

MP3 Decoder on C64x+

User’s Guide

Literature Number: SPRUED0D
September 2008

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue any product
or service without notice. Customers should obtain the latest relevant information before placing orders and should verify
that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at
the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support
this warranty. Except where mandated by government requirements, testing of all parameters of each product is not
necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their
products and applications using TI components. To minimize the risks associated with customer products and
applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright,
mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI
products or services are used. Information published by TI regarding third-party products or services does not constitute a
license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may
require a license from a third party under the patents or other intellectual property of the third party, or a license from TI
under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and
is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with
alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.
Information of third parties may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or
service voids all express and any implied warranties for the associated TI product or service and is an unfair and
deceptive business practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product
would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an
agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and
regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal,
regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical
applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers
must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-
critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI
products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as
military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has
not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all
legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI
products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they
use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such
requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303 Dallas, Texas 75265,
Copyright 2008, Texas Instruments Incorporated

http://amplifier.ti.com/
http://www.ti.com/audio
http://dataconverter.ti.com/
http://www.ti.com/automotive
http://dsp.ti.com/
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com/
http://www.ti.com/medical
http://logic.ti.com/
http://www.ti.com/military
http://power.ti.com/
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com/
http://www.ti.com/security
http://www.ti-rfid.com/
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instruments’
(TI) MP3 Decoder implementation on the C64x+ based SoCs. It also
provides a detailed Application Programming Interface (API) reference
and information on the sample application that accompanies this
component.

TI’s codec implementations are based on the eXpressDSP Digital Media
(XDM) standard. XDM is an extension of the eXpressDSP Algorithm
Interface Standard (XDAIS).

Intended Audience

This document is intended for system engineers who want to integrate
TI’s codecs with other software to build a multimedia system based on
the C64x+.

This document assumes that you are fluent in the C language, have a
good working knowledge of Digital Signal Processing (DSP), digital
signal processors, and DSP applications. Good knowledge of
eXpressDSP Algorithm Interface Standard (XDAIS) and eXpressDSP
Digital Media (XDM) standard will be helpful.

How to Use This Manual

This document includes the following chapters:

 Chapter 1 - Introduction, provides a brief introduction to the XDAIS
and XDM standards. It also provides an overview of the codec and
lists its supported features.

 Chapter 2 - Installation Overview, describes how to install, build,
and run the codec.

 Chapter 3 - Sample Usage, describes the sample usage of the
codec.

 Chapter 4 - API Reference, describes the data structures and
interface functions used in the codec.

 Appendix A – Revision History, highlights the changes made to
the SPRUED0C codec specific user guide to make it SPRUED0D.

iii

Read This First

Related Documentation From Texas Instruments

The following documents describe TI’s DSP algorithm standards such
as, XDAIS and XDM. To obtain a copy of any of these TI documents,
visit the Texas Instruments website at www.ti.com.

 TMS320 DSP Algorithm Standard Rules and Guidelines (literature
number SPRU352) defines a set of requirements for DSP algorithms
that, if followed, allow system integrators to quickly assemble
production-quality systems from one or more such algorithms.

 TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360) describes all the APIs that are defined by the TMS320
DSP Algorithm Interface Standard (also known as XDAIS)
specification.

 Technical Overview of eXpressDSP - Compliant Algorithms for DSP
Software Producers (literature number SPRA579) describes how to
make algorithms compliant with the TMS320 DSP Algorithm
Standard which is part of TI’s eXpressDSP technology initiative.

 Using the TMS320 DSP Algorithm Standard in a Static DSP System
(literature number SPRA577) describes how an eXpressDSP-
compliant algorithm may be used effectively in a static system with
limited memory.

 DMA Guide for eXpressDSP-Compliant Algorithm Producers and
Consumers (literature number SPRA445) describes the DMA
architecture specified by the TMS320 DSP Algorithm Standard
(XDAIS). It also describes two sets of APIs used for accessing DMA
resources: the IDMA2 abstract interface and the ACPY2 library.

 eXpressDSP Digital Media (XDM) Standard API Reference (literature
number SPRUEC8)

The following documents describe TMS320 devices and related support
tools:

 Design and Implementation of an eXpressDSP-Compliant DMA
Manager for C6X1X (literature number SPRA789) describes a
C6x1x-optimized (C6211, C6711) ACPY2 library implementation and
DMA Resource Manager.

 TMS320C64x+ Megamodule (literature number SPRAA68) describes
the enhancements made to the internal memory and describes the
new features which have been added to support the internal memory
architecture's performance and protection.

 TMS320C64x+ DSP Megamodule Reference Guide (literature
number SPRU871) describes the C64x+ megamodule peripherals.

 TMS320C64x to TMS320C64x+ CPU Migration Guide (literature
number SPRAA84) describes migration from the Texas Instruments
TMS320C64x™ digital signal processor (DSP) to the
TMS320C64x+™ DSP.

 TMS320C6000 Optimizing Compiler v 6.0 Beta User's Guide
(literature number SPRU187N) explains how to use compiler tools

iv

http://www.ti.com/

Read This First

such as compiler, assembly optimizer, standalone simulator, library-
build utility, and C++ name demangler.

 TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide
(literature number SPRU732) describes the CPU architecture,
pipeline, instruction set, and interrupts of the C64x and C64x+ DSPs.

 TMS320DM6446 Digital Media System-on-Chip (literature number
SPRS283)

 TMS320DM6446 Digital Media System-on-Chip Errata (Silicon
Revision 1.0) (literature number SPRZ241) describes the known
exceptions to the functional specifications for the TMS320DM6446
Digital Media System-on-Chip (DMSoC).

 TMS320DM6443 Digital Media System-on-Chip (literature number
SPRS282)

 TMS320DM6443 Digital Media System-on-Chip Errata (Silicon
Revision 1.0) (literature number SPRZ240) describes the known
exceptions to the functional specifications for the TMS320DM6443
Digital Media System-on-Chip (DMSoC).

 TMS320DM644x DMSoC DSP Subsystem Reference Guide
(literature number SPRUE15) describes the digital signal processor
(DSP) subsystem in the TMS320DM644x Digital Media System-on-
Chip (DMSoC).

 TMS320DM644x DMSoC ARM Subsystem Reference Guide
(literature number SPRUE14) describes the ARM subsystem in the
TMS320DM644x Digital Media System on a Chip (DMSoC).

 DaVinci Technology - Digital Video Innovation Product Bulletin (Rev.
A) (literature number SPRT378A)

 The DaVinci Effect: Achieving Digital Video Without Complexity
White Paper (literature number SPRY079)

 DaVinci Benchmarks Product Bulletin (literature number SPRT379)

 DaVinci Technology for Digital Video White Paper (literature number
SPRY067)

 The Future of Digital Video White Paper (literature number
SPRY066)

Related Documentation

You can use the following documents to supplement this user guide:

 ISO/IEC IS 11172-3 Information Technology -- Coding of Moving
Pictures and Associated Audio for Digital Storage Media at up to
about 1.5 Mbps -- Part 3: Audio

 ISO/IEC IS 13818-3 Information Technology -- Generic Coding of
Moving Pictures and Associated Audio Information -- Part 3: Audio

v

Read This First

Abbreviations

The following abbreviations are used in this document.

Table 1-1. List of Abbreviations
Abbreviation Description

API Application Programming Interface

CBR Constant Bit-rate

EVM Evaluation Module

Kbps Kilo bits per second

MP3 MPEG1 Layer 3

MPEG Motion Picture Expert Group

PCM Pulse Code Modulation

VBR Variable Bit-rate

XDAIS eXpressDSP Algorithm Interface
Standard

XDM eXpressDSP Digital Media

Text Conventions

The following conventions are used in this document:

 Text inside back-quotes (‘‘) represents pseudo-code.

 Program source code, function and macro names, parameters, and
command line commands are shown in a mono-spaced font.

Product Support

When contacting TI for support on this codec, quote the product name
(MP3 Decoder on C64x+) and version number. The version number of
the codec is included in the Title of the Release Notes that accompanies
this codec.

Trademarks

Code Composer Studio, the DAVINCI Logo, DAVINCI, DSP/BIOS,
eXpressDSP, TMS320, TMS320C64x, TMS320C6000, TMS320DM644x,
DRA446, TNETV2685 and TMS320C64x+ are trademarks of Texas
Instruments.

vi

Contents

Read This First .. iii

About This Manual ...iii
Intended Audience ...iii
How to Use This Manual ..iii
Related Documentation From Texas Instruments... iv
Related Documentation.. v
Abbreviations .. vi
Text Conventions .. vi
Product Support .. vi
Trademarks ... vi

Contents.. vii
Figures ... ix
Tables... xi
Introduction ...1-1

1.1 Overview of XDAIS and XDM..1-2
1.1.1 XDAIS Overview ..1-2
1.1.2 XDM Overview ...1-2

1.2 Overview of MP3 Decoder ..1-3
1.3 Supported Services and Features...1-4

Installation Overview ..2-1
2.1 System Requirements ...2-2

2.1.1 Hardware..2-2
2.1.2 Software ...2-2

2.2 Installing the Component...2-2
2.3 Before Building the Sample Test Application ..2-4

2.3.1 Installing DSP/BIOS ...2-4
2.4 Building and Running the Sample Test Application ..2-4
2.5 Configuration Files ..2-5

2.5.1 Generic Configuration File ...2-5
2.6 Standards Conformance and User-Defined Inputs ...2-6
2.7 Uninstalling the Component ..2-6
2.8 Evaluation Version ..2-6

Sample Usage..3-1
3.1 Overview of the Test Application...3-2

3.1.1 Parameter Setup ..3-3
3.1.2 Algorithm Instance Creation and Initialization..3-3
3.1.3 Process Call ...3-4
3.1.4 Algorithm Instance Deletion ...3-5

API Reference..4-1
4.1 Symbolic Constants and Enumerated Data Types..4-2
4.2 Data Structures ...4-6

4.2.1 Common XDM Data Structures..4-6
4.2.2 MP3 Decoder Data Structures ...4-14

4.3 Interface Functions..4-18

vii

4.3.1 Creation APIs ...4-19
4.3.2 Initialization API..4-21
4.3.3 Control API ...4-22
4.3.4 Data Processing API ..4-24
4.3.5 Termination API ...4-26

Revision History... A-1

viii

Figures

Figure 2-1. Component Directory Structure ...2-2
Figure 3-1. Test Application Sample Implementation..3-2

ix

This page is intentionally left blank

x

Tables

Table 1-1. List of Abbreviations... vi
Table 2-1. Component Directories...2-3
Table 4-1. List of Enumerated Data Types..4-2
Table A-1 Revision History of MP3 Decoder on C64x+ .. A-1

xi

This page is intentionally left blank

xii

Chapter 1

Introduction

This chapter provides a brief introduction to XDAIS and XDM. It also
provides an overview of TI’s implementation of the MP3 Decoder on the
C64x+ based SoCs and its supported features.

Topic Page

1.1 Overview of XDAIS and XDM 1-2

1.2 Overview of MP3 Decoder 1-3

1.3 Supported Services and Features 1-4

1-1

Introduction

1.1 Overview of XDAIS and XDM

TI’s multimedia codec implementations are based on the eXpressDSP
Digital Media (XDM) standard. XDM is an extension of the eXpressDSP
Algorithm Interface Standard (XDAIS).

1.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the
abstract interface IALG. The IALG API takes the memory management
function away from the algorithm and places it in the hosting framework.
Thus, an interaction occurs between the algorithm and the framework. This
interaction allows the client application to allocate memory for the algorithm
and also share memory between algorithms. It also allows the memory to
be moved around while an algorithm is operating in the system. In order to
facilitate these functionalities, the IALG interface defines the following
APIs:

 algAlloc()

 algInit()

 algActivate()

 algDeactivate()

 algFree()

The algAlloc() API allows the algorithm to communicate its memory
requirements to the client application. The algInit() API allows the
algorithm to initialize the memory allocated by the client application. The
algFree() API allows the algorithm to communicate the memory to be
freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process
data in real-time. The algActivate() API provides a notification to the
algorithm instance that one or more algorithm processing methods is about
to be run zero or more times in succession. After the processing methods
have been run, the client application calls the algDeactivate() API prior
to reusing any of the instance’s scratch memory.

The IALG interface also defines three more optional APIs algControl(),
algNumAlloc(), and algMoved(). For more details on these APIs, see
TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360).

1.1.2 XDM Overview

In the multimedia application space, you have the choice of integrating any
codec into your multimedia system. For example, if you are building a
video decoder system, you can use any of the available video decoders
(such as MPEG4, H.263, or H.264) in your system. To enable easy
integration with the client application, it is important that all codecs with
similar functionality use similar APIs. XDM was primarily defined as an
extension to XDAIS to ensure uniformity across different classes of codecs

1-2

Introduction

(for example audio, video, image, and speech). The XDM standard defines
the following two APIs:

 control()

 process()

The control() API provides a standard way to control an algorithm
instance and receive status information from the algorithm in real-time. The
control() API replaces the algControl() API defined as part of the
IALG interface. The process() API does the basic processing
(encode/decode) of data.

Apart from defining standardized APIs for multimedia codecs, XDM also
standardizes the generic parameters that the client application must pass
to these APIs. The client application can define additional implementation
specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

As depicted in the figure, XDM is an extension to XDAIS and forms an
interface between the client application and the codec component. XDM
insulates the client application from component-level changes. Since TI’s
multimedia algorithms are XDM compliant, it provides you with the flexibility
to use any TI algorithm without changing the client application code. For
example, if you have developed a client application using an XDM-
compliant MPEG4 video decoder, then you can easily replace MPEG4 with
another XDM-compliant video decoder, say H.263, with minimal changes
to the client application.

For more details, see eXpressDSP Digital Media (XDM) Standard API
Reference (literature number SPRUEC8).

Client Application

XDAIS Interface (IALG)

TI’s Codec Algorithms

XDM Interface

1.2 Overview of MP3 Decoder

MP3 is one of the most popular audio compression standards across wide
spectrum of application ranging from portable player, cell phones, music
systems, internet, and so on.

1-3

Introduction

1.3 Supported Services and Features

This user guide accompanies TI’s implementation of MP3 Decoder on the
C64x+ based SoCs. This version of the codec has the following supported
features:

 Supports ISO/IEC 11172-3 Layer 1, Layer 2, and Layer 3 compliant
streams.

 Supports Variable Bit-rate (VBR) and Constant Bit-rate (CBR) modes.
The VBR encoding provides a higher overall sound quality with smaller
file size.

 Supports bit-rates of 32 to 448 kbps for Layer 1, 32 to 384 kbps for
Layer 2, and 8 to 320 kbps for Layer 3.

 Supports mono, stereo, and dual channel input streams.

 Outputs 16-bit raw Pulse Code Modulation (PCM) samples. If two
channels of audio data are produced, the output can be either in
interleaved or block format.

 Layer 1 and Layer 2 decoder is compliant only with ISO/IEC 11172-3
(MPEG1 audio) standard.

 Layer 3 decoder is compliant with the following standards:

o ISO/IEC 11172-3 (MPEG 1) (48 KHz, 44.1 KHz, and 32 KHz)

o ISO/IEC 13818-3 (MPEG 2) (24 KHz, 22.05 KHz, and 16 KHz)

o MPEG 2.5 extension (12 KHz, 11.025 KHz, and 8 KHz) sampling
rates

 Does not support free format streams.

 eXpressDSP Digital Media (XDM 1.0 IAUDDEC1) compliant

1-4

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information
on building and running the sample test application.

Topic Page

2.1 System Requirements 2-2

2.2 Installing the Component 2-2

2.3 Before Building the Sample Test Application 2-4

2.4 Building and Running the Sample Test Application 2-4

2.5 Configuration Files 2-5

2.6 Standards Conformance and User-Defined Inputs 2-6

2.7 Uninstalling the Component 2-6

2.8 Evaluation Version 2-6

2-1

Installation Overview

2.1 System Requirements

This section describes the hardware and software requirements for the
normal functioning of the codec component.

2.1.1 Hardware

This codec has been built and tested on DM644x EVM with XDS560 JTAG.

This codec also supports DM6446, DRA446, DM6437, DM648, DM6467,
OMAP2530 and OMAP3530 platforms.

2.1.2 Software

The following are the software requirements for the normal functioning of
the codec:

 Development Environment: This project is developed using Code
Composer Studio version 3.2.37.12.

 Code Generation Tools: This project is compiled, assembled,
archived, and linked using the code generation tools version 6.0.8.

 DSP/BIOS: This project has been validated with DSP/BIOS version
5.31.

2.2 Installing the Component

The codec component is released as a compressed archive. To install the
codec, extract the contents of the zip file onto your local hard disk. The zip
file extraction creates a parent directory called 100_A_MP3_D_1_31_00,
under which another directory named C64XPLUS_L1L2L3 is created.
Figure 2-1 shows the sub-directories created in C64XPLUS_L1L2L3.

Figure 2-1. Component Directory Structure

2-2

Installation Overview

Note:

If you are installing an evaluation version of this codec, the parent
directory name will be 100E_A_MP3_D_1_31_00.

Table 2-1 provides a description of the sub-directories created in the
C64XPLUS_L1L2L3 directory.

Table 2-1. Component Directories
Sub-Directory Description

\Inc Contains XDM related header files which allow interface to the
codec library

\Lib Contains the codec library file

\Docs Contains user guide and datasheet

\Client\Build Contains the sample test application project (.pjt) file

\Client\Build\Map Contains the memory map generated on compilation of the
code

\Client\Build\Obj Contains the intermediate .obj and/or .asm file generated on
compilation of the code

\Client\Build\Out Contains the final application executable (.out) file generated
by the sample test application

\Client\Test\Src Contains application C files

\Client\Test\Inc Contains header files needed for the application code

\Client\Test\TestVecs\Input Contains input test vectors

\Client\Test\TestVecs\Output Contains output generated by the codec

\Client\Test\TestVecs\Reference Contains read-only reference output to be used for verifying
against codec output

\Client\Test\TestVecs\Config Contains configuration parameter files

2-3

Installation Overview

2.3 Before Building the Sample Test Application

This codec is accompanied by a sample test application. To run the sample
test application, you need DSP/BIOS. This version of the codec has been
validated with DSP/BIOS version 5.31.

2.3.1 Installing DSP/BIOS

You can download DSP/BIOS from the TI external website:

https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html

Install DSP/BIOS at the same location where you have installed Code
Compose Studio. For example:

<install directory>\CCStudio_v3.2

The sample test application uses the following DSP/BIOS files:

 Header file, bcache.h available in the
<install directory>\CCStudio_v3.2\<bios_directory>\packages\ti\bios\
include directory.

 Library file, biosDM420.a64P available in the
<install directory>\CCStudio_v3.2\<bios_directory>\packages\ti\bios\
lib directory.

2.4 Building and Running the Sample Test Application

This codec is accompanied by a sample test application. This application
will run in TI’s Code Composer Studio development environment. To build
and run the sample application in Code Composer Studio, follow these
steps:

1) Verify that you have installed of TI’s Code Composer Studio version
3.2.37.12 and code generation tools version 6.0.8.

2) Verify that the codec object library mp3dec_tii_l1l2l3.l64P exists in the
\Lib sub-directory.

3) Open the test application project file, TestAppDecoder.pjt in Code
Composer Studio. This file is available in the \Client\Build sub-
directory.

4) Select Project > Build to build the sample test application. This
creates an executable file, TestAppDecoder.out in the \Client\Build\Out
sub-directory.

5) Select File > Load, browse to the \Client\Build\Out sub-directory,
select the codec executable created in step 4, and load it into Code
Composer Studio in preparation for execution.

6) Select Debug > Run to execute the sample test application.

The sample test application takes the input files stored in the
\Client\Test\TestVecs\Input sub-directory, runs the codec, and uses the

2-4

https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html

Installation Overview

reference files stored in the \Client\Test\TestVecs\Reference sub-
directory to verify that the codec is functioning as expected.

7) On successful completion, the application displays the message
“Decoder compliance test passed/failed” for each frame.

2.5 Configuration Files

This codec is shipped with a generic configuration file (Testvecs.cfg) that
specifies input and reference files for the sample test application.

2.5.1 Generic Configuration File

The sample test application shipped along with the codec uses the
configuration file, Testvecs.cfg for determining the input and reference files
for running the codec and checking for compliance. The Testvecs.cfg file is
available in the \Client\Test\TestVecs\Config sub-directory.

The format of the Testvecs.cfg file is:

X
Input
Output/Reference
Y

where:

 X may be set as:

o 1 - for compliance checking, no output file is created

o 0 - for writing the output to the output file

The default setting of Testvecs.cfg file is for compliance checking.

 Input is the input file name (use complete path).

 Output/Reference is the output file name (if X is 0) or reference file
name (if X is 1).

 Y is the desired channel mode

o 0 - Mono

o 1 - Stereo

o 2 - Dual Mono

A sample Testvecs.cfg file is as shown:

1
..\..\Test\TestVecs\Input\fl11.mp3
..\..\Test\TestVecs\Reference\fl11.pcm 1
0
..\..\Test\TestVecs\Input\fl11.mp3
..\..\Test\TestVecs\Output\fl11.pcm 1

2-5

Installation Overview

2.6 Standards Conformance and User-Defined Inputs

To check the conformance of the codec for the default input file shipped
along with the codec, follow the steps as described in Section 2.4.

To check the conformance of the codec for other input files of your choice,
follow these steps:

1) Copy the input files to the \Client\Test\TestVecs\Inputs sub-directory.

2) Copy the reference files to the \Client\Test\TestVecs\Reference sub-
directory.

3) Edit the configuration file, Testvecs.cfg available in the
\Client\Test\TestVecs\Config sub-directory. For details on the format of
the Testvecs.cfg file, see Section 2.5.1.

4) Execute the sample test application. On successful completion, the
application displays one of the following message for each frame:

o “Decoder compliance test passed/failed” (if X is 1)

o “Decoder output dump completed” (if X is 0)

If you have chosen the option to write to an output file (X is 0), you can use
any standard file comparison utility to compare the codec output with the
reference output and check for conformance.

Note:

The comparison is valid only with a set of vectors provided as part of the
release package

2.7 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

2.8 Evaluation Version

If you are using an evaluation version of this codec, an audible tone
will be heard for every 300th frame.

2-6

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

3-1

Sample Usage

3.1 Overview of the Test Application

The test application exercises the IAUDDEC1 base class of the MP3
Decoder library. The main test application files are TestAppDecoder.c and
TestAppDecoder.h. These files are available in the \Client\Test\Src and
\Client\Test\Inc sub-directories respectively.

Figure 3-1 depicts the sequence of APIs exercised in the sample test
application.

XDAIS-XDM Interface Codec Library

Al
go

rit
hm

In

st
an

ce

De
let

io
n

Al
go

rit
hm

In

st
an

ce
 C

re
at

io
n

an
d

In
iti

ali
za

tio
n

Pa
ra

m
et

er

Se
tu

p
Pr

oc
es

s
Ca

ll

algActivate
control()
process()
control()

algDeactivate()

algNumAlloc()

 algFree()

Test Application

algNumAlloc()

algAlloc()
 algInit()

Figure 3-1. Test Application Sample Implementation

Note:

Audio codecs do not use algActivate() and algDeactivate() APIs.

3-2

Sample Usage

The test application is divided into four logical blocks:

 Parameter setup

 Algorithm instance creation and initialization

 Process call

 Algorithm instance deletion

3.1.1 Parameter Setup

Each codec component requires various codec configuration parameters to
be set at initialization. For example, a video codec requires parameters
such as video height, video width, and so on. The test application obtains
the required parameters from the Decoder configuration files.

In this logical block, the test application performs the following:

1) Opens the generic configuration file, Testvecs.cfg and reads the
compliance checking parameter, input file name, and output/reference
file name.

For more details on the configuration files, see Section 2.5.

2) Reads the input bit-stream into the application input buffer.

After successful completion of the above steps, the test application does
the algorithm instance creation and initialization.

3.1.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization
parameters and returns an algorithm instance pointer. The following APIs
are called in sequence:

1) algNumAlloc() - To query the algorithm about the number of memory
records it requires.

2) algAlloc() - To query the algorithm about the memory requirement
to be filled in the memory records.

3) algInit() - To initialize the algorithm with the memory structures
provided by the application.

A sample implementation of the create function that calls
algNumAlloc(), algAlloc(), and algInit() in sequence is provided
in the ALG_create() function implemented in the alg_create.c file.

3-3

Sample Usage

3.1.3 Process Call

After algorithm instance creation and initialization, the test application
performs the following:

1) Sets the dynamic parameters (if they change during run-time) by
calling the control() function with the XDM_SETPARAMS command.

2) Sets the input and output buffer descriptors required for the
process() function call. The input and output buffer descriptors are
obtained by calling the control() function with the XDM_GETBUFINFO
command.

3) Calls the process() function to encode/decode a single frame of data.
The behavior of the algorithm can be controlled using various dynamic
parameters (see Section 4.2.1.9). The inputs to the process function
are input and output buffer descriptors, pointer to the
IAUDDEC1_InArgs and IAUDDEC1_OutArgs structures.

There could be any ordering of control() and process() functions. The
following APIs are called in sequence:

1) control() (optional) - To query the algorithm on status or setting of
dynamic parameters etc., using the six available control commands.

2) process() - To call the Decoder with appropriate input/output buffer
and arguments information.

3) control() (optional) - To query the algorithm on status or setting of
dynamic parameters etc., using the six available control commands.

The do-while loop encapsulates frame level process() call and updates
the input buffer pointer every time before the next call. The do-while loop
breaks off either when an error condition occurs or when the input buffer
exhausts. It also protects the process() call from file operations by
placing appropriate calls for cache operations as well. The test application
does a cache invalidate for the valid input buffers before process() and a
cache write back invalidate for output buffers after process().

In the sample test application, after calling process(), the output data is
either dumped to a file or compared with a reference file.

3-4

Sample Usage

3.1.4 Algorithm Instance Deletion

Once encoding/decoding is complete, the test application must delete the
current algorithm instance. The following APIs are called in sequence:

1) algNumAlloc() - To query the algorithm about the number of memory
records it used.

2) algFree() - To query the algorithm to get the memory record
information

A sample implementation of the delete function that calls algNumAlloc()
and algFree() in sequence is provided in the ALG_delete() function
implemented in the alg_create.c file.

3-5

Sample Usage

This page is intentionally left blank

3-6

Chapter 4

API Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic Page

4.1 Symbolic Constants and Enumerated Data Types 4-2

4.2 Data Structures 4-6

4.3 Interface Functions 4-18

4-1

API Reference

4.1 Symbolic Constants and Enumerated Data Types

This section summarizes all the symbolic constants specified as either
#define macros and/or enumerated C data types. For each symbolic
constant, the semantics or interpretation of the same is also provided.

Table 4-1. List of Enumerated Data Types
Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

IAUDIO_1_0 Mono

IAUDIO_2_0 Stereo

IAUDIO_11_0 Dual Mono

IAUDIO_3_0 Left, Right, Center.
Not supported in this version of MP3
Decoder.

IAUDIO_2_1 Left, Right, Sur.
Not supported in this version of MP3
Decoder.

IAUDIO_3_1 Left, Right, Center, Sur.
Not supported in this version of MP3
Decoder.

IAUDIO_2_2 Left, Right, SurL, SurR.
Not supported in this version of MP3
Decoder.

IAUDIO_3_2 Left, Right, Center, SurL, SurR.
Not supported in this version of MP3
Decoder.

IAUDIO_2_3 Left, Right, SurL, SurR, surC.
Not supported in this version of MP3
Decoder.

IAUDIO_3_3 Left, Right, Center, SurL, SurR, surC.
Not supported in this version of MP3
Decoder.

IAUDIO_ChannelMode

IAUDIO_3_4 Left, Right, Center, SurL, SurR, sideL,
sideR.
Not supported in this version of MP3
Decoder.

IAUDIO_BLOCK Left channel data followed by right
channel data.

IAUDIO_PcmFormat

IAUDIO_INTERLEAVED Left and right channel data interleaved.

IAUDIO_DUALMONO_LR Play/encode both left and right channel. IAUDIO_DualMonoMode

IAUDIO_DUALMONO_LEFT Play/encode only left channel.

4-2

API Reference

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

IAUDIO_DUALMONO_RIGHT Play/encode only right channel.

IAUDIO_DUALMONO_LR_MIX Mix and play

IAUDIO_CBR Constant bit-rate IAUDIO_EncMode

IAUDIO_VBR Variable bit-rate

XDM_BYTE Big endian stream

XDM_LE_16 16-bit little-endian stream

XDM_LE_32 32-bit little-endian stream

XDM_LE_64 64-bit little-endian stream

XDM_BE_16 16-bit big endian stream

XDM_BE_32 32-bit big endian stream

XDM_DataFormat

XDM_BE_64 64-bit big endian stream

XDM_CmdId XDM_GETSTATUS Query algorithm instance to fill Status
structure.

 XDM_SETPARAMS Set run-time dynamic parameters via the
DynamicParams structure.

 XDM_RESET Reset the algorithm

 XDM_SETDEFAULT Initialize all fields in Params structure to
default values specified in the library.

 XDM_FLUSH Handle end of stream conditions. This
command forces algorithm instance to
output data without additional input.
Not applicable for MP3 Decoder. Returns
IALG_EOK.

XDM_GETBUFINFO Query algorithm instance regarding the
properties of input and output buffers.

XDM_GETVERSION Query the algorithm version.

XDM_ACCESSMODE_READ The algorithm reads from the buffer using
the CPU.

XDM_AccessMode

XDM_ACCESSMODE_WRITE The algorithm writes to the buffer using
the CPU.

XDM_ErrorBit The bit fields in the 32-bit error code are
interpreted as shown.

4-3

API Reference

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

XDM_PARAMSCHANGE Bit 8
 1 - Sequence Parameters

 Change
 0 - Ignore

Not applicable for MP3 Decoder.

XDM_APPLIEDCONCEALMENT Bit 9
 1 - Applied concealment
 0 - Ignore

Not applicable for MP3 Decoder.

XDM_INSUFFICIENTDATA Bit 10
 1 - Insufficient input data
 0 - Ignore

XDM_CORRUPTEDDATA Bit 11
 1 - Invalid data
 0 - Ignore

XDM_CORRUPTEDHEADER Bit 12
 1 - Corrupted frame header
 0 - Ignore

XDM_UNSUPPORTEDINPUT Bit 13
 1 - Unsupported feature/parameter in

input
 0 - Ignore

XDM_UNSUPPORTEDPARAM Bit 14
 1 - Unsupported input parameter or

configuration
 0 - Ignore

Not applicable for MP3 Decoder.

XDM_FATALERROR Bit 15
 1 - Fatal error (stop decoding)
 0 - Recoverable error

4-4

API Reference

Note:

The remaining bits that are not mentioned in XDM_ErrorBit are
interpreted as:

 Bit 16 - 32: Reserved

 Bit 8 - 15: Reserved

 Bit 0 - 7: Codec and implementation specific.

The MP3 Decoder uses a numerical value to define specific extended
errors/warnings as follows:

 0 - No error

 1 - Sync word not found

 2 - Stream is not layer 3

 3 - Free format not supported

 4 - Main data length invalid

 5 - Joint stereo bound error

 6 - Insufficient input data

 7 - Invalid input data

 8 - Bad PCM data warning

 9 - Change in number of channels between frames

 10 - Change in sampling frequency between frames

 11 - Change in bitrate between frames

 12 - Change in layer between frames

 13 - Error in scalefactor decoding

 14 - Error in Huffman decoding

 15 - Error in inverse quantization

 16 - Error in alias cancellation

 17 - Error in inverse MDCT

 18 - Error in polyphase synthesis

 19 - Internal Pointer NULL error

 20 - CRC check failed

 21 - Input bitstream parameters not supported

The decoder has to be reset only in case of fatal errors. In other cases,
the application can continue decoding without any problem.

4-5

API Reference

4.2 Data Structures

This section describes the XDM defined data structures that are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures

This section includes the following common XDM data structures:

 XDM_BufDesc

 XDM_SingleBufDesc

 XDM1_SingleBufDesc

 XDM1_BufDesc

 XDM_AlgBufInfo

 IAUDDEC1_Fxns

 IAUDDEC1_Params

 IAUDDEC1_DynamicParams

 IAUDDEC1_InArgs

 IAUDDEC1_Status

 IAUDDEC1_OutArgs

4-6

API Reference

4.2.1.1 XDM_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Datatype Input/
Output

Description

**bufs XDAS_Int8 Input Pointer to the vector containing buffer addresses

numBufs XDAS_Int32 Input Number of buffers

*bufSizes XDAS_Int32 Input Size of each buffer in bytes

4.2.1.2 XDM_SingleBufDesc

║ Description

This structure defines the single buffer descriptor for input and output
buffers.

║ Fields

Field Datatype Input/
Output

Description

*buf XDAS_Int8 Input Pointer to a buffer address

bufSize XDAS_Int32 Input Size of each buffer in bytes

4.2.1.3 XDM1_SingleBufDesc

║ Description

This structure defines the single buffer descriptor for input and output
buffers.

║ Fields

Field Datatype Input/
Output

Description

*buf XDAS_Int8 Input Pointer to a buffer address

bufSize XDAS_Int32 Input Size of each buffer in bytes

accessMask XDAS_Int32 Output Mask filled by the algorithm

4-7

API Reference

4.2.1.4 XDM1_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Datatype Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers

descs[XDM_MAX_IO_BUFFERS] XDM1_SingleBufDesc Input Buffer descriptors

4.2.1.5 XDM_AlgBufInfo

║ Description

This structure defines the buffer information descriptor for input and output
buffers. This structure is filled when you invoke the control() function
with the XDM_GETBUFINFO command.

║ Fields

Field Datatype Input/
Output

Description

minNumInBufs XDAS_Int32 Output Number of input buffers

minNumOutBufs XDAS_Int32 Output Number of output buffers

minInBufSize[XDM_
MAX_IO_BUFFERS]

XDAS_Int32 Output Size in bytes required for each input buffer

minOutBufSize[XDM
_MAX_IO_BUFFERS]

XDAS_Int32 Output Size in bytes required for each output buffer

Note:

For MP3 Decoder, the buffer details are:

 Number of input buffer required is 1.

 Number of output buffer required is 1.

 The size of the input buffer should be such that atleast one frame of
encoded data is present in the input buffer. The input buffer size is
2880 bytes.
The output buffer size (in bytes) for worst case (Layer 2) is 4608
bytes.

These are the maximum buffer sizes but you can reconfigure depending
on the format of the bit-stream.

4-8

API Reference

4.2.1.6 IAUDDEC1_Fxns

║ Description

This structure contains pointers to all the XDAIS and XDM interface
functions.

║ Fields

Field Datatype Input/
Output

Description

ialg IALG_Fxns Input Structure containing pointers to all the XDAIS
interface functions.

For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).

*process XDAS_Int32 Input Pointer to the process() function

*control XDAS_Int32 Input Pointer to the control() function

4.2.1.7 IAUDDEC1_Params

║ Description

This structure defines the creation parameters for an algorithm instance
object. Set this data structure to NULL, if you are not sure of the values to
specify for these parameters.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

outputPCMWidth XDAS_Int32 Input Number of bits per output PCM Sample.

pcmFormat XDAS_Int32 Input Output PCM Format Block/Interleaved.

dataEndianness XDAS_Int32 Input Endianness of input data. See XDM_DataFormat
enumeration for details.

4-9

API Reference

Note:

 Currently, the MP3 decoder implementation supports XDM_BYTE
format.

 MP3 Decoder supports only output PCMWidth of 16.

 MP3 Decoder supports both IAUDIO_BLOCK and
IAUDIO_INTERLEAVED PCM format.

4.2.1.8 IAUDDEC1_DynamicParams

║ Description

This structure defines the run-time parameters for an algorithm instance
object. Set this data structure to NULL, if you are not sure of the values to
be specified for these parameters.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

downSampleSb
rFlag

XDAS_Int32 Input Flag to indicate down sampling for SBR.

Note:

MP3 decoder does not support downSampleSbrFlag and will ignore
this flag.

4-10

API Reference

4.2.1.9 IAUDDEC1_InArgs

║ Description

This structure defines the run-time input arguments for an algorithm
instance object.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

numBytes XDAS_Int32 Input Number of valid input data (in bytes) in input buffer. For
example, if number of valid input data in input buffer is
128 bytes, set this field to 128.

desiredChan
nelMode

XDAS_Int32 Input Desired Channel Configuration. Refer
IAUDIO_ChannelMode

lfeFlag XDAS_Int32 Input Flag indicating whether LFE channel data is required in
the output.

Note:

 MP3 decoder supports Mono, stereo and dual Mono channel
modes.

For a mono stream if the desired channel mode is stereo or dual
mono, decoder does 3dB attenuation on PCM output.

 MP3 Decoder does not support LFE channel. LfeFlag should be
always 0.

 If the desiredChannelMode is IAUDIO_11_0, then
outputchannelMode will also be IAUDIO_11_0 only if the stream is
a dualmono stream. If the stream is stereo, then
outputChannelMode will be IAUDIO_2_0.

 If the desiredChannelMode is IAUDIO_2_0 for a dualMono stream,
then outputchannelMode will always be IAUDIO_11_0.

4-11

API Reference

4.2.1.10 IAUDDEC1_Status

║ Description

This structure defines parameters that describe the status of the algorithm
instance object.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being
used) data structure in bytes.

extendedError XDAS_Int32 Output Extended error enumeration for XDM
compliant encoders and decoders. See
XDM_ErrorBit enumeration for details.

data XDM1_SingleBuf
Desc

Output Buffer descriptor for data passing

validFlag XDAS_Int32 Output Flag indicating the validity of the status
structure

lfeFlag XDAS_Int32 Output Flag indicating whether LFE channel data
is present or not in the input.

bitRate XDAS_Int32 Output Bit-rate in bits per second. For example, if
the value of this field is 128000, it indicates
that bit-rate is 128 kbps.

sampleRate XDAS_Int32 Output Sampling frequency in Hertz (Hz). For
example, if the value of this field is 44100,
it indicates that the sample rate is 44.1kHz.

channelMode XDAS_Int32 Output Output Channel Mode. See
IAUDIO_ChannelMode for details.

pcmFormat XDAS_Int32 Output Output PCM Format Block/Interleaved

numSamples XDAS_Int32 Output Number of samples in the output

outputBitsPerSample XDAS_Int32 Output Number of output bits per output sample.
For example, if the value of the field is 16,
it indicates 16 output bits per PCM sample.

bufInfo XDM_AlgBufInfo Output Input and output buffer information. See
XDM_AlgBufInfo data structure for
details.

dualMonoMode XDAS_Int32 Output Mode to indicate type of Dual Mono. Only
used in case of Dual Mono Output

4-12

API Reference

Note:

 MP3 decoder supports only IAUDIO_DUALMONO_LR type of
dualMonoMode.

 Current implementation of MP3 Decoder does not update data field.

 ChannelMode for a dualMono stream will always be IAUDIO_11_0
even if the desiredChannelMode is IAUDIO_2_0.

4.2.1.11 IAUDDEC1_OutArgs

║ Description

This structure defines the run-time output arguments for the algorithm
instance object.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error enumeration for XDM compliant
encoders and decoders. See XDM_ErrorBit
data structure for details.

bytesConsumed XDAS_Int32 Output Bytes consumed during the process call

numSamples XDAS_Int32 Output Number of output samples per channel

channelMode XDAS_Int32 Output Output Channel Configuration

lfeFlag XDAS_Int32 Output Flag indicating the presence of LFE channel in
the output

dualMonoMode XDAS_Int32 Output Mode to indicate type of dual mono. Only used
in case of dual mono output

sampleRate XDAS_Int32 Output Sampling frequency, in Hz

4-13

API Reference

Note:

 MP3 decoder supports only IAUDIO_DUALMONO_LR type of
dualMonoMode.

 ChannelMode for a dualMono stream will always be IAUDIO_11_0
even if the desiredChannelMode is IAUDIO_2_0.

4.2.2 MP3 Decoder Data Structures

This section includes the following MP3 Decoder specific extended data
structures:

 IMP3DEC_Params

 IMP3DEC_DynamicParams

 IMP3DEC_InArgs

 IMP3DEC_Status

 IMP3DEC_OutArgs

4.2.2.1 IMP3DEC_Params

║ Description

This structure defines the creation parameters and any other
implementation specific parameters for the MP3 Decoder instance object.
The creation parameters are defined in the XDM data structure,
IAUDDEC1_Params.

║ Fields

Field Datatype Input/
Output

Description

auddec_params IAUDDEC1_Params Input See IAUDDEC1_Params data structure for
details.

4-14

API Reference

4.2.2.3 IMP3DEC_DynamicParams

║ Description

This structure defines the run-time parameters and any other
implementation specific parameters for the MP3 Decoder instance object.
The run-time parameters are defined in the XDM data structure,
IAUDDEC1_DynamicParams.

║ Fields

Field Datatype Input/
Output

Description

auddec_dynamicpara
ms

IAUDDEC1_DynamicPara
ms

Input See IAUDDEC1_DynamicParams
data structure for details.

4.2.2.2 IMP3DEC_InArgs

║ Description

This structure defines the run-time input arguments for the MP3 Decoder
instance object.

║ Fields

Field Datatype Input/
Output

Description

auddec_inArgs IAUDDEC1_InArg
s

Input See IAUDDEC1_InArgs data structure for
details.

4.2.2.3 IMP3DEC_Status

I
║ Description

This structure defines parameters that describe the status of the MP3
Decoder and any other implementation specific parameters. The status
parameters are defined in the XDM data structure, IAUDDEC1_Status.

║ Fields

Field Datatype Input/
Output

Description

auddec_status IAUDDEC1_Statu
s

Output See IAUDDEC1_Status data structure for
details.

bsi[7] XDAS_Int32 Output Bit-stream information. See bsi structure.

4-15

API Reference

4.2.2.4 Bit-stream Information Bsi[7]

Bitstream Description

Bsi[0] mpegId
Two-bit indicator of MPEG version.

 00 – Indicates MPEG2
 01 – Indicates MPEG1
 10 – Indicates MPEG 2.5
 11 – Is invalid.

Bsi[1] Layer
Provides layer information:

 1 – Layer 1
 2 – Layer 2
 3 – Layer 3

Bsi[2] copyright
Flag indicating if the stream is copyright protected or not.

 0 – Indicates there is no copyright.
 1 – Indicates the stream is copyright protected.

Bsi[3] originalOrCopy
Flag indicating if the bitstream is a copy or original:

 1 – Indicates the stream is original.
 0 – Indicates the stream is a copy.

Bsi[4] Mode
Two-bit indicator of channel mode used in the stream.

 00 – Indicates stereo
 01 – Indicates Joint Stereo
 10 – Indicates dual channel
 11 – Indicates single channel

Bsi[5] modeExtn
This is a two-bit field, which should be interpreted only if
the mode is joint stereo.

In Layer 3, these bits indicate which type of joint stereo
coding method is applied.

 00 – Indicates both intensity and MS stereo are off
 01 – Indicates only intensity stereo is on.
 10 – Indicates only MS stereo is on.
 11 – Indicates both intensity and MS stereo are on.

For Layers 1 and 2, these two bits indicate which sub-
bands are in intensity stereo.

 00 – Indicates subbands 4 to 31 in intensity stereo.
 01 – Indicates subbands 8 to 31 in intensity stereo.
 10 – Indicates subbands 12 to 31 in intensity stereo.
 11 – Indicates subbands 16 to 31 in intensity stereo.

Bsi[6] emphasisPresent
Provides emphasis information:

 00 – Indicates Emphasis not present
 01 – Indicates 50/15ms Emphasis present
 10 – Indicates reserved (no information on emphasis).
 11 – CCIT J1.7 Emphasis present.

4-16

API Reference

4.2.2.5 IMP3DEC_OutArgs

║ Description

This structure defines the run-time output arguments for the MP3 Decoder
instance object.

║ Fields

Field Datatype Input/
Output

Description

auddec_outArgs IAUDDEC1_OutArgs Output See IAUDDEC1_OutArgs data structure for
details.

4-17

API Reference

4.3 Interface Functions

This section describes the Application Programming Interfaces (APIs) used
in the MP3 Decoder. The APIs are logically grouped into the following
categories:

 Creation – algNumAlloc(), algAlloc()

 Initialization – algInit()

 Control – control()

 Data processing – algActivate(), process(), algDeactivate()

 Termination – algFree()

You must call these APIs in the following sequence:

1) algNumAlloc()

2) algAlloc()

3) algInit()

4) algActivate()

5) process()

6) algDeactivate()

7) algFree()

control() can be called any time after calling the algInit() API.

algNumAlloc(), algAlloc(), algInit(), algActivate(),
algDeactivate(), and algFree() are standard XDAIS APIs. This
document includes only a brief description for the standard XDAIS APIs.
For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

Note:

Audio codecs do not use algActivate() and algDeactivate() APIs.

4-18

API Reference

4.3.1 Creation APIs

Creation APIs are used to create an instance of the component. The term
creation could mean allocating system resources, typically memory.

║ Name

algNumAlloc() – determine the number of buffers that an algorithm
requires

║ Synopsis

XDAS_Int32 algNumAlloc(Void);
║ Arguments

Void
║ Return Value

XDAS_Int32; /* number of buffers required */
║ Description

algNumAlloc() returns the number of buffers that the algAlloc()
method requires. This operation allows you to allocate sufficient space to
call the algAlloc() method.

algNumAlloc() may be called at any time and can be called repeatedly
without any side effects. It always returns the same result. The
algNumAlloc() API is optional.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

4-19

API Reference

║ Name

algAlloc() – determine the attributes of all buffers that an algorithm
requires

║ Synopsis

XDAS_Int32 algAlloc(const IALG_Params *params, IALG_Fxns
**parentFxns, IALG_MemRec memTab[]);

║ Arguments

IALG_Params *params; /* algorithm specific attributes */

IALG_Fxns **parentFxns;/* output parent algorithm
functions */

IALG_MemRec memTab[]; /* output array of memory records */
║ Return Value

XDAS_Int32 /* number of buffers required */
║ Description

algAlloc() returns a table of memory records that describe the size,
alignment, type, and memory space of all buffers required by an algorithm.
If successful, this function returns a positive non-zero value indicating the
number of records initialized.

The first argument to algAlloc() is a pointer to a structure that defines
the creation parameters. This pointer may be NULL; however, in this case,
algAlloc() must assume default creation parameters and must not fail.

The second argument to algAlloc() is an output parameter.
algAlloc() may return a pointer to its parent’s IALG functions. If an
algorithm does not require a parent object to be created, this pointer must
be set to NULL.

The third argument is a pointer to a memory space of size
nbufs * sizeof(IALG_MemRec) where, nbufs is the number of buffers
returned by algNumAlloc() and IALG_MemRec is the buffer-descriptor
structure defined in ialg.h.

After calling this function, memTab[] is filled up with the memory
requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algNumAlloc(), algFree()

4-20

API Reference

4.3.2 Initialization API

Initialization API is used to initialize an instance of the algorithm. The
initialization parameters are defined in the Params structure (see Data
Structures section for details).

║ Name

algInit() – initialize an algorithm instance
║ Synopsis

XDAS_Int32 algInit(IALG_Handle handle, IALG_MemRec
memTab[], IALG_Handle parent, IALG_Params *params);

║ Arguments

IALG_Handle handle; /* algorithm instance handle*/

IALG_memRec memTab[]; /* array of allocated buffers */

IALG_Handle parent; /* handle to the parent instance */

IALG_Params *params; /* algorithm initialization
parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
║ Description

algInit() performs all initialization necessary to complete the run-time
creation of an algorithm instance object. After a successful return from
algInit(), the instance object is ready to be used to process data.

The first argument to algInit() is a handle to an algorithm instance. This
value is initialized to the base field of memTab[0].

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers allocated
for an algorithm instance. The number of initialized records is identical to
the number returned by a prior call to algAlloc().

The third argument is a handle to the parent instance object. If there is no
parent object, this parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm
initialization parameters.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc(), algMoved()

4-21

API Reference

4.3.3 Control API

Control API is used for controlling the functioning of the algorithm instance
during run-time. This is done by changing the status of the controllable
parameters of the algorithm during run-time. These controllable parameters
are defined in the Status data structure (see Data Structures section for
details).

║ Name

control() – change run-time parameters and query the status
║ Synopsis

XDAS_Int32 (*control) (IAUDDEC1_Handle handle,
IAUDDEC1_Cmd id, IAUDDEC1_DynamicParams *params,
IAUDDEC1_Status *status);

║ Arguments

IAUDDEC1_Handle handle; /* algorithm instance handle */

IAUDDEC1_Cmd id; /* algorithm specific control commands*/

IAUDDEC1_DynamicParams *params /* algorithm run-time
parameters */

IAUDDEC1_Status *status /* algorithm instance status
parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
║ Description

This function changes the run-time parameters of an algorithm instance
and queries the algorithm’s status. control() must only be called after a
successful call to algInit() and must never be called after a call to
algFree().

The first argument to control() is a handle to an algorithm instance.

The second argument is an algorithm specific control command. See
XDM_CmdId enumeration for details.

The third and fourth arguments are pointers to the
IAUDDEC1_DynamicParams and IAUDDEC1_Status data structures
respectively.

Note:

If you are using extended data structures, the third and fourth arguments
must be pointers to the extended DynamicParams and Status data
structures respectively. Also, ensure that the size field is set to the size
of the extended data structure. Depending on the value set for the size
field, the algorithm uses either basic or extended parameters.

4-22

API Reference

║ Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

 control() can only be called after a successful return from
algInit() and algActivate().

 If algorithm uses DMA resources, control() can only be called after
a successful return from DMAN3_init().

 handle must be a valid handle for the algorithm’s instance object.
║ Postconditions

The following conditions are true immediately after returning from this
function.

 If the control operation is successful, the return value from this
operation is equal to IALG_EOK; otherwise it is equal to either
IALG_EFAIL or an algorithm specific return value.

 If the control command is not recognized, the return value from this
operation is not equal to IALG_EOK.

║ Example

See test application file, TestAppDecoder.c available in the \Client\Test\Src
sub-directory.

║ See Also

algInit(), algActivate(), process()

Note:

Audio codecs do not use algActivate() and algDeActivate() APIs.

4-23

API Reference

4.3.4 Data Processing API

Data processing API is used for processing the input data.
║ Name

process() – basic encoding/decoding call
║ Synopsis

XDAS_Int32 (*process)(IAUDDEC1_Handle handle, XDM1_BufDesc
*inBufs, XDM1_BufDesc *outBufs, IAUDDEC1_InArgs *inargs,
IAUDDEC1_OutArgs *outargs);

║ Arguments

IAUDDEC1_Handle handle; /* algorithm instance handle */

XDM1_BufDesc *inBufs; /* algorithm input buffer descriptor
*/

XDM1_BufDesc *outBufs; /* algorithm output buffer
descriptor */

IAUDDEC1_InArgs *inargs /* algorithm runtime input
arguments */

IAUDDEC1_OutArgs *outargs /* algorithm runtime output
arguments */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
║ Description

This function does the basic encoding/decoding. The first argument to
process() is a handle to an algorithm instance.

The second and third arguments are pointers to the input and output buffer
descriptor data structures respectively (see XDM1_BufDesc data structure
for details).

The fourth argument is a pointer to the IAUDDEC1_InArgs data structure
that defines the run-time input arguments for an algorithm instance object.

The last argument is a pointer to the IAUDDEC1_OutArgs data structure
that defines the run-time output arguments for an algorithm instance object.

Note:

If you are using extended data structures, the fourth and fifth arguments
must be pointers to the extended InArgs and OutArgs data structures
respectively. Also, ensure that the size field is set to the size of the
extended data structure. Depending on the value set for the size field,
the algorithm uses either basic or extended parameters.

║ Preconditions

4-24

API Reference

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

 process() can only be called after a successful return from
algInit() and algActivate().

 If algorithm uses DMA resources, process() can only be called after
a successful return from DMAN3_init().

 handle must be a valid handle for the algorithm’s instance object.

 Buffer descriptor for input and output buffers must be valid.

 Input buffers must have valid input data.
║ Postconditions

The following conditions are true immediately after returning from this
function.

 If the process operation is successful, the return value from this
operation is equal to IALG_EOK; otherwise it is equal to either
IALG_EFAIL or an algorithm specific return value.

 After successful return from process() function, algDeactivate()
can be called.

║ Example

See test application file, TestAppDecoder.c available in the \Client\Test\Src
sub-directory.

║ See Also

algInit(), algDeactivate(), control()

Note:

 Audio codecs do not use algActivate() and algDeActivate()
APIs.

 The input data for MP3 Decoder is in byte format. The decoder
outputs 16-bit raw PCM samples in the little-endian format. The
output data is either in block or interleaved format. In the block
format, samples of the left channels are stored contiguously first,
followed by right channel samples (that is, LLLLRRRR). In the
interleaved format, left channel samples are stored followed by the
right channel samples (that is, LRLRLRLR).

4-25

API Reference

4.3.5 Termination API

Termination API is used to terminate the MP3 Decoder and free up the
memory space that it uses.

║ Name

algFree() – determine the addresses of all memory buffers used by the
algorithm

║ Synopsis

XDAS_Int32 algFree(IALG_Handle handle, IALG_MemRec
memTab[]);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance */

IALG_MemRec memTab[]; /* output array of memory records */
║ Return Value

XDAS_Int32; /* Number of buffers used by the algorithm */
║ Description

algFree() determines the addresses of all memory buffers used by the
algorithm. The primary aim of doing so is to free up these memory regions
after closing an instance of the algorithm.

The first argument to algFree() is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers previously
allocated for the algorithm instance.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

4-26

Appendix A

Revision History

This user guide revision history highlights the changes made to the
SPRUED0C codec specific user guide to make it SPRUED0D.

Table A-1.Revision History of MP3 Decoder on C64x+
Section Additions/Modifications/Deletions

Global Changes Changed XDM version from 0.9 to 1.0
 Changes DSP BIOS Version to 5.31
 Replaced all instances of IAUDDEC by IAUDDEC1

Section 1.3 Supported Services and Features:
 Updated list of supported features

Section 2.1.1 Hardware:
 Added list of platforms that the codec supports

Section 2.2 Installing the Component:
 Modified top-level directory name
 Modified sub-directory name

Section 2.5.1 Generic Configuration File:
 Modified format of the Testvecs.cfg file
 Modified sample Testvecs.cfg file

Section 2.8 Evaluation Version:
 Updated description of evaluation version

A-1

Revision History

Section Additions/Modifications/Deletions

Section 4.1 Symbolic Constants and Enumerated Data Types

Added Group or Enumeration Class IAUDIO_ChannelMode and the
following are the Symbolic Constants added under this Enumeration Class:

 IAUDIO_1_0
 IAUDIO_2_0
 IAUDIO_11_0
 IAUDIO_3_0
 IAUDIO_2_1
 IAUDIO_3_1
 IAUDIO_2_2
 IAUDIO_3_2
 IAUDIO_2_3
 IAUDIO_3_3
 IAUDIO_3_4

Added Group or Enumeration Class IAUDIO_DualMonoMode and the
following are the Symbolic Constants added under this Enumeration Class:

 IAUDIO_DUALMONO_LR
 IAUDIO_DUALMONO_LEFT
 IAUDIO_DUALMONO_RIGHT
 IAUDIO_DUALMONO_LR_MIX

Added Group or Enumeration Class IAUDIO_EncMode and the following
are the Symbolic Constants added under this Enumeration Class:

 IAUDIO_CBR
 IAUDIO_VBR

Added Group or Enumeration Class XDM_DataFormat and the following
are the Symbolic Constants added under this Enumeration Class:

 XDM_LE_32
 XDM_LE_64
 XDM_BE_16
 XDM_BE_32
 XDM_BE_64

Added new symbolic constant XDM_GETVERSION under XDM_CmdId
Group or Enumeration Class

Added Group or Enumeration Class XDM_AccessMode and the following
are the Symbolic Constants added under this Enumeration Class:

 XDM_ACCESSMODE_READ
 XDM_ACCESSMODE_WRITE

Added new symbolic constant XDM_PARAMSCHANGE under
XDM_ErrorBit Group or Enumeration Class

Removed the following Group or Enumeration Class:

 IAUDIO_ChannelId

A-2

Revision History

Section Additions/Modifications/Deletions

Section 4.2.1 Common XDM Data Structures:

Added following new Comman XDM Data structures:

 XDM_BufDesc
 XDM_SingleBufDesc
 XDM1_SingleBufDesc
 XDM1_BufDesc
 IAUDDEC1_Fxns
 IAUDDEC1_Params
 IAUDDEC1_DynamicParams
 IAUDDEC1_InArgs
 IAUDDEC1_Status
 IAUDDEC1_OutArgs

Removed following Comman XDM Data structures:

 XDM_BufDesc
 IAUDDEC_Fxns
 IAUDDEC_Params
 IAUDDEC_DynamicParams
 IAUDDEC_InArgs
 IAUDDEC_Status
 IAUDDEC_OutArgs

Section 4.2.2.4 Added Bit-stream Information Bsi[7]

A-3

	MP3 Decoder on C64x+
	Read This First
	Contents
	Figures
	Tables
	Introduction
	1.1 Overview of XDAIS and XDM
	1.1.1 XDAIS Overview
	1.1.2 XDM Overview

	1.2 Overview of MP3 Decoder
	1.3 Supported Services and Features

	Installation Overview
	2.1 System Requirements
	2.1.1 Hardware
	2.1.2 Software

	2.2 Installing the Component
	2.3 Before Building the Sample Test Application
	2.3.1 Installing DSP/BIOS

	2.4 Building and Running the Sample Test Application
	2.5 Configuration Files
	2.5.1 Generic Configuration File

	2.6 Standards Conformance and User-Defined Inputs
	2.7 Uninstalling the Component
	2.8 Evaluation Version

	Sample Usage
	3.1 Overview of the Test Application
	3.1.1 Parameter Setup
	3.1.2 Algorithm Instance Creation and Initialization
	3.1.3 Process Call
	3.1.4 Algorithm Instance Deletion

	API Reference
	4.1 Symbolic Constants and Enumerated Data Types
	4.2 Data Structures
	4.2.1 Common XDM Data Structures
	4.2.2 MP3 Decoder Data Structures

	4.3 Interface Functions
	4.3.1 Creation APIs
	4.3.2 Initialization API
	4.3.3 Control API
	4.3.4 Data Processing API
	4.3.5 Termination API

	Revision History

