP command, followed by an OUT Data Phase which is in turn

followed by an IN Status Phase
3. Read Requests consist of a SETUP command, followed by an IN Data Phase which is in turn followed

by an OUT Status Phase

A timeout may be set to limit the length of time for which the controller will retry a transaction which is
continually NAKed by the target. This limit can be between 2 and 215 frames/ microframes and is set
through the HOST_NAKLIMIT0 register. The following sections describe the CPU actions required for
these different types of requests by examining the steps to take in the different Control Transaction
phases.

45SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

3.2.1.1 Setup Phase

For the SETUP Phase of a control transaction (Figure 9), the software driving the US host device needs
to:

1. Load the 8 bytes of the required Device request command into the Endpoint 0 FIFO.
2. Set SETUPPKT and TXPKTRDY (bits 3 and 1 of HOST_CSR0, respectively).

NOTE: These bits must be set together.

The controller then proceeds to send a SETUP token followed by the 8-byte command to Endpoint 0 of
the addressed device, retrying as necessary. (On errors, controller retries the transaction three times.)

3. At the end of the attempt to send the data, the controller will generate an Endpoint 0 interrupt. The
software should then read HOST_CSR0 to establish whether the RXSTALL bit (bit 2), the ERROR bit
(bit 4) or the NAK_TIMEOUT bit (bit 7) has been set.
If RXSTALL is set, it indicates that the target did not accept the command (e.g., because it is not
supported by the target device) and so has issued a STALL response.
If ERROR is set, it means that the controller has tried to send the SETUP Packet and the following
data packet three times without getting any response.
If NAK_TIMEOUT is set, it means that the controller has received a NAK response to each attempt to
send the SETUP packet, for longer than the time set in HOST_NAKLIMIT0. The controller can then be
directed either to continue trying this transaction (until it times out again) by clearing the
NAK_TIMEOUT bit or to abort the transaction by flushing the FIFO before clearing the NAK_TIMEOUT
bit.

4. If none of RXSTALL, ERROR or NAK_TIMEOUT is set, the SETUP Phase has been correctly ACKed
and the software should proceed to the following IN Data Phase, OUT Data Phase or IN Status Phase
specified for the particular Standard Device Request.

46 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

Transaction
scheduled

TxPktRdy
and SetupPkt

both set
?

SETUP token sent

DATA0 oacket sent

?
received

Stall

No

Yes

Yes

No

RxStall set
TxPktRdy cleared

Error Count cleared
interrupt generated

Command not
supported by
target

TxPktRdy cleared
Error Count cleared
Interrupt generated

Yes

?

No

ACK
received

Transaction
complete

No

NAK
received

?

Yes

?

NAK limit
reached

No

Yes

Error count
cleared

incremented
Error count

NAK Timeout set
Endpoint halted

Interrupt generated

?

Error
count=3

No
Error bit set

TxPktRdy cleared
Error Count cleared
interrupt generated

Yes

Implies problem
at peripheral end
of connection.

Transaction deemed
complete

www.ti.com USB Controller Host and Peripheral Modes Operation

Figure 9. Setup Phase of a Control Transaction Flow Chart

47SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

3.2.1.2 IN Data Phase

For the IN Data Phase of a control transaction (Figure 10), the software driving the USB host device
needs to:

1. Set REQPKT bit of HOST_CSR0 (bit 5).
2. Wait while the controller sends the IN token and receives the required data back.
3. When the controller generates the Endpoint 0 interrupt, read HOST_CSR0 to establish whether the

RXSTALL bit (bit 2), the ERROR bit (bit 4), the NAK_TIMEOUT bit (bit 7) or RXPKTRDY bit (bit 0) has
been set.
If RXSTALL is set, it indicates that the target has issued a STALL response.
If ERROR is set, it means that the controller has tried to send the required IN token three times without
getting any response.
If NAK_TIMEOUT bit is set, it means that the controller has received a NAK response to each attempt
to send the IN token, for longer than the time set in HOST_NAKLIMIT0. The controller can then be
directed either to continue trying this transaction (until it times out again) by clearing the
NAK_TIMEOUT bit or to abort the transaction by clearing REQPKT before clearing the NAK_TIMEOUT
bit.

4. If RXPKTRDY has been set, the software should read the data from the Endpoint 0 FIFO, then clear
RXPKTRDY.

5. If further data is expected, the software should repeat Steps 1-4.

When all the data has been successfully received, the CPU should proceed to the OUT Status Phase of
the Control Transaction.

48 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

IN token sent

?
received
STALL

No

Yes

Yes

No

RxStall set
ReqPkt cleared

Error Count cleared
Interrupt generated

Problem in
data sent

Yes

?

Data0/1
received

Transaction
complete

No

NAK
received

?

Yes

?

NAK limit
reached

No

Yes

Error count
cleared

incremented
Error count

NAK Timeout set
Endpoint halted

Interrupt generated

?

Error
count=3

No
Error bit set

ReqPkt cleared
Error Count cleared
Interrupt generated

Yes

Implies problem
at peripheral end
of connection.

Transaction deemed
complete

For each IN packet
requested in SETUP phase

ReqPkt
set
?

No

ACK sent
RxPktRdy

set

ReqPkt cleared
Error Count cleared
Interrupt generated

www.ti.com USB Controller Host and Peripheral Modes Operation

Figure 10. IN Data Phase Flow Chart

49SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

3.2.1.3 OUT Data Phase

For the OUT Data Phase of a control transaction (Figure 11), the software driving the USB host device
needs to:

1. Load the data to be sent into the endpoint 0 FIFO.
2. Set the TXPKTRDY bit of HOST_CSR0 (bit 1). The controller then proceeds to send an OUT token

followed by the data from the FIFO to Endpoint 0 of the addressed device, retrying as necessary.
3. At the end of the attempt to send the data, the controller will generate an Endpoint 0 interrupt. The

software should then read HOST_CSR0 to establish whether the RXSTALL bit (bit 2), the ERROR bit
(bit 4) or the NAK_TIMEOUT bit (bit 7) has been set.
If RXSTALL bit is set, it indicates that the target has issued a STALL response.
If ERROR bit is set, it means that the controller has tried to send the OUT token and the following data
packet three times without getting any response.
If NAK_TIMEOUT is set, it means that the controller has received a NAK response to each attempt to
send the OUT token, for longer than the time set in the HOST_NAKLIMIT0 register. The controller can
then be directed either to continue trying this transaction (until it times out again) by clearing the
NAK_TIMEOUT bit or to abort the transaction by flushing the FIFO before clearing the NAK_TIMEOUT
bit.
If none of RXSTALL, ERROR or NAKLIMIT is set, the OUT data has been correctly ACKed.

4. If further data needs to be sent, the software should repeat Steps 1-3.

When all the data has been successfully sent, the software should proceed to the IN Status Phase of the
Control Transaction.

50 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

For each OUT packet
specified in SETUP phase

TxPktRdy
set
?

OUT token sent

DATA0/1 packet sent

?
received

Stall

No

Yes

Yes

No

RxStall set
TxPktRdy cleared

Error Count cleared
interrupt generated

Command could
not be completed

TxPktRdy cleared
Error Count cleared
Interrupt generated

Yes

?

No

ACK
received

Transaction
complete

No

NAK
received

?

Yes

?

NAK limit
reached

No

Yes

Error count
cleared

incremented
Error count

NAK Timeout set
Endpoint halted

Interrupt generated

?

Error
count=3

No
Error bit set

TxPktRdy cleared
Error Count cleared
interrupt generated

Yes

Implies problem
at peripheral end
of connection.

Transaction deemed
complete

www.ti.com USB Controller Host and Peripheral Modes Operation

Figure 11. OUT Data Phase Flow Chart

51SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

3.2.1.4 IN Status Phase (following SETUP Phase or OUT Data Phase)

For the IN Status Phase of a Control Transaction (Figure 12), the software driving the USB Host device
needs to:

1. Set the STATUSPKT and REQPKT bits of HOST_CSR0 (bit 6 and bit 5, respectively).
2. Wait while the controller sends an IN token and receives a response from the USB peripheral device.
3. When the controller generates the Endpoint 0 interrupt, read HOST_CSR0 to establish whether the

RXSTALL bit (bit 2), the ERROR bit (bit 4), the NAK_TIMEOUT bit (bit 7) or RXPKTRDY bit (bit 0) has
been set.
If RXSTALL bit is set, it indicates that the target could not complete the command and so has issued a
STALL response.
If ERROR bit is set, it means that the controller has tried to send the required IN token three times
without getting any response.
If NAK_TIMEOUT bit is set, it means that the controller has received a NAK response to each attempt
to send the IN token, for longer than the time set in the HOST_NAKLIMIT0 register. The controller can
then be directed either to continue trying this transaction (until it times out again) by clearing the
NAK_TIMEOUT bit or to abort the transaction by clearing REQPKT bit and STATUSPKT bit before
clearing the NAK_TIMEOUT bit.

4. If RxPktRdy has been set, the CPU should simply clear RxPktRdy.

52 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

IN token sent

?
received
STALL

No

Yes

Yes

No

RxStall set
ReqPkt cleared

Error Count cleared
Interrupt generated

Yes

?

Data1
received

Transaction
complete

No

NAK
received

?

Yes

?

NAK limit
reached

No

Yes

Error count
cleared

incremented
Error count

NAK Timeout set
Endpoint halted

Interrupt generated

?

Error
count=3

No
Error bit set

ReqPkt cleared
Error Count cleared
Interrupt generated

Yes

Implies problem
at peripheral end
of connection.

Transaction deemed
complete

Completion of either SETUP
phase or OUT data phase

No

ACK sent
RxPktRdy

set

ReqPkt cleared
Error Count cleared
Interrupt generated

ReqPkt
and StatusPkt

both set
?

Command could
not be completed

www.ti.com USB Controller Host and Peripheral Modes Operation

Figure 12. Completion of SETUP or OUT Data Phase Flow Chart

53SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

3.2.1.5 OUT Status Phase (following IN Data Phase)

For the OUT Status Phase of a control transaction (Figure 13), the CPU driving the host device needs to:

1. Set STATUSPKT and TXPKTRDY bits of HOST_CSR0 (bit 6 and bit 1, respectively).

NOTE: These bits need to be set together.

2. Wait while the controller sends the OUT token and a zero-length DATA1 packet.
3. At the end of the attempt to send the data, the controller will generate an Endpoint 0 interrupt. The

software should then read HOST_CSR0 to establish whether the RXSTALL bit (bit 2), the ERROR bit
(bit 4) or the NAK_TIMEOUT bit (bit 7) has been set.
If RXSTALL bit is set, it indicates that the target could not complete the command and so has issued a
STALL response.
If ERROR bit is set, it means that the controller has tried to send the STATUS Packet and the following
data packet three times without getting any response.
If NAK_TIMEOUT bit is set, it means that the controller has received a NAK response to each attempt
to send the IN token, for longer than the time set in the HOST_NAKLIMIT0 register. The controller can
then be directed either to continue trying this transaction (until it times out again) by clearing the
NAK_TIMEOUT bit or to abort the transaction by flushing the FIFO before clearing the NAK_TIMEOUT
bit.

4. If none of RXSTALL, ERROR or NAK_TIMEOUT bits is set, the STATUS Phase has been correctly
ACKed.

54 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

Completion of
IN data phase

OUT token sent

?
received

Stall

No

Yes

Yes

No

RxStall set
TxPktRdy cleared

Error Count cleared
interrupt generated

Command could
not be completed

TxPktRdy cleared
Error Count cleared
Interrupt generated

Yes

?

No

ACK
received

Transaction
complete

No

NAK
received

?

Yes

?

NAK limit
reached

No

Yes

Error count
cleared

incremented
Error count

NAK Timeout set
Endpoint halted

Interrupt generated

?

Error
count=3

No
Error bit set

TxPktRdy cleared
Error Count cleared
interrupt generated

Yes

Implies problem
at peripheral end
of connection.

Transaction deemed
complete

TxPktRdy
and StatusPkt

both set
?

Zero−length
DATA1 packet sent

www.ti.com USB Controller Host and Peripheral Modes Operation

Figure 13. Completion of IN Data Phase Flow Chart

55SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

3.2.2 Bulk Transactions

3.2.2.1 Host Mode: Bulk IN Transactions

A Bulk IN transaction may be used to transfer non-periodic data from the external USB peripheral to the
host.

The following optional features are available for use with an Rx endpoint used in host mode to receive the
data:
• Double packet buffering: When enabled, up to two packets can be stored in the FIFO on reception

from the host. This allows that one packet can be received while another is being read. Double packet
buffering is enabled by setting the DPB bit of RXFIFOSZ register (bit 4).

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint has
a packet in its FIFO. This feature can be used to allow the DMA controller to unload packets from the
FIFO without processor intervention.
When DMA is enabled, endpoint interrupt will not be generated for completion of packet reception.
Endpoint interrupt will be generated only in the error conditions.

• AutoRequest: When the AutoRequest feature is enabled, the REQPKT bit of HOST_RXCSR (bit 5) will
be automatically set when the RXPKTRDY bit is cleared.
This feature is applicable only when DMA is enabled. To enable AutoRequest feature, set the
AUTOREQ register for the DMA channel associated for the endpoint.

3.2.2.1.1 Setup

Before initiating any Bulk IN Transactions in Host mode:
• The target function address needs to be set in the RXFUNCADDR register for the selected controller

endpoint. (RXFUNCADDR register is available for all endpoints from EP0 to EP4.)
• The HOST_RXTYPE register for the endpoint that is to be used needs to be programmed as follows:

– Operating speed in the SPEED bit field (bits 7 and 6).
– Set 10 (binary value) in the PROT field for bulk transfer.
– Endpoint Number of the target device in RENDPN field. This is the endpoint number contained in

the Rx endpoint descriptor returned by the target device during enumeration.
• The RXMAXP register for the controller endpoint must be written with the maximum packet size (in

bytes) for the transfer. This value should be the same as the wMaxPacketSize field of the Standard
Endpoint Descriptor for the target endpoint.

• The HOST_RXINTERVAL register needs to be written with the required value for the NAK limit (2 - 215
frames/microframes), or cleared to 0 if the NAK timeout feature is not required.

• The relevant interrupt enable bit in the INTRRXE register should be set (if an interrupt is required for
this endpoint).

• The following bits of HOST_RXCSR register should be set as shown below:

– Set DMAEN (bit 13) to 1 if a DMA request is required for this endpoint.
– Clear DSINYET (bit 12) to 0 to allow normal PING flow control. This will affect only High Speed

transactions.
– Always clear DMAMODE (bit 11) to 0.

• If DMA is enabled, the AUTOREQ register can be set for generating IN tokens automatically after
receiving the data. Set the bit field RXn_AUTOREQ (where n is the endpoint number) with binary value
01 or 11.

When the endpoint is first configured, the endpoint data toggle should be cleared to 0 either by using the
DATATOGWREN and DATATOG bits of HOST_RXCSR (bit 10 and bit 9) to toggle the current setting or
by setting the CLRDATATOG bit of HOST_RXCSR (bit 7). This will ensure that the data toggle (which is
handled automatically by the controller) starts in the correct state. Also if there are any data packets in the
FIFO (indicated by the RXPKTRDY bit (bit 0 of HOST_RXCSR) being set), they should be flushed by
setting the FLUSHFIFO bit of HOST_RXCSR (bit 4).

NOTE: It may be necessary to set this bit twice in succession if double buffering is enabled.

56 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

3.2.2.1.2 Operation

When Bulk data is required from the USB peripheral device, the software should set the REQPKT bit in
the corresponding HOST_RXCSR register (bit 5). The controller will then send an IN token to the selected
peripheral endpoint and waits for data to be returned.

If data is correctly received, RXPKTRDY bit of HOST_RXCSR (bit 0) is set. If the USB peripheral device
responds with a STALL, RXSTALL bit (bit 6 of HOST_RXCSR) is set. If a NAK is received, the controller
tries again and continues to try until either the transaction is successful or the POLINTVL_NAKLIMIT set
in the HOST_RXINTERVAL register is reached. If no response at all is received, two further attempts are
made before the controller reports an error by setting the ERROR bit of HOST_RXCSR (bit 2).

The controller then generates the appropriate endpoint interrupt, whereupon the software should read the
corresponding HOST_RXCSR register to determine whether the RXPKTRDY, RXSTALL, ERROR or
DATAERR_NAKTIMEOUT bit is set and act accordingly. If the DATAERR_NAKTIMEOUT bit is set, the
controller can be directed either to continue trying this transaction (until it times out again) by clearing the
DATAERR_NAKTIMEOUT bit or to abort the transaction by clearing REQPKT bit before clearing the
DATAERR_NAKTIMEOUT bit.

The packets received should not exceed the size specified in the RXMAXP register (as this should be the
value set in the wMaxPacketSize field of the endpoint descriptor sent to the host).

In the general case, the application software will need to read each packet from the FIFO individually. If
large blocks of data are being transferred, the overhead of calling an interrupt service routine to unload
each packet can be avoided by using DMA.

3.2.2.1.3 Error Handling

If the target wants to shut down the Bulk IN pipe, it will send a STALL response to the IN token. This will
result in the RXSTALL bit of HOST_RXCSR (bit 6) being set.

3.2.2.2 Bulk OUT Transactions

A Bulk OUT transaction may be used to transfer non-periodic data from the host to the USB peripheral.

Following optional features are available for use with a Tx endpoint used in Host mode to transmit this
data:
• Double packet buffering: When enabled, up to two packets can be stored in the FIFO awaiting

transmission to the peripheral device. Double packet buffering is enabled by setting the DPB bit of
TXFIFOSZ register (bit 4).

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint is
able to accept another packet in its FIFO. This feature can be used to allow the DMA controller to load
packets into the FIFO without processor intervention.
When DMA is enabled and DMAMODE bit in HOST_TXCSR register is set, an endpoint interrupt will
not be generated for completion of packet reception. An endpoint interrupt will be generated only in the
error conditions.

3.2.2.2.1 Setup

Before initiating any bulk OUT transactions:
• The target function address needs to be set in the TXFUNCADDR register for the selected controller

endpoint. (TXFUNCADDR register is available for all endpoints from EP0 to EP4.)
• The HOST_TXTYPE register for the endpoint that is to be used needs to be programmed as follows:

– Operating speed in the SPEED bit field (bits 7 and 6).
– Set 10b in the PROT field for bulk transfer.
– Endpoint Number of the target device in TENDPN field. This is the endpoint number contained in

the OUT(Tx) endpoint descriptor returned by the target device during enumeration.
• The TXMAXP register for the controller endpoint must be written with the maximum packet size (in

bytes) for the transfer. This value should be the same as the wMaxPacketSize field of the Standard
Endpoint Descriptor for the target endpoint.

57SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

• The HOST_TXINTERVAL register needs to be written with the required value for the NAK limit (2-215
frames/microframes), or cleared to 0 if the NAK timeout feature is not required.

• The relevant interrupt enable bit in the INTRTXE register should be set (if an interrupt is required for
this endpoint).

• The following bits of HOST_TXCSR register should be set as shown below:

– Set the MODE bit (bit 13) to 1 to ensure the FIFO is enabled (only necessary if the FIFO is shared
with an Rx endpoint).

– Set the DMAEN bit (bit 12) to 1 if a DMA request is required for this endpoint.
– Clear the FRCDATATOG bit (bit 11) to 0 to allow normal data toggle operations.
– Set the DMAMODE bit (bit 10) to 1 when DMA is enabled and the endpoint interrupt is not needed

for each packet transmission.

When the endpoint is first configured, the endpoint data toggle should be cleared to 0 either by using the
DATATOGWREN bit and DATATOG bit of HOST_TXCSR (bit 9 and bit 8) to toggle the current setting or
by setting the CLRDATATOG bit of HOST_TXCSR (bit 6). This will ensure that the data toggle (which is
handled automatically by the controller) starts in the correct state. Also, if there are any data packets in
the FIFO (indicated by the FIFONOTEMPTY bit of HOST_TXCSR register (bit 1) being set), they should
be flushed by setting the FLUSHFIFO bit (bit 3 of HOST_TXCSR).

NOTE: It may be necessary to set this bit twice in succession if double buffering is enabled.

3.2.2.2.2 Operation

When Bulk data is required to be sent to the USB peripheral device, the software should write the first
packet of the data to the FIFO (or two packets if double-buffered) and set the TXPKTRDY bit in the
corresponding HOST_TXCSR register (bit 0). The controller will then send an OUT token to the selected
peripheral endpoint, followed by the first data packet from the FIFO.

If data is correctly received by the peripheral device, an ACK should be received whereupon the controller
will clear TXPKTRDY bit of HOST_TXCSR (bit 0). If the USB peripheral device responds with a STALL,
the RXSTALL bit (bit 5) of HOST_TXCSR is set. If a NAK is received, the controller tries again and
continues to try until either the transaction is successful or the NAK limit set in the HOST_TXINTERVAL
register is reached. If no response at all is received, two further attempts are made before the controller
reports an error by setting ERROR bit in HOST_TXCSR (bit 2).

The controller then generates the appropriate endpoint interrupt, whereupon the software should read the
corresponding HOST_TXCSR register to determine whether the RXSTALL (bit 5), ERROR (bit 2) or
NAK_TIMEOUT (bit 7) bit is set and act accordingly. If the NAK_TIMEOUT bit is set, the controller can be
directed either to continue trying this transaction (until it times out again) by clearing the NAK_TIMEOUT
bit or to abort the transaction by flushing the FIFO before clearing the NAK_TIMEOUT bit.

If large blocks of data are being transferred, then the overhead of calling an interrupt service routine to
load each packet can be avoided by using DMA.

3.2.2.2.3 Error Handling

If the target wants to shut down the Bulk OUT pipe, it will send a STALL response. This is indicated by the
RXSTALL bit of HOST_TXCSR register (bit 5) being set.

58 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

3.2.3 Host Mode: Interrupt Transactions

When the controller is operating as the host, interactions with an Interrupt endpoint on the USB peripheral
device are handled in very much the same way as the equivalent Bulk transactions (described in previous
sections).

The principal difference as far as operational steps are concerned is that PROT field of HOST_RXTYPE
and HOST_TXTYPE (bits 5:4) need to be set (binary value) to represent an Interrupt transaction.

The required polling interval also needs to be set in the HOST_RXINTERVAL and HOST_TXINTERVAL
registers.

3.2.4 Isochronous Transactions

3.2.4.1 Host Mode: Isochronous IN Transactions

An Isochronous IN transaction is used to transfer periodic data from the USB peripheral to the host.

The following optional features are available for use with an Rx endpoint used in Host mode to receive this
data:
• Double packet buffering: When enabled, up to two packets can be stored in the FIFO on reception

from the host. This allows that one packet can be received while another is being read. Double packet
buffering is enabled by setting the DPB bit of RXFIFOSZ register (bit 4).

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint has
a packet in its FIFO. This feature can be used to allow the DMA controller to unload packets from the
FIFO without processor intervention. However, this feature is not particularly useful with isochronous
endpoints because the packets transferred are often not maximum packet size.
When DMA is enabled, endpoint interrupt will not be generated for completion of packet reception.
Endpoint interrupt will be generated only in the error conditions.

• AutoRequest: When the AutoRequest feature is enabled, the REQPKT bit of HOST_RXCSR (bit 5) will
be automatically set when the RXPKTRDY bit is cleared.
This feature is applicable only when DMA is enabled. To enable AutoRequest feature, set the
AUTOREQ register for the DMA channel associated for the endpoint.

3.2.4.1.1 Setup

Before initiating an Isochronous IN Transactions in Host mode:
• The target function address needs to be set in the RXFUNCADDR register for the selected controller

endpoint (RXFUNCADDR register is available for all endpoints from EP0 to EP4).
• The HOST_RXTYPE register for the endpoint that is to be used needs to be programmed as follows:

– Operating speed in the SPEED bit field (bits 7 and 6).
– Set 01 (binary value) in the PROT field for isochronous transfer.
– Endpoint Number of the target device in RENDPN field. This is the endpoint number contained in

the Rx endpoint descriptor returned by the target device during enumeration.
• The RXMAXP register for the controller endpoint must be written with the maximum packet size (in

bytes) for the transfer. This value should be the same as the wMaxPacketSize field of the Standard
Endpoint Descriptor for the target endpoint.

• The HOST_RXINTERVAL register needs to be written with the required transaction interval (usually
one transaction per frame/microframe).

• The relevant interrupt enable bit in the INTRRXE register should be set (if an interrupt is required for
this endpoint).

• The following bits of HOST_RXCSR register should be set as shown below:

– Set the DMAEN bit (bit 13) to 1 if a DMA request is required for this endpoint.
– Clear the DISNYET it (bit 12) to 0 to allow normal PING flow control. This will only affect High

Speed transactions.
– Always clear the DMAMODE bit (bit 11) to 0.

• If DMA is enabled, AUTOREQ register can be set for generating IN tokens automatically after receiving
the data. Set the bit field RXn_AUTOREQ (where n is the endpoint number) with binary value 01 or 11.

59SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

3.2.4.1.2 Operation

The operation starts with the software setting REQPKT bit of HOST_RXCSR (bit 5). This causes the
controller to send an IN token to the target.

When a packet is received, an interrupt is generated which the software may use to unload the packet
from the FIFO and clear the RXPKTRDY bit in the HOST_RXCSR register (bit 0) in the same way as for a
Bulk Rx endpoint. As the interrupt could occur almost any time within a frame(/microframe), the timing of
FIFO unload requests will probably be irregular. If the data sink for the endpoint is going to some external
hardware, it may be better to minimize the requirement for additional buffering by waiting until the end of
each frame before unloading the FIFO. This can be done by using the SOF_PULSE signal from the
controller to trigger the unloading of the data packet. The SOF_PULSE is generated once per
frame(/microframe). The interrupts may still be used to clear the RXPKTRDY bit in HOST_RXCSR.

3.2.4.1.3 Error Handling

If a CRC or bit-stuff error occurs during the reception of a packet, the packet will still be stored in the FIFO
but the DATAERR_NAKTIMEOUT bit of HOST_RXCSR (bit 3) is set to indicate that the data may be
corrupt.

3.2.4.2 Host Mode: Isochronous Out Transactions

An Isochronous OUT transaction may be used to transfer periodic data from the host to the USB
peripheral.

Following optional features are available for use with a Tx endpoint used in Host mode to transmit this
data:
• Double packet buffering: When enabled, up to two packets can be stored in the FIFO awaiting

transmission to the peripheral device. Double packet buffering is enabled by setting the DPB bit of
TXFIFOSZ register (bit 4).

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint is
able to accept another packet in its FIFO. This feature can be used to allow the DMA controller to load
packets into the FIFO without processor intervention.
However, this feature is not particularly useful with isochronous endpoints because the packets
transferred are often not maximum packet size.
When DMA is enabled and DMAMODE bit in HOST_TXCSR register is set, endpoint interrupt will not
be generated for completion of packet reception. Endpoint interrupt will be generated only in the error
conditions.

3.2.4.2.1 Setup

Before initiating any Isochronous OUT transactions:
• The target function address needs to be set in the TXFUNCADDR register for the selected controller

endpoint (TXFUNCADDR register is available for all endpoints from EP0 to EP4).
• The HOST_TXTYPE register for the endpoint that is to be used needs to be programmed as follows:

– Operating speed in the SPEED bit field (bits 7 and 6).
– Set 01 (binary value) in the PROT field for isochronous transfer.
– Endpoint Number of the target device in TENDPN field. This is the endpoint number contained in

the OUT(Tx) endpoint descriptor returned by the target device during enumeration.
• The TXMAXP register for the controller endpoint must be written with the maximum packet size (in

bytes) for the transfer. This value should be the same as the wMaxPacketSize field of the Standard
Endpoint Descriptor for the target endpoint.

• The HOST_TXINTERVAL register needs to be written with the required transaction interval (usually
one transaction per frame/microframe).

• The relevant interrupt enable bit in the INTRTXE register should be set (if an interrupt is required for
this endpoint).

• The following bits of HOST_TXCSR register should be set as shown below:

– Set the MODE bit (bit 13) to 1 to ensure the FIFO is enabled (only necessary if the FIFO is shared
with an Rx endpoint).

60 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

– Set the DMAEN bit (bit 12) to 1 if a DMA request is required for this endpoint.
– The FRCDATATOG bit (bit 12) is ignored for isochronous transactions.
– Set the DMAMODE bit (bit 10) to 1 when DMA is enabled and the endpoint interrupt is not needed

for each packet transmission.

3.2.4.2.2 Operation

The operation starts when the software writes to the FIFO and sets TXPKTRDY bit of HOST_TXCSR
(bit 0). This triggers the controller to send an OUT token followed by the first data packet from the FIFO.

An interrupt is generated whenever a packet is sent and the software may use this interrupt to load the
next packet into the FIFO and set the TXPKTRDY bit in the HOST_TXCSR register (bit 0) in the same
way as for a Bulk Tx endpoint. As the interrupt could occur almost any time within a frame, depending on
when the host has scheduled the transaction, this may result in irregular timing of FIFO load requests. If
the data source for the endpoint is coming from some external hardware, it may be more convenient to
wait until the end of each frame before loading the FIFO as this will minimize the requirement for
additional buffering. This can be done by using the SOF_PULSE signal from the controller to trigger the
loading of the next data packet. The SOF_PULSE is generated once per frame(/microframe). The
interrupts may still be used to set the TXPKTRDY bit in HOST_TXCSR.

3.3 DMA Operation

The DMA controller sub-module is a common 4 dual-channel DMA controller. It supports 4 TX and 4 RX
channels, and each channel attaches to the associated endpoint in the controller. Channel 0 maps to
Endpoint 1 up to Channel 3 mapping to Endpoint 4, while endpoint 0 cannot utilize the DMA. The DMA is
programmed through parameters stored in the DMA registers, and implements DMAs through the buffer
descriptor chains stored in main memory. The DMA utilizes incrementing addressing mode, and can burst
up to 64 bytes. When a DMA is initiated, the DMA controller reads the current parameters for that channel
from the DMA registers, reads the CPPI buffer descriptor pointed to by the parameters, and performs the
DMA using the data buffer in the descriptor. The DMA controller updates and saves the DMA parameters
when the data is completed. The software can access the current parameters at any time by accessing
the DMA registers.

The DMA controller has a concept of DMA packets which is different from the USB packets. A DMA
packet can be (but not necessarily) of the same size as USB packet. Each DMA packet can comprise of
one or multiple data buffers. Each DMA channel can process one or multiple chains of these DMA
packets.

The controller supports two modes of DMA: transparent mode and RNDIS mode. Transparent mode will
interrupt the CPU for every USB data packet, while RNDIS mode can service multiple USB packets with
only a single CPU interrupt.

3.3.1 DMA Transmit Operation

For transmit operation, the software has to program the DMA channel with a chain of transmit buffers.

3.3.1.1 Transmit Buffer

A Transmit buffer is a contiguous block of memory used to store data for transmission. Each Tx buffer has
a corresponding Tx buffer descriptor. Each Tx buffer can be linked together with other Tx buffers to make
a DMA packet or a queue of DMA packets.

Transmit buffers are byte aligned structures located in processor’s main memory. Tx buffer size may vary
from 1 to 65,535 bytes.

3.3.1.2 CPPI Transmit Buffer Descriptor

Tx buffer descriptors provide information about a single corresponding Tx data buffer. Every Tx buffer has
a single Tx buffer descriptor that stores the following information:
• Pointer to the data buffer
• Pointer to the next buffer descriptor in the queue

61SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

• Buffer length and offset to the first valid byte of buffer data
• Start of DMA packet (SOP) indicator
• End of DMA packet (EOP) indicator
• Ownership (only valid with SOP)
• End of queue (EOQ) (only valid on EOP)
• Packet Length (only valid with SOP)

Transmit buffer descriptors contain 16 bytes (4 words) and must begin on 16-byte aligned addresses.
Transmit buffer descriptors may be linked together to form packets. Buffer descriptor SOP and EOP bits
are used to delimit packets. Packets in turn may be linked together to form transmit queue. Each queue
consists of a chain of buffer descriptors linked together by Next Descriptor Pointers. The last buffer
descriptor in a queue has a zero Next Descriptor Pointer. Each descriptor points to a data buffer yielding a
queue of buffers.

Four Words of Transmit Buffer Descriptor are described below.

Table 6. Transmit Buffer Descriptor Word 0

Bits Name Description

31:0 Next Descriptor The 32-bit word aligned memory address of the next buffer descriptor in the Tx queue. This is the
Pointer mechanism used to reference the next buffer descriptor from the current buffer descriptor. If the

value of this pointer is zero then the current buffer is the last buffer in the queue. The software sets
the Next Descriptor Pointer.

Table 7. Transmit Buffer Descriptor Word 1

Bits Name Description

31:0 Buffer Pointer The Buffer Pointer is the byte aligned memory address of the buffer associated with the buffer
descriptor. The software sets the Buffer Pointer.

Table 8. Transmit Buffer Descriptor Word 2

Bits Name Description

31:16 Buffer Offset The Buffer Offset indicates how many unused bytes are at the start of the buffer (SOP buffers only).
A value of zero indicates that there are no unused bytes at the start of the buffer and that valid data
begins on the first byte of the buffer. A value of 000Fh (decimal 15) indicates that the first 15 bytes
of the buffer are to be ignored by the DMA controller while transmitting and that valid buffer data
starts on byte 16 of the buffer. The Buffer Offset is valid only on Start Of Packet buffer descriptors
and must be zero otherwise. The software sets the Buffer Offset. The Buffer Offset must be less
than the Buffer Length.

15:0 Buffer Length The Buffer Length field indicates how many valid data bytes are in the buffer. Unused or protocol
specific bytes at the beginning of the buffer are not counted in the Buffer Length field. The software
sets the Buffer Length.

Table 9. Transmit Buffer Descriptor Word 3

Bits Name Value Description

31 SOP Start of Packet: SOP Indicates that the descriptor buffer is the first buffer in the packet. The
software sets the SOP bit.

0 Not start of packet buffer

1 Start of packet buffer

30 EOP End of Packet: EOP Indicates that the descriptor buffer is the last buffer in the packet. The
software sets the EOP bit. It is valid to set both SOP and EOP in the same descriptor.

0 Not end of packet buffer

1 End of packet buffer

62 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

Table 9. Transmit Buffer Descriptor Word 3 (continued)

Bits Name Value Description

29 Ownership The Ownership bit indicates ownership of the DMA packet and is valid only on SOP. This bit
is set by the software and cleared by the DMA controller when the packet has been
transmitted. The software can use this bit to reclaim buffers.

0 The packet is owned by the host processor

1 The packet is owned by the DMA controller

28 EOQ End of Queue: The End of Queue bit is set by the DMA controller to indicate that all packets
in the queue have been transmitted and the Tx queue is empty. This bit is valid only on when
EOP is set.

0 The Tx queue has more packets to transfer

1 The DMA controller took this descriptor buffer as the last buffer descriptor in the last packet in
the queue

27:24 Reserved Reserved

23 Zero Byte Zero Byte Packet Identifier. This bit is set by the software when a zero byte USB packet
needs to be transmitted. This bit tells the DMA controller that no data transfer needs to be
done for transmitting this zero byte data buffer. Set the Packet Length to 1 when setting this
bit.

22:20 Reserved Reserved

19 Rx Abort Receive DMA Transfer abort indicator. This field is only valid on SOP Descriptor. DMA set
this bit field to indicate the event that the Rx Packet being received is aborted due to the lack
of sufficient buffers in the receive queue and the BUFCNT is not zero. DMA will force the
BUFCNT to zero. Rx channel will start up again when the queue is replenished and the
BUFCNT is incremented by software.

18-16 Reserved Reserved

15:0 Packet Length The length of the DMA packet in bytes. This field is valid only on SOP and is written by the
software. If the Packet Length is less than the sum of the buffer lengths, then the packet data
will be truncated. A Packet Length greater than the sum of the buffers is a software error.
Packet Length must be nonzero. Set to one when setting the Zero Byte bit.

Four different cases are possible for the number of buffers in a DMA packet:

1. Buffer Descriptor contains Start of Packet field and End of Packet field (1 buffer in DMA packet).
2. Buffer Descriptor contains Start of Packet field only (2+ buffers in DMA packet).
3. Buffer Descriptor contains End of Packet field only (2+ buffers in DMA packet).
4. Buffer Descriptor does not contain either of Start of Packet field and End of Packet field (3+ buffers in

packet).

3.3.1.3 Transmit DMA State

The DMA controller stores and maintains state information for each transmit channel. The state
information is referred to as the Tx DMA State. The Tx DMA State is a combination of control fields and
DMA controller specific scratchpad space used to manipulate data structures and transmit DMA packets.
The Tx DMA State is stored in registers TCPPIDMASTATEW0, TCPPIDMASTATEW1,
TCPPIDMASTATEW2, TCPPIDMASTATEW3, TCPPIDMASTATEW4, TCPPIDMASTATEW5 and
TCPPICOMPPTR for each channel.

Each channel has one queue. The queue has one head descriptor pointer and one completion pointer.

The following information is stored in the Tx DMA State:
• TCPPIDMASTATEW0: Tx Queue Head Descriptor Pointer(s)
• TCPPICOMPPTR: Tx Completion Pointer(s)
• TCPPIDMASTATEW1: Start of Packet Buffer Descriptor Pointer
• TCPPIDMASTATEW2: Current Buffer Descriptor Pointer
• TCPPIDMASTATEW3: Current Buffer Pointer
• TCPPIDMASTATEW5: Remaining DMA Packet Length and Actual DMA Packet Length

63SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

SOP descriptor Buffer

Descriptor Buffer

EOP descriptor Buffer

Tx queue head descriptor pointer

USB Controller Host and Peripheral Modes Operation www.ti.com

3.3.1.4 Transmit Queue

Figure 14 shows a Tx queue. Tx queue provide a logical queue of DMA packets for transmission through
a channel. Each channel has one dedicated Tx queues. The queue has one associated Tx Queue Head
Descriptor Pointer and one associated Tx Completion Pointer container in the channel Tx DMA state. The
Tx queue is linked lists of Tx buffer descriptors that constitute one or more packets queued for
transmission. Packets are added to the tail of the list by the software and packets are freed from the head
of the list by the DMA controller as each packet transmission is completed.

Figure 14. Tx Queue Flow Chart

3.3.1.5 Operation
• After reset the software must write zeroes to all Tx DMA State registers (TCPPIDMASTATEW0,

TCPPIDMASTATEW1, TCPPIDMASTATEW2, TCPPIDMASTATEW3, TCPPIDMASTATEW4,
TCPPIDMASTATEW5).

• The software constructs transmit queues in memory (one or more DMA packets for transmission)
• Enable DMA for the endpoint in the PERI_TXCSR or HOST_TXCSR by setting the DMAEN bit.
• Enable the DMA ports by setting TCPPI_ENABLE bit of TCPPICR register.
• Write the head of the queue descriptor pointer to the TCPPIDMASTATEW0 register to start the DMA.
• The USB controller will start transmitting data. Interrupt associated with the DMA channel is asserted,

after each DMA packet is transmitted.

For each buffer added to a transmit queue, the software must initialize the Tx buffer descriptor values as
follows:
• Write the Next Descriptor Pointer with the 32-bit aligned address of the next descriptor in the queue

(zero if last descriptor)
• Write the Buffer Pointer with the byte aligned address of the buffer data
• Write the Buffer Length with the number of bytes in the buffer
• Write the Buffer Offset with the number of bytes in the offset to the data (nonzero with SOP only)
• Set the SOP, EOP, and Ownership bits as appropriate
• Clear the End Of Queue bit

The DMA controller begins Tx DMA packet transmission on a given channel when the host writes the
channel’s Tx queue head descriptor pointer with the address of the first buffer descriptor in the queue
(nonzero value). Each channel has one queue and a head descriptor pointer. The first buffer descriptor for
each Tx DMA packet must have the Start of Packet (SOP) bit and the Ownership bit set to one by the
software. The last buffer descriptor for each Tx DMA packet must have the End of Packet (EOP) bit set to
one by the software. The DMA controller will transmit DMA packets until all queued packets have been
transmitted and the queue is empty. When each packet transmission is complete, the DMA controller will

64 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

clear the Ownership bit in the DMA packet’s SOP buffer descriptor and issue an interrupt to the processor
by writing the DMA packet’s last buffer descriptor address to the queue’s Tx DMA State Completion
Pointer (TCPPICOMPPTR register). When the last packet in a queue has been transmitted, the DMA
controller sets the End Of Queue bit in the EOP buffer descriptor, clears the Ownership bit in the SOP
Descriptor, zeroes the appropriate DMA state head descriptor pointer, and then issues a Tx interrupt to
the host by writing address of the last buffer descriptor processed by the DMA controller to the queue’s
associated Tx completion pointer (TCPPICOMPPTR register).

On interrupt from the port, the software can process the buffer queue, detecting transmitted packets by the
status of the Ownership bit in the SOP buffer descriptor. If the Ownership bit is cleared to zero, then the
packet has been transmitted and the software may reclaim the buffers associated with the packet. The
software continues queue processing until the end of the queue or until a SOP buffer descriptor is read
that contains a set Ownership bit indicating that the packet transmission is not complete. The software
determines that all packets in the queue have been transmitted when the last packet in the queue has a
cleared Ownership bit in the SOP buffer descriptor, the End of Queue bit is set in the last packet EOP
buffer descriptor, and the Next Descriptor Pointer of the last packet EOP buffer descriptor is zero.

The software acknowledges an interrupt by writing the address of the last buffer descriptor to the queue’s
associated Tx Completion Pointer (TCPPICOMPPTR register).

If the software written buffer address value in TCCPICOMPPTR register is different from the buffer
address written by the DMA controller after Tx completion, then the interrupt for the Tx Channel remains
asserted. If the software-written buffer address value matches with the buffer address written by the DMA
controller, the Tx Channel interrupt gets deasserted.

A misqueued packet condition may occur when the software adds a packet to a queue for transmission as
the DMA controller finishes transmitting the previous last packet in the queue. The misqueued packet is
detected by the software when queue processing detects a cleared Ownership bit in the SOP buffer
descriptor, a set End of Queue bit in the EOP buffer descriptor, and a nonzero Next Descriptor Pointer in
the EOP buffer descriptor. A misqueued packet means that the DMA controller read the last EOP buffer
descriptor before the host added the new last packet to the queue, so the DMA controller determined
queue empty just before the last packet was added. The host software corrects the misqueued packet
condition by initiating a new packet transfer for the misqueued packet by writing the misqueued packet’s
SOP buffer descriptor address to the head descriptor pointer in TCCPIDMASTATEW0 register.

3.3.1.6 Transparent Mode and RNDIS Mode Transmit DMA Operation

Transparent Mode DMA operation is the default DMA mode (as described in previous section) where an
interrupt is generated whenever a DMA packet is transmitted. In the transparent mode, DMA packet size
cannot be greater than USB MaxPktSize and FIFO size for the endpoint. This means, for transmitting say
‘n’ USB packets, the DMA controller should be programmed with a queue of ‘n’ DMA packets. Transparent
mode must be used whenever USB MaxPktSize for the endpoint is not a multiple of 64 bytes.

RNDIS mode DMA is used to transmit DMA packets which are larger than USB MaxPktSize. This is
accomplished by breaking the larger packet into smaller packets, not larger than USB MaxPktSize. This
implies that the data to be transmitted will be sent over USB in multiple packets of MaxPktSize and the Tx
DMA interrupt for the channel is generated after the transmission of complete DMA packet. This mode of
DMA is used for RNDIS type transfers over USB. The protocol defines the end of the complete transfer by
sending a short USB packet (smaller than USB MaxPktSize as mentioned in USB specification 2.0). If the
DMA packet size is an exact multiple of USB MaxPktSize, the DMA controller sends a zero byte packet at
the end of complete transfer to signify the completion of the transfer.

RNDIS Mode DMA is supported only when USB MaxPktSize and the associated FIFO size is an integral
multiple of 64 bytes.

65SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

RNDIS Mode Setup

The setup of RNDIS mode DMA is similar to the default Transparent Mode as mentioned in the previous
section. The following steps need to be taken for setting up RNDIS mode Tx DMA:
• After reset the software must write zeroes to all Tx DMA State registers (TCPPIDMASTATEW0,

TCPPIDMASTATEW1, TCPPIDMASTATEW2, TCPPIDMASTATEW3, TCPPIDMASTATEW4,
TCPPIDMASTATEW5).

• The software constructs transmit queue in memory (one or more DMA Packets in for transmission).
• Enable DMA for the endpoint in the PERI_TXCSR or HOST_TXCSR by setting the DMAEN bit.
• Enable the DMA ports by setting TCPPI_ENABLE bit of TCPPICR register.
• Set RNDIS bit of CTRLR register for enabling RNDIS mode for all channels or set TXnEN bit of

RNDISR register for specific DMA channel n.
• Write the head of the queue descriptor pointer to the TCPPIDMASTATEW0 register to start the DMA.
• The USB controller will start transmitting data.
• If the DMA packet size is exact multiple of USB MaxPktSize, a zero byte packet is transmitted and

interrupt associated with the DMA channel is asserted.
• If the DMA packet size is not exact multiple of USB MaxPktSize, the last USB packet transmitted is a

short packet and interrupt associated with the DMA channel is asserted.

Transparent Mode Setup

Transparent DMA configuration is identical to RNDIS DMA configuration with the exception of the
followings: Each packet is defined by a single buffer descriptor with SOP and EOP bit fields set. Packet
size is not bounded to be a multiple of 64 byte but by max packet size. CTRLR.RNDIS bit field should be
cleared to zero.

3.3.1.7 DMA Channel TearDown

The DMA also supports a teardown operation on TX channels. Teardown allows software to terminate the
current Tx queue by notifying the DMA. The DMA will stop the current Tx DMA for that channel, and
update the channel parameters to remove all Tx descriptors from that queue. Then the software is free to
reclaim the buffers without worry of interrupting the DMA in progress.

Teardown of Tx channels is done using the TCPPITDR register. If the READY bit of TCPPITDR register is
set, it signifies that the Tx channel can be torn down. The channel number should be written in the
CHANNEL field of TCPPITDR register to teardown the channel.

Note that the software must also teardown the core after the DMA. Software should specify that the
following steps are all completed before assuming teardown has completed successfully.

1. After tearing down the channel, DMA interrupt should be generated and the TCPPICOMPPTR register
will be FFFF FFFCh. This indicates that the DMA has completed the teardown and all the data buffers
can be reclaimed.

2. The software must set the FLUSHFIFO bit of the PERI_TXCSR or HOST_TXCSR register for the
endpoint to be torn down.

After both the DMA and the core are torn down, the DMA channel and endpoint can be restarted cleanly.
A failure to perform either of these steps could result in data loss or spurious data upon restart.

3.3.2 DMA Receive Operation

For receive operation, the software has to program the DMA channel with a chain of receive buffers.

3.3.2.1 Receive Buffer

A receive buffer is a contiguous block of memory used to store received data. Each Rx buffer has a
corresponding Rx buffer descriptor. Each Rx buffer can be linked together with other Rx buffers to make a
DMA packet or a queue of DMA packets.

Receive buffers are byte aligned structures located in processor’s main memory. Rx buffer size may vary
from 1 to 65,535 bytes.

66 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

3.3.2.2 CPPI Receive Buffer Descriptor

Rx buffer descriptors provide information about a single corresponding Rx data buffer. Every Rx buffer has
a single Rx buffer descriptor that stores the following information:
• Pointer to the data buffer
• Pointer to the next buffer descriptor in the queue
• Buffer length and offset to the first valid byte of buffer data
• Start of DMA packet (SOP) indicator
• End of DMA packet (EOP) indicator
• Ownership (only valid with SOP)
• End of queue (EOQ) (only valid on EOP)
• Packet Length (only valid with SOP)

Receive buffer descriptors contain 16 bytes (4 words) and must begin on 16-byte aligned addresses.
Receive buffer descriptors may be linked together to form packets. Buffer descriptor SOP and EOP bits
are used to delimit packets. Packets in turn may be linked together to form receive queue. Each queue
consists of a chain of buffer descriptors linked together by Next Descriptor Pointers. The last buffer
descriptor in a queue has a zero Next Descriptor Pointer. Each descriptor points to a data buffer yielding a
queue of buffers.

Four Words of Receive Buffer Descriptor are described in Table 10 through Table 13.

Table 10. Receive Buffer Descriptor Word 0

Bits Name Description

31:0 Next Descriptor The 32-bit word aligned memory address of the next buffer descriptor in the Rx queue. This is the
Pointer mechanism used to reference the next buffer descriptor from the current buffer descriptor. If the

value of this pointer is zero then the current buffer is the last buffer in the queue. The software sets
the Next Descriptor Pointer.

Table 11. Receive Buffer Descriptor Word 1

Bits Name Description

31:0 Buffer Pointer The Buffer Pointer is the byte aligned memory address of the buffer associated with the buffer
descriptor. The software sets the Buffer Pointer.

Table 12. Receive Buffer Descriptor Word 2

Bits Name Description

31:16 Buffer Offset The Buffer Offset indicates how many unused bytes are at the start of the buffer (SOP buffers only).
A value of zero indicates that there are no unused bytes at the start of the buffer and that valid data
begins on the first byte of the buffer. A value of 000Fh (decimal 15) indicates that the first 15 bytes
of the buffer are to be ignored by the DMA controller while transmitting and that valid buffer data
starts on byte 16 of the buffer. The software sets the buffer offset to zero on buffer initialization and
the DMA controller overwrites the zero value on SOP packets with the Rx DMA State buffer offset
value.

15:0 Buffer Length The Buffer Length field indicates how many valid data bytes are in the buffer. Unused or protocol
specific bytes at the beginning of the buffer are not counted in the Buffer Length field. The software
sets the buffer length on buffer initialization. The DMA controller will overwrite the software initialized
value on an EOP buffer when the number of received data bytes is less than the host initiated value.
The DMA controller will overwrite the host initialized value on SOP when the Buffer Offset is greater
than zero, or the Packet Length is less than the buffer length.

67SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

Table 13. Receive Buffer Descriptor Word 3

Bit Field Value Description

31 SOP Start of Packet: SOP Indicates that the descriptor buffer is the first buffer in the packet. Software
should clear the SOP bit when setting up the descriptor.

0 Not start of packet buffer

1 Start of packet buffer

30 EOP End of Packet: EOP Indicates that the descriptor buffer is the last buffer in the packet. Software
should clear the EOP bit when setting up the descriptor.

0 Not end of packet buffer

1 End of packet buffer

29 Ownership The Ownership bit indicates ownership of the DMA packet and is valid only on SOP. This bit is
set by the software and cleared by the DMA controller when the packet has been transmitted.
The software can use this bit to reclaim buffers.

0 The packet is owned by the host processor.

1 The packet is owned by the DMA controller.

28 EOQ End of Queue: The End of Queue bit is set by the DMA controller to indicate that all packets in
the queue have been transmitted and the Tx queue is empty. This bit is valid only on when EOP
is set. Software should clear this bit when setting up the descriptor.

0 The Tx queue has more packets to transfer.

1 The DMA controller took this descriptor buffer as the last buffer descriptor in the last packet in
the queue.

27:24 Reserved Reserved

23 Zero Byte Zero Byte Packet Identifier. This bit is set by the DMA controller when a zero byte USB packet
has been received. Software should ignore the Packet Length when this bit is set.

22:16 Reserved Reserved

15:0 Packet Length The length of the DMA packet in bytes. This field is valid only on SOP and is written by the DMA
controller. If the Packet Length is less than the sum of the buffer lengths, then the packet data
will be truncated. Software should ignore the Packet Length when Zero Byte is set.

Four different cases are possible for the number of buffers in a DMA packet:

1. Buffer Descriptor contains Start of Packet field and End of Packet field (1 buffer in DMA packet)
2. Buffer Descriptor contains Start of Packet field only (2+ buffers in DMA packet)
3. Buffer Descriptor contains End of Packet field only (2+ buffers in DMA packet)
4. Buffer Descriptor does not contain either of Start of Packet field and End of Packet field (3+ buffers in

packet)

3.3.2.3 Receive DMA State

The DMA controller stores and maintains state information for each receive channel. The state information
is referred to as the Rx DMA State. The Rx DMA State is a combination of control fields and DMA
controller specific scratchpad space used to manipulate data structures and receive DMA packets. The Rx
DMA State is stored in registers RCPPIDMASTATEW0, RCPPIDMASTATEW1, RCPPIDMASTATEW2,
RCPPIDMASTATEW3, RCPPIDMASTATEW4, RCPPIDMASTATEW5, RCPPIDMASTATEW6 and
RCPPICOMPPTR for each channel.

Each channel has one receive queue that has a head descriptor pointer and one completion pointer.

The following information is stored in the Tx DMA State:
• RCPPIDMASTATEW0: Rx Queue Head Descriptor Pointer
• RCPPICOMPPTR: Rx Completion Pointer
• RCPPIDMASTATEW2: Start of Packet Buffer Descriptor Pointer
• RCPPIDMASTATEW3: Current Buffer Descriptor Pointer
• RCPPIDMASTATEW4: Current Buffer Pointer
• RCPPIDMASTATEW5: Remaining DMA Packet Length and Actual DMA Packet Length

68 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

SOP descriptor Buffer

Descriptor Buffer

Descriptor

Descriptor

Buffer

Buffer

EOP descriptor Buffer

Rx queue head descriptor pointer

www.ti.com USB Controller Host and Peripheral Modes Operation

3.3.2.4 Receive Queue

Figure 15 shows an Rx Queue. Rx queue provide a logical queue of processor memory space for DMA
packets to be received from DMA controller channel. Each channel has single Rx queue. There are no
multiple queue as in transmit channels. Each queue has one associated Rx Queue Head Descriptor
Pointer and one associated Rx Completion Pointer contained in the channel Rx DMA State. The Rx queue
are linked lists of Rx buffer descriptors that constitute processor memory space for one or more packets to
be received. Packet space is added to the tail of the list by the software and received packets are freed
from the list by the DMA controller as each packet is received.

Figure 15. Rx Queue Flow Chart

3.3.2.5 Operation
• After reset the software must write zeroes to all Rx DMA State registers (RCPPIDMASTATEW0,

RCPPIDMASTATEW1, RCPPIDMASTATEW2, RCPPIDMASTATEW3, RCPPIDMASTATEW4,
RCPPIDMASTATEW5 and RCPPIDMASTATEW6).

• The software constructs receive queue in memory.
• Enable DMA for the endpoint in the PERI_RXCSR or HOST_RXCSR by setting the DMAEN bit.
• Enable the DMA ports by setting RCPPI_ENABLE bit of RCPPICR register.
• Set the value in RBUFCNTn register (where n is the channel number) for the number of buffers

available in the Rx queue. The hardware requires at least 3 available buffers to start the DMA. A new
transfer will not be started if the buffer count is below 3. The value in RBUFCNTn decrements as DMA
controller consumes the buffers for reception.

• Write the head of the queue descriptor pointer to the RCPPIDMASTATEW1 register to start the DMA.
• The USB controller will send IN token and wait for the data on the bus. Once data is received, DMA

controller will transfer the data in the Rx queue from the endpoint FIFO. Once a complete DMA packet
is received, interrupt associated with the DMA channel is asserted.

69SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

The software enables packet reception on a given channel by writing the address of the first buffer
descriptor in the queue (nonzero value) to the channel’s head descriptor pointer (RCCPIDMASTATEW1)
in the channel’s Rx DMA state. When packet reception begins on a given channel, the DMA controller fills
each Rx buffer with data in order starting with the first buffer and proceeding through the Rx queue. If the
Buffer Offset in the Rx DMA State is nonzero, then the controller will begin writing data after the offset
number of bytes in the SOP buffer. The DMA controller performs the following operations at the end of
each packet reception:
• Overwrite the buffer length in the packet’s EOP buffer descriptor with the number of bytes actually

received in the packet’s last buffer. The software initialized value is the buffer size. The overwritten
value will be less than or equal to the software initialized value.

• Set the EOP bit in the packet’s EOP buffer descriptor.
• Set the EOQ bit in the packet’s EOP buffer descriptor if the current packet is the last packet in the

queue.
• Overwrite the packet’s SOP buffer descriptor Buffer Offset with the Rx DMA state value (the software

initialized the buffer descriptor Buffer Offset value to zero). All non SOP buffer descriptors must have a
zero Buffer Offset initialized by the host.

• Overwrite the packet’s SOP buffer descriptor buffer length with the number of valid data bytes in the
buffer. If the buffer is filled up, the buffer length will be the buffer size minus buffer offset.

• Set the SOP bit in the packet’s SOP buffer descriptor.
• Write the SOP buffer descriptor Packet Length field.
• Clear the Ownership bit in the packet’s SOP buffer descriptor.
• Issue an Rx DMA interrupt to the host processor by writing the address of the packet’s last buffer

descriptor to the queue’s Rx DMA State Completion Pointer (RCPPICOMPPTR register).
On interrupt the software processes the Rx buffer queue detecting received packets by the status of
the Ownership bit in each packet’s SOP buffer descriptor. If the Ownership bit is cleared then the
packet has been completely received and is available to be processed by the software. The software
may continue Rx queue processing until the end of the queue or until a buffer descriptor is read that
contains a set Ownership bit indicating that the next packet’s reception is not complete. The software
determines that the Rx queue is empty when the last packet in the queue has a cleared Ownership bit
in the SOP buffer descriptor, a set End of Queue bit in the EOP buffer descriptor, and the Next
Descriptor Pointer in the EOP buffer descriptor is zero.
The software acknowledges an interrupt by writing the address of the last buffer descriptor to the
queue’s associated Rx Completion Pointer (RCPPICOMPPTR register).
If the software written buffer address value in RCCPICOMPPTR register is different from the buffer
address written by the DMA controller after Rx completion, then the interrupt for the Rx Channel
remains asserted. If the software written buffer address value matches with the buffer address written
by the DMA controller, the Rx Channel interrupt gets deasserted.
A misqueued buffer may occur when the software adds buffers to a queue as the DMA controller
finishes the reception of the previous last packet in the queue. The misqueued buffer is detected by the
software when queue processing detects a cleared Ownership bit in the SOP buffer descriptor, a set
End of Queue bit in the EOP buffer descriptor, and a nonzero Next Descriptor Pointer in the EOP
buffer descriptor. A misqueued buffer means that the DMA controller read the last EOP buffer
descriptor before the software added buffer descriptor(s) to the queue, so the DMA controller
determined queue empty just before the software added more buffer descriptor(s). Receive overrun
condition may occur in the misqueued buffer case. If a new packet reception is begun during the time
that the DMA controller has determined the end of queue condition, then the received packet will
overrun (start of packet overrun). If the misqueued buffer occurs during the middle of a packet
reception then middle of packet overrun may occur. If the misqueued buffer occurs after the last packet
has completed, and is corrected before the next packet reception begins, then overrun will not occur.
The software acts on the misqueued buffer condition by writing the added buffer descriptor address to
the appropriate Rx DMA State Head Descriptor Pointer in RCPPIDMASTATEW1 register.

70 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

3.3.2.6 Receive Abort Handling

The DMA controller sets ‘Rx Abort’ bit used to identify Rx packets which were aborted due to lack of
buffers. Software must take care to inspect any Rx SOP packet for this bit and ignore all the buffers in that
packet as the packet is incomplete. Also, for aborted packets, the packet length may not match the data
size in the buffers.

3.3.2.7 RNDIS Mode and Transparent Mode Receive DMA Operation

Transparent Mode DMA operation is the default DMA mode (as described in previous section) where an
interrupt is generated whenever a DMA packet is received. In the transparent mode, DMA packet size
cannot be greater than USB MaxPktSize for the endpoint. This means, for receiving say n USB packets,
the DMA controller should be programmed with a queue of minimum n DMA packets. RBUFCNTn register
also needs to be written with value n. The number n should be greater than 3 as the RBUFCNTn register
should have at least 3 packets for the Rx DMA to receive packets from the endpoint FIFO.

RNDIS mode DMA is used to receive DMA packets which are larger than USB MaxPktSize. This is
accomplished by breaking the larger packet into smaller packets, not larger than USB MaxPktSize. This
implies that multiple USB packets of MaxPktSize will be received and transferred together as a single
large DMA packet and the DMA interrupt is generated only at the end of the complete reception of DMA
packet. This mode of DMA is used for RNDIS type transfers over USB. The protocol defines the end of the
complete transfer by receiving a short USB packet (smaller than USB MaxPktSize as mentioned in USB
specification 2.0). If the DMA packet size is an exact multiple of USB MaxPktSize, the DMA controller
waits for a zero byte packet at the end of complete transfer to signify the completion of the transfer.

RNDIS Mode DMA is supported only when USB MaxPktSize is an integral multiple of 64 bytes.

RNDIS Mode Setup

The setup of RNDIS mode DMA is similar to the default Transparent Mode as mentioned in the previous
section. The following steps need to be taken for setting up RNDIS mode Rx DMA:
• RNDIS mode requires that the associated MaxPkt Size and FIFO size must be integral multiples of

64 bytes.
• After reset the software must write zeroes to all Rx DMA State registers (RCPPIDMASTATEW0,

RCPPIDMASTATEW1, RCPPIDMASTATEW2, RCPPIDMASTATEW3, RCPPIDMASTATEW4,
RCPPIDMASTATEW5 and RCPPIDMASTATEW6).

• The software constructs receive queue in memory.
• Enable DMA for the endpoint in the PERI_RXCSR or HOST_RXCSR by setting the DMAEN bit.
• Enable the DMA ports by setting RCPPI_ENABLE bit of RCPPICR register.
• Set RNDIS bit of CTRLR register for enabling RNDIS mode for all channels or set TXnEN bit of

RNDISR register for specific DMA channel n.
• Set the value in RBUFCNTn register (where n is the channel number) for the number of buffers

available in the Rx queue. The minimum value should be 3 for the Rx DMA to start operation. The
value in RBUFCNTn decrements as DMA controller consumes the buffers for reception.

• Write the head of the queue descriptor pointer to the RCPPIDMASTATEW1 register to start the DMA.
• The USB controller will send IN token and wait for the data on the bus. Once data is received, DMA

controller will transfer the data in the Rx queue from the endpoint FIFO. Once a complete DMA packet
is received, the interrupt associated with the DMA channel is asserted.

• If the DMA packet size is exact multiple of USB MaxPktSize, a zero byte packet is expected and
interrupt associated with the DMA channel is asserted when that zero byte packet is received.

• If the DMA packet size is not exact multiple of USB MaxPktSize, the last USB packet received is a
short packet and interrupt associated with the DMA channel is asserted.

An additional feature of automatically generating IN tokens is available. This feature is used in USB Host
mode operation of the USB controller. This feature is functional in RNDIS mode DMA only. To
automatically generate the IN tokens while receiving data, set the field RXn_AUTOREQ (where n is the
channel number) of AUTOREQ register with binary 01. In this case, IN tokens will be generated and sent
to the target USB peripheral device after every successfully received packet. No IN token will be
generated after the End Of DMA Packet is reached. Rx DMA interrupt is generated after the complete
reception.

71SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

If RXn_AUTOREQ (where n is the channel number) of AUTOREQ register is set with binary 11, IN tokens
will be generated and sent to the target USB peripheral device even after the End Of DMA Packet is
reached. This feature is useful to keep data reception operational across multiple DMA packets in a Rx
queue. The host processor does not have to restart sending IN tokens for every DMA packet in the Rx
queue.

Transparent Mode Setup

Transparent receive DMA configuration is identical to RNDIS DMA configuration with the exception of the
following:

• Each packet is defined by a single buffer descriptor with SOP and EOP bit fields set.
• Packet size is not bounded to be a multiple of 64 byte but by max packet size.
• CTRLR.RNDIS bit field should be cleared to zero.
• RXn:AUTOREQ register field is programmed with the value of 0, which is programmed for no Auto

Request.

3.3.2.8 DMA Teardown Procedure

In order to Teardown a TX channel, the endpoint FIFO must be flushed after the DMA Teardown
completes. Teardown is not complete until the following steps are successfully completed.

• Write the TX Teardown register in the CPPI DMA with the channel to teardown. The DMA will interrupt
after the teardown is complete and the TX Completion Pointer will be FFFF FFFCh. This indicates that
the DMA has completed the teardown and all of the associated CPPI buffers can be reclaimed.

• Call the flush_tx_fifo routine (code provided in Example 4) once if the FIFO is set up for single-buffer or
twice for double-buffer.

72 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

3.4 Interrupt Handling

Table 14 lists the interrupts generated by the USB controller.

Table 14. Interrupts Generated by the USB Controller

Interrupt Description

Tx Endpoint [4:0] Tx endpoint ready or error condition. For endpoints 4 to 0. (Rx and Tx for endpoint 0)

Rx Endpoint [4:1] Rx endpoint ready or error condition. For endpoints 4 to 1. (Endpoint 0 has interrupt status in
Tx interrupt)

USB Core[8:0] Interrupts for 9 USB conditions

DMA Tx Completion [3:0] Tx DMA completion interrupt for channel 3 to 0

DMA Rx Completion [3:0] Rx DMA completion interrupt for channel 3 to 0

Whenever any of these interrupt conditions are generated, the host processor is interrupted. The software
needs to read the different interrupt status registers (discussed in later section) to determine the source of
the interrupt.

The nine USB interrupt conditions are listed in Table 15.

Table 15. USB Interrupt Conditions

Interrupt Description

USB[8] DRVVBUS level change

USB[7] VBus voltage < VBus Valid Threshold (VBus error)

USB[6] SRP detected

USB[5] Device Disconnected (Valid in Host Mode)

USB[4] Device Connected (Valid in Host Mode)

USB[3] SOF started

USB[2] Reset Signaling detected (In Peripheral Mode)
Babble detected (In Host Mode)

USB[1] Resume signaling detected

USB[0] Suspend Signaling detected

73SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

3.4.1 USB Core Interrupts

There are two methods available for software to access USB core interrupts, selectable by the UINT bit of
CTRLR. The UINT bit cleared to 0 selects the PDR 2.0 compliant register set (INTSRCR, INTSETR,
INTCLRR, INTMSKR, INTMSKSETR, INTMSKCLRR, INTMASKEDR). This is the default, and should be
used for most systems. The DRVVBUS level change interrupt is only available in the PDR compliant
register. UINT set to one selects direct access to the USB core interrupt registers (INTRUSB, INTRUSBE,
INTRTX, INTRRX). Software should select a single method for interrupts and use its corresponding
registers exclusively.

Interrupt status can be determined using the INTSRCR (interrupt source) register. This register is
non-masked. To clear the interrupt source, set the corresponding interrupt bit in INTCLRR register. For
debugging purposes, interrupt can be set manually through INTSETR register.

The interrupt controller provides the option of masking the interrupts. A mask can be set using
INTMSKSETR register and can be cleared by setting the corresponding bit in the INTMSKCLRR register.
The mask can be read from INTMSKR register. The masked interrupt status is determined using the
INTMASKEDR register.

Software should write all zeros to the End Of Interrupt Register (EOIR) to acknowledge the completion of
the USB core interrupt.

NOTE: If the EOIR is not written, the interrupt output to the CPU will not be pulsed again for the
next interrupt.

3.4.2 DMA Interrupts

Interrupt status for the DMA interrupts is determined by TCCPIRAWSR and RCPPIRAWSR registers.
These are the raw interrupt status registers for DMA interrupts.

Tx DMA interrupts mask is set using TCPPIENSETR register and cleared using TCPPIIENCLRR register.
The masked status is read using TCPPIMSKSR register.

Rx DMA interrupts mask is set using RCPPIENSETR register and cleared using RCPPIIENCLRR register.
The masked status is read using RCPPIMSKSR register.

Like USB core interrupts, the CPPIEOIR register needs to be written by the host processor software to
acknowledge the completion of the interrupt.

Upon receipt of a DMA interrupt, software should check TCPPIRAWSR/RCPPIRAWSR to determine
which DMA channel(s) to service. Check the CPPI buffer descriptor ownership field for the completed
channel for error conditions and add or update buffer descriptors as needed. Write the RCPPICOMPPTR
or TCPPICOMPPTR completion pointer with the address of the buffer descriptor serviced in order to clear
the interrupt. Finally, write the DMA End Of Interrupt register CPPIEOIR with all zeros to enable future (or
current unserviced) interrupts to pulse the interrupt output to the CPU.

When using DMA with a TX endpoint, set the TXCSR register DMAMODE bit to one in order to receive
only error (not packet completion) interrupts. For DMA with an RX endpoint, the DMAMODE bit in RXCSR
should be cleared to 0.

74 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

3.5 Test Modes

The controller supports the four USB 2.0 test modes defined for High-speed functions. It also supports an
additional “FIFO access” test mode that can be used to test the operation of the CPU interface, the DMA
controller (if configured) and the RAM block.

The test modes are entered by writing to the TestMode register (offset address 0x40F). At test mode is
usually requested by the host sending a SET_FEATURE request to Endpoint 0. When the software
receives the request, it should wait until the Endpoint 0 transfer has completed (when it receives the
Endpoint 0 interrupt indicating the status phase has completed) then write to the TestMode register.

NOTE: These test modes have no purpose in normal operation.

3.5.1 TEST_SE0_NAK

To enter the Test_SE0_NAK test mode, the software should set the Test_SE0-NAK bit by writing 0x01 to
the TestMode register. The controller will then go into a mode in which it responds to any valid IN token
with a NAK.

3.5.2 TEST_J

To enter the Test_J test mode, the software should set the Test_J bit by writing 0x02 to the TestMode
register. The controller will then go into a mode in which it transmits a continuous J on the bus.

3.5.3 TEST_K

To enter the Test_K test mode, the software should set the Test_K bit by writing 0x04 to the TestMode
register. The controller will go into a mode in which it transmits a continuous K on the bus.

3.5.4 TEST_PACKET

To execute the Test_Packet, the software should:

1. Start a session (if the core is being used in Host mode).
2. Write the standard test packet (shown below) to the Endpoint 0 FIFO.
3. Write 0x8 to the TestMode register to enter Test_Packet test mode.
4. Set the TxPktRdy bit in the CSR0 register (D1).

The 53 by test packet to load is as follows (all bytes in hex). The test packet only has to be loaded once;
the controller will keep re-sending the test packet without any further intervention from the software.

00 00 00 00 00 00 00 00

00 AA AA AA AA AA AA AA

AA EE EE EE EE EE EE EE

EE FE FF FF FF FF FF FF

FF FF FF FF FF 7F BF DF

EF F7 FB FD FC 7E BF DF

EF F7 FB FD 7E

This data sequence is defined in Universal Serial Bus Specification Revision 2.0, Section 7.1.20. The
controller will add the DATAA0 PID to the head of the data sequence and the CRC to the end.

75SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

USB Controller Host and Peripheral Modes Operation www.ti.com

3.5.5 FIFO_ACCESS

The FIFO Access test mode allows the user to test the operation of CPU Interface, the DMA controller (if
configured) and the RAM block by loading a packet of up to 64 bytes into the Endpoint 0 FIFO and then
reading it back out again. Endpoint 0 is used because it is a bi-directional endpoint that uses the same
area of RAM for its Tx and Rx FIFOs.

NOTE: The core does not need to be connected to the USB bus to run this test. If it is connected,
then no session should be in progress when the test is run.

The test procedure is as follows:

1. Load a packet of up to 64 bytes into the Endpoint 0 Tx FIFO.
2. Set CSR0.TxPktRdy.
3. Write 0x40 to the Testmode register.
4. Unload the packet from the Endpoint Rx FIFO, again.
5. Set CSR0.ServicedRxPktRdy

Writing 0x40 to the Testmode register causes the following sequence of events:

1. The Endpoint 0 CPU pointer (which records the number of bytes to be transmitted) is copied to the
Endpoint 0 USB pointer (which records the number of bytes received).

2. The Endpoint 0 CPU pointer is reset.
3. CSR0.TxPktRdy is cleared.
4. CSR0.RxPktRdy is set.
5. An Endpoint 0 interrupt is generated (if enabled).,

The effect of these steps is to make the Endpoint 0 controller act as if the packet loaded into the Tx FIFO
has flushed and the same packet received over the USB. The data that was loaded in the Tx FIFO can
now be read out of the Rx FIFO.

3.5.6 FORCE_HOST

The Force Host test mode enables the user to instruct the core to operate in Host mode, regardless of
whether it is actually connected to any peripheral, i.e., the state of the CID input and the LINESTATE and
HOSTDISCON signals are ignored. (While in this mode, the state of the HOSTDISCON signal can be read
from bit 7 of the DevCtl register.)

This mode, which is selected by setting bit 7 within the Testmode register, allows implementation of the
USB Test_Force_Enable (7.1.20). It can also be used for debugging PHY problems in hardware.

While the Force_Host bit remains set, the core will enter Host mode when the Session bit is set and
remain in Host mode until the Session bit is cleared even if a connected device is disconnected during the
session. The operating speed while in this mode is determined for the sitting of the Force_HS and
Force_FS bits of the Testmode register.

76 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com USB Controller Host and Peripheral Modes Operation

3.6 Reset Considerations

The USB controller has two reset sources: hardware reset and the soft reset (RESET bit in CTRLR
register).

3.6.1 Software Reset Considerations

When the RESET bit in CTRLR is set, all the USB controller registers and DMA operations are reset. The
bit is cleared automatically.

A software reset on the ARM or DSP CPUs does not affect the register values and operation of the USB
controller.

3.6.2 Hardware Reset Considerations

When a hardware reset is asserted, all the registers are set to their default values.

3.6.3 USB Reset Considerations

When operating in peripheral mode, a USB reset received from the host causes some internal registers to
be reset. The USB controller setup operations (for example FIFO sizing) in peripheral mode should be
performed after receiving the USB reset, and again on each subsequent USB reset. There are some
conditions where multiple USB reset interrupts may be received in rapid succession. Good interrupt
handling practices must be observed to assure that the setup is performed (again) after the final USB
reset interrupt.

Software must teardown any TX DMA channel use upon receipt of a USB reset. See Section 3.3.2.8.

3.7 Interrupt Support

The USB peripheral presents a single interrupt to the ARM interrupt controller (AINTC). For information on
the mapping of interrupts, refer to the device-specific data manual.

3.8 EDMA Event Support

The USB is an internal bus master peripheral and therefore does not utilize any EDMA events. The
registers support only individual access. Bursting data to or from the USB register space through EDMA is
not supported.

3.9 Power Management

The USB controller can be placed in reduced power modes to conserve power during periods of low
activity. The power management of the peripheral is controlled by the processor Power and Sleep
Controller (PSC). The PSC acts as a master controller for power management for all of the peripherals on
the device. For detailed information on power management procedures using the PSC, see the
TMS320DM644x DMSoC ARM Subsystem Reference Guide (SPRUE14) .

77SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4 Registers

Table 16 lists the memory-mapped registers for the universal serial bus (USB). See the device-specific
data manual for the memory address of these registers. The base address is 01C6 4000h.

NOTE: In some cases, a single register address can have different names or meanings depending
on the mode (host/peripheral) or the setting of the index register. The meaning of some bit
fields varies with the mode.

Table 16. Universal Serial Bus (USB) Registers

Offset Acronym Register Description Section

4h CTRLR Control Register Section 4.1

8h STATR Status Register Section 4.2

10h RNDISR RNDIS Register Section 4.3

14h AUTOREQ Autorequest Register Section 4.4

20h INTSRCR USB Interrupt Source Register Section 4.5

24h INTSETR USB Interrupt Source Set Register Section 4.6

28h INTCLRR USB Interrupt Source Clear Register Section 4.7

2Ch INTMSKR USB Interrupt Mask Register Section 4.8

30h INTMSKSETR USB Interrupt Mask Set Register Section 4.9

34h INTMSKCLRR USB Interrupt Mask Clear Register Section 4.10

38h INTMASKEDR USB Interrupt Source Masked Register Section 4.11

3Ch EOIR USB End of Interrupt Register Section 4.12

80h TCPPICR Transmit CPPI Control Register Section 4.13

84h TCPPITDR Transmit CPPI Teardown Register Section 4.14

88h CPPIEOIR CPPI DMA End of Interrupt Register Section 4.15

90h TCPPIMSKSR Transmit CPPI Masked Status Register Section 4.16

94h TCPPIRAWSR Transmit CPPI Raw Status Register Section 4.17

98h TCPPIIENSETR Transmit CPPI Interrupt Enable Set Register Section 4.18

9Ch TCPPIIENCLRR Transmit CPPI Interrupt Enable Clear Register Section 4.19

C0h RCPPICR Receive CPPI Control Register Section 4.20

D0h RCPPIMSKSR Receive CPPI Masked Status Register Section 4.21

D4h RCPPIRAWSR Receive CPPI Raw Status Register Section 4.22

D8h RCPPIENSETR Receive CPPI Interrupt Enable Set Register Section 4.23

DCh RCPPIIENCLRR Receive CPPI Interrupt Enable Clear Register Section 4.24

E0h RBUFCNT0 Receive Buffer Count 0 Register Section 4.25

E4h RBUFCNT1 Receive Buffer Count 1 Register Section 4.26

E8h RBUFCNT2 Receive Buffer Count 2 Register Section 4.27

ECh RBUFCNT3 Receive Buffer Count 3 Register Section 4.28

Transmit/Receive CPPI Channel 0 State Block

100h TCPPIDMASTATEW0 Transmit CPPI DMA State Word 0 Section 4.29

104h TCPPIDMASTATEW1 Transmit CPPI DMA State Word 1 Section 4.30

108h TCPPIDMASTATEW2 Transmit CPPI DMA State Word 2 Section 4.31

10Ch TCPPIDMASTATEW3 Transmit CPPI DMA State Word 3 Section 4.32

110h TCPPIDMASTATEW4 Transmit CPPI DMA State Word 4 Section 4.33

114h TCPPIDMASTATEW5 Transmit CPPI DMA State Word 5 Section 4.34

11Ch TCPPICOMPPTR Transmit CPPI Completion Pointer Section 4.35

120h RCPPIDMASTATEW0 Receive CPPI DMA State Word 0 Section 4.36

124h RCPPIDMASTATEW1 Receive CPPI DMA State Word 1 Section 4.37

128h RCPPIDMASTATEW2 Receive CPPI DMA State Word 2 Section 4.38

78 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

Table 16. Universal Serial Bus (USB) Registers (continued)

Offset Acronym Register Description Section

12Ch RCPPIDMASTATEW3 Receive CPPI DMA State Word 3 Section 4.39

130h RCPPIDMASTATEW4 Receive CPPI DMA State Word 4 Section 4.40

134h RCPPIDMASTATEW5 Receive CPPI DMA State Word 5 Section 4.41

138h RCPPIDMASTATEW6 Receive CPPI DMA State Word 6 Section 4.42

13Ch RCPPICOMPPTR Receive CPPI Completion Pointer Section 4.43

Transmit/Receive CPPI Channel 1 State Block

140h TCPPIDMASTATEW0 Transmit CPPI DMA State Word 0 Section 4.29

144h TCPPIDMASTATEW1 Transmit CPPI DMA State Word 1 Section 4.30

148h TCPPIDMASTATEW2 Transmit CPPI DMA State Word 2 Section 4.31

14Ch TCPPIDMASTATEW3 Transmit CPPI DMA State Word 3 Section 4.32

150h TCPPIDMASTATEW4 Transmit CPPI DMA State Word 4 Section 4.33

154h TCPPIDMASTATEW5 Transmit CPPI DMA State Word 5 Section 4.34

15Ch TCPPICOMPPTR Transmit CPPI Completion Pointer Section 4.35

160h RCPPIDMASTATEW0 Receive CPPI DMA State Word 0 Section 4.36

164h RCPPIDMASTATEW1 Receive CPPI DMA State Word 1 Section 4.37

168h RCPPIDMASTATEW2 Receive CPPI DMA State Word 2 Section 4.38

16Ch RCPPIDMASTATEW3 Receive CPPI DMA State Word 3 Section 4.39

170h RCPPIDMASTATEW4 Receive CPPI DMA State Word 4 Section 4.40

174h RCPPIDMASTATEW5 Receive CPPI DMA State Word 5 Section 4.41

178h RCPPIDMASTATEW6 Receive CPPI DMA State Word 6 Section 4.42

17Ch RCPPICOMPPTR Receive CPPI Completion Pointer Section 4.43

Transmit/Receive CPPI Channel 2 State Block

180h TCPPIDMASTATEW0 Transmit CPPI DMA State Word 0 Section 4.29

184h TCPPIDMASTATEW1 Transmit CPPI DMA State Word 1 Section 4.30

188h TCPPIDMASTATEW2 Transmit CPPI DMA State Word 2 Section 4.31

18Ch TCPPIDMASTATEW3 Transmit CPPI DMA State Word 3 Section 4.32

190h TCPPIDMASTATEW4 Transmit CPPI DMA State Word 4 Section 4.33

194h TCPPIDMASTATEW5 Transmit CPPI DMA State Word 5 Section 4.34

19Ch TCPPICOMPPTR Transmit CPPI Completion Pointer Section 4.35

1A0h RCPPIDMASTATEW0 Receive CPPI DMA State Word 0 Section 4.36

1A4h RCPPIDMASTATEW1 Receive CPPI DMA State Word 1 Section 4.37

1A8h RCPPIDMASTATEW2 Receive CPPI DMA State Word 2 Section 4.38

1ACh RCPPIDMASTATEW3 Receive CPPI DMA State Word 3 Section 4.39

1B0h RCPPIDMASTATEW4 Receive CPPI DMA State Word 4 Section 4.40

1B4h RCPPIDMASTATEW5 Receive CPPI DMA State Word 5 Section 4.41

1B8h RCPPIDMASTATEW6 Receive CPPI DMA State Word 6 Section 4.42

1BCh RCPPICOMPPTR Receive CPPI Completion Pointer Section 4.43

Transmit/Receive CPPI Channel 3 State Block

1C0h TCPPIDMASTATEW0 Transmit CPPI DMA State Word 0 Section 4.29

1C4h TCPPIDMASTATEW1 Transmit CPPI DMA State Word 1 Section 4.30

1C8h TCPPIDMASTATEW2 Transmit CPPI DMA State Word 2 Section 4.31

1CCh TCPPIDMASTATEW3 Transmit CPPI DMA State Word 3 Section 4.32

1D0h TCPPIDMASTATEW4 Transmit CPPI DMA State Word 4 Section 4.33

1D4h TCPPIDMASTATEW5 Transmit CPPI DMA State Word 5 Section 4.34

1DCh TCPPICOMPPTR Transmit CPPI Completion Pointer Section 4.35

1E0h RCPPIDMASTATEW0 Receive CPPI DMA State Word 0 Section 4.36

1E4h RCPPIDMASTATEW1 Receive CPPI DMA State Word 1 Section 4.37

79SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

Table 16. Universal Serial Bus (USB) Registers (continued)

Offset Acronym Register Description Section

1E8h RCPPIDMASTATEW2 Receive CPPI DMA State Word 2 Section 4.38

1ECh RCPPIDMASTATEW3 Receive CPPI DMA State Word 3 Section 4.39

1F0h RCPPIDMASTATEW4 Receive CPPI DMA State Word 4 Section 4.40

1F4h RCPPIDMASTATEW5 Receive CPPI DMA State Word 5 Section 4.41

1F8h RCPPIDMASTATEW6 Receive CPPI DMA State Word 6 Section 4.42

1FCh RCPPICOMPPTR Receive CPPI Completion Pointer Section 4.43

Common USB Registers

400h FADDR Function Address Register Section 4.44

401h POWER Power Management Register Section 4.45

402h INTRTX Interrupt Register for Endpoint 0 and for Transmit Section 4.46
Endpoints 1 to 4

404h INTRRX Interrupt Register for Receive Endpoints 1 to 4 Section 4.47

406h INTRTXE Interrupt enable register for INTRTX Section 4.48

408h INTRRXE Interrupt Enable Register for INTRRX Section 4.49

40Ah INTRUSB Interrupt Register for Common USB Interrupts Section 4.50

40Bh INTRUSBE Interrupt Enable Register for INTRUSB Section 4.51

40Ch FRAME Frame Number Register Section 4.52

40Eh INDEX Index Register for Selecting the Endpoint Status and Control Section 4.53
Registers

40Fh TESTMODE Register to Enable the USB 2.0 Test Modes Section 4.54

Indexed Registers (These registers operate on the endpoint selected by the INDEX register)

410h TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Section 4.55
(Index register set to select Endpoints 1-4)

412h PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode. Section 4.56
(Index register set to select Endpoint 0)

HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode Section 4.57
(Index register set to select Endpoint 0)

PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint. Section 4.58
(Index register set to select Endpoints 1-4)

HOST_TXCSR Control Status Register for Host Transmit Endpoint Section 4.59
(Index register set to select Endpoints 1-4)

414h RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint Section 4.60
(Index register set to select Endpoints 1-4)

416h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint. Section 4.61
(Index register set to select Endpoints 1-4)

HOST_RXCSR Control Status Register for Host Receive Endpoint Section 4.62
(Index register set to select Endpoints 1-4)

418h COUNT0 Number of Received Bytes in Endpoint 0 FIFO Section 4.63
(Index register set to select Endpoint 0)

RXCOUNT Number of Bytes in Host Receive Endpoint FIFO Section 4.64
(Index register set to select Endpoints 1- 4)

41Ah HOST_TYPE0 Defines the speed of Endpoint 0 Section 4.65

HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral Section 4.66
endpoint number for the host Transmit endpoint.
(Index register set to select Endpoints 1-4)

41Bh HOST_NAKLIMIT0 Sets the NAK response timeout on Endpoint 0 Section 4.67
(Index register set to select Endpoint 0)

HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the Section 4.68
NAK response timeout on Bulk transactions for host Transmit
endpoint. (Index register set to select Endpoints 1-4)

41Ch HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral Section 4.69
endpoint number for the host Receive endpoint.
(Index register set to select Endpoints 1-4)

80 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

Table 16. Universal Serial Bus (USB) Registers (continued)

Offset Acronym Register Description Section

41Dh HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the Section 4.70
NAK response timeout on Bulk transactions for host Receive
endpoint. (Index register set to select Endpoints 1-4)

41Fh CONFIGDATA Returns details of core configuration. (Index register set to Section 4.71
select Endpoint 0)

FIFOn

420h FIFO0 Transmit and Receive FIFO Register for Endpoint 0 Section 4.72

424h FIFO1 Transmit and Receive FIFO Register for Endpoint 1 Section 4.73

428h FIFO2 Transmit and Receive FIFO Register for Endpoint 2 Section 4.74

42Ch FIFO3 Transmit and Receive FIFO Register for Endpoint 3 Section 4.75

430h FIFO4 Transmit and Receive FIFO Register for Endpoint 4 Section 4.76

OTG Device Control

460h DEVCTL OTG Device Control Register Section 4.77

Dynamic FIFO Control

462h TXFIFOSZ Transmit Endpoint FIFO Size Section 4.78
(Index register set to select Endpoints 1-4)

463h RXFIFOSZ Receive Endpoint FIFO Size Section 4.79
(Index register set to select Endpoints 1-4)

464h TXFIFOADDR Transmit Endpoint FIFO Address Section 4.80
(Index register set to select Endpoints 1-4)

466h RXFIFOADDR Receive Endpoint FIFO Address Section 4.81
(Index register set to select Endpoints 1-4)

Target Endpoint 0 Control Registers, Valid Only in Host Mode

480h TXFUNCADDR Address of the target function that has to be accessed Section 4.82
through the associated Transmit Endpoint.

482h TXHUBADDR Address of the hub that has to be accessed through the Section 4.83
associated Transmit Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

483h TXHUBPORT Port of the hub that has to be accessed through the Section 4.84
associated Transmit Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

484h RXFUNCADDR Address of the target function that has to be accessed Section 4.85
through the associated Receive Endpoint.

486h RXHUBADDR Address of the hub that has to be accessed through the Section 4.86
associated Receive Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

487h RXHUBPORT Port of the hub that has to be accessed through the Section 4.87
associated Receive Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

Target Endpoint 1 Control Registers, Valid Only in Host Mode

488h TXFUNCADDR Address of the target function that has to be accessed Section 4.82
through the associated Transmit Endpoint.

48Ah TXHUBADDR Address of the hub that has to be accessed through the Section 4.83
associated Transmit Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

48Bh TXHUBPORT Port of the hub that has to be accessed through the Section 4.84
associated Transmit Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

48Ch RXFUNCADDR Address of the target function that has to be accessed Section 4.85
through the associated Receive Endpoint.

81SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

Table 16. Universal Serial Bus (USB) Registers (continued)

Offset Acronym Register Description Section

48Eh RXHUBADDR Address of the hub that has to be accessed through the Section 4.86
associated Receive Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

48Fh RXHUBPORT Port of the hub that has to be accessed through the Section 4.87
associated Receive Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

Target Endpoint 2 Control Registers, Valid Only in Host Mode

490h TXFUNCADDR Address of the target function that has to be accessed Section 4.82
through the associated Transmit Endpoint.

492h TXHUBADDR Address of the hub that has to be accessed through the Section 4.83
associated Transmit Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

493h TXHUBPORT Port of the hub that has to be accessed through the Section 4.84
associated Transmit Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

494h RXFUNCADDR Address of the target function that has to be accessed Section 4.85
through the associated Receive Endpoint.

496h RXHUBADDR Address of the hub that has to be accessed through the Section 4.86
associated Receive Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

497h RXHUBPORT Port of the hub that has to be accessed through the Section 4.87
associated Receive Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

Target Endpoint 3 Control Registers, Valid Only in Host Mode

498h TXFUNCADDR Address of the target function that has to be accessed Section 4.82
through the associated Transmit Endpoint.

49Ah TXHUBADDR Address of the hub that has to be accessed through the Section 4.83
associated Transmit Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

49Bh TXHUBPORT Port of the hub that has to be accessed through the Section 4.84
associated Transmit Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

49Ch RXFUNCADDR Address of the target function that has to be accessed Section 4.85
through the associated Receive Endpoint.

49Eh RXHUBADDR Address of the hub that has to be accessed through the Section 4.86
associated Receive Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

49Fh RXHUBPORT Port of the hub that has to be accessed through the Section 4.87
associated Receive Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

Target Endpoint 4 Control Registers, Valid Only in Host Mode

4A0h TXFUNCADDR Address of the target function that has to be accessed Section 4.82
through the associated Transmit Endpoint.

4A2h TXHUBADDR Address of the hub that has to be accessed through the Section 4.83
associated Transmit Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

82 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

Table 16. Universal Serial Bus (USB) Registers (continued)

Offset Acronym Register Description Section

4A3h TXHUBPORT Port of the hub that has to be accessed through the Section 4.84
associated Transmit Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

4A4h RXFUNCADDR Address of the target function that has to be accessed Section 4.85
through the associated Receive Endpoint.

4A6h RXHUBADDR Address of the hub that has to be accessed through the Section 4.86
associated Receive Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

4A7h RXHUBPORT Port of the hub that has to be accessed through the Section 4.87
associated Receive Endpoint. This is used only when full
speed or low speed device is connected via a USB2.0
high-speed hub.

Control and Status Register for Endpoint 0

502h PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode Section 4.56

HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode Section 4.57

508h COUNT0 Number of Received Bytes in Endpoint 0 FIFO Section 4.63

50Ah HOST_TYPE0 Defines the Speed of Endpoint 0 Section 4.65

50Bh HOST_NAKLIMIT0 Sets the NAK Response Timeout on Endpoint 0 Section 4.67

50Fh CONFIGDATA Returns details of core configuration. Section 4.71

Control and Status Register for Endpoint 1

510h TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Section 4.55

512h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint Section 4.58
(peripheral mode)

HOST_TXCSR Control Status Register for Host Transmit Endpoint Section 4.59
(host mode)

514h RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint Section 4.60

516h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint Section 4.61
(peripheral mode)

HOST_RXCSR Control Status Register for Host Receive Endpoint Section 4.62
(host mode)

518h RXCOUNT Number of Bytes in Host Receive endpoint FIFO Section 4.64

51Ah HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral Section 4.66
endpoint number for the host Transmit endpoint.

51Bh HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the Section 4.68
NAK response timeout on Bulk transactions for host Transmit
endpoint.

51Ch HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral Section 4.69
endpoint number for the host Receive endpoint.

51Dh HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the Section 4.70
NAK response timeout on Bulk transactions for host Receive
endpoint.

Control and Status Register for Endpoint 2

520h TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Section 4.55

522h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint Section 4.58
(peripheral mode)

HOST_TXCSR Control Status Register for Host Transmit Endpoint Section 4.59
(host mode)

524h RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint Section 4.60

526h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint Section 4.61
(peripheral mode)

HOST_RXCSR Control Status Register for Host Receive Endpoint Section 4.62
(host mode)

528h RXCOUNT Number of Bytes in Host Receive endpoint FIFO Section 4.64

83SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

Table 16. Universal Serial Bus (USB) Registers (continued)

Offset Acronym Register Description Section

52Ah HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral Section 4.66
endpoint number for the host Transmit endpoint.

52Bh HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the Section 4.68
NAK response timeout on Bulk transactions for host Transmit
endpoint.

52Ch HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral Section 4.69
endpoint number for the host Receive endpoint.

52Dh HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the Section 4.70
NAK response timeout on Bulk transactions for host Receive
endpoint.

Control and Status Register for Endpoint 3

530h TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Section 4.55

532h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint Section 4.58
(peripheral mode)

HOST_TXCSR Control Status Register for Host Transmit Endpoint Section 4.59
(host mode)

534h RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint Section 4.60

536h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint Section 4.61
(peripheral mode)

HOST_RXCSR Control Status Register for Host Receive Endpoint Section 4.62
(host mode)

538h RXCOUNT Number of Bytes in Host Receive endpoint FIFO Section 4.64

53Ah HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral Section 4.66
endpoint number for the host Transmit endpoint.

53Bh HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the Section 4.68
NAK response timeout on Bulk transactions for host Transmit
endpoint.

53Ch HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral Section 4.69
endpoint number for the host Receive endpoint.

53Dh HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the Section 4.70
NAK response timeout on Bulk transactions for host Receive
endpoint.

Control and Status Register for Endpoint 4

540h TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Section 4.55

542h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint Section 4.58
(peripheral mode)

HOST_TXCSR Control Status Register for Host Transmit Endpoint Section 4.59
(host mode)

544h RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint Section 4.60

546h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint Section 4.61
(peripheral mode)

HOST_RXCSR Control Status Register for Host Receive Endpoint Section 4.62
(host mode)

548h RXCOUNT Number of Bytes in Host Receive endpoint FIFO Section 4.64

54Ah HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral Section 4.66
endpoint number for the host Transmit endpoint.

54Bh HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the Section 4.68
NAK response timeout on Bulk transactions for host Transmit
endpoint.

54Ch HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral Section 4.69
endpoint number for the host Receive endpoint.

54Dh HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the Section 4.70
NAK response timeout on Bulk transactions for host Receive
endpoint.

84 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.1 Control Register (CTRLR)

The Control Register (CTRLR) is shown in Figure 16 and described in Table 17.

Figure 16. Control Register (CTRLR)
31 16

Reserved

R-0

15 5 4 3 2 1 0

Reserved RNDIS UINT Reserved CLKFACK RESET

R-0 R/W-0 R/W-0 R-0 R/W-0 W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 17. Control Register (CTRLR) Field Descriptions

Bit Field Value Description

31-5 Reserved 0 Reserved

4 RNDIS Global RNDIS mode enable for all endpoints.

0 Global RNDIS mode is disabled.

1 Global RNDIS mode is enabled.

3 UINT USB non-PDR interrupt handler enable.

0 PDR interrupt handler is enabled.

1 PDR interrupt handler is disabled.

2 Reserved 0 Reserved

1 CLKFACK Clock stop fast ACK enable.

0 Clock stop fast ACK is disabled.

1 Clock stop fast ACK is enabled.

0 RESET Soft reset.

0 No effect.

1 Writing a 1 starts a module reset. The USB controller will clear this bit when it completes reset.

85SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.2 Status Register (STATR)

The Status Register (STATR) is shown in Figure 17 and described in Table 18.

Figure 17. Status Register (STATR)
31 16

Reserved

R-0

15 1 0

Reserved DRVVBUS

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 18. Status Register (STATR) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 DRVVBUS Current DRVVBUS value.

0 DRVVBUS value is logic 0

1 DRVVBUS value is logic 1

4.3 RNDIS Register (RNDISR)

The RNDIS Register (RNDISR) is shown in Figure 18 and described in Table 19.

Figure 18. RNDIS Register (RNDISR)
31 20 19 18 17 16

Reserved RX4EN RX3EN RX2EN RX1EN

R-0 R/W-0 R/W-0 R/W-0 R/W-0

15 4 3 2 1 0

Reserved TX4EN TX3EN TX2EN TX1EN

R-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 19. RNDIS Register (RNDISR) Field Descriptions

Bit Field Value Description

31-20 Reserved 0 Reserved

19 RX4EN 0-1 Receive Endpoint 4 RNDIS mode enable.

18 RX3EN 0-1 Receive Endpoint 3 RNDIS mode enable.

17 RX2EN 0-1 Receive Endpoint 2 RNDIS mode enable.

16 RX1EN 0-1 Receive Endpoint 1 RNDIS mode enable.

15-4 Reserved 0 Reserved

3 TX4EN 0-1 Transmit Endpoint 4 RNDIS mode enable.

2 TX3EN 0-1 Transmit Endpoint 3 RNDIS mode enable.

1 TX2EN 0-1 Transmit Endpoint 2 RNDIS mode enable.

0 TX1EN 0-1 Transmit Endpoint 1 RNDIS mode enable.

86 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.4 Auto Request Register (AUTOREQ)

The Auto Request Register (AUTOREQ) is shown in Figure 19 and described in Table 20.

Figure 19. Auto Request Register (AUTOREQ)
31 16

Reserved

R-0

15 8 7 6 5 4 3 2 1 0

Reserved Rx4 Rx3 Rx2 Rx1

R-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 20. Auto Request Register (AUTOREQ) Field Descriptions

Bit Field Value Description

31-8 Reserved 0 Reserved

7-6 Rx4 0-3h RX endpoint 4 Auto Req enable.

0 No auto req

1h Auto req on all but EOP

2h Reserved

3h Auto req always

5-4 Rx3 0-3h RX endpoint 3 Auto Req enable.

0 No auto req

1h Auto req on all but EOP

2h Reserved

3h Auto req always

3-2 Rx2 0-3h RX endpoint 2 Auto Req enable.

0 No auto req

1h Auto req on all but EOP

2h Reserved

3h Auto req always

1-0 Rx1 0-3h RX endpoint 1 Auto Req enable.

0 No auto req

1h Auto req on all but EOP

2h Reserved

3h Auto req always

87SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.5 USB Interrupt Source Register (INTSRCR)

The USB Interrupt Source Register (INTSRCR) is shown in Figure 20 and described in Table 21.

Figure 20. USB Interrupt Source Register (INTSRCR)
31 25 24 16

Reserved USB

R-0 R-0

15 13 12 9 8 5 4 0

Reserved RX Reserved TX

R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 21. USB Interrupt Source Register (INTSRCR) Field Descriptions

Bit Field Value Description

31-25 Reserved 0 Reserved

24-16 USB 0-1FFh USB interrupt sources

Generated by the USB core (not the DMA)

15-13 Reserved 0 Reserved

12-9 RX 0-Fh Receive endpoint interrupt sources

Generated by the USB core (not the DMA)

8-5 Reserved 0 Reserved

4-0 TX 0-1Fh Transmit endpoint interrupt sources

Generated by the USB core (not the DMA)

88 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.6 USB Interrupt Source Set Register (INTSETR)

The USB Interrupt Source Set Register (INTSETR) is shown in Figure 21 and described in Table 22.

Figure 21. USB Interrupt Source Set Register (INTSETR)
31 25 24 16

Reserved USB

R-0 W-0

15 13 12 9 8 5 4 0

Reserved RX Reserved TX

R-0 W-0 R-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 22. USB Interrupt Source Set Register (INTSETR) Field Descriptions

Bit Field Value Description

31-25 Reserved 0 Reserved

24-16 USB 0-1FFh Write a 1 to set equivalent USB interrupt source

Allows the USB interrupt sources to be manually triggered

15-13 Reserved 0 Reserved

12-9 RX 0-Fh Write a 1 to set equivalent Receive endpoint interrupt source

Allows the USB interrupt sources to be manually triggered

8-5 Reserved 0 Reserved

4-0 TX 0-1Fh Write a 1 to set equivalent Transmit endpoint interrupt source

Allows the USB interrupt sources to be manually triggered

89SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.7 USB Interrupt Source Clear Register (INTCLRR)

The USB Interrupt Source Clear Register (INTCLRR) is shown in Figure 22 and described in Table 23.

Figure 22. USB Interrupt Source Clear Register (INTCLRR)
31 25 24 16

Reserved USB

R-0 W-0

15 13 12 9 8 5 4 0

Reserved RX Reserved TX

R-0 W-0 R-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 23. USB Interrupt Source Clear Register (INTCLRR) Field Descriptions

Bit Field Value Description

31-25 Reserved 0 Reserved

24-16 USB 0-1FFh Write a 1 to clear equivalent USB interrupt source

Allows the CPU to acknowledge an interrupt source and turn it off

15-13 Reserved 0 Reserved

12-9 RX 0-Fh Write a 1 to clear equivalent Receive endpoint interrupt source

Allows the CPU to acknowledge an interrupt source and turn it off

8-5 Reserved 0 Reserved

4-0 TX 0-1Fh Write a 1 to clear equivalent Transmit endpoint interrupt source

Allows the CPU to acknowledge an interrupt source and turn it off

90 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.8 USB Interrupt Mask Register (INTMSKR)

The USB Interrupt Mask Register (INTMSKR) is shown in Figure 23 and described in Table 24.

Figure 23. USB Interrupt Mask Register (INTMSKR)
31 25 24 16

Reserved USB

R-0 R-0

15 13 12 9 8 5 4 0

Reserved RX Reserved TX

R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 24. USB Interrupt Mask Register (INTMSKR) Field Descriptions

Bit Field Value Description

31-25 Reserved 0 Reserved

24-16 USB 0-1FFh USB interrupt source masks

Contains the masks of the interrupt sources generated by the USB core (not the DMA). These masks
are used to enable or disable interrupt sources appearing as masked interrupts

15-13 Reserved 0 Reserved

12-9 RX Fh Receive endpoint interrupt source masks

Contains the masks of the interrupt sources generated by the USB core (not the DMA). These masks
are used to enable or disable interrupt sources appearing as masked interrupts.

8-5 Reserved 0 Reserved

4-0 TX 0-1Fh Transmit endpoint interrupt source masks

Contains the masks of the interrupt sources generated by the USB core (not the DMA). These masks
are used to enable or disable interrupt sources appearing as masked interrupts.

91SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.9 USB Interrupt Mask Set Register (INTMSKSETR)

The USB Interrupt Mask Set Register (INTMSKSETR) is shown in Figure 24 and described in Table 25.

Figure 24. USB Interrupt Mask Set Register (INTMSKSETR)
31 25 24 16

Reserved USB

R-0 W-0

15 13 12 9 8 5 4 0

Reserved RX Reserved TX

R-0 W-0 R-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 25. USB Interrupt Mask Set Register (INTMSKSETR) Field Descriptions

Bit Field Value Description

31-25 Reserved 0 Reserved

24-16 USB 0-1FFh Write a 1 to set equivalent USB interrupt mask

Allows the USB interrupt masks to be individually enabled

15-13 Reserved 0 Reserved

12-9 RX 0-Fh Write a 1 to set equivalent Receive endpoint interrupt mask

Allows the USB interrupt masks to be individually enabled

8-5 Reserved 0 Reserved

4-0 TX 0-1Fh Write a 1 to set equivalent Transmit endpoint interrupt mask

Allows the USB interrupt masks to be individually enabled

92 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.10 USB Interrupt Mask Clear Register (INTMSKCLRR)

The USB Interrupt Mask Clear Register (INTMSKCLRR) is shown in Figure 25 and described in Table 26.

Figure 25. USB Interrupt Mask Clear Register (INTMSKCLRR)
31 25 24 16

Reserved USB

R-0 W-0

15 13 12 9 8 5 4 0

Reserved RX Reserved TX

R-0 W-0 R-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 26. USB Interrupt Mask Clear Register (INTMSKCLRR) Field Descriptions

Bit Field Value Description

31-25 Reserved 0 Reserved

24-16 USB 0-1FFh Write a 1 to clear equivalent USB interrupt mask

Allows the USB interrupt masks to be individually disabled

15-13 Reserved 0 Reserved

12-9 RX 0-Fh Write a 1 to clear equivalent Receive endpoint interrupt mask

Allows the USB interrupt masks to be individually disabled

8-5 Reserved 0 Reserved

4-0 TX 0-1Fh Write a 1 to clear equivalent Transmit endpoint interrupt mask

Allows the USB interrupt masks to be individually disabled

93SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.11 USB Interrupt Source Masked Register (INTMASKEDR)

The USB Interrupt Source Masked Register (INTMASKEDR) is shown in Figure 26 and described in
Table 27.

Figure 26. USB Interrupt Source Masked Register (INTMASKEDR)
31 25 24 16

Reserved USB

R-0 R-0

15 13 12 9 8 5 4 0

Reserved RX Reserved TX

R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 27. USB Interrupt Source Masked Register (INTMASKEDR) Field Descriptions

Bit Field Value Description

31-25 Reserved 0 Reserved

24-16 USB 0-1FFh USB interrupt sources masked

Contains the status of the interrupt sources generated by the USB core masked by the USB Interrupt
Mask Register values

15-13 Reserved 0 Reserved

12-9 RX 0-Fh Receive endpoint interrupt sources masked

Contains the status of the interrupt sources generated by the USB core masked by the USB Interrupt
Mask Register values.

8-5 Reserved 0 Reserved

4-0 TX 0-1Fh Transmit endpoint interrupt sources masked

Contains the status of the interrupt sources generated by the USB core masked by the USB Interrupt
Mask Register values.

94 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.12 USB End of Interrupt Register (EOIR)

The USB End of Interrupt Register (EOIR) is shown in Figure 27 and described in Table 28.

Figure 27. USB End of Interrupt Register (EOIR)
31 16

Reserved

R-0

15 8 7 0

Reserved VECTOR

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 28. USB End of Interrupt Register (EOIR) Field Descriptions

Bit Field Value Description

31-8 Reserved 0 Reserved

7-0 VECTOR 0-FFh USB End of Interrupt Vector.

Allows the CPU to acknowledge completion of non-DMA interrupt by writing ZERO to EOI Vector field.

95SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.13 Transmit CPPI Control Register (TCPPICR)

The Transmit CPPI Control Register (TCPPICR) is shown in Figure 28 and described in Table 29.

Figure 28. Transmit CPPI Control Register (TCPPICR)
31 16

Reserved

R-0

15 1 0

Reserved TCPPI_ENABLE

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 29. Transmit CPPI Control Register (TCPPICR) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 TCPPI_ENABLE Transmit CPPI Enable Controls if the Transmit CPPI DMA controller is enabled. Be sure to program
the CPPI chain and set the DMA state words before enabling the DMA. Failure to initialize the DMA
before enabling could result in spurious transfers and memory corruption.

0 Transmit CPPI DMA is disabled

1 Transmit CPPI DMA is enabled

4.14 Transmit CPPI Teardown Register (TCPPITDR)

The Transmit CPPI Teardown Register (TCPPITDR) is shown in Figure 29 and described in Table 30.

Figure 29. Transmit CPPI Teardown Register (TCPPITDR)
31 30 16

READY Reserved

R-1 R-0

15 2 1 0

Reserved CHANNEL

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 30. Transmit CPPI Teardown Register (TCPPITDR) Field Descriptions

Bit Field Value Description

31 READY 0-1 Indicates if the Teardown register can be written

30-2 Reserved 0 Reserved

1-0 CHANNEL 0-3h Teardown Channel

Indicates the channel that is to be torn down

96 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.15 CPPI DMA End of Interrupt Register (CPPIEOIR)

NOTE: This register was previously named TCPPIEOIR, and that name will continue to exist in the
CSL for backward compatibility.

The CPPI DMA End of Interrupt Register (CPPIEOIR) is shown in Figure 30 and described in Table 31.

Figure 30. CPPI DMA End of Interrupt Register (CPPIEOIR)
31 16

Reserved

R-0

15 8 7 0

Reserved VECTOR

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 31. CPPI DMA End of Interrupt Register (CPPIEOIR) Field Descriptions

Bit Field Value Description

31-8 Reserved 0 Reserved

7-0 VECTOR 0-FFh DMA End of Interrupt Vector

Allows the CPU to acknowledge completion of DMA interrupt by writing ZERO to the VECTOR field.

97SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.16 Transmit CPPI Masked Status Register (TCPPIMSKSR)

The Transmit CPPI Masked Status Register (TCPPIMSKSR) is shown in Figure 31 and described in
Table 32.

Figure 31. Transmit CPPI Masked Status Register (TCPPIMSKSR)
31 16

Reserved

R-0

15 4 3 0

Reserved MASKED COMP_PENDING

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 32. Transmit CPPI Masked Status Register (TCPPIMSKSR) Field Descriptions

Bit Field Value Description

31-4 Reserved 0 Reserved

3-0 MASKED COMP_PENDING 0-Fh Masked High Priority Transmit Completion Pending

Indicators for channels 3 to 0 Raw Transmit high priority completion indicators bitwise
anded with Transmit high priority completion mask bits

4.17 Transmit CPPI Raw Status Register (TCPPIRAWSR)

The Transmit CPPI Raw Status Register (TCPPIRAWSR) is shown in Figure 32 and described in
Table 33.

Figure 32. Transmit CPPI Raw Status Register (TCPPIRAWSR)
31 16

Reserved

R-0

15 4 3 0

Reserved COMP_PENDING

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 33. Transmit CPPI Raw Status Register (TCPPIRAWSR) Field Descriptions

Bit Field Value Description

31-4 Reserved 0 Reserved

3-0 COMP_PENDING 0-Fh Raw High Priority Transmit Completion Pending

Indicators for channels 3 to 0 Active high flags which indicate that a packet has completed
transmission on the high priority queue

98 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.18 Transmit CPPI Interrupt Enable Set Register (TCPPIIENSETR)

The Transmit CPPI Interrupt Enable Set Register (TCPPIIENSETR) is shown in Figure 33 and described
in Table 34.

Figure 33. Transmit CPPI Interrupt Enable Set Register (TCPPIIENSETR)
31 16

Reserved

R-0

15 4 3 0

Reserved COMP_PENDING_INTR_EN

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 34. Transmit CPPI Interrupt Enable Set Register (TCPPIIENSETR) Field Descriptions

Bit Field Value Description

31-4 Reserved 0 Reserved

3-0 COMP_PENDING_INTR_EN 0-Fh Transmit CPPI High Priority Interrupt Enables

These are active high interrupt enables corresponding to the Transmit CPPI High
Priority Completion Pending status bits.

4.19 Transmit CPPI Interrupt Enable Clear Register (TCPPIIENCLRR)

The Transmit CPPI Interrupt Enable Clear Register (TCPPIIENCLRR) is shown in Figure 34 and
described in Table 35.

Figure 34. Transmit CPPI Interrupt Enable Clear Register (TCPPIIENCLRR)
31 16

Reserved

R-0

15 4 3 0

Reserved COMP_PENDING_INTR_EN

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 35. Transmit CPPI Interrupt Enable Clear Register (TCPPIIENCLRR) Field Descriptions

Bit Field Value Description

31-4 Reserved 0 Reserved

3-0 COMP_PENDING_INTR_EN 0-Fh Writing a 1 to any of the bits in the Transmit CPPI Interrupt Enable Clear Register will
result in clearing of the corresponding bit in the Transmit CPPI High Priority Interrupt
Enable Register.

99SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.20 Receive CPPI Control Register (RCPPICR)

The Receive CPPI Control Register (RCPPICR) is shown in Figure 35 and described in Table 36.

Figure 35. Receive CPPI Control Register (RCPPICR)
31 16

Reserved

R-0

15 1 0

Reserved RCPPI_ENABLE

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 36. Receive CPPI Control Register (RCPPICR) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 RCPPI_ENABLE Receive CPPI Enable Controls if the Receive CPPI DMA controller is enabled. Be sure to program
the CPPI chain and set the DMA state words before enabling the DMA. Failure to initialize the DMA
before enabling could result in spurious transfers and memory corruption.

0 Receive CPPI DMA is disabled.

1 Receive CPPI DMA is enabled.

4.21 Receive CPPI Masked Status Register (RCPPIMSKSR)

The Receive CPPI Masked Status Register (RCPPIMSKSR) is shown in Figure 36 and described in
Table 37.

Figure 36. Receive CPPI Masked Status Register (RCPPIMSKSR)
31 16

Reserved

R-0

15 4 3 0

Reserved MASKED_COMP_PENDING

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 37. Receive CPPI Masked Status Register (RCPPIMSKSR) Field Descriptions

Bit Field Value Description

31-4 Reserved 0 Reserved

3-0 MASKED_COMP_PENDING 0-Fh Masked Receive Completion Pending

Indicators for channels 3 to 0 Raw Receive completion indicators bitwise ANDed with
Receive completion mask bits

100 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.22 Receive CPPI Raw Status Register (RCPPIRAWSR)

The Receive CPPI Raw Status Register (RCPPIRAWSR) is shown in Figure 37 and described in
Table 38.

Figure 37. Receive CPPI Raw Status Register (RCPPIRAWSR)
31 16

Reserved

R-0

15 4 3 0

Reserved COMP_PENDING

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 38. Receive CPPI Raw Status Register (RCPPIRAWSR) Field Descriptions

Bit Field Value Description

31-4 Reserved 0 Reserved

3-0 COMP_PENDING 0-Fh Raw Receive Completion Pending

Indicators for channels 3 to 0 Active high flags which indicate that a packet has completed
reception

4.23 Receive CPPI Interrupt Enable Set Register (RCPPIENSETR)

The Receive CPPI Interrupt Enable Set Register (RCPPIENSETR) is shown in Figure 38 and described in
Table 39.

Figure 38. Receive CPPI Interrupt Enable Set Register (RCPPIENSETR)
31 16

Reserved

R-0

15 4 3 0

Reserved COMP_PENDING_INTR_EN

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 39. Receive CPPI Interrupt Enable Set Register (RCPPIENSETR) Field Descriptions

Bit Field Value Description

31-4 Reserved 0 Reserved

3-0 COMP_PENDING_INTR_EN 0-Fh Receive CPPI Interrupt Enables

These are active high interrupt enables corresponding to the Receive CPPI Completion
Pending status bits. Writing a 1 to any of the bits in the Receive CPPI Interrupt Enable
Set Register will result in setting of the corresponding bit in the Receive CPPI Interrupt
Enable Register.

101SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.24 Receive CPPI Interrupt Enable Clear Register (RCPPIIENCLRR)

The Receive CPPI Interrupt Enable Clear Register (RCPPIIENCLRR) is shown in Figure 39 and described
in Table 40.

Figure 39. Receive CPPI Interrupt Enable Clear Register (RCPPIIENCLRR)
31 16

Reserved

R-0

15 4 3 0

Reserved COMP_PENDING_INTR_EN

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 40. Receive CPPI Interrupt Enable Clear Register (RCPPIIENCLRR) Field Descriptions

Bit Field Value Description

31-4 Reserved 0 Reserved

3-0 COMP_PENDING_INTR_EN 0-Fh Receive CPPI Interrupt Enables

These are active high interrupt enables corresponding to the Receive CPPI
Completion Pending status bits. Writing a 1 to any of the bits in the Receive CPPI
Interrupt Enable Clear Register will result in clearing of the corresponding bit in the
Receive CPPI Interrupt Enable Register.

4.25 Receive Buffer Count 0 Register (RBUFCNT0)

The Receive Buffer Count 0 Register (RBUFCNT0) is shown in Figure 40 and described in Table 41.

Figure 40. Receive Buffer Count 0 Register (RBUFCNT0)
31 16

Reserved

R-0

15 0

BUFCNT

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 41. Receive Buffer Count 0 Register (RBUFCNT0) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15-0 BUFCNT 0-FFFFh Receive CPPI Buffer Count

The current count of CPPI buffers in Receive channel 0 queue. Writes add to current value (not
overwrite). The DMA requires a minimum of 3 RX buffers to operate.

102 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.26 Receive Buffer Count 1 Register (RBUFCNT1)

The Receive Buffer Count 1 Register (RBUFCNT1) is shown in Figure 41 and described in Table 42.

Figure 41. Receive Buffer Count 1 Register (RBUFCNT1)
31 16

Reserved

R-0

15 0

BUFCNT

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 42. Receive Buffer Count 1 Register (RBUFCNT1) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15-0 BUFCNT 0-FFFFh Receive CPPI Buffer Count

The current count of CPPI buffers in Receive channel 1 queue. Writes add to current value (not
overwrite). The DMA requires a minimum of 3 RX buffers to operate.

4.27 Receive Buffer Count 2 Register (RBUFCNT2)

The Receive Buffer Count 2 Register (RBUFCNT2) is shown in Figure 42 and described in Table 43.

Figure 42. Receive Buffer Count 2 Register (RBUFCNT2)
31 16

Reserved

R-0

15 0

BUFCNT

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 43. Receive Buffer Count 2 Register (RBUFCNT2) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15-0 BUFCNT 0-FFFFh Receive CPPI Buffer Count

The current count of CPPI buffers in Receive channel 2 queue. Writes add to current value (not
overwrite). The DMA requires a minimum of 3 RX buffers to operate.

103SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.28 Receive Buffer Count 3 Register (RBUFCNT3)

The Receive Buffer Count 3 Register (RBUFCNT3) is shown in Figure 43 and described in Table 44.

Figure 43. Receive Buffer Count 3 Register (RBUFCNT3)
31 16

Reserved

R-0

15 0

BUFCNT

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 44. Receive Buffer Count 3 Register (RBUFCNT3) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15-0 BUFCNT 0-FFFFh Receive CPPI Buffer Count 0

The current count of CPPI buffers in Receive channel 3 queue. Writes add to current value (not
overwrite). The DMA requires a minimum of 3 RX buffers to operate.

4.29 Transmit CPPI DMA State Word 0 (TCPPIDMASTATEW0)

The Transmit CPPI DMA State Word 0 (TCPPIDMASTATEW0) is shown in Figure 44 and described in
Table 45.

Figure 44. Transmit CPPI DMA State Word 0 (TCPPIDMASTATEW0)
31 16

TXQ_HEAD_PTR

R/W-0

15 2 1 0

TXQ_HEAD_PTR Reserved IN_PACKET

R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 45. Transmit CPPI DMA State Word 0 (TCPPIDMASTATEW0) Field Descriptions

Bit Field Value Description

31-2 TXQ_HEAD_PTR 0-3FFF FFFFh TX Queue Head Pointer

30-bit pointer to 32-bit aligned descriptor at the head of the high priority TX queue

1 Reserved 0 Reserved

0 IN_PACKET Flag indicating the DMA is in the middle of processing a packet

0 Not currently in packet

1 Currently in packet

104 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.30 Transmit CPPI DMA State Word 1 (TCPPIDMASTATEW1)

The Transmit CPPI DMA State Word 1 (TCPPIDMASTATEW1) is shown in Figure 45 and described in
Table 46.

Figure 45. Transmit CPPI DMA State Word 1 (TCPPIDMASTATEW1)
31 16

SOP_DESCRIPTOR_PTR

R/W-0

15 2 1 0

SOP_DESCRIPTOR_PTR Reserved IN_PACKET

R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 46. Transmit CPPI DMA State Word 1 (TCPPIDMASTATEW1) Field Descriptions

Bit Field Value Description

31-2 SOP_DESCRIPTOR_PTR 0-3FFF FFFFh Start of Packet Buffer Descriptor Pointer

30-bit pointer to 32-bit aligned descriptor which is the first descriptor for the
current packet

1 Reserved 0 Reserved

0 IN_PACKET Flag indicating the DMA is in the middle of processing a packet

0 Not currently in packet

1 Currently in packet

4.31 Transmit CPPI DMA State Word 2 (TCPPIDMASTATEW2)

The Transmit CPPI DMA State Word 2 (TCPPIDMASTATEW2) is shown in Figure 46 and described in
Table 47.

Figure 46. Transmit CPPI DMA State Word 2 (TCPPIDMASTATEW2)
31 16

CURR_DESCRIPTOR_PTR

R/W-0

15 2 1 0

CURR_DESCRIPTOR_PTR TRUNCATED_NON_EOP Reserved

R/W-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 47. Transmit CPPI DMA State Word 2 (TCPPIDMASTATEW2) Field Descriptions

Bit Field Value Description

31-2 CURR_DESCRIPTOR_PTR 0-3FFF FFFFh Current Buffer Descriptor Pointer

30-bit pointer to 32-bit aligned descriptor for buffer from which data is currently
being transmitted

1 TRUNCATED_NON_EOP Flag indicating that packet truncation has occurred on the current packet within a
buffer which was not designated as the end of packet buff

0 Truncation within non end of packet buffer has not occurred

1 Truncation within non end of packet has occurred

0 Reserved 0 Reserved

105SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.32 Transmit CPPI DMA State Word 3 (TCPPIDMASTATEW3)

The Transmit CPPI DMA State Word 3 (TCPPIDMASTATEW3) is shown in Figure 47 and described in
Table 48.

Figure 47. Transmit CPPI DMA State Word 3 (TCPPIDMASTATEW3)
31 0

CURR_BUFFER_PTR

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 48. Transmit CPPI DMA State Word 3 (TCPPIDMASTATEW3) Field Descriptions

Bit Field Value Description

31-0 CURR_BUFFER_PTR 0-FFFF FFFFh Current Buffer Pointer

32-bit absolute byte address in buffer from which data is currently being
transmitted

4.33 Transmit CPPI DMA State Word 4 (TCPPIDMASTATEW4)

The Transmit CPPI DMA State Word 4 (TCPPIDMASTATEW4) is shown in Figure 48 and described in
Table 49.

Figure 48. Transmit CPPI DMA State Word 4 (TCPPIDMASTATEW4)
31 24 23 18 17 16

DESC_MSG Reserved CURR_BUFFER_EOP CURR_BUFFER_SOP

R/W-0 R-0 R/W-0 R/W-0

15 0

CURR_BUFFER_LENGTH

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 49. Transmit CPPI DMA State Word 4 (TCPPIDMASTATEW4) Field Descriptions

Bit Field Value Description

31-24 DESC_MSG 0-FFh Descriptor Message

Byte which is passed from the SOP Tx Descriptor to the SOP Receive
descriptor. Used to tag packets.

23-18 Reserved 0 Reserved

17 CURR_BUFFER_EOP 0-1 Current Buffer is EOP

Flag indicating whether or not the current buffer that is being transmitted from is
the end of packet buffer

16 CURR_BUFFER_SOP 0-1 Current Buffer is SOP

Flag indicating whether or not the current buffer that is being transmitted from is
the start of packet buffer

15-0 CURR_BUFFER_LENGTH 0-FFFFh Current Buffer Length

Indicates how many valid bytes remain in the current buffer that is being
transmitted from

106 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.34 Transmit CPPI DMA State Word 5 (TCPPIDMASTATEW5)

The Transmit CPPI DMA State Word 5 (TCPPIDMASTATEW5) is shown in Figure 49 and described in
Table 50.

Figure 49. Transmit CPPI DMA State Word 5 (TCPPIDMASTATEW5)
31 16

REM_LENGTH

R/W-0

15 0

LENGTH

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 50. Transmit CPPI DMA State Word 5 (TCPPIDMASTATEW5) Field Descriptions

Bit Field Value Description

31-16 REM_LENGTH 0-FFFFh Remaining Packet Length

Indicates how many bytes remain to be transmitted in the packet before truncation occurs

15-0 LENGTH 0-FFFFh Packet Length

Indicates how many bytes are contained in the packet. This value is copied from the
packet-length field in Word 3 of the SOP Descriptor. This value is written into the AAL5 trailer
for the packet.

4.35 Transmit CPPI Completion Pointer (TCPPICOMPPTR)

The Transmit CPPI Completion Pointer (TCPPICOMPPTR) is shown in Figure 50 and described in
Table 51.

Figure 50. Transmit CPPI Completion Pointer (TCPPICOMPPTR)
31 16

DESC_ADDR

R/W-0

15 2 1 0

DESC_ADDR Reserved WRBK_MODE

R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 51. Transmit CPPI Completion Pointer (TCPPICOMPPTR) Field Descriptions

Bit Field Value Description

31-2 DESC_ADDR 0-3FFF FFFFh Descriptor Address

This field contains the 30-bit word aligned pointer of the end of packet descriptor that the
DMA has last processed

1 Reserved 0 Reserved

0 WRBK_MODE Writeback/Compare Mode. This bit controls the action that is to be taken when this location
is written.

0 Compare Mode. Indicates that the value that is presented on bits 31:2 of the write data
should be compared against the value that is currently contained in bits 31:2 of this location.
If the two match, the interrupt bit corresponding to this Tx Queue should be deasserted.

1 Writeback Mode. Indicates that the value that is presented on bits 31:2 of the write data
should be written to this location and the interrupt for this Tx Queue should be asserted. This
bit is read as zero.

107SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.36 Receive CPPI DMA State Word 0 (RCPPIDMASTATEW0)

The Receive CPPI DMA State Word 0 (RCPPIDMASTATEW0) is shown in Figure 51 and described in
Table 52.

Figure 51. Receive CPPI DMA State Word 0 (RCPPIDMASTATEW0)
31 16

Reserved

R-0

15 8 7 0

Reserved SOP_BUFFER_OFFSET

R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 52. Receive CPPI DMA State Word 0 (RCPPIDMASTATEW0) Field Descriptions

Bit Field Value Description

31-8 Reserved 0-7FFF FFh Reserved

7-0 SOP_BUFFER_OFFSET 0-FFh Start of Packet Buffer Offset

Controls how many bytes the Receive DMA will skip at the beginning of the start
of packet buffer before beginning to fill the buffer with receive data. This field is
programmed by the Host software when the channel is set up to facilitate
addition of various protocol encapsulation headers for retransmission of received
packets.

4.37 Receive CPPI DMA State Word 1 (RCPPIDMASTATEW1)

The Receive CPPI DMA State Word 1 (RCPPIDMASTATEW1) is shown in Figure 52 and described in
Table 53.

Figure 52. Receive CPPI DMA State Word 1 (RCPPIDMASTATEW1)
31 16

RXQ_HEAD_PTR

R/W-0

15 2 1 0

RXQ_HEAD_PTR Reserved

R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 53. Receive CPPI DMA State Word 1 (RCPPIDMASTATEW1) Field Descriptions

Bit Field Value Description

31-2 RXQ_HEAD_PTR 0-1FFF FFFFh Receive Queue Head Pointer

30-bit pointer to 32-bit aligned descriptor at the head of the Receive queue

1-0 Reserved 0 Reserved

108 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.38 Receive CPPI DMA State Word 2 (RCPPIDMASTATEW2)

The Receive CPPI DMA State Word 2 (RCPPIDMASTATEW2) is shown in Figure 53 and described in
Table 54.

Figure 53. Receive CPPI DMA State Word 2 (RCPPIDMASTATEW2)
31 16

SOP_DESCRIPTOR_PTR

R/W-0

15 2 1 0

SOP_DESCRIPTOR_PTR Reserved IN_PACKET

R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 54. Receive CPPI DMA State Word 2 (RCPPIDMASTATEW2) Field Descriptions

Bit Field Value Description

31-2 SOP_DESCRIPTOR_PTR 0-1FFF FFFFh Start of Packet Buffer Descriptor Pointer

30-bit pointer to 32-bit aligned descriptor which is the first descriptor for the
current packet

1 Reserved 0 Reserved

0 IN_PACKET Flag indicating the DMA is in the middle of processing a packet 0: Not currently
in packet

0 Not currently in packet

1 Currently in packet

4.39 Receive CPPI DMA State Word 3 (RCPPIDMASTATEW3)

The Receive CPPI DMA State Word 3 (RCPPIDMASTATEW3) is shown in Figure 54 and described in
Table 55.

Figure 54. Receive CPPI DMA State Word 3 (RCPPIDMASTATEW3)
31 16

CURR_DESCRIPTOR_PTR

R/W-0

15 1 0

CURR_DESCRIPTOR_PTR Reserved

R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 55. Receive CPPI DMA State Word 3 (RCPPIDMASTATEW3) Field Descriptions

Bit Field Value Description

31-2 CURR_DESCRIPTOR_PTR 0-3FFF FFFFh Current Buffer Descriptor Pointer

30-bit pointer to 32-bit aligned descriptor for buffer into which data is currently
being received

1-0 Reserved 0 Reserved

109SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.40 Receive CPPI DMA State Word 4 (RCPPIDMASTATEW4)

The Receive CPPI DMA State Word 4 (RCPPIDMASTATEW4) is shown in Figure 55 and described in
Table 56.

Figure 55. Receive CPPI DMA State Word 4 (RCPPIDMASTATEW4)
31 0

CURR_BUFFER_PTR

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 56. Receive CPPI DMA State Word 4 (RCPPIDMASTATEW4) Field Descriptions

Bit Field Value Description

31-0 CURR_BUFFER_PTR 0-FFFF FFFFh Current Buffer Pointer

32-bit absolute byte address in buffer into which data is currently being received

4.41 Receive CPPI DMA State Word 5 (RCPPIDMASTATEW5)

The Receive CPPI DMA State Word 5 (RCPPIDMASTATEW5) is shown in Figure 56 and described in
Table 57.

Figure 56. Receive CPPI DMA State Word 5 (RCPPIDMASTATEW5)
31 16

PKT_LENGTH

R/W-0

15 0

CURR_BUFFER_LENGTH

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 57. Receive CPPI DMA State Word 5 (RCPPIDMASTATEW5) Field Descriptions

Bit Field Value Description

31-16 PKT_LENGTH 0-FFFFh Packet Length

Indicates how many bytes are contained in the packet. This value is written into
bits 15:0 of Word 3 of the SOP Descriptor during end of packet processing.

15-0 CURR_BUFFER_LENGTH 0-FFFFh Current Buffer Length

Indicates how many free bytes remain in the current buffer that is being received
into

110 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.42 Receive CPPI DMA State Word 6 (RCPPIDMASTATEW6)

The Receive CPPI DMA State Word 6 (RCPPIDMASTATEW6) is shown in Figure 57 and described in
Table 58.

Figure 57. Receive CPPI DMA State Word 6 (RCPPIDMASTATEW6)
31 16

SOP_BUFFER_BYTECNT

R/W-0

15 0

CURR_BUFFER_BYTECNT

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 58. Receive CPPI DMA State Word 6 (RCPPIDMASTATEW6) Field Descriptions

Bit Field Value Description

31-16 SOP_BUFFER_BYTECNT 0-FFFFh Packet Length

Indicates how many bytes are contained in the packet. This value is written into
bits 15:0 of Word 3 of the SOP Descriptor during end of packet processing.

15-0 CURR_BUFFER_BYTECNT 0-FFFFh Current Buffer Length

Indicates how many free bytes remain in the current buffer that is being received
into

111SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.43 Receive CPPI Completion Pointer (RCPPICOMPPTR)

The Receive CPPI Completion Pointer (RCPPICOMPPTR) is shown in Figure 58 and described in
Table 59.

Figure 58. Receive CPPI Completion Pointer (RCPPICOMPPTR)
31 16

DESC_ADDR

R/W-0

15 2 1 0

DESC_ADDR Reserved RDBK_MODE

R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 59. Receive CPPI Completion Pointer (RCPPICOMPPTR) Field Descriptions

Bit Field Value Description

31-2 DESC_ADDR 0-7FFF FFFFh Descriptor Address

This field contains the 30-bit word aligned pointer of the end of packet descriptor that the
DMA has last processed.

1 Reserved 0 Reserved

0 RDBK_MODE Readback / Compare Mode

0 Compare Mode. Indicates that the value that is presented on bits 31:2 of the read data
should be compared against the value that is currently contained in bits 31:2 of this location.
If the two match, the interrupt bit corresponding to this Receive Queue should be deasserted.

1 Readback Mode. Indicates that the value that is presented on bits 31:2 of the read data
should be read from this location and the interrupt for this Receive Queue should be
asserted. This bit is read as zero.

4.44 Function Address Register (FADDR)

The Function Address Register (FADDR) is shown in Figure 59 and described in Table 60.

Figure 59. Function Address Register (FADDR)
7 6 0

Reserved FUNCADDR

R-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 60. Function Address Register (FADDR) Field Descriptions

Bit Field Value Description

7 Reserved 0 Reserved

6-0 FUNCADDR 0-7Fh 7-bit address of the peripheral part of the transaction

When used in Peripheral mode (DevCtl.D2=0), this register should be written with the address
received through a SET_ADDRESS command, which will then be used for decoding the function
address in subsequent token packets.

When used in Host mode (DevCtl.D2=1), this register should be set to the value sent in a
SET_ADDRESS command during device enumeration as the address for the peripheral device.

112 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.45 Power Management Register (POWER)

The Power Management Register (POWER) is shown in Figure 60 and described in Table 61.

Figure 60. Power Management Register (POWER)
7 6 5 4 3 2 1 0

ISOUPDATE SOFTCONN HSEN HSMODE RESET RESUME SUSPENDM ENSUSPM

R/W-0 R/W-0 R/W-1 R-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 61. Power Management Register (POWER) Field Descriptions

Bit Field Value Description

7 ISOUPDATE 0-1 When set, the USB controller will wait for an SOF token from the time TxPktRdy is set before
sending the packet. If an IN token is received before an SOF token, then a zero length data packet
will be sent. Note: This is only valid in Peripheral Mode. This bit only affects endpoints performing
Isochronous transfers.

6 SOFTCONN 0-1 If Soft Connect/Disconnect feature is enabled, then the USB D+/D- lines are enabled when this bit
is set and tri-stated when this bit is cleared. Note: This is only valid in Peripheral Mode.

5 HSEN 0-1 When set, the USB controller will negotiate for high-speed mode when the device is reset by the
hub. If not set, the device will only operate in full-speed mode.

4 HSMODE 0-1 This bit is set when the USB controller has successfully negotiated for high-speed mode.

3 RESET 0-1 This bit is set when Reset signaling is present on the bus. Note: This bit is Read/Write in Host
Mode, but read-only in Peripheral Mode.

2 RESUME 0-1 Set to generate Resume signaling when the controller is in Suspend mode. The bit should be
cleared after 10 ms (a maximum of 15 ms) to end Resume signaling. In Host mode, this bit is also
automatically set when Resume signaling from the target is detected while the USB controller is
suspended.

1 SUSPENDM 0-1 In Host mode, this bit should be set to enter Suspend mode. In Peripheral mode, this bit is set on
entry into Suspend mode. It is cleared when the interrupt register is read, or the RESUME bit is set.

0 ENSUSPM 0-1 Set to enable the SUSPENDM output.

113SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.46 Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX)

The Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX) is shown in Figure 61 and
described in Table 62.

NOTE: Unless the UINT bit in the control register (CTRLR) is set to 1 (non-PDR interrupt mode is
enabled), do not read this register directly. Performing a read clears the pending interrupt.
Use INTRTX only when in the non-PDR interrupt mode, that is, when handling the interrupt
directly from the controller.

Figure 61. Interrupt Register for Endpoint 0 Plus Tx Endpoints 1 to 4 (INTRTX)
15 8

Reserved

R-0

7 5 4 3 2 1 0

Reserved EP4TX EP3TX EP2TX EP1TX EP0

R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 62. Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX)
Field Descriptions

Bit Field Value Description

15-5 Reserved 0 Reserved

4 EP4TX 0-1 Transmit Endpoint 4 interrupt active

3 EP3TX 0-1 Transmit Endpoint 3 interrupt active

2 EP2TX 0-1 Transmit Endpoint 2 interrupt active

1 EP1TX 0-1 Transmit Endpoint 1 interrupt active

0 EP0 0-1 Endpoint 0 interrupt active

114 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.47 Interrupt Register for Receive Endpoints 1 to 4 (INTRRX)

The Interrupt Register for Receive Endpoints 1 to 4 (INTRRX) is shown in Figure 62 and described in
Table 63.

NOTE: Unless the UINT bit in the control register (CTRLR) is set to 1 (non-PDR interrupt mode is
enabled), do not read this register directly. Performing a read clears the pending interrupt.
Use INTRRX only when in the non-PDR interrupt mode, that is, when handling the interrupt
directly from the controller.

Figure 62. Interrupt Register for Receive Endpoints 1 to 4 (INTRRX)
31 16

Reserved

R-0

15 5 4 3 2 1 0

Reserved EP4RX EP3RX EP2RX EP1RX Reserved

R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 63. Interrupt Register for Receive Endpoints 1 to 4 (INTRRX) Field Descriptions

Bit Field Value Description

15-5 Reserved 0 Reserved

4 EP4RX 0-1 Receive Endpoint 4 interrupt active

3 EP3RX 0-1 Receive Endpoint 3 interrupt active

2 EP2RX 0-1 Receive Endpoint 2 interrupt active

1 EP1RX 0-1 Receive Endpoint 1 interrupt active

0 Reserved 0 Reserved

115SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.48 Interrupt Enable Register for INTRTX (INTRTXE)

The Interrupt Enable Register for INTRTX (INTRTXE) is shown in Figure 63 and described in Table 64.

Figure 63. Interrupt Enable Register for INTRTX (INTRTXE)
15 8

Reserved

R-0

7 5 4 3 2 1 0

Reserved EP4TX EP3TX EP2TX EP1TX EP0

R-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 64. Interrupt Enable Register for INTRTX (INTRTXE) Field Descriptions

Bit Field Value Description

15-5 Reserved 0 Reserved

4 EP4TX 0-1 1/0 = Transmit Endpoint 4 interrupt enable/disable

3 EP3TX 0-1 1/0 = Transmit Endpoint 3 interrupt enable/disable

2 EP2TX 0-1 1/0 = Transmit Endpoint 2 interrupt enable/disable

1 EP1TX 0-1 1/0 = Transmit Endpoint 1 interrupt enable/disable

0 EP0 0-1 1/0 = Endpoint 0 interrupt enable/disable

4.49 Interrupt Enable Register for INTRRX (INTRRXE)

The Interrupt Enable Register for INTRRX (INTRRXE) is shown in Figure 64 and described in Table 65.

Figure 64. Interrupt Enable Register for INTRRX (INTRRXE)
15 8

Reserved

R-0

7 5 4 3 2 1 0

Reserved EP4RX EP3RX EP2RX EP1RX Reserved

R-0 R/W-1 R/W-1 R/W-1 R/W-1 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 65. Interrupt Enable Register for INTRRX (INTRRXE) Field Descriptions

Bit Field Value Description

15-5 Reserved 0 Reserved

4 EP4RX 0-1 1/0 = Receive Endpoint 4 interrupt enable/disable

3 EP3RX 0-1 1/0 = Receive Endpoint 3 interrupt enable/disable

2 EP2RX 0-1 1/0 = Receive Endpoint 2 interrupt enable/disable

1 EP1RX 0-1 1/0 = Receive Endpoint 1 interrupt enable/disable

0 Reserved 0 Reserved

116 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.50 Interrupt Register for Common USB Interrupts (INTRUSB)

The Interrupt Register for Common USB Interrupts (INTRUSB) is shown in Figure 65 and described in
Table 66. Reading this register causes all bits to be cleared.

NOTE: Unless the UINT bit in the control register (CTRLR) is set to 1 (non-PDR interrupt mode is
enabled), do not read this register directly. Performing a read clears the pending interrupt.
Use INTRUSB only when in the non-PDR interrupt mode, that is, when handling the interrupt
directly from the controller.

Figure 65. Interrupt Register for Common USB Interrupts (INTRUSB)
7 6 5 4 3 2 1 0

VBUSERR SESSREQ DISCON CONN SOF RESET_BABBLE RESUME SUSPEND

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 66. Interrupt Register for Common USB Interrupts (INTRUSB) Field Descriptions

Bit Field Value Description

7 VBUSERR 0-1 Set when VBus drops below the VBus valid threshold during a session. Only valid when the USB
controller is 'A' device. All active interrupts will be cleared when this register is read.

6 SESSREQ 0-1 Set when session request signaling has been detected. Only valid when USB controller is 'A' device.

5 DISCON 0-1 Set in host mode when a device disconnect is detected. Set in peripheral mode when a session
ends.

4 CONN 0-1 Set when a device connection is detected. Only valid in host mode.

3 SOF 0-1 Set when a new frame starts.

2 RESET_BABBLE 0-1 Set in peripheral mode when reset signaling is detected on the bus set in host mode when babble is
detected.

1 RESUME 0-1 Set when resume signaling is detected on the bus while the USB controller is in suspend mode.

0 SUSPEND 0-1 Set when suspend signaling is detected on the bus only valid in peripheral mode.

117SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.51 Interrupt Enable Register for INTRUSB (INTRUSBE)

The Interrupt Enable Register for INTRUSB (INTRUSBE) is shown in Figure 66 and described in Table 67.

Figure 66. Interrupt Enable Register for INTRUSB (INTRUSBE)
7 6 5 4 3 2 1 0

VBUSERR SESSREQ DISCON CONN SOF RESET_BABBLE RESUME SUSPEND

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 67. Interrupt Enable Register for INTRUSB (INTRUSBE) Field Descriptions

Bit Field Value Description

7 VBUSERR 0-1 Vbus error interrupt enable

6 SESSREQ 0-1 Session request interrupt enable

5 DISCON 0-1 Disconnect interrupt enable

4 CONN 0-1 Connect interrupt enable

3 SOF 0-1 Start of frame interrupt enable

2 RESET_BABBLE 0-1 Reset interrupt enable

1 RESUME 0-1 Resume interrupt enable

0 SUSPEND 0-1 Suspend interrupt enable

118 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.52 Frame Number Register (FRAME)

The Frame Number Register (FRAME) is shown in Figure 67 and described in Table 68.

Figure 67. Frame Number Register (FRAME)
15 11 10 0

Reserved FRAMENUMBER

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 68. Frame Number Register (FRAME) Field Descriptions

Bit Field Value Description

15-11 Reserved 0 Reserved

10-0 FRAMENUMBER 0-7FFh Last received frame number

4.53 Index Register for Selecting the Endpoint Status and Control Registers (INDEX)

The Index Register for Selecting the Endpoint Status and Control Registers (INDEX) is shown in Figure 68
and described in Table 69.

Figure 68. Index Register for Selecting the Endpoint Status and Control Registers (INDEX)
7 4 3 0

Reserved EPSEL

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 69. Index Register for Selecting the Endpoint Status and Control Registers (INDEX)
Field Descriptions

Bit Field Value Description

7-4 Reserved 0 Reserved

3-0 EPSEL 0-Fh Each transmit endpoint and each receive endpoint have their own set of control/status registers. EPSEL
determines which endpoint control/status registers are accessed.

Before accessing an endpoint's control/status registers, the endpoint number should be written to the
Index register to ensure that the correct control/status registers appear in the memory map.

119SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.54 Register to Enable the USB 2.0 Test Modes (TESTMODE)

The Register to Enable the USB 2.0 Test Modes (TESTMODE) is shown in Figure 69 and described in
Table 70.

Figure 69. Register to Enable the USB 2.0 Test Modes (TESTMODE)
7 6 5 4 3 2 1 0

FORCE_HOST FIFO_ACCESS FORCE_FS FORCE_HS TEST_PACKET TEST_K TEST_J TEST_SE0_NAK

R/W-0 W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Table 70. Register to Enable the USB 2.0 Test Modes (TESTMODE) Field Descriptions

Bit Field Value Description

7 FORCE_HOST 0-1 Set this bit to forcibly put the USB controller into Host mode when SESSION bit is set,
regardless of whether it is connected to any peripheral. The controller remains in Host mode
until the Session bit is cleared, even if a device is disconnected. And if the FORCE_HOST but
remains set, it will re-enter Host mode next time the SESSION bit is set. The operating speed is
determined using the FORCE_HS and FORCE_FS bits.

6 FIFO_ACCESS 0-1 Set this bit to transfer the packet in EP0 Tx FIFO to EP0 Receive FIFO. It is cleared
automatically.

5 FORCE_FS 0-1 Set this bit to force the USB controller into full-speed mode when it receives a USB reset.

4 FORCE_HS 0-1 Set this bit to force the USB controller into high-speed mode when it receives a USB reset.

3 TEST_PACKET 0-1 Set this bit to enter the Test_Packet test mode. In this mode, the USB controller repetitively
transmits a 53-byte test packet on the bus, the form of which is defined in the Universal Serial
Bus Specification Revision 2.0.

Note: The test packet has a fixed format and must be loaded into the Endpoint 0 FIFO before
the test mode is entered.

2 TEST_K 0-1 Set this bit to enter the Test_K test mode. In this mode, the USB controller transmits a
continuous K on the bus.

1 TEST_J 0-1 Set this bit to enter the Test_J test mode. In this mode, the USB controller transmits a
continuous J on the bus.

0 TEST_SE0_NAK 0-1 Set this bit to enter the Test_SE0_NAK test mode. In this mode, the USB controller remains in
high-speed mode, but responds to any valid IN token with a NAK.

120 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.55 Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP)

The Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP) is shown in Figure 70 and
described in Table 71.

Figure 70. Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP)
15 11 10 0

Reserved MAXPAYLOAD

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 71. Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP)
Field Descriptions

Bit Field Value Description

15-11 Reserved 0 Reserved

10-0 MAXPAYLOAD 0-FFh The maximum payload transmitted in a single transaction. The value set can be up to 1024 bytes,
but is subject to the constraints placed by the USB Specification on packet sizes for Bulk, Interrupt,
and Isochronous transfers in full-speed and high-speed operations. The value written to this register
should match the wMaxPacketSize field of the Standard Endpoint Descriptor for the associated
endpoint. A mismatch could cause unexpected results.

121SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.56 Control Status Register for Endpoint 0 in Peripheral Mode (PERI_CSR0)

The Control Status Register for Endpoint 0 in Peripheral Mode (PERI_CSR0) is shown in Figure 71 and
described in Table 72.

Figure 71. Control Status Register for Endpoint 0 in Peripheral Mode (PERI_CSR0)
15 9 8

Reserved FLUSHFIFO

R-0 W-0

7 6 5 4 3 2 1 0

SERV_SETUPEND SERV_RXPKTRDY SENDSTALL SETUPEND DATAEND SENTSTALL TXPKTRDY RXPKTRDY

W-0 W-0 W-0 R-0 W-0 R/W-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 72. Control Status Register for Endpoint 0 in Peripheral Mode (PERI_CSR0)
Field Descriptions

Bit Field Value Description

15-9 Reserved 0 Reserved

8 FLUSHFIFO 0-1 Set this bit to flush the next packet to be transmitted/read from the Endpoint 0 FIFO. The FIFO
pointer is reset and the TXPKTRDY/RXPKTRDY bit is cleared.

Note: FLUSHFIFO has no effect unless TXPKTRDY/RXPKTRDY is set.

7 SERV_SETUPEND 0-1 Set this bit to clear the SETUPEND bit. It is cleared automatically.

6 SERV_RXPKTRDY 0-1 Set this bit to clear the RXPKTRDY bit. It is cleared automatically.

5 SENDSTALL 0-1 Set this bit to terminate the current transaction. The STALL handshake will be transmitted and
then this bit will be cleared automatically.

4 SETUPEND 0-1 This bit will be set when a control transaction ends before the DATAEND bit has been set. An
interrupt will be generated, and the FIFO will be flushed at this time. The bit is cleared by the
writing a 1 to the SERV_SETUPEND bit.

3 DATAEND 0-1 Set this bit to:

1 - When setting TXPKTRDY for the last data packet

2 - When clearing RXPKTRDY after unloading the last data packet

3 - When setting TXPKTRDY for a zero length data packet. It is cleared automatically.

2 SENTSTALL 0-1 This bit is set when a STALL handshake is transmitted. This bit should be cleared.

1 TXPKTRDY 0-1 Set this bit after loading a data packet into the FIFO. It is cleared automatically when the data
packet has been transmitted. An interrupt is generated (if enabled) when the bit is cleared.

0 RXPKTRDY 0-1 This bit is set when a data packet has been received. An interrupt is generated when this bit is set.
This bit is cleared by setting the SERV_RXPKTRDY bit.

122 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.57 Control Status Register for Endpoint 0 in Host Mode (HOST_CSR0)

The Control Status Register for Endpoint 0 in Host Mode (HOST_CSR0) is shown in Figure 72 and
described in Table 73.

Figure 72. Control Status Register for Endpoint 0 in Host Mode (HOST_CSR0)
15 11 10 9 8

Reserved DATATOGWREN DATATOG FLUSHFIFO

R-0 W-0 R/W-0 W-0

7 6 5 4 3 2 1 0

NAK_TIMEOUT STATUSPKT REQPKT ERROR SETUPPKT RXSTALL TXPKTRDY RXPKTRDY

W-0 R/W-0 R/W-0 W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 73. Control Status Register for Endpoint 0 in Host Mode (HOST_CSR0) Field Descriptions

Bit Field Value Description

15-11 Reserved 0 Reserved

10 DATATOGWREN 0-1 Set this bit to enable the DATATOG bit to be written. This bit is automatically cleared once the new
value is written to DATATOG.

9 DATATOG 0-1 When read, this bit indicates the current state of the EP0 data toggle. If DATATOGWREN is high,
this bit can be written with the required setting of the data toggle. If DATATOGWREN is low, any
value written to this bit is ignored.

8 FLUSHFIFO 0-1 Set this bit to flush the next packet to be transmitted/read from the Endpoint 0 FIFO. The FIFO
pointer is reset and the TXPKTRDY/RXPKTRDY bit is cleared.

Note: FLUSHFIFO has no effect unless TXPKTRDY/RXPKTRDY is set.

7 NAK_TIMEOUT 0-1 This bit will be set when Endpoint 0 is halted following the receipt of NAK responses for longer than
the time set by the NAKLIMIT0 register. This bit should be cleared to allow the endpoint to
continue.

6 STATUSPKT 0-1 Set this bit at the same time as the TXPKTRDY or REQPKT bit is set, to perform a status stage
transaction. Setting this bit ensures that the data toggle is set so that a DATA1 packet is used for
the Status Stage transaction.

5 REQPKT 0-1 Set this bit to request an IN transaction. It is cleared when RXPKTRDY is set.

4 ERROR 0-1 This bit will be set when three attempts have been made to perform a transaction with no response
from the peripheral. You should clear this bit. An interrupt is generated when this bit is set.

3 SETUPPKT 0-1 Set this bit, at the same time as the TXPKTRDY bit is set, to send a SETUP token instead of an
OUT token for the transaction.

2 RXSTALL 0-1 This bit is set when a STALL handshake is received. You should clear this bit.

1 TXPKTRDY 0-1 Set this bit after loading a data packet into the FIFO. It is cleared automatically when the data
packet has been transmitted. An interrupt is generated (if enabled) when the bit is cleared.

0 RXPKTRDY 0-1 This bit is set when a data packet has been received. An interrupt is generated when this bit is set.
Clear this bit by setting the SERV_RXPKTRDY bit.

123SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.58 Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR)

The Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR) is shown in Figure 73 and
described in Table 74.

Figure 73. Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR)
15 14 13 12 11 10 9 7

Reserved ISO MODE DMAEN FRCDATATOG DMAMODE Reserved

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0

6 5 4 3 2 1 0

CLRDATATOG SENTSTALL SENDSTALL FLUSHFIFO UNDERRUN FIFONOTEMPTY TXPKTRDY

W-0 R/W-0 R/W-0 W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 74. Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR)
Field Descriptions

Bit Field Value Description

15 Reserved 0 Reserved

14 ISO 0-1 Set this bit to enable the Tx endpoint for Isochronous transfers, and clear this bit to enable the Tx
endpoint for Bulk or Interrupt transfers.

13 MODE 0-1 Set this bit to enable the endpoint direction as Tx, and clear this bit to enable it as Rx.

Note: This bit has any effect only where the same endpoint FIFO is used for both Transmit and
Receive transactions.

12 DMAEN 0-1 Set this bit to enable the DMA request for the Tx endpoint.

11 FRCDATATOG 0-1 Set this bit to force the endpoint data toggle to switch and the data packet to be cleared from the
FIFO, regardless of whether an ACK was received. This can be used by Interrupt Tx endpoints
that are used to communicate rate feedback for Isochronous endpoints.

10 DMAMODE 0-1 When using DMA, clear this bit to receive an interrupt for each packet, or set this bit to only
receive error interrupts.

9-7 Reserved 0 Reserved

6 CLRDATATOG 0-1 Set this bit to reset the endpoint data toggle to 0.

5 SENTSTALL 0-1 This bit is set automatically when a STALL handshake is transmitted. The FIFO is flushed and the
TXPKTRDY bit is cleared. You should clear this bit.

4 SENDSTALL 0-1 Set this bit to issue a STALL handshake to an IN token. Clear this bit to terminate the stall
condition.

Note: This bit has no effect where the endpoint is being used for Isochronous transfers.

3 FLUSHFIFO 0-1 Set this bit to flush the next packet to be transmitted from the endpoint Tx FIFO. The FIFO pointer
is reset and the TXPKTRDY bit is cleared.

Note: FlushFIFO has no effect unless TXPKTRDY is set. Also note that, if the FIFO is
double-buffered, FlushFIFO may need to be set twice to completely clear the FIFO.

2 UNDERRUN 0-1 This bit is set automatically if an IN token is received when TXPKTRDY is not set. You should
clear this bit.

1 FIFONOTEMPTY 0-1 This bit is set when there is at least 1 packet in the Tx FIFO. You should clear this bit.

0 TXPKTRDY 0-1 Set this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet
has been transmitted. An interrupt is generated (if enabled) when the bit is cleared.

124 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.59 Control Status Register for Host Transmit Endpoint (HOST_TXCSR)

The Control Status Register for Host Transmit Endpoint (HOST_TXCSR) is shown in Figure 74 and
described in Table 75.

Figure 74. Control Status Register for Host Transmit Endpoint (HOST_TXCSR)
15 14 13 12 11 10 9 8

Reserved MODE DMAEN FRCDATATOG DMAMODE DATATOGWREN DATATOG

R-0 R/W-0 R/W-0 R/W-0 R/W-0 W-0 R/W-0

7 6 5 4 3 2 1 0

NAK_TIMEOUT CLRDATATOG RXSTALL SETUPPKT FLUSHFIFO ERROR FIFONOTEMPTY TXPKTRDY

R/W-0 W-0 R/W-0 R/W-0 W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 75. Control Status Register for Host Transmit Endpoint (HOST_TXCSR) Field Descriptions

Bit Field Value Description

15-14 Reserved 0 Reserved

13 MODE 0-1 Set this bit to enable the endpoint direction as Tx, and clear this bit to enable it as Rx.

Note: This bit has any effect only where the same endpoint FIFO is used for both Transmit and
Receive transactions.

12 DMAEN 0-1 Set this bit to enable the DMA request for the Tx endpoint.

11 FRCDATATOG 0-1 Set this bit to force the endpoint data toggle to switch and the data packet to be cleared from the
FIFO, regardless of whether an ACK was received. This can be used by Interrupt Tx endpoints that
are used to communicate rate feedback for Isochronous endpoints.

10 DMAMODE 0-1 When using DMA, clear this bit to receive an interrupt for each packet, or set this bit to only receive
error interrupts.

9 DATATOGWREN 0-1 Set this bit to enable the DATATOG bit to be written. This bit is automatically cleared once the new
value is written to DATATOG.

8 DATATOG 0-1 When read, this bit indicates the current state of the Tx EP data toggle. If DATATOGWREN is high,
this bit can be written with the required setting of the data toggle. If DATATOGWREN is low, any
value written to this bit is ignored.

7 NAK_TIMEOUT 0-1 This bit will be set when the Tx endpoint is halted following the receipt of NAK responses for longer
than the time set as the NAKLIMIT by the TXINTERVAL register. It should be cleared to allow the
endpoint to continue.

Note: This is valid only for Bulk endpoints.

6 CLRDATATOG 0-1 Set this bit to reset the endpoint data toggle to 0.

5 RXSTALL 0-1 This bit is set when a STALL handshake is received. The FIFO is flushed and the TXPKTRDY bit is
cleared. You should clear this bit.

4 SETUPPKT 0-1 Set this bit at the same time as TXPKTRDY is set, to send a SETUP token instead of an OUT
token for the transaction.

Note: Setting this bit also clears the DATATOG bit.

3 FLUSHFIFO 0-1 Set this bit to flush the next packet to be transmitted from the endpoint Tx FIFO. The FIFO pointer
is reset and the TXPKTRDY bit is cleared.

Note: FlushFIFO has no effect unless TXPKTRDY is set. Also note that, if the FIFO is
double-buffered, FLUSHFIFO may need to be set twice to completely clear the FIFO.

2 ERROR 0-1 The USB controller sets this bit when 3 attempts have been made to send a packet and no
handshake packet has been received. You should clear this bit. An interrupt is generated when the
bit is set. This is valid only when the endpoint is operating in Bulk or Interrupt mode.

1 FIFONOTEMPTY 0-1 The USB controller sets this bit when there is at least 1 packet in the Tx FIFO.

0 TXPKTRDY 0-1 Set this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet
has been transmitted. An interrupt is generated (if enabled) when the bit is cleared.

125SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.60 Maximum Packet Size for Peripheral Host Receive Endpoint (RXMAXP)

The Maximum Packet Size for Peripheral Host Receive Endpoint (RXMAXP) is shown in Figure 75 and
described in Table 76.

Figure 75. Maximum Packet Size for Peripheral Host Receive Endpoint (RXMAXP)
15 11 10 0

Reserved MAXPAYLOAD

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 76. Maximum Packet Size for Peripheral Host Receive Endpoint (RXMAXP) Field Descriptions

Bit Field Value Description

15-11 Reserved 0 Reserved

10-0 MAXPAYLOAD 0-FFh Defines the maximum amount of data that can be transferred through the selected Receive
endpoint in a single frame/microframe (high-speed transfers). The value set can be up to 1024
bytes, but is subject to the constraints placed by the USB Specification on packet sizes for Bulk,
Interrupt, and Isochronous transfers in full-speed and high-speed operations. The value written to
this register should match the wMaxPacketSize field of the Standard Endpoint Descriptor for the
associated endpoint. A mismatch could cause unexpected results.

126 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.61 Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR)

The Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR) is shown in Figure 76 and
described in Table 77.

Figure 76. Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR)
15 14 13 12 11 10 8

Reserved ISO DMAEN DISNYET DMAMODE Reserved

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0

7 6 5 4 3 2 1 0

CLRDATATOG SENTSTALL SENDSTALL FLUSHFIFO DATAERROR OVERRUN FIFOFULL RXPKTRDY

W-0 R/W-0 R/W-0 W-0 R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 77. Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR)
Field Descriptions

Bit Field Value Description

15 Reserved 0 Reserved

14 ISO 0-1 Set this bit to enable the Receive endpoint for Isochronous transfers, and clear this bit to enable the
Receive endpoint for Bulk/Interrupt transfers.

13 DMAEN 0-1 Set this bit to enable the DMA request for the Receive endpoints.

12 DISNYET 0-1 Set this bit to disable the sending of NYET handshakes. When set, all successfully received
Receive packets are ACKed, including at the point at which the FIFO becomes full.

Note: This bit only has any effect in high-speed mode, in which mode it should be set for all
Interrupt endpoints.

11 DMAMODE 0 This bit should always be cleared to 0.

10-8 Reserved 0 Reserved

7 CLRDATATOG 0-1 Set this bit to reset the endpoint data toggle to 0.

6 SENTSTALL 0-1 This bit is set when a STALL handshake is transmitted. The FIFO is flushed and the TXPKTRDY bit
is cleared. You should clear this bit.

5 SENDSTALL 0-1 Set this bit to issue a STALL handshake. Clear this bit to terminate the stall condition.

Note: This bit has no effect where the endpoint is being used for Isochronous transfers.

4 FLUSHFIFO 0-1 Set this bit to flush the next packet to be read from the endpoint Receive FIFO. The FIFO pointer is
reset and the RXPKTRDY bit is cleared.

Note: FLUSHFIFO has no effect unless RXPKTRDY is set. Also note that, if the FIFO is
double-buffered, FLUSHFIFO may need to be set twice to completely clear the FIFO.

3 DATAERROR 0-1 This bit is set when RXPKTRDY is set if the data packet has a CRC or bit-stuff error. It is cleared
when RXPKTRDY is cleared.

Note: This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode, it always
returns zero.

2 OVERRUN 0-1 This bit is set if an OUT packet cannot be loaded into the Receive FIFO. You should clear this bit.

Note: This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode, it always
returns zero.

1 FIFOFULL 0-1 This bit is set when no more packets can be loaded into the Receive FIFO.

0 RXPKTRDY 0-1 This bit is set when a data packet has been received. You should clear this bit when the packet has
been unloaded from the Receive FIFO. An interrupt is generated when the bit is set.

127SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.62 Control Status Register for Host Receive Endpoint (HOST_RXCSR)

The Control Status Register for Host Receive Endpoint (HOST_RXCSR) is shown in Figure 77 and
described in Table 78.

Figure 77. Control Status Register for Host Receive Endpoint (HOST_RXCSR)
15 14 13 12 11 10 9 8

Reserved DMAEN DISNYET DMAMODE DATATOGWREN DATATOG Reserved

R-0 R/W-0 R/W-0 R/W-0 W-0 R/W-0 R-0

7 6 5 4 3 2 1 0

CLRDATATOG RXSTALL REQPKT FLUSHFIFO DATAERR_NAK ERROR FIFOFULL RXPKTRDY
TIMEOUT

W-0 R/W-0 R/W-0 W-0 R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 78. Control Status Register for Host Receive Endpoint (HOST_RXCSR) Field Descriptions

Bit Field Value Description

15-14 Reserved 0 Reserved

13 DMAEN 0-1 Set this bit to enable the DMA request for the Receive endpoints.

12 DISNYET 0-1 Set this bit to disable the sending of NYET handshakes. When set, all successfully received
Receive packets are ACKED including at the point at which the FIFO becomes full.

Note: This bit only has any effect in high-speed mode, in which mode it should be set for all
Interrupt endpoints.

11 DMAMODE 0 This bit should always be cleared to 0.

10 DATATOGWREN 0-1 Set this bit to enable the DATATOG bit to be written. This bit is automatically cleared once
the new value is written to DATATOG.

9 DATATOG 0-1 When read, this bit indicates the current state of the Receive EP data toggle. If
DATATOGWREN is high, this bit can be written with the required setting of the data toggle.
If DATATOGWREN is low, any value written to this bit is ignored.

8 Reserved 0 Reserved

7 CLRDATATOG 0-1 Set this bit to reset the endpoint data toggle to 0.

6 RXSTALL 0-1 When a STALL handshake is received, this bit is set and an interrupt is generated. You
should clear this bit.

5 REQPKT 0-1 Set this bit to request an IN transaction. It is cleared when RXPKTRDY is set.

4 FLUSHFIFO 0-1 Set this bit to flush the next packet to be read from the endpoint Receive FIFO. The FIFO
pointer is reset and the RXPKTRDY bit is cleared.

Note: FLUSHFIFO has no effect unless RXPKTRDY is set. Also note that, if the FIFO is
double-buffered, FLUSHFIFO may need to be set twice to completely clear the FIFO.

3 DATAERR_NAKTIMEOUT 0-1 When operating in ISO mode, this bit is set when RXPKTRDY is set if the data packet has
a CRC or bit-stuff error and cleared when RXPKTRDY is cleared. In Bulk mode, this bit will
be set when the Receive endpoint is halted following the receipt of NAK responses for
longer than the time set as the NAK Limit by the RXINTERVAL register. You should clear
this bit to allow the endpoint to continue.

2 ERROR 0-1 The USB controller sets this bit when 3 attempts have been made to receive a packet and
no data packet has been received. You should clear this bit. An interrupt is generated when
the bit is set.

Note: This bit is only valid when the transmit endpoint is operating in Bulk or Interrupt
mode. In ISO mode, it always returns zero.

1 FIFOFULL 0-1 This bit is set when no more packets can be loaded into the Receive FIFO.

0 RXPKTRDY 0-1 This bit is set when a data packet has been received. You should clear this bit when the
packet has been unloaded from the Receive FIFO. An interrupt is generated when the bit is
set.

128 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.63 Count 0 Register (COUNT0)

The Count 0 Register (COUNT0) is shown in Figure 78 and described in Table 79.

Figure 78. Count 0 Register (COUNT0)
15 7 6 0

Reserved EP0RXCOUNT

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 79. Count 0 Register (COUNT0) Field Descriptions

Bit Field Value Description

15-7 Reserved 0 Reserved

6-0 EP0RXCOUNT 0-7Fh Indicates the number of received data bytes in the Endpoint 0 FIFO. The value returned changes as
the contents of the FIFO change and is only valid while RXPKTRDY of PERI_CSR0 or
HOST_CSR0 is set.

4.64 Receive Count Register (RXCOUNT)

The Receive Count Register (RXCOUNT) is shown in Figure 79 and described in Table 80.

Figure 79. Receive Count Register (RXCOUNT)
15 13 12 0

Reserved EPRXCOUNT

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 80. Receive Count Register (RXCOUNT) Field Descriptions

Bit Field Value Description

15-13 Reserved 0 Reserved

12-0 EPRXCOUNT 0-1FFFh Holds the number of received data bytes in the packet in the Receive FIFO. The value
returned changes as the contents of the FIFO change and is only valid while RXPKTRDY of
PERI_RXCSR or HOST_RXCSR is set.

129SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.65 Type Register (Host mode only) (HOST_TYPE0)

The Type Register (Host mode only) (HOST_TYPE0) is shown in Figure 80 and described in Table 81.

Figure 80. Type Register (Host mode only) (HOST_TYPE0)
7 6 5 0

SPEED Reserved

R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 81. Type Register (Host mode only) (HOST_TYPE0) Field Descriptions

Bit Field Value Description

7-6 SPEED 0-3h Operating Speed of Target Device

0 Illegal

1h High

2h Full

3h Low

5-0 Reserved 0 Reserved

4.66 Transmit Type Register (Host mode only) (HOST_TXTYPE)

The Transmit Type Register (Host mode only) (HOST_TXTYPE) is shown in Figure 81 and described in
Table 82.

Figure 81. Transmit Type Register (Host mode only) (HOST_TXTYPE)
7 6 5 4 3 0

SPEED PROT TENDPN

R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 82. Transmit Type Register (Host mode only) (HOST_TXTYPE) Field Descriptions

Bit Field Value Description

7-6 SPEED 0-3h Operating Speed of Target Device

0 Illegal

1h High

2h Full

3h Low

5-4 PROT 0-3h Set this to select the required protocol for the transmit endpoint

0 Control

1h Isochronous

2h Bulk

3h Interrupt

3-0 TENDPN 0-Fh Set this value to the endpoint number contained in the transmit endpoint descriptor returned to the USB
controller during device enumeration.

130 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.67 NAKLimit0 Register (Host mode only) (HOST_NAKLIMIT0)

The NAKLimit0 Register (Host mode only) (HOST_NAKLIMIT0) is shown in Figure 82 and described in
Table 83.

Figure 82. NAKLimit0 Register (Host mode only) (HOST_NAKLIMIT0)
7 5 4 0

Reserved EP0NAKLIMIT

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 83. NAKLimit0 Register (Host mode only) (HOST_NAKLIMIT0) Field Descriptions

Bit Field Value Description

7-5 Reserved 0 Reserved

4-0 EP0NAKLIMIT 0-1Fh Sets the number of frames/microframes (high-speed transfers) after which Endpoint 0 should time
out on receiving a stream of NAK responses. The number of frames/microframes selected is 2(—1)

(where m is the value set in the register, valid values 2-16). If the host receives NAK responses
from the target for more frames than the number represented by the Limit set in this register, the
endpoint will be halted.

Note: A value of 0 or 1 disables the NAK timeout function.

4.68 Transmit Interval Register (Host mode only) (HOST_TXINTERVAL)

The Transmit Interval Register (Host mode only) (HOST_TXINTERVAL) is shown in Figure 83 and
described in Table 84.

Figure 83. Transmit Interval Register (Host mode only) (HOST_TXINTERVAL)
7 0

POLINTVL_NAKLIMIT

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 84. Transmit Interval Register (Host mode only) (HOST_TXINTERVAL) Field Descriptions

Bit Field Value Description

7-0 POLINTVL_NAKLIMIT 0-FFh For Interrupt and Isochronous transfers, defines the polling interval for the
currently-selected transmit endpoint. For Bulk endpoints, this register sets the number of
frames/microframes after which the endpoint should timeout on receiving a stream of NAK
responses There is a transmit Interval register for each configured transmit endpoint
(except Endpoint 0). In each case the value that is set defines a number of
frames/microframes (High Speed transfers), as follows:

Transfer Type Speed Valid values (m) Interpretation

Interrupt Low Speed or Full Speed 1 - 255 Polling interval is m frames

High Speed 1 - 16 Polling interval is 2(—1) microframes

Isochronous Full Speed or High Speed 1 - 16 Polling interval is 2(—1) frames/microframes

Bulk Full Speed or High Speed 2 - 16 NAK Limit is 2(—1) frames/microframes

Note: A value of 0 or 1 disables the NAK timeout function.

131SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.69 Receive Type Register (Host mode only) (HOST_RXTYPE)

The Receive Type Register (Host mode only) (HOST_RXTYPE) is shown in Figure 84 and described in
Table 85.

Figure 84. Receive Type Register (Host mode only) (HOST_RXTYPE)
7 6 5 4 3 0

SPEED PROT RENDPN

R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 85. Receive Type Register (Host mode only) (HOST_RXTYPE) Field Descriptions

Bit Field Value Description

7-6 SPEED 0-3h Operating Speed of Target Device

0 Illegal

1h High

2h Full

3h Low

5-4 PROT 0-3h Set this to select the required protocol for the transmit endpoint

0 Control

1h Isochronous

2h Bulk

3h Interrupt

3-0 RENDPN 0-Fh Set this value to the endpoint number contained in the Receive endpoint descriptor returned to the USB
controller during device enumeration

132 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.70 Receive Interval Register (Host mode only) (HOST_RXINTERVAL)

The Receive Interval Register (Host mode only) (HOST_RXINTERVAL) is shown in Figure 85 and
described in Table 86.

Figure 85. Receive Interval Register (Host mode only) (HOST_RXINTERVAL)
7 0

POLINTVL_NAKLIMIT

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 86. Receive Interval Register (Host mode only) (HOST_RXINTERVAL) Field Descriptions

Bit Field Value Description

7-0 POLINTVL_NAKLIMIT 0-FFh For Interrupt and Isochronous transfers, defines the polling interval for the
currently-selected transmit endpoint For Bulk endpoints, this register sets the number of
frames/microframes after which the endpoint should timeout on receiving a stream of NAK
responses. There is a transmit Interval register for each configured transmit endpoint
(except Endpoint 0). In each case the value that is set defines a number of
frames/microframes (High Speed transfers), as follows:

Transfer Type Speed Valid values (m) Interpretation

Interrupt Low Speed or Full Speed 1 - 255 Polling interval is m frames

High Speed 1 - 16 Polling interval is 2(—1) microframes

Isochronous Full Speed or High Speed 1 - 16 Polling interval is 2(—1) frames/microframes

Bulk Full Speed or High Speed 2 - 16 NAK Limit is 2(—1) frames/microframes

Note: A value of 0 or 1 disables the NAK timeout function

133SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.71 Configuration Data Register (CONFIGDATA)

The configuration data register (CONFIGDATA) is shown in Figure 86 and described in Table 87.

Figure 86. Configuration Data Register (CONFIGDATA)
7 6 5 4 3 2 1 0

MPRXE MPTXE BIGENDIAN HBRXE HBTXE DYNFIFO SOFTCONE UTMIDATAWIDTH

R-0 R-0 R-0 R-0 R-0 R-1 R-1 R-0

LEGEND: R = Read only; -n = value after reset

Table 87. Configuration Data Register (CONFIGDATA) Field Descriptions

Bit Field Value Description

7 MPRXE Indicates automatic amalgamation of bulk packets.

0 Automatic amalgamation of bulk packets is not selected.

1 Automatic amalgamation of bulk packets is selected.

6 MPTXE Indicates automatic splitting of bulk packets.

0 Automatic splitting of bulk packets is not selected.

1 Automatic splitting of bulk packets is selected.

5 BIGENDIAN Indicates endian ordering.

0 Little-endian ordering is selected.

1 Big-endian ordering is selected.

4 HBRXE Indicates high-bandwidth Rx ISO endpoint support.

0 High-bandwidth Rx ISO endpoint support is not selected.

1 High-bandwidth Rx ISO endpoint support is selected.

3 HBTXE Indicates high-bandwidth Tx ISO endpoint support.

0 High-bandwidth Tx ISO endpoint support is not selected.

1 High-bandwidth Tx ISO endpoint support is selected.

2 DYNFIFO Indicates dynamic FIFO sizing.

0 Dynamic FIFO sizing option is not selected.

1 Dynamic FIFO sizing option is selected.

1 SOFTCONE Indicates soft connect/disconnect.

0 Soft connect/disconnect option is not selected

1 Soft connect/disconnect option is selected

0 UTMIDATAWIDTH Indicates selected UTMI data width.

0 8 bits

1 16 bits

134 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.72 Transmit and Receive FIFO Register for Endpoint 0 (FIFO0)

The Transmit and Receive FIFO Register for Endpoint 0 (FIFO0) is shown in Figure 87 and described in
Table 88.

Figure 87. Transmit and Receive FIFO Register for Endpoint 0 (FIFO0)
31 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 88. Transmit and Receive FIFO Register for Endpoint 0 (FIFO0) Field Descriptions

Bit Field Value Description

31-0 DATA 0-FFFF FFFFh Writing to these addresses loads data into the Transmit FIFO for the corresponding endpoint.

Reading from these addresses unloads data from the Receive FIFO for the corresponding
endpoint.

135SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.73 Transmit and Receive FIFO Register for Endpoint 1 (FIFO1)

The Transmit and Receive FIFO Register for Endpoint 1 (FIFO1) is shown in Figure 88 and described in
Table 89.

Figure 88. Transmit and Receive FIFO Register for Endpoint 1 (FIFO1)
31 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 89. Transmit and Receive FIFO Register for Endpoint 1 (FIFO1) Field Descriptions

Bit Field Value Description

31-0 DATA 0-FFFF FFFF Writing to these addresses loads data into the Transmit FIFO for the corresponding endpoint.

Reading from these addresses unloads data from the Receive FIFO for the corresponding
endpoint.

4.74 Transmit and Receive FIFO Register for Endpoint 2 (FIFO2)

The Transmit and Receive FIFO Register for Endpoint 2 (FIFO2) is shown in Figure 89 and described in
Table 90.

Figure 89. Transmit and Receive FIFO Register for Endpoint 2 (FIFO2)
31 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 90. Transmit and Receive FIFO Register for Endpoint 2 (FIFO2) Field Descriptions

Bit Field Value Description

31-0 DATA 0-FFFF FFFFh Writing to these addresses loads data into the Transmit FIFO for the corresponding endpoint.

Reading from these addresses unloads data from the Receive FIFO for the corresponding
endpoint.

136 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.75 Transmit and Receive FIFO Register for Endpoint 3 (FIFO3)

The Transmit and Receive FIFO Register for Endpoint 3 (FIFO3) is shown in Figure 90 and described in
Table 91.

Figure 90. Transmit and Receive FIFO Register for Endpoint 3 (FIFO3)
31 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 91. Transmit and Receive FIFO Register for Endpoint 3 (FIFO3) Field Descriptions

Bit Field Value Description

31-0 DATA 0-FFFF FFFFh Writing to these addresses loads data into the Transmit FIFO for the corresponding endpoint.

Reading from these addresses unloads data from the Receive FIFO for the corresponding
endpoint.

4.76 Transmit and Receive FIFO Register for Endpoint 4 (FIFO4)

The Transmit and Receive FIFO Register for Endpoint 4 (FIFO4) is shown in Figure 91 and described in
Table 92.

Figure 91. Transmit and Receive FIFO Register for Endpoint 4 (FIFO4)
31 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 92. Transmit and Receive FIFO Register for Endpoint 4 (FIFO4) Field Descriptions

Bit Field Value Description

31-0 DATA 0-FFFF FFFFh Writing to these addresses loads data into the Transmit FIFO for the corresponding endpoint.

Reading from these addresses unloads data from the Receive FIFO for the corresponding
endpoint.

137SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.77 OTG Device Control Register (DEVCTL)

The OTG Device Control Register (DEVCTL) is shown in Figure 92 and described in Table 93.

Figure 92. OTG Device Control Register (DEVCTL)
7 6 5 4 3 2 1 0

BDEVICE FSDEV LSDEV VBUS HOSTMODE HOSTREQ SESSION

R-0 R-0 R-0 R-0 R-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 93. OTG Device Control Register (DEVCTL) Field Descriptions

Bit Field Value Description

7 BDEVICE This read-only bit indicates whether the USB controller is operating as the 'A' device or the 'B'
device.

0 'A' device

1 'B' device

Only valid while a session is in progress.

6 FSDEV 0-1 This read-only bit is set when a full-speed or high-speed device has been detected being connected
to the port (high-speed devices are distinguished from full-speed by checking for high-speed chirps
when the device is reset). Only valid in Host mode.

5 LSDEV 0-1 This read-only bit is set when a low-speed device has been detected being connected to the port.
Only valid in Host mode.

4-3 VBUS 0-3h These read-only bits encode the current VBus level as follows:

0 Below Session End

1h Above Session End, below AValid

2h Above AValid, below VBusValid

3h Above VBusValid

2 HOSTMODE 0-1 This read-only bit is set when the USB controller is acting as a Host.

1 HOSTREQ 0-1 When set, the USB controller will initiate the Host Negotiation when Suspend mode is entered. It is
cleared when Host Negotiation is completed. ('B' device only)

0 SESSION 0-1 When operating as an 'A' device, you must set or clear this bit start or end a session. When
operating as a 'B' device, this bit is set/cleared by the USB controller when a session starts/ends.
You must also set this bit to initiate the Session Request Protocol. When the USB controller is in
Suspend mode, you may clear the bit to perform a software disconnect.
A special software routine is required to perform SRP. Details will be made available in a later
document version.

138 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.78 Transmit Endpoint FIFO Size (TXFIFOSZ)

Section 2.5 describes dynamically setting endpoint FIFO sizes.

The Transmit Endpoint FIFO Size (TXFIFOSZ) is shown in Figure 93 and described in Table 94.

Figure 93. Transmit Endpoint FIFO Size (TXFIFOSZ)
7 5 4 3 0

Reserved DPB SZ

R-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 94. Transmit Endpoint FIFO Size (TXFIFOSZ) Field Descriptions

Bit Field Value Description

7-5 Reserved 0 Reserved

4 DPB Double packet buffering enable

0 Single packet buffering is supported

1 Double packet buffering is enabled

3-0 SZ 0-Fh Maximum packet size to be allowed (before any splitting within the FIFO of Bulk packets prior to
transmission). If m = SZ[3:0], the FIFO size is calculated as 2(m+3) for single packet buffering and 2(m+4)

for dual packet buffering.

4.79 Receive Endpoint FIFO Size (RXFIFOSZ)

Section 2.5 describes dynamically setting endpoint FIFO sizes.

The Receive Endpoint FIFO Size (RXFIFOSZ) is shown in Figure 94 and described in Table 95.

Figure 94. Receive Endpoint FIFO Size (RXFIFOSZ)
7 5 4 3 0

Reserved DPB SZ

R-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 95. Receive Endpoint FIFO Size (RXFIFOSZ) Field Descriptions

Bit Field Value Description

7-5 Reserved 0 Reserved

4 DPB Double packet buffering enable

0 Single packet buffering is supported

1 Double packet buffering is enabled

3-0 SZ 0-Fh Maximum packet size to be allowed (before any splitting within the FIFO of Bulk packets prior to
transmission). If m = SZ[3:0], the FIFO size is calculated as 2(m+3) for single packet buffering and 2(m+4)

for dual packet buffering.

139SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.80 Transmit Endpoint FIFO Address (TXFIFOADDR)

Section 2.5 describes dynamically setting endpoint FIFO sizes.

The Transmit Endpoint FIFO Address (TXFIFOADDR) is shown in Figure 95 and described in Table 96.

Figure 95. Transmit Endpoint FIFO Address (TXFIFOADDR)
15 13 12 0

Reserved ADDR

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 96. Transmit Endpoint FIFO Address (TXFIFOADDR) Field Descriptions

Bit Field Value Description

15-13 Reserved 0 Reserved

12-0 ADDR 0-1FFFh Start Address of endpoint FIFO in units of 8 bytes

If m = ADDR[12:0] then the start address is 8*m

4.81 Receive Endpoint FIFO Address (RXFIFOADDR)

Section 2.5 describes dynamically setting endpoint FIFO sizes.

The Receive Endpoint FIFO Address (RXFIFOADDR) is shown in Figure 96 and described in Table 97.

Figure 96. Receive Endpoint FIFO Address (RXFIFOADDR)
15 13 12 0

Reserved ADDR

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 97. Receive Endpoint FIFO Address (RXFIFOADDR) Field Descriptions

Bit Field Value Description

15-13 Reserved 0 Reserved

12-0 ADDR 0-1FFFh Start Address of endpoint FIFO in units of 8 bytes

If m = ADDR[12:0], then the start address is 8*m

140 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Registers

4.82 Transmit Function Address (TXFUNCADDR)

The Transmit Function Address (TXFUNCADDR) is shown in Figure 97 and described in Table 98.

Figure 97. Transmit Function Address (TXFUNCADDR)
7 6 0

Reserved FUNCADDR

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 98. Transmit Function Address (TXFUNCADDR) Field Descriptions

Bit Field Value Description

7 Reserved 0 Reserved

6-0 FUNCADDR 0-7Fh Address of target function

4.83 Transmit Hub Address (TXHUBADDR)

The Transmit Hub Address (TXHUBADDR) is shown in Figure 98 and described in Table 99.

Figure 98. Transmit Hub Address (TXHUBADDR)
7 6 0

MULT_TRANS HUBADDR

R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 99. Transmit Hub Address (TXHUBADDR) Field Descriptions

Bit Field Value Description

7 MULT_TRANS 0-1 Set to 1 if hub has multiple transaction translators. Cleared to 0 if only single transaction translator
is available.

6-0 HUBADDR 0-7Fh Address of hub

4.84 Transmit Hub Port (TXHUBPORT)

The Transmit Hub Port (TXHUBPORT) is shown in Figure 99 and described in Table 100.

Figure 99. Transmit Hub Port (TXHUBPORT)
7 6 0

Reserved HUBPORT

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 100. Transmit Hub Port (TXHUBPORT) Field Descriptions

Bit Field Value Description

7 Reserved 0 Reserved

6-0 HUBPORT 0-7Fh Port number of the hub

141SPRUE35G–June 2010 Universal Serial Bus (USB) Controller

Copyright © 2010, Texas Instruments Incorporated

Registers www.ti.com

4.85 Receive Function Address (RXFUNCADDR)

The Receive Function Address (RXFUNCADDR) is shown in Figure 100 and described in Table 101.

Figure 100. Receive Function Address (RXFUNCADDR)
7 6 0

Reserved FUNCADDR

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 101. Receive Function Address (RXFUNCADDR) Field Descriptions

Bit Field Value Description

7 Reserved 0 Reserved

6-0 FUNCADDR 0-7Fh Address of target function

4.86 Receive Hub Address (RXHUBADDR)

The Receive Hub Address (RXHUBADDR) is shown in Figure 101 and described in Table 102.

Figure 101. Receive Hub Address (RXHUBADDR)
7 6 0

MULT_TRANS HUBADDR

R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 102. Receive Hub Address (RXHUBADDR) Field Descriptions

Bit Field Value Description

7 MULT_TRANS 0-1 Set to 1 if hub has multiple transaction translators. Cleared to 0 if only single transaction translator
is available.

6-0 HUBADDR 0-7Fh Address of hub

4.87 Receive Hub Port (RXHUBPORT)

The Receive Hub Port (RXHUBPORT) is shown in Figure 102 and described in Table 103.

Figure 102. Receive Hub Port (RXHUBPORT)
7 6 0

Reserved HUBPORT

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 103. Receive Hub Port (RXHUBPORT) Field Descriptions

Bit Field Value Description

7 Reserved 0 Reserved

6-0 HUBPORT 0-7Fh Port number of hub

142 Universal Serial Bus (USB) Controller SPRUE35G–June 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

Appendix A Revision History

Table 104 lists the changes made since the previous version of this document.

Table 104. Document Revision History

Reference Additions/Modifications/Deletions

Section 2.4 Changed subsection.

143SPRUE35G–June 2010 Revision History

Copyright © 2010, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video

Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/communications
http://dsp.ti.com
http://www.ti.com/computers
http://www.ti.com/clocks
http://www.ti.com/consumer-apps
http://interface.ti.com
http://www.ti.com/energy
http://logic.ti.com
http://www.ti.com/industrial
http://power.ti.com
http://www.ti.com/medical
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/space-avionics-defense
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless-apps

	TMS320DM644x DMSoC Universal Serial Bus (USB) Controller
	Table of Contents
	Preface
	1 Introduction
	1.1 Purpose of the Peripheral
	1.2 Features
	1.3 Features Not Supported
	1.4 Functional Block Diagram
	1.5 Supported Use Case Examples
	1.6 Industry Standard(s) Compliance Statement

	2 Peripheral Architecture
	2.1 Clock Control
	2.2 Signal Descriptions
	2.3 Indexed and Non-Indexed Registers
	2.4 USB PHY Initialization
	2.5 Dynamic FIFO Sizing

	3 USB Controller Host and Peripheral Modes Operation
	3.1 USB Controller Peripheral Mode Operation
	3.1.1 Peripheral Mode: Control Transactions
	3.1.1.1 Zero Data Requests
	3.1.1.2  Write Requests
	3.1.1.3 Read Requests
	3.1.1.4 Endpoint 0 States
	3.1.1.5 Endpoint 0 Service Routine

	3.1.2  Bulk Transactions
	3.1.2.1  Peripheral Mode: Bulk In Transactions
	3.1.2.2 Peripheral Mode: Bulk OUT Transactions

	3.1.3 Interrupt Transactions
	3.1.4 Isochronous Transactions
	3.1.4.1 Isochronous IN Transactions
	3.1.4.2 Isochronous OUT Transactions

	3.2 USB Controller Host Mode Operation
	3.2.1 Host Mode: Control Transactions
	3.2.1.1 Setup Phase
	3.2.1.2 IN Data Phase
	3.2.1.3 OUT Data Phase
	3.2.1.4 IN Status Phase (following SETUP Phase or OUT Data Phase)
	3.2.1.5 OUT Status Phase (following IN Data Phase)

	3.2.2 Bulk Transactions
	3.2.2.1 Host Mode: Bulk IN Transactions
	3.2.2.2 Bulk OUT Transactions

	3.2.3 Host Mode: Interrupt Transactions
	3.2.4  Isochronous Transactions
	3.2.4.1  Host Mode: Isochronous IN Transactions
	3.2.4.2  Host Mode: Isochronous Out Transactions

	3.3 DMA Operation
	3.3.1 DMA Transmit Operation
	3.3.1.1 Transmit Buffer
	3.3.1.2 CPPI Transmit Buffer Descriptor
	3.3.1.3 Transmit DMA State
	3.3.1.4 Transmit Queue
	3.3.1.5 Operation
	3.3.1.6 Transparent Mode and RNDIS Mode Transmit DMA Operation
	3.3.1.7 DMA Channel TearDown

	3.3.2  DMA Receive Operation
	3.3.2.1 Receive Buffer
	3.3.2.2 CPPI Receive Buffer Descriptor
	3.3.2.3 Receive DMA State
	3.3.2.4 Receive Queue
	3.3.2.5 Operation
	3.3.2.6 Receive Abort Handling
	3.3.2.7 RNDIS Mode and Transparent Mode Receive DMA Operation
	3.3.2.8 DMA Teardown Procedure

	3.4 Interrupt Handling
	3.4.1 USB Core Interrupts
	3.4.2 DMA Interrupts

	3.5 Test Modes
	3.5.1 TEST_SE0_NAK
	3.5.2 TEST_J
	3.5.3 TEST_K
	3.5.4 TEST_PACKET
	3.5.5 FIFO_ACCESS
	3.5.6 FORCE_HOST

	3.6 Reset Considerations
	3.6.1 Software Reset Considerations
	3.6.2 Hardware Reset Considerations
	3.6.3 USB Reset Considerations

	3.7 Interrupt Support
	3.8 EDMA Event Support
	3.9 Power Management

	4 Registers
	4.1 Control Register (CTRLR)
	4.2 Status Register (STATR)
	4.3 RNDIS Register (RNDISR)
	4.4 Auto Request Register (AUTOREQ)
	4.5 USB Interrupt Source Register (INTSRCR)
	4.6 USB Interrupt Source Set Register (INTSETR)
	4.7 USB Interrupt Source Clear Register (INTCLRR)
	4.8 USB Interrupt Mask Register (INTMSKR)
	4.9 USB Interrupt Mask Set Register (INTMSKSETR)
	4.10 USB Interrupt Mask Clear Register (INTMSKCLRR)
	4.11 USB Interrupt Source Masked Register (INTMASKEDR)
	4.12 USB End of Interrupt Register (EOIR)
	4.13 Transmit CPPI Control Register (TCPPICR)
	4.14 Transmit CPPI Teardown Register (TCPPITDR)
	4.15 CPPI DMA End of Interrupt Register (CPPIEOIR)
	4.16 Transmit CPPI Masked Status Register (TCPPIMSKSR)
	4.17 Transmit CPPI Raw Status Register (TCPPIRAWSR)
	4.18 Transmit CPPI Interrupt Enable Set Register (TCPPIIENSETR)
	4.19 Transmit CPPI Interrupt Enable Clear Register (TCPPIIENCLRR)
	4.20 Receive CPPI Control Register (RCPPICR)
	4.21 Receive CPPI Masked Status Register (RCPPIMSKSR)
	4.22 Receive CPPI Raw Status Register (RCPPIRAWSR)
	4.23 Receive CPPI Interrupt Enable Set Register (RCPPIENSETR)
	4.24 Receive CPPI Interrupt Enable Clear Register (RCPPIIENCLRR)
	4.25 Receive Buffer Count 0 Register (RBUFCNT0)
	4.26 Receive Buffer Count 1 Register (RBUFCNT1)
	4.27 Receive Buffer Count 2 Register (RBUFCNT2)
	4.28 Receive Buffer Count 3 Register (RBUFCNT3)
	4.29 Transmit CPPI DMA State Word 0 (TCPPIDMASTATEW0)
	4.30 Transmit CPPI DMA State Word 1 (TCPPIDMASTATEW1)
	4.31 Transmit CPPI DMA State Word 2 (TCPPIDMASTATEW2)
	4.32 Transmit CPPI DMA State Word 3 (TCPPIDMASTATEW3)
	4.33 Transmit CPPI DMA State Word 4 (TCPPIDMASTATEW4)
	4.34 Transmit CPPI DMA State Word 5 (TCPPIDMASTATEW5)
	4.35 Transmit CPPI Completion Pointer (TCPPICOMPPTR)
	4.36 Receive CPPI DMA State Word 0 (RCPPIDMASTATEW0)
	4.37 Receive CPPI DMA State Word 1 (RCPPIDMASTATEW1)
	4.38 Receive CPPI DMA State Word 2 (RCPPIDMASTATEW2)
	4.39 Receive CPPI DMA State Word 3 (RCPPIDMASTATEW3)
	4.40 Receive CPPI DMA State Word 4 (RCPPIDMASTATEW4)
	4.41 Receive CPPI DMA State Word 5 (RCPPIDMASTATEW5)
	4.42 Receive CPPI DMA State Word 6 (RCPPIDMASTATEW6)
	4.43 Receive CPPI Completion Pointer (RCPPICOMPPTR)
	4.44 Function Address Register (FADDR)
	4.45 Power Management Register (POWER)
	4.46 Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX)
	4.47 Interrupt Register for Receive Endpoints 1 to 4 (INTRRX)
	4.48 Interrupt Enable Register for INTRTX (INTRTXE)
	4.49 Interrupt Enable Register for INTRRX (INTRRXE)
	4.50 Interrupt Register for Common USB Interrupts (INTRUSB)
	4.51 Interrupt Enable Register for INTRUSB (INTRUSBE)
	4.52 Frame Number Register (FRAME)
	4.53 Index Register for Selecting the Endpoint Status and Control Registers (INDEX)
	4.54 Register to Enable the USB 2.0 Test Modes (TESTMODE)
	4.55 Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP)
	4.56 Control Status Register for Endpoint 0 in Peripheral Mode (PERI_CSR0)
	4.57 Control Status Register for Endpoint 0 in Host Mode (HOST_CSR0)
	4.58 Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR)
	4.59 Control Status Register for Host Transmit Endpoint (HOST_TXCSR)
	4.60 Maximum Packet Size for Peripheral Host Receive Endpoint (RXMAXP)
	4.61 Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR)
	4.62 Control Status Register for Host Receive Endpoint (HOST_RXCSR)
	4.63 Count 0 Register (COUNT0)
	4.64 Receive Count Register (RXCOUNT)
	4.65 Type Register (Host mode only) (HOST_TYPE0)
	4.66 Transmit Type Register (Host mode only) (HOST_TXTYPE)
	4.67 NAKLimit0 Register (Host mode only) (HOST_NAKLIMIT0)
	4.68 Transmit Interval Register (Host mode only) (HOST_TXINTERVAL)
	4.69 Receive Type Register (Host mode only) (HOST_RXTYPE)
	4.70 Receive Interval Register (Host mode only) (HOST_RXINTERVAL)
	4.71 Configuration Data Register (CONFIGDATA)
	4.72 Transmit and Receive FIFO Register for Endpoint 0 (FIFO0)
	4.73 Transmit and Receive FIFO Register for Endpoint 1 (FIFO1)
	4.74 Transmit and Receive FIFO Register for Endpoint 2 (FIFO2)
	4.75 Transmit and Receive FIFO Register for Endpoint 3 (FIFO3)
	4.76 Transmit and Receive FIFO Register for Endpoint 4 (FIFO4)
	4.77 OTG Device Control Register (DEVCTL)
	4.78 Transmit Endpoint FIFO Size (TXFIFOSZ)
	4.79 Receive Endpoint FIFO Size (RXFIFOSZ)
	4.80 Transmit Endpoint FIFO Address (TXFIFOADDR)
	4.81 Receive Endpoint FIFO Address (RXFIFOADDR)
	4.82 Transmit Function Address (TXFUNCADDR)
	4.83 Transmit Hub Address (TXHUBADDR)
	4.84 Transmit Hub Port (TXHUBPORT)
	4.85 Receive Function Address (RXFUNCADDR)
	4.86 Receive Hub Address (RXHUBADDR)
	4.87 Receive Hub Port (RXHUBPORT)

	Appendix A Revision History

